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The complexity of a digraph property is the number of entries of the vertex adjacency matrix 
of a digraph which must be examined in worst case to determine whether the graph has the property. 
Rivest and Vuillemin proved the result (conjectured by Aanderaa and Rosenberg) that every graph 
property that is monotone (preserved by addition of edges) and nontrivial (holds for some but not 
all graphs) has complexity £2(v ~) where v is the number of vertices. Karp conjectured that every such 
property is evasive, i.e., requires that every entry of the incidence matrix be examined. In this paper 
the truth of Karp's conjecture is shown to follow from another conjecture concerning group actions 
on topological spaces. A special case of the conjecture is proved which is applied to prove Karp's 
conjecture for the case of properties of graphs on a prime power number of vertices. 

1. Introduction 

Suppose  we are  given a d ig raph  D on v vertices via an oracle  which answers  
ques t ions  o f  the form " is  (x, y) an edge o f  D ? "  (We may  think o f  this  oracle  as the 
ad jacency  ma t r ix  o f  D.) Our  object ive is to de te rmine  whether  D has  a given (iso- 
m o r p h i s m  invar iant )  p r o p e r t y  P while minimizing the worst  case n u m b e r  o f  queries 
to the  oracle .  This m i n i m u m  is cal led the complexity o f  P,  deno ted  c(P). When 
c(P) is as large as possible ,  i.e., equal  to v ( v -  1), P is said to be evasive. Analogous  
defini t ions can be made  for  ( i somorph ism- invar ian t )  p roper t ies  o f  undi rec ted  
g raphs - - -hencefor th  graph properties--and in pa r t i cu la r  such a p r o p e r t y  is evasive 

i f  its complex i ty  is 1~1. 

In  1973 S. A a n d e r a a  and  R. L. Rosenbe rg  [14] p roposed  the 

Aanderaa--Rosenberg conjecture. There is a constant e > 0  such that an3: nontrivial 
monotone digraph property on v vertices has complexity at least ev ~. 

A nontrivial p r o p e r t y  is one which holds  for  some,  bu t  no t  all  d igraphs .  A 
monotone p r o p e r t y  is one which is no t  des t royed  by add i t ion  o f  edges.  (Rosenberg ' s  
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original version of  the conjecture, which Aanderaa disproved, did not assume mono- 
tonicity.) 

The Aanderaa--Rosenberg conjecture was proved by Rivest and Vuillemin 
[12]. Their value of e= 1/16 was subsequently improved by Kleitman and Kwiat- 
kowski [8] to e=l/9.  (Note: These papers and most later work deal with ~raph, 
rather than digraph, properties. In fact, the digraph results follow from the (not 
entirely trivial) observation that if m(v) and M(v) are respectively the minimum com- 
plexities of monotone graph and digraph properties on v vertices, then re(v)<= 
<= M(v) <_ 2m (v). ) 

As we shall see, the main results of this paper easily imply the A- -R  conjec- 
ture "asymptotically" for any e< l / 4 ;  precisely: 

m(v) > v2/4+o(v~'). 

But such improvements are really of secondary interest, since, remarkably, no coun- 
terexample is known to the following conjecture, which Rosenberg attributes to 
Karp. 

Conjecture 2. Every nontrivial monotone digraph property is evasive. 

This "Karp conjecture" was the starting point for our investigations. It (or 
strictly speaking the analogue for undirected graphs) is known to hold for a number 
of  specific properties (see [1], [2], [7], [10], and also [3, chap. 8] for a survey of results 
in this area). Here we will prove, inter alia, 

Theorem 1. If  v is a prime power then every nontrivial monotone graph or digraph 
property on v vertices is evasive. 

