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A FAST PARALLEL ALGORITHM TO COMPUTE 
THE RANK OF A MATRIX OVER AN ARBITRARY FIELD 
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It is shown that the rank of a matrix over an arbitrary field can be computed in O(log z p) 
time using a polynomial number of processors. 

1. Introduction 

Solving a system of  linear equations is undoubtedly the most basic problem 
in linear algebra, hence it is of  interest to know its parallel complexity. We already 
know this complexity when the system has full rank; this was done for the charac- 
teristic zero case in [4] and for an arbitrary characteristic in [1] and [3]. In general 
one needs to know the rank of  the system to be able to solve it. It was shown in [6] 
that computing the rank of  a matrix over the real or complex field is in NC ~. For 
an arbitrary field a randomized O(log 2 n) time algorithm, which used a polynomial 
number of  processors, was given in [3]. (Here the basic unit of time is one field ope- 
ration.) In this paper we shall give a deterministic O(log ~ n) time algorithm, which 
uses a polynomial number of  processors, to compute the rank of  a matrix over an 
arbitrary field. 

1he applications of this result will be many. Many problems which hitherto 
had only randomized polylog time parallel algorithms will now have deterministic 
polylog time parallel algorithms, rl-hese include many problems in linear algebra, 
notably solving a system of  linear equations over an arbitrary field (see [3]), group 
theoretic problems like finding the order, the derived series, a composition series, 
testing membership if the permutation group is solvable, finding the center, a central 
composition series, and pointwise stabilizers of sets, if the permutation group is 
nilpotent (see [7], [8]), factoring polynomials over finite fields of  small characteristic 
(the randomized algorithm is essentially the one of Berlekamp). In addition finding 
the gcd of  many polynomials and the squarefree decomposition of  polynomials are 
now in NC': instead of  NC 3 [5]. 
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2. The algorithm 

Suppose we are given an n × n  matrix A over an arbitrary field F and we want 
to calculate its rank. Let P(t) be its characteristic polynomial and K(A)=  U 

z=~l 
Kernel(A t) be its generalized eigenspace corresponding the eigenvalue zero. Let m 
be the highest integer such that t m divides P(t). Then m = dim (K(A)); this is best seen 
by first taking the algebraic closure of  the base field (this leaves dim(K(A)) and the 
characteristic polynomial invariant) and then by looking at the Jordan canonical 
form of  A. I f  K(A)=Kernel(A) then m=dim(Kernel (A))=nul l i ty(A) ,  and hence 
the rank of  A can be calculated by simply computing the characteristic polyno- 
mial P(t). Of course, K(A) need not be equal to Kernel(A), but we shall soon see a 
transformation which achieves this. 

First, we can assume that A is square and symmetric, because if it is not, one 
can consider instead the matrix 

[o,0  1 
which has twice the rank of the original matrix. Secondly, one notes that the rank 
remains invariant under an extension of  the base field. ~Ihus one is at liberty to extend 
the field as long as the computation in the new field does not become prohibitively 
expensive. Let us extend our field by adding one transcendental element x to obtain 
G= F(x), the field of  rational functions in one variable. Let us construct the matrix 

Xii= x , n). C = X A  over the field G, where X is a diagonal matrix with ~-~ (1 ~ i ~  
As X is nonsingular, it is clear that the rank remains invariant under this transforma- 
tion, i.e. rk (C)=rk (A) .  Moreover, 

Lemma 1. rk (CC) = rk (C). 

Proof. It is sufficient to prove that rk (AXA)= rk(A) because then 

rk (CC)  = rk(XAXA) = rk(AXA) = rk(A) = rk(C).  

Obviously rk(AXA)~rk(A).  Thus we only have to prove the other inequality. 
Suppose AXAu(x)=O, where u(x) is a vector whose entries can be assumed 

to be polynomials in x without any loss of  generality. Suppose to the contrary that 
~'(x)=Au(x)-,~O. Let v(z) be a vector obtained by substituting a new transcendental 
z for x. We get 

vi ( z )  v~ (x)  x ~ -~  = v' ( z )  S v  (x)  
i = 1  

= u ' ( z ) A ' X A u ( x )  

= u'  (z) A X A  u (x) 

= 0 .  

Denote by mi the degree of  v~(x), the ith component of  v(x), and let m =  
= max {mi}. Let k be the maximum integer such that m k = m. Then it is clear that 
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the term corresponding to the mon omial z,',k x'"~ x k-1 = z"k x"k + r,-1 in the expansion of  

~ a  Ui (Z) ~'i (X) X i -1  
i=1 

can not be cancelled, and hence the sum is nonzero, a contradiction. | 

Considering C as a linear endomorphism of V=G" the lemma implies that 
Kernel(C)YlC(V)={O}. (c(v)={c(z,)lr~v}). Hence V is a direct sum: V =  
=Kernel(C)®C(V) and. the restriction of  C is an automorphism of  C(V). "Ihis 
means Kernel(CZ)=Kernel(C) for all l ~ l ,  and K ( C ) =  [3 K e r n e l ( C ) =  

=Kerne l (C) .  As noted before, this implies that re=dim(Kernel(C)) ,  where m is 
the highest integer such that t" divides the characteristic polynomial Q(t) of  C. 
q-he rank of  C, and hence that of  A, can now be calculated by computing Q(t), which 
can be done in O(log ~- n) time with O(n 4~) processors using the algorithm in [2]. 

Though the knowledge of  the canonical form makes it easy to see what is 
going on, it is easy to see that m equals the nullity of  C without this knowledge. For 
V=Kernel(C)QC(V) implies that in an appropriate basis C assumes the block 
form 

where B is nonsingular, from which the result follows. 
Thus the following is a simple algorithm to find the rank of a symmetric 

n ×  n matrix A over an arbitrary field F. (We have already seen a simple transforma- 
tion to use if A is not symmetric and square.) Let X be a diagonal matrix in an inde- 
terminate x such that X~i=x I-1, ( l ~ i ~ n ) .  

1. compute Q(t)=det(tl-XA). 

2. return n - m ,  where n/ is the highest degree such that t" divides Q(t). 

The algorithm takes O(log" n) time using O(n a'a) processors. 
It is also interesting to consider a randomized version of  the above algorithm. 

We can eliminate the indeterminate x and thus gain in speed, by choosing for it a 
random value from the field F or its suitable algebraic extension. Note that this 
randomized algorithm uses only one random element, whereas the algorithm in [3] 
uses two random matrices. Moreover, if  the original matrix A was a sparse or band 
matrix, this property will be preserved in the transformed matrix. 
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