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Abstract  
This paper surveys the research area of cooperative games associated with several 
types of operations research problems in which various decision makers (players) are 
involved. Cooperating players not only face a joint optimisation problem in trying, 
e.g., to minimise total joint costs, but also face an additional allocation problem in 
how to distribute these joint costs back to the individual players. This interplay 
between optimisation and allocation is the main subject of the area of operations 
research games. It is surveyed on the basis of a distinction between the nature of 
the underlying optimisation problem: connection, routing, scheduling, production 
and inventory. 
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1 I n t r o d u c t i o n  

Typically, operations research analyses situations in which one decision 
maker, guided by an objective function, faces an optimisation problem. The 
theory concentrates on the question of how to act in an optimal way and, 
in particular, on the issues of computational complexity and the design of 
efl3cient algorithms. Game theory on the other hand analyses situations 
involving at least two interacting decision makers (called players), with 
possibly diverging interests. Roughly speaking, it deals with mathematical  
models of competition and cooperation. 

Competitive or noncooperative game theory studies situations in which 
the players can negotiate about what to do (i.e., pre-play communication is 
allowed), but enfbrceable binding agreements are assumed not to be possi- 
ble. Therefore strategic analysis and individual incentives play a prominent 
role here. In cooperative game theory enfbrceable binding agreements are 
possible and also side payments may be allowed. Now the main issue is fair 
allocation, either of joint costs or joint revenues. 
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Since the early developments of operations research and game theory 
there has been a strong interplay between the two disciplines. Especially the 
interrelation between operations research and noncooperative game theory 
is well-known: between duality results in mathematical  programming and 
minimax results fbr zero-sum games, between linear complementari ty and 
bimatrix games, between Markov decision processes and stochastic games, 
and between optimal control theory and differential games. 

The interrelation between operations research and cooperative game the- 
ory is of a more recent date and is summarised under the heading of opera- 
tions research games. One can say that  an importa:nt part  of the interplay 
between cooperative games and operations research stems from the basic 
(discrete) structure of a graph, network or system that underlies various 
types of combinatorial optimisation problems. If one assumes that  at least 
two players are located at or control parts (e.g., vertices, edges, resource 
bundles, jobs) of the underlying system, then a cooperative game can be 
associated with this type of optimisation problem. In working together, the 
players can possibly create extra gains or save costs compared to the situ- 
ation in which everybody optimises individually. Hence the question arises 
how to share the extra revenues or cost savings. 

One way to analyse this question is to s tudy the generM properties (e.g., 
balancedness or convexity) of all games arising from that  specific type  of 
operations research problem and to apply a suitable existing game theoretic 
solution concept (e.g., core or Shapley value) to this class. Another way is 
to create a context specific allocation rule. Such a rule can be based either 
on desirable properties in this specific context or on a kind of decentralised 
mechanism that ;prescribes an allocation on the basis of the algorithmic 
process along which a jointly optimal combinatorial structure is established 
(e.g., following an algorithm to create a minimal cost spanning tree). A gen- 
eral reference on cooperative games is Driessen (1988) and various specific 
operations research games are treated in Curiel (1997). 

The original request of T O P  to the authors of this paper was to write a 
complete survey on operations research games. Given the abundance of pa- 
pers on this topic, starting more or less from the beginning of the seventies, 
and the vast increase during the nineties, this constitutes a "mission impos- 
sible". Moreover, the definition of operations research games is not so strict 
that  a unique selection of research streams is prescribed. Consequently, the 
choice of topics treated in this survey is somewhat biased towards our own 
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expertise, knowledge and interests. A first general aim of this survey is to 
give an unacquainted reader a flavour of the things that  are going on in this 
interesting field of research. Our second aim is to provide a rather up to 
date s t a t e -o f  the-art. Last but  not least we hope it stimulates researchers to 
enter this field. There are still many questions to be asked, gaps to be filled 
and extensions to be investigated. We have included a brief final section 
with our ideas for possible fhture research lines; not in a very detailed and 
elaborate way, but  mainly by making some hints and stating some catch- 
words to provoke possibly diffhrent individual associations and to enter new 
research tracks. 