The notion of evasiveness generalizes naturally as follows. We are given a 
a Boolean function f of variables tl . . . . .  t, and wish to evaluate f (for fixed but un- 
known values of  the t;) by asking questions of  the form "what is the value of  tfi" 
Alternately, we may associate with each vector (tl . . . . .  t,) the subset {xi: t i= 1} of 
X =  {xl . . . .  , x,}, and take F to be the collection of  subsets of X whose associated 
vectors have f-value 1, to obtain the equivalent, but for us more convenient formula- 
tion: given a collection F of subsets of X and a fixed but unknown subset A of X, 
determine whether A is in F by asking questions of the form "is x~ an element of A ?" 
As before, a function f o r  collection F is evasive if every questioning strategy requires 
n questions in worst case. The definitions of nontriviality and monotonicity are like- 
wise extended in the obvious ways (for instance, F is monotone if A ~BE F=~AE F). 
We will usually refer to F as a set property, meaning that A has the property iff 
AEF. 

Of course we recover the original digraph problem by taking X to be the 
collection of ordered pairs of distinct elements of  the set V= {1 . . . . .  v} (and equating 
a digraph D with its edge set). But observe that digraph properties are distinguished 
from arbitrary set properties by their symmetry: the group So acts transitively on the 
v ( v - 1 )  elements of X, while preserving the set of  digraphs having a given property. 
This suggests the following generalization of  Conjecture 2. 

Conjecture 3. I f  F is any nontrivial monotone set property for which there exists a 
transitive group F of permutations of X preserving F, then 17 is evasive. 
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(As usual, F acts on subsets of J( by {x, y . . . .  , z} r = {x ~, v ~ . . . .  , zr}, and is 
said to preserve F if AEF, ?EF~A~EF.) This was shown by Rivest and Vuillemin 
[12] in case IX] is a prime power, a fact which forms the basis for their proof  of  the 
Aanderaa--Rosenberg Conjecture. (In fact, they proposed a somewhat stronger 
version of  Conjecture 3 in which monotonicity was replaced by the weaker condition: 
F contains exactly one of  0, X; a counterexample to this was provided by Illies [6].) 

The approach of  the present paper is topological. We regard the collection of  
sets not belonging to F a s  an (abstract) simplicial complex, and after suitable prelimi- 
naries this allows us to invoke known results concerning finite group actions on topo- 
logical spaces to prove Conjecture 3 under an additional hypothesis on F (see Theo- 
rem 2). Theorem 1 above is an easy consequence of  this general result. 

These developments are described in section 3, section 2 being devoted to a 
brief review of  some topological background. Finally in section 4 we apply the ideas 
of  section 3 to prove Conjecture 2 for undirected graphs when v=6 .  (The reader 
may wish to convince himself of  the difficulty of  a barehanded approach to even this 
seemingly small problem.) 

2. Topological prerequisites 

Recall that an (abstract simplicial) complex on a set X (always assumed to be 
finite) is just a collection A of  subsets of  Xwith  the property that A C=BEA implies 
A E A. The members of  A are called faces. The dimension of a face A is [AI-I. (Thus 
the empty set has dimension - 1 . )  Faces of  dimension 0 are called vertices. If J] 
is the number of  faces of  A of  dimension i, then the Euler characteristic of  A is 

z(a) = Z ( -  ly f , .  
i_~O 

It is often helpful to think of  A in terms of  its associated geometric realization IA]: 
if x =  {xl . . . . .  x,}, we think of each xi as coinciding with the standard basis vector e/ 
in R", and take ]A] to be the union of all the convex hulls IA]=conv ({e/: xiEA}) 
with A a face of  A. (See e.g. [16], § 3 - 1 . )  The automorphism group of A, denoted 
Aut (A), is the collection of  permutations of  X which preserve A. Aut (A) also acts 
on ]A[ as a group of  (piecewise linear) homeomorphisms, namely by regarding 
7EAut (A) as the map which for each AEA sends the convex combination ~ '  2ie~ 

x~EA 
to ~,  ;t~e~(~), where we write x~(o=x" f. 

