
COMBINATORICA 7 (1) (1987) 101--104

A FAST PARALLEL ALGORITHM TO COMPUTE
THE RANK OF A MATRIX OVER AN ARBITRARY FIELD

K. MULMULEY

Received 12 January 1986

It is shown that the rank of a matrix over an arbitrary field can be computed in O(log z p)
time using a polynomial number of processors.

1. Introduction

Solving a system of linear equations is undoubtedly the most basic problem
in linear algebra, hence it is of interest to know its parallel complexity. We already
know this complexity when the system has full rank; this was done for the charac-
teristic zero case in [4] and for an arbitrary characteristic in [1] and [3]. In general
one needs to know the rank of the system to be able to solve it. It was shown in [6]
that computing the rank of a matrix over the real or complex field is in NC ~. For
an arbitrary field a randomized O(log 2 n) time algorithm, which used a polynomial
number of processors, was given in [3]. (Here the basic unit of time is one field ope-
ration.) In this paper we shall give a deterministic O(log ~ n) time algorithm, which
uses a polynomial number of processors, to compute the rank of a matrix over an
arbitrary field.

1he applications of this result will be many. Many problems which hitherto
had only randomized polylog time parallel algorithms will now have deterministic
polylog time parallel algorithms, rl-hese include many problems in linear algebra,
notably solving a system of linear equations over an arbitrary field (see [3]), group
theoretic problems like finding the order, the derived series, a composition series,
testing membership if the permutation group is solvable, finding the center, a central
composition series, and pointwise stabilizers of sets, if the permutation group is
nilpotent (see [7], [8]), factoring polynomials over finite fields of small characteristic
(the randomized algorithm is essentially the one of Berlekamp). In addition finding
the gcd of many polynomials and the squarefree decomposition of polynomials are
now in NC': instead of NC 3 [5].

Also appeared in ACM Symposium on Theory of Computing, May 28--30, 1986 Berkeley,
California. Research supported by Mil[er Fellowship, University of California, Berkeley.

AMS subject classification (1980): 68 C 05

102 K. M U L M U LEY

2. The algorithm

Suppose we are given an n × n matrix A over an arbitrary field F and we want
to calculate its rank. Let P(t) be its characteristic polynomial and K(A)= U

z=~l
Kernel(A t) be its generalized eigenspace corresponding the eigenvalue zero. Let m
be the highest integer such that t m divides P(t). Then m = dim (K(A)); this is best seen
by first taking the algebraic closure of the base field (this leaves dim(K(A)) and the
characteristic polynomial invariant) and then by looking at the Jordan canonical
form of A. I f K(A)=Kernel(A) then m=dim(Kernel (A))=nul l i ty(A) , and hence
the rank of A can be calculated by simply computing the characteristic polyno-
mial P(t). Of course, K(A) need not be equal to Kernel(A), but we shall soon see a
transformation which achieves this.

First, we can assume that A is square and symmetric, because if it is not, one
can consider instead the matrix

[o,0 1
which has twice the rank of the original matrix. Secondly, one notes that the rank
remains invariant under an extension of the base field. ~Ihus one is at liberty to extend
the field as long as the computation in the new field does not become prohibitively
expensive. Let us extend our field by adding one transcendental element x to obtain
G= F(x), the field of rational functions in one variable. Let us construct the matrix

Xii= x , n). C = X A over the field G, where X is a diagonal matrix with ~-~ (1 ~ i ~
As X is nonsingular, it is clear that the rank remains invariant under this transforma-
tion, i.e. rk (C)=rk (A) . Moreover,

Lemma 1. rk (CC) = rk (C).

Proof. It is sufficient to prove that rk (AXA)= rk(A) because then

rk (CC) = rk(XAXA) = rk(AXA) = rk(A) = rk(C).

Obviously rk(AXA)~rk(A). Thus we only have to prove the other inequality.
Suppose AXAu(x)=O, where u(x) is a vector whose entries can be assumed

to be polynomials in x without any loss of generality. Suppose to the contrary that
~'(x)=Au(x)-,~O. Let v(z) be a vector obtained by substituting a new transcendental
z for x. We get

vi (z) v~ (x) x ~ -~ = v' (z) S v (x)
i = 1

= u ' (z) A ' X A u (x)

= u' (z) A X A u (x)

= 0 .