To bet ter  structure the survey, we have chosen to make a division of 
operations research games into five categories, primarily based on the nature 
of the underlying optimisation problem. In our view, this categorisation also 
allows for a bet ter  insight into the various relationships in methodology, 
techniques and results across the different classes of operations research 
games. We distinguish between: 

(i) Connection: fixed tree, spanning tree 

(ii) Routing: Chinese postman, travelling salesman 

(iii) Scheduling: sequencing, permutation,  assignment 

(iv) Production: linear production, flow 

(v) inventory 

Each category will be treated in a separate section. Within each category 
we have chosen one representative class which is discussed in some detail, 
starting from the level of a person who is not familiar with the topic. For 
this reason, relatively much attention is paid to the modelling phase, i.e., 
how to go from operations research to game theory. After discussing the 
main results from the literature for the representative class, the other classes 
within the same category are treated in a more compact way. 

To conclude the introduction we mention some topics which could be 
considered as being inside the theory of operations research games, or at 
least closely related, but  which will not be discussed in this survey. For those 
interested we have added a selected list of references. Within a financial 
context we mention bankruptcy  games, cf. O'Neill (1982), Aumann and 
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Maschler (1985), Curiel et al. (1987), Young (1988), Kaminski (2000) and 
Calleja et al. (2001b), deposit games, cf. Izquierdo and Rafels (1996) and 
Borm et al. (2001) and shortest path games, cf. Fragnelli et al. (2000), 
Voorneveld and Grahn (2000) and Grahn (2001). An interesting class with 
clear optimisation f>atures deals with cost sharing issues, cf. Moulin and 
Shenker (1992a,b) and Sprumont (1998). A nice survey of this literature can 
be found in Koster (1999). Another type of games which directly involves 
combinatorial structures is the class of communication games and all its 
variants. Surveys can be found in Slikker and Nouweland (2001) and Bilbao 
(2000). An interesting recent contribution which uses techniques from linear 
production is Suijs et al. (2001). 

2 P r e l i m i n a r i e s  

In this section we introduce some basic notation and define a number of 
elementary concepts in cooperative game theory, which we use throughout 
the paper. 

The set of real numbers is denoted by IR. For a finite set N we denote by 
IR N the set of real vectors of length INI, where the coordinates correspond 
to the elements of N.  IR~ is the set of all elements of R N in which all 
coordinates are nonnegative and R~+ denotes the set of all vectors in which 
all coordinates are positive. The set of subsets of N is denoted by 2 N. For 
S C N,  e s denotes the vector in IR N with e~' = 1 for all i E S and e~' = 0 
for all i E N \ S .  

A cooperative game with transferable utility, or TU game, is described 
by a pair (N,v) ,  where N = { 1 , . . . , n }  denotes the set of players and 
v : 2 N --+ R is the characteristic ]hnction, assigning to every coalition 
S C N of players a value v(S),  representing the maximal total monetary 
reward the members of this group can obtain when they cooperate. By 
convention, v(0) = 0. 

The imputation set I(v)  of a game (N, v) is defined as the set of indi- 
vidually rational allocations of v(N):  

I (v )  -- { .  : _> v({ i} )}  
i E N  
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and the core is defined as 

C(v) = {xCRN I ~Txe=v(N),VscN: ~z~ > v(S)}. 
iEN  iES 

So the core consists of all allocations of v(N) such that  no coalition S 
has an incentive to part company with N \ S  and establish cooperation on 
its own. A TU game (N,v) is called balanced if it has a nonempty core 
and totally balanced if the core of every subgame is nonempty, where the 
subgame corresponding to some coalition T C N, T 5k 0 is the game (T, v T) 
with vT(s) = v(S) fbr all S C T. 

Every game can be uniquely decomposed as a linear combination of 
unanimity games. For T C N,T  ~ O, the unanimity game (N, uT) is 
defined by 

1 if T c S, 
UT(S) = 0 otherwise 

for all S C N. 

