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THRESHOLD FUNCTIONS

B. BOLLOBAS and A. THOMASON
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It is shown that every non-trivial monotone increasing property of subsets of a set has a
thireshold function. This generalises a number of classical results in the theory of random graphs,

Let X=X,={1,2,...,n} and Z=2(X). A property Q=0, of the subsets
of X is identified with the set of subsets of X having @, i.e. we consider Q as a subset
of 2. We call Q wmonotone increasing or simply nionotone if AcQ and AcCBcCX
imply BEQ. Slmllally, Q is monotone decreaszng or an ideal 1fAEQ and BC A imply
BeQ. Note that Q is monotone increasing iff Q’=71Q is monotone decreasing.
If 0=Q=% then Q is a non-trivial property. Thus a monotone increasing property
Q is non-trivial iff §4Q and Xe€Q.

For 0=k=n let X™ be the set of k-subsets of X and for QC# define
0,=0NXM. The probability that a random k-set of X has Q is defined to be

Pu@=louxol=lod/(;)

If k=k(n) is such that lim,_ . P,(Q)=1 then we say that almost every (a.e.)
k-subset of X has Q or that a k-subset of X has Q almost surely (a.s). Similarly, we
say that alimost no k-subset of X has Q or that a k-subset of X fails to have Q almost
surely if lim,_ . P, (Q)=0. If Q is a non-trivial monotone increasing property
then P (Q) 0, P,,(Q)—l and P.(Q) is a monotone increasing function of k. A
functlon m*=m*(n) is said to be a threshold function for a monotone increasing
property @ if for m/m*—~0 almost no m-subset has Q and for m/m*--e almost
every m-subset has Q.

Erd8s and Rényi were the first to prove that many a graph property has a
threshold function in the sense above, if we identify a graph with the set of its edges.
(For many examples of threshold functions of graphs and for an extensive account
of the theory of random graphs, see [1].) Our main aim in this note is to point out
that, in fact, every non-trivial monotone increasing property has a threshold func-
tion.
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Given natural numbers k and m, there are unique natural numbers ng>n, >
=y, m;=k—i, I=k—1, such that
!
n;
m = i;(;(k—i]'

Define
n

A = 3 ().

It is clear that we obtain the same function f, if instead of requiring »;>n;,, for
every i, we relax this inequality to »;=n;,, for one value of i. Our resulis are based
on the following theorem of Kruskal [3], discovered independently by Katona [2].

Theorem 1. Let X be a finite set and let QCP(X) be an ideal. Then |0,_,|=
=f(2D- B

Let A,,:[Z] and B,,:[kf !] . Then f,(4)=B,. In fact, f. is at least
as large as the piecewise linear function determined by the points (4,, B,):

B, —B,_y <=8 k—1

qt——x
A, —A,_, U k4

(]) ,/}((All 1Fx) n 1 +_

forall x, 0=x=4,—A4,_,=B,_,, provided n=zk+1.
To prove (1), we have to show that

! k=1 Lo )
2) g(k—l—:] = n—k+1 igl(lc~i

for n—1=n,>n,>...=>n,. The difference of the terms in (2) depending on #, is

( n, ){I (n,+l—k+l)(k—l)}

k—t—1 (h—k+Dk=-0 -

IF this is positive then, in proving (2), we may as well replace #, by 0. If this is neg-
ative then it suffices to prove (2) in the case when #, is as large as possible. In fact,
we may take m=n;_,, enabling us to omit #, and replace n,_; by n_,+1; if
m_y-+1l=n_, then we may omit m_;+1 as well and replace n,_, by n_,+1,
etc. In other words, there are natural numbers n{>n,>...>n;, t</, such that

(o) = 20 )

In the sequence (n;); either ny<n—1 or t=1. By repeating this reduction we
see that (2) holds if it holds for /=1 and n;=n—1. Asin that case (2) is an equality,
the proof of (1) is complete.

Theorem 2. Let Q be a monotone decreasing property of subsets of a set X. Then
for 0=j<k=n=|X| we have P;(Q)=P,(Q).
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Proof. In proving the assertion we may and shall assume that j=k—1. Set M;=|0Q;|

and mizPi(Q):M,./[’;]. By Theorem 1, M,_,=f,(M,), so it suffices to show
that

o) =G

Since
n )=k
(") (F)

1s a monotone decreasing function of #, we may assume that # is as small as possible,
i.e., with the previous notation, A4,_;<M,=A,_;+x=A,. But then, by (1),

ﬁt(Mk)/[kZI) zﬂ(An_1+X)/B,, = Bn—'l/Bn+(k_ l)x/{(n—k+l)Bn} =

= (Ao y +X)/A,) 5D = {Mk / [Z]}(k_l)/k.

Here the second inequality holds because it holds at x=4,—A4,_,=8B,_; and
because the derivative of ((A4,—; +x)/4,)*"V* at x=B,_, is precisely

(k—1/{k-4,} =k —-D/{(n-k+1)B,}. }

Corollary 3. Let Q be a property of subsets of a set of order n and let k;<k<k,.
If Q is monotone decreasing then

P, (@) = P (Q) = P, (QMM
and if Q is monotone increasing then
P (@RI = P(Q) = Pyy(@)" N0 b,

Proof. To deduce the second relation, note that if Q is monotone increasing then
OFr={AcP(X): A\ 4€Q} is monotone decreasing and P (Q)=P,_(Q%). 1

Our main result is an easy consequence of Corollary 3.

Theorem 4. Let Q be a monotone increasing non-trivial property of subsets of a set X,
X|=n. Let m*(n)=max {{: P(Q)=1/2} and wm=z=1. If m=m*jwn) then

Py (Q)=1-27"°
and if m=w(n)-(m*+1) then
P,(Q) = 1-2-.

In particular, m™ is a threshold function of Q.
Proof. If m=m"/w then
Pa(10) = Ppe(1Q)0 = 2710
and if m=w(n).(m*+1) then
Pp(10) = Ppeyy (10 =279, I
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If lim m*(n)/n=>0 then the assertion ‘for m/m*—~o a.e. m-set has Q’ is
vacuous. In fact, in this case we can do better: the second relation in Corollary 3
implies that if (r—m)/(n—m*)—~0 then P,(Q)—~1. In particular, if O0<
<lim m*(n)/n=Tim m*(n)/n<1 then n/2, say, is a threshold function in the follow-
ing sense: if m=o(n) then almost no m-set has Q and if m=n—o0(n) then al-
most every m-set has Q.
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