.~IEA 
With each xEX there are associated two complexes on X \ { x }  which arise 

naturally in the context of  evasiveness. These are the link and contrastar of  x, given 
respectively by 

LINK(x)  = LINK (x, A) = {A ~ X \ { x } :  A U {x}EA} 
and 

COST (x) = COST (x, A) = {A c= X \ { x } :  

A free face of  A is a non-maximal face which is contained in a unique maximal 
face. An elementary (simplicial) collapse of  A is the process of  removing from A some 
free face A together with all faces containing A. (This definition makes more sense 
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when thought of  in terms of ]A 1.) We say that A collapses to a complex A' if A" can 
be obtained from A by a sequence of  elementary collapses, and that A is collapsible 
if it collapses to the empty complex. For  further information on collapsibility, 
see [4]. 

We do not define here the more familiar notions of  homology and contracti- 
bility. (The standard text is [16], but see [9] or [17] for a less forbidding introduction 
to the subject. For the moment, the untopologized reader should still be able to follow 
our line of reasoning (taking certain results on faith), but of  course the picture will be 
rather incomplete.) For  an abelian group G (here either Z or Zp) we will say A is 
G-acyclic if the (nonreduced) homology groups of  A are: 

Ho(A, G) = G, 

H,(A, G) = 0 i > O. 

It is easy to see ([4], p. 49) that if a nonempty complex A is collapsible, then it is also 
contractible, and we recall that we always have the additional implications 

contractible ~ Z-acyclic =~ Zp-acyclic. 

Finally we define a complex A*, called the dual of  A, by 

a*= {At=X: X\ACA}, 

and remark that the dual of  A* is A. 

3. Proofs 

For a family Fofsubsets  of  Xit  is clear that the problem of testing membership 
in F(as in the introduction) is equivalent to testing membership in the complementary 
family A of  subsets of  X not belonging to F. This trivial modification is in fact quite 
helpful; for saying that F is monotone is the same as saying that A is a simplicial 
complex, so that shifting our attention to A allows us to think topologically. So we 
are now faced with the problem: given a complex A on the set X and an (unknown) 
subset A of  X, determine whether A is a face of A by asking questions of  the form 
"is x in A ?" As usual we say A is evasive if there is no strategy which always decides 
membership in A in fewer than n questions, and trivial if it is empty or a simplex (i.e. 
consists of  a//subsets of  X). In this setting we find it convenient to reformulate Con- 
jecture 3 as 

Conjecture 3'. I f  A is a nonempty, nonevasive simplicial complex on X, and Aut (A) is 
transitive on X, then A is a simplex. 

The topological connection is provided by 

Proposition 1. A nonevasive complex is collapsible. 

Proof. If  A is not trivial then there is some x E X  for which "is x in A?" is a good 
first question, i.e. the first question in a strategy which always decides membership in A 
in fewer than n questions. Having asked this question we have two possibilities: if the 
answer is "x~[A", then A belongs to A iff it belongs to COST(A); if the answer is 
"xCA",  then A belongs to A iff A \ { x }  belongs to LINK(A). In either case we have 
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(by our choice of  x) a strategy which decides membership in the new complex in fewer 
than n -  1 questions. In other words, i f  A is nonevasive and nontrivial, then there is 
some xE X .['or which both COST(x) and LINK(x)  are nonevasive. 