An order on the players is a bijection a :  N -+ { 1 , . . . ,  n}, where a(i) = j 
means that  player i is at position j .  The set of all orders on N is denoted 
by [IN. For every order cr E FIN, we define the marginal vector m~(v) 
recursively by 

~Tt;_,(k ) (v)  = v ( { o  - -1  ( 1 ) , . . . ,  o - -1  ( k ) } )  - v ( { o  - -1  ( 1 ) , . . . ,  o - -1  (k  - 1 ) } )  

for all k E { 1 , . . . ,  n}. The Shapley value of (N, v) is defined as (cf. Shapley 
(1953)) 

1 
<v)  - Z ~'~(v). I:vl~ 

(~EII N 

The Shapley value is a linear operator on the class of all TU games and for 
the unanimity game (N, UT) it equals 

¢'(~ar) = l r .  
I I  

A game (N, v) is called superadditive if for all coalitions S, T C N with 
S •T  = 0 we have 

~(s) + ~(T) < v(S u T) 

and convex if fbr all i 6 N and all S C T C N\{i}  we have 

v(S u { i } )  - v(S) < v (T  u { i } )  - v(T) .  
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In a superadditive game, it will always be beneficial for two disjoint coali- 
tions to cooperate and form a larger coalition. In a convex game, a player's 
marginal contribution to a large coalition is larger than his marginal con- 
tribution to a smaller coalition, which is stronger than superadditivity. A 
game is convex if and only if its core is the convex hull of all marginal 
vectors. Furthermore, every convex game is totally balanced. 

The excess of coalition S C N with respect to an imputat ion 0~' E I(v) 
is defined by 

E(S,  x) = v(S) - ] ~  xi. 
iES  

The excess vector with respect to x, denoted by O(x), is the vector in ]R 2"r~ 
containing the excesses of all coalitions in (weakly) decreasing order. 

Fox" a game (N, v) with [(v) # O, the nucleolus is defined (cf. $chmeidler 
(1969)) as the unique imputat ion nu(v) such that  O(nu(v)) <_L O(x) fox" all 
x E [(v). A vector x E A t is lezicographically smaller than y E R ~, i.e., 
x _<L Y, if x = y or if there exists an s E {1 , . . .  ,t} such that  xk = Yk for all 

k E { 1 , . . . , s  - 1} and xs < Ys- 

A population monotonic allocation scheme (cf. Sprumont (1990)), or 
pmas, for the game (N,v) is a collection of vectors yS E R s for all S C 

N, S ¢ ~ such that  

Z y?' = v(S) 
iES  

for all S C N, S # (~ and 
< yy (2.1) 

i fS ,  T C N a n d i  E N are such that  S C T a n d i E S .  

In many operations research settings, one does not consider rewards to 
coalitions, but costs. A cost game is a special kind of TU game, usually 
denoted by (N, c), in which c(S) is interpreted as the minimal total costs 
the members of coalition S have to make when they cooperate. Again, by 
convention, c((~) = 0. 

Because of the different interpretation of a cost game, many of the def- 
initions for reward games, as presented above, have to be adjusted to this 
context. For instance, the core of a cost game (N, c) is defined by 

C(c)-- {. e I  .e--c(X),VscN : _< c(S)}. 
i E N  iES 
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In a similar way, the definitions of imputat ion set, nucleolus and plnas are 
altered. In this cost setting, the natural  counterpart of convexity, as defined 
for reward games, is concavity. A cost game (N, c) is called concave if for 
all i E N and all S C T C N \ { i }  we have 

u {i}) - 4 s )  >_ u {i}) - c ( T ) .  

Similarly, the counterpart of superadditivity is subadditivity. 

3 C o n n e c t i o n  

In this section we consider operations research problems which involve 
connection networks in an interactive cooperative setting. We look at two 
such problems in particular: maintenance problems, which involve a fixed 
tree network, and minimum cost spanning tree problems, in which the con- 
nection network is still to be decided upon. 

First, we look at maintenance problems, which form a special class of fixed 
tree problems. Our exposition is mainly based on tile overview given in 
Koster (1999). 

The idea behind a maintenance problem is the fbllowing. A group of 
players is connected by some fixed network to a certain service provider, 

e.g., by a road network to a community centre. This network is a tree in 
which the service provider is situated at the root. Each road in this network 

has some maintenance costs associated with it and the question is how the 
maintenance costs of the entire network should be divided in a fair way 
among all users. 