Denote by mi the degree of v~(x), the ith component of v(x), and let m =
= max {mi}. Let k be the maximum integer such that m k = m. Then it is clear that

COMPUTING THE RANK OF A MATRIX 103

the term corresponding to the mon omial z,',k x'"~ x k-1 = z"k x"k + r,-1 in the expansion of

~ a Ui (Z) ~'i (X) X i -1
i=1

can not be cancelled, and hence the sum is nonzero, a contradiction. |

Considering C as a linear endomorphism of V=G" the lemma implies that
Kernel(C)YlC(V)={O}. (c(v)={c(z,)lr~v}). Hence V is a direct sum: V =
=Kernel(C)®C(V) and. the restriction of C is an automorphism of C(V). "Ihis
means Kernel(CZ)=Kernel(C) for all l ~ l , and K (C) = [3 K e r n e l (C) =

=Kerne l (C) . As noted before, this implies that re=dim(Kernel(C)) , where m is
the highest integer such that t" divides the characteristic polynomial Q(t) of C.
q-he rank of C, and hence that of A, can now be calculated by computing Q(t), which
can be done in O(log ~- n) time with O(n 4~) processors using the algorithm in [2].

Though the knowledge of the canonical form makes it easy to see what is
going on, it is easy to see that m equals the nullity of C without this knowledge. For
V=Kernel(C)QC(V) implies that in an appropriate basis C assumes the block
form

where B is nonsingular, from which the result follows.
Thus the following is a simple algorithm to find the rank of a symmetric

n × n matrix A over an arbitrary field F. (We have already seen a simple transforma-
tion to use if A is not symmetric and square.) Let X be a diagonal matrix in an inde-
terminate x such that X~i=x I-1, (l ~ i ~ n) .

1. compute Q(t)=det(tl-XA).

2. return n - m , where n/ is the highest degree such that t" divides Q(t).

The algorithm takes O(log" n) time using O(n a'a) processors.
It is also interesting to consider a randomized version of the above algorithm.

We can eliminate the indeterminate x and thus gain in speed, by choosing for it a
random value from the field F or its suitable algebraic extension. Note that this
randomized algorithm uses only one random element, whereas the algorithm in [3]
uses two random matrices. Moreover, if the original matrix A was a sparse or band
matrix, this property will be preserved in the transformed matrix.

3. Acknowledgement

I am grateful to L. Babai, Dick Karp, i t . W. Lenstra, Gary Miller, Michael
Rabin and Avi Widgerson for useful discussions and comments, q-he proof of Lemma
1 is a simplification over my original p roof due to H. W. Lens~ra.

104 K. MULMULEY : COMPUTING THE RANK OF A MATRIX

References

[1] S. BISRKOWITZ, On computing the determinant in small parallel time using a small number of
processors, Inform. Process. Lett., 18 (1984), 147--150.

[2] A. BOROD,N, S. A. COOK and N. PIPPENGER, Parallel computation for well-endowed rings and
space bounded probabilistic machines, Information and Control 58 (1983), 113--136.

[3] A. BORODIN, J. YON ZUR GA'rI~EN and J. HoPcRozr, Fast parallel matrix and GCD computations,
Information and Control 52 (1982), 241--256.

[4] L. CS/~NKY, Fast parallel matrix inversion algorithms, SIAM J. Comput., 5 (1976).
[5] J. yon ZUR GA'rt~EN, private communication.
[6] O. IBARRA, S. MORAN and L. E. ROSIER. A note on the parallel complexity of computing the rank

of order n matrices, Information Processing Letters, 11 (1980), 162.
[7] E. M. LUKS and P. McKENzIE, Fast parallel computation with permutation groups, Proc. 25th

FOCS, 1985, 505--514.
[8] P. McKENztE and S. A. COOK, The parallel complexity of the abelian permutation group mem-

bership, Proc. 24th FOCS, 1983, 15~-161.

Ketan Mulmuley

EECS Department, Computer Sci. Division
University of California
Berkeley, CA 94720, U. S. A.