The proof  of Proposition I is now an easy induction on IX]. I f  X is trivial 
(notice this includes the basis step), then it is also collapsible ([4], p. 49). Otherwise 
we may by induction and the above remark choose x ~ X  with both LINK(x)  and 
COST(x) collapsible. Now if A1 . . . .  , A k is a sequence of  free faces used to collapse 
LINK(x) ,  then A1 (3 {x} . . . . .  Ak U {x}) (= {x}) is a sequence of  free faces which col- 
lapses A to COST(x), so the collapsibility of  A follows from that of  COST(x). II 

Although we cannot give a specific example, the converse of  this proposition 
is false because the dual (see section 2) of  a nonevasive complex is again nonevasive, 
whereas the dual of  a collapsible complex may fail to be collapsible. (The first of  
these assertions is an easy exercise. The second is seen as follows. It is known (see [4], 
p. 69) that a collapsible A may be collapsed to a noncollapsible 27. On the other hand, 
it is an easy consequence of  the definitions that if A collapses to 27, then Z* collapses 
to A* (* is a contravariant functor), so in our case either 27* is collapsible or A* is 
not, and this proves the second assertion). 

We do not make use of the full power of  Proposition 1 : as often happens we 
are unable to exploit directly either the collapsibility or consequent contractibility 
of  A, and our conclusions are limited to what we can glean from 

Corollary 1. Any nonevasive complex is acyclic over the integers. 1 

A direct proof  of  this can be given along the lines of  Proposition 1 ; but in 
view of  the similarity between nonevasiveness and collapsibility it seems worthwhile 
pointing out how they are related. 

At this point one can hardly avoid posing 

Conjectures 4, 5, 6. I f  A ~ O  is a collapsib& resp. contractible resp. Z-acyclic 
complex on X and Aut (A) is transitive on X then A is a simplex. 

Surprisingly, nothing beyond what we say here appears to be known about 
these very natural questions. (Incidentally, the authors believe that Conjectures 5 
and 6 are probably false.) 

Let us take f9 to be the collection of  all groups F in which there exists sub- 
groups El,  F2 satisfying 

(i) F I < F 2 < F  ('-,a' means 'is a normal subgroup of'), and 
(ii) F1 is a p-group, F2/F1 is cyclic, and F/F2 is a q-group, with p and q (not ne- 
cessarily distinct) primes, 
and fgo the collection of  those F in f9 for which Fz (as above) is equal to F. What we 
can show regarding Conjecture 3 and the variants suggested above is 

Theorem 2. Let A be a nonempty Z-acyclic complex on X and F a vertex-transitive 
subgroup o fAu t  (A). Then i f  F is a member off9, A is a simplex. 

Of course this implies the corresponding results for contractible, collapsible 
and nonevasive A, so in particular we have 

Corollary. Conjectures 3 - -6  are true whenever F is a member o f  fg. 
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Before proving Theorem 2, we observe that Theorem 1 is indeed a special 
case. For let P be a digraph property on the vertex set V, with IV[ =p~ a prime power. 
Identifying V with GF(p~), we find that the "affine group" 

F = {x ~ ax+b:  a, bEGF (p~), a¢0} .  

is doubly transitive on V, i.e. is transitive on our set E of  ordered pairs of distinct 
elements of  IT. Moreover, the translation subgroup 

F = {x-+ x + b :  bEGF(p~)} 

is a normal p-subgroup of F, and F / F I ~ G F ( p ' )  ~ is cyclic; that is, FErn. Thus 
Theorem 2 contains Theorem I. 1 

Now to prove Theorem 2, observe that we need only show that there is some 
nonempty AEA satisfying A~=A for all 7EF; for the transitivity of  F implies 
that such an A must be equal to X. 

On the other hand, we will have A r = A if (and only if) y acting on IA] (sec- 
tion 2) fixes some xE IA[ ° (the relative interior of ]A]). So writing IA [r for the space of  
fixed points of  F, i.e. 

Izllr = {x~lAl:  x~ = x , V ~ E r } ,  

we see that Theorem 2 is true provided ]A]r~0. 

We pause here to describe an abstract version of lair which will be of  use 
especially in section 4. For  A, F as above, define a complex A r by: 

(i) the vertices of  A r are the minimal nonempty F-invariant faces of  A (or 
equivalently, those F-orbits on X which are faces of  A). 

(ii) If  AI . . . . .  A k are vertices of At ,  then {A1, ..., Ak} is a face of  A if 
A~U...UAk is a lace of A. 