Formally, a maintenance problem is a triple (G, t, N) where 

• G = (t7, E) is a tree with vertex set V and edge set E; the root r has 
only one adjacent edge. 

• t : E -+ ~ is a nonnegative cost function on the edges of the tree. 

• N = { 1 , . . . ,  n} is a finite player set; each player i E N is located at 
some vertex v(i) E V and every vertex in V except the root corre- 
sponds to exactly one player. 
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In order to analyse maintenance problems, we introduce solne more nota- 
tion. First note that  every vertex v C V is connected to the root of the tree 
by a unique path Pv (including v itself). We denote the edge in Pv tha t  is 
incident on v by ev. The precedence relation 4 on V is defined by 

v ~ 4 v ¢~z v r is on the path Pv. 

A trunk of G is a set of vertices R C V which is closed under the relation 
4 ,  i.e., i f v  E R a n d v  ~ 4 v, then v ~ C R. The set of Jbllowers of player 

i E N is given by F(i) = {j E N Iv(i ) ~ v(j)} and the set of predecessors 
by P(i) = {j E N Iv(j ) ~ v(i)}. The total costs of a trunk R equal 

T(R)= Z t(e ) 

With each maintenance problem F = (G, t, N) we associate a maintenance 
game (N, cr,) defined by 

co(S) = min{T(R) lv(i) E R for all i E S and R is a trunk} (3.1) 

for all S C N, S ¢ 0 and co(0) = 0. By nonnegativity of the cost function, 
the trunk R that  minimises total costs in (3.1) is the smallest t runk Rs 
containing all the vertices at which the members of S are located, i.e., 

Z t(e ) 
v~Rs\{r} 

The dual unanimity game (N, u}) with T C N, T • (~ is defined by 

1. i f T n S ¢ ~ ) ,  
u~r(S) = 0 otherwise 

for all S C N. The coalition T in u~r can be seen as having some veto 
control: if no member of T is present in a coalition, this particular coalition 
has value 0. Note that  u} is a concave game. 

P r o p o s i t i o n  3.1. Let F = (G,t, N) be a maintenance problem. Then the 
associated cost game (N, co) can be decomposed in the .following way: 

co = Z 
i E N  
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The decomposition of cr in terms of dual unanimity games is interpreted 
as tbllows. In order to determine the costs of a coalition S, we have to find 
the smallest t runk containing all members of S. Edge ev(i) is present in 
this smallest t runk whenever a member of S is a tbllower of player i, i.e., 
s n F(i) ¢ 

Because all coefficients of the dual unanimity games in Proposition 3.1 
are nonnegative, every maintenance game is concave. As a consequence, the 
core of such a game is nonempty and has a nice structure. The literature 
offers a large number of characterisations of the core of maintenance games, 
two of which will be presented here. The first one is in terms of trunks. 

P r o p o s i t i o n  3.2. A vector of cost shares x E R N is art element of C(cr) 

if and only if x >_ 0 and }-~iER xi <_ T (R)  for each trunk R. 

The second characterisation of the core states that  a cost allocation is 
a core element whenever the costs associated with each edge are divided 
among those players using that  particular edge. 

P r o p o s i t i o n  3.3. A vector of cost shares z E R N is an element of C(cr) if 
and only if there e x i s t  y l  . . . ~ yn such that yJ is a vector in the unit simplex 
in R F(j) ]'or all j E N and 

j~P(i) 

for all i E N.  

Next, we turn our attention to (one point) solutions of maintenance 
problems. A function • is a maintenance solution if it assigns to every 
maintenance problem P = ( G , t , N )  a vector of cost shares qJ(P) E R~.  

The first solution is given by a painting story, which is based on Maschler 
et al. (1995). Suppose the vertices of the tree are homes and the edges are 
roads connecting these homes to a community centre, which is located at 
the root of the tree. The costs t(e) of road e E E are now to be interpreted 
as the number of days it takes a single worker to paint the stripes on the 
road. The following rules are used to determine how the road network is to 
be painted: 

(i) Every worker works equally fast with speed 1. 
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(ii) Every worker keeps working as long as the road from his residence to 
the communi ty  centre has not been completed. 

(iii) Every worker does his job on an unfinished road segment between the 
communi ty  centre and his home. 