Thus the f'~ces ofA r are just the F-invariant faces of A. regarded in the natural 
way as subsets ol" tile minimal nonempty F-invariant faces. The reader will easily see 
that if we identify each vertcx A~ of Ar with the barycenter of iA~I in ]A], then the 
geometric realization of" Arl, constructed as in section 2, is just lair. 

We now return to complete the proof of  Theorem 2, which we have seen 
requires only that IA It/-0. In fact, this is known to be true, being a consequence of  
a theory of  fixed points of  finite group actions on topological spaces whose founda- 
tion is the following result of  P. A. Smith [15]. 

Theorem 3. I f  F is a p-group acting on a Zp-acyclic complex A, then IA ]r is again 
Zp-acyclic. I 

As observed in [11], this leads quickly, via the Hopf-Lefschetz trace formula 
[16, p. 195], to 

Theorem 4. I f  the group F acts on the Zp-acyclic complex A, and i f  F contains a normal 
p-subgroup Fx such that F/F  1 is cyclic, then z([Alr)= 1. I 

It is this result which we shall find most useful in the arguments of  section 4. 
Observe also that it provides sufficient power for the proof  of  Theorem 1 given above. 
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The extra refinement which yields Theorem 2 is contained in the following result of  
R. G. Oliver [11], which serves also to define the limits of the present approach. 

Theorem 5. I f  kCf9 acts on the Zp-acyclic complex A, then lair#0. II 

(Here the prime p is as in the definition of  f¢.) 

We conclude this section with the asymptotic result claimed in the introduction. 

Theorem 6. Any nontrivial montone property of  graphs (or digraphs) on v vertices has 
complexity at least v2/4 + o(v~). 

Proof. We will prove this for (ordinary) graphs; the result for digraphs will then 
follow from the observation made earlier relating the complexities of  graph and 
digraph properties. 

The key result here is a lemma of  Kleitman and Kwiatkowski [8] which states 
that m(v)->_min { m ( v - l ) ,  q(v-q)}  where q is the prime power nearest to v/2. 
Using this lemma and Theorem 1 we see that m(v)>=q'(q+ 1 -q ' )  where q is the lar- 
gest prime power less than v and q'  is the prime power nearest to (q+  1)/2. It is an 
easy consequence of the prime number theorem [cf. 5] that there is a real function 
6(x)=o(x) with the property that for all x there is a prime between x and x+f (x ) .  
We conclude that m(v)>=v2/4+o(v2). II 

4. Graphs on six vertices 

In this section we give some further illustration of  the application of  the ideas 
introduced above by sketching a proof  of  Conjecture 2 for undirected graphs in the 
case v =  6. Incidentally, the truth of  the Conjecture in this case was asserted in [12] 
but no proof  was given there; indeed, we see no manageable approach which does 
not use the present machinery. 

From now on we take A to be a nonevasive monotone decreasing graph prop- 
erty on 6 vertices, i.e. a nonevasive complex on the 15 two-element subsets of  
{1 . . . . .  6} invariant under the natural action of  Se. If  H is a graph we use "A contains 
H " ,  " H  belongs to A", etc. to mean that any (equivalently, some) graph on {1 . . . . .  6} 
isomorphic to H is a face of  A. We assume for a contradiction that H is neither empty 
nor  a simplex. Observe that our situation at this point is self-dual: our assumptions 
on A are also true of  A*, and so anything we can say of one must also apply to 
the other. 

Our proof  proceeds by considering the actions of  various subgroups F of  Ss 
and applying Theorems 4 and 5 to the complexes Ar. Verifications are for the most 
part left to the reader. 

(1) Perfect matchings belong to A. 

Proof. Let F be the stabilizer in Se of  the set of  pairs M={{12}, {34}, {56}} (e.g. 
(14)(23)(56)EF). Then FEf# (we may take FI~Z'~ and F/FI~S3), and has preci- 
sely two orbits, M and M. At least one of these is in A, by Theorem 5; but i f . ~  is in 
A, then so is M, since it is (isomorphic to) a subgraph of M. II 

(2) Exactly one of  2K3, K,3 belongs to A. 
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(Here 2K3 is the union of two disjoint triangles, and Ka.~ is as usual the complete bi- 
partite graph.) 

Proof. Let F=((123), (456), (14)(25)(36)). Then FEll0 and the orbits o f F  are the 
copies of 2Kz and K33 shown in figure 1. So by Theorem 5, at least one of 2K3, K3a 
belongs to A. But if both did, then Theorem 4 would force their union to belong to A, 
and A would be a simplex. I 

6 1 6 1 

Fig. 1. The two orbits under the action of the group ((123), (456), (14) (25) (36)) 

Notice that (by the definition of A*) whichever of  the graphs in (2) belongs to 
A must also be the one belonging to A*. 

Suppose first that 2K3EA (and A*), and let F=((153624)). Then FEN0, 
and the orbits of  F are (the edge sets of) the graphs shown in figure 2. We know that 
A, BEA, and it follows that CEA; since otherwise Theorem 4 forces A UBEA, and 
then C, being isomorphic to a subgraph of A UB, must also be in A. But now we 
have a contradiction: Everything so far asserted for A is also valid for A*; so we have 
A,B, CEA* and so A = B U C ,  B = A U C  and C=AUBf[A,  which contradicts 
Theorem 4. I 

50 

6 1 6 1 '3 1 

'~/t~.. ~ " ~ 2 

A B C 

Fig. 2. The three orbits under the action o f  the group ((153624)) 

Now suppose that K3~E A (and A*). We first assert that 

(3) Ka cannot belong to both of  A, A*. 

For let F=((123), (456)). Then FEfq0 and the orbits of F are as shown in figure 3. 
If  K3EA, then we have A, B, CEA, so by Theorem 3 A U B ( ~ A U C ) E A .  But then 
A U B = C  cannot belong to A*, and this proves (3). ] 

We may thus assume that K3~A. Now let F=((12),  (3456), (35)) (the direct 
product of ((12)) and a dihedral group on {3, 4, 5, 6}). Then FEN0, and the orbits 
of  F are as in figure 4. 
(4) The faces of Ar are O,A,B, C, AUB, AUC. 
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6 1 6 1 ~ 1 

5 ~ ~ 2  5 O2 50 2 

. . . .  O3 40 

A B C 

Fig. 3. The three orbits under the action o f  the group ((123).  (456)) 

I 6 I 

50 ~2 5 O2 

O3 - . 3  &O 

A 

6 1 6 1 

.4.'" 5 4 , 1 ~ " ~ 3  o2 5 2 

C D 

Fig. 4. The four orbits under the action of the group ((12), (3456), (35)) 

Proof. Each of the graphs listed is contained in K33, so a face of Ar. On the other 
hand, A U D, B U D, C U D and B U C all contain/Ca so do not belong to A. Finally, 
Theorem 4 implies that D~Ar.  I 

Now the vertex A of A is fixed by F, so that F acts on LINK (A, A). The fixed 
points of  this action are given by 

(LINK (A, A)) r = LINK (A, At), 

the latter being a complex with two vertices and no edges. On the other hand, 
LINK (A, A) is nonevasive. (This is true of  some vertex of A, as in the proof of 
Proposition 1 of section 3; but then it must be true of every vertex since Aut (A) 
is transitive.) So by Theorem 4, (LINK (A, A))r must have Euler characteristic 1, 
a contradiction which completes our proof. I 

Note added in proof. R. G. Oliver (personal communication) has recently provided 
a counterexample to Conjectures 5 and 6 and a plausibility argument for the falsity 
of  Conjecture 4. 
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