(iv) If the road between a worker's predecessor in the tree and the com- 
muni ty  centre is not yet fully completed,  he has to work on tha t  part  
of the network. 

(v) Every worker is doing his job as close to his residence as conditions 
(i)- (iv) allow. 

Let P(F)  denote the cost allocation for maintenance problem P tha t  fol- 
lows from (i)-(v). The computa t ion  of this home-down painting sohttion is 
i l lustrated in the following example: 

E x a m p l e  3.1. Consider the maintenance problem with N = { 1 , . . . ,  4} as 
presented in Figure 1, where the numbers  on the edges represent the costs. 

4 

I 
3 

Figure  1: A maintenance problem 

First we have to determine where each player starts  painting. Due to 
conditions (iv) and (v), players 1, 2 and 3 start  on {r, 1} and player 4 starts 
on {1, 3}. After four t ime units, {r, 1} is completed and player 1 has finished 
his job. Next, the segment {1, 3} is completed by 3 and 4, while player 2 
continues with {1, 2}. Finally, players 2 and 4 finish their "own" segments. 
The computa t ions  are summarised in Figure 2. The  italic numbers  indicate 
where the players are painting at each iteration and the vectors undernea th  
the arrows represent the corresponding marginal costs. The  home-down 
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4 

3 

4 

3 

1;  o,1,,,11 
4 

2 1 3:43 

4 

3 

(0,4,0,3t ~ (4,9,5,8) 

149 

Figure 2: Home-down pail~ting solution 

painting solution of this maintenance problem equals (4, 4, 4, 4)+(0, 1, 1, 1)+ (0,4,0,3) = (4,9,5,8). 

The home-down painting solution P(F) turns out to be the nucleolus of 
the corresponding maintenance game (N, cr) (cf. Maschler et al. (1995)). 

Theorem 3.1. Let r = (O, t, N)  be a maintenance prvblem. Then P(P) = 
~(c~) 

Consistency of the home-down painting solution is studied in Granot 
et al. (1996), Granot and Maschler (1998) and van Gellekom and Potters 
(1999). 

An alternative painting solution is given by dropping condition (iv) and 
replacing condition (v) by 

(v') Every worker is doing his job as close to the community centre as 
conditions (i)-(iii) allow. 
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Rules (i)-(iii) and (v') determine the down-home painting solution for main- 
tenance problems, which we denote by P~, and which is given by 

1 
P ' ( P ) - -  ~ iF(j)lt(ev(j)). (3.2) 

jEP(i) 

E x a m p l e  3,2, Consider the maintenance problem in Example 3.1. The 
down-home painting solution equals 

1 1 1  1 1  , 
P I ( p ) = 1 2 ( , 4 , 4 , ~ ) + 5 ( 0 , 1 , 0 , 0 ) + 6 ( 0 , 0 , ~ , ~ ) + 3 ( 0 , 0 , 0 , 1 )  = ( 3 , 8 , 6 , 9 )  

This down-home painting solution is the Shapley value of the corre- 
sponding maintenance game. 

T h e o r e m  3.2. Let P = (G, t, N) be a maintenance prvblem. Then P' (P)  = 

Because cr is concave, the Shapley value lies in the core of the game. 
This also follows immediately from Proposition 3.3 and equation (3.2). 

In order to define a third painting solution, we need to introduce some 
more concepts. A pseudo subtree of a tree G = (V, E) is a connected sub- 
graph G 1 = (V r, E I) such that  there exists an / E V r which is rninimal in 
G ~ with respect to 4 and which has only one adjacent edge in E ~. A weight 
system for maintenance problem P = (G, t, N)  is a pair fl = (T, w), where 
7- = ( G I , . . . ,  G p) is a partition of G into pseudo subtrees and w E R{ is a 
weight vector such that  for all i E N with t(ev(i)) > 0 there is a j E F(i), 
who is in the same pseudo subtree as i, with Wj ~> 0. The set of all weight 
systems for F is denoted by B(P). 

Now we define the weighted down-home painting solution P~ correspond- 
ing to some weight system fl E B(F). In this context, every pseudo subtree 
G k has its own local community centre, which is situated at the root of G k. 
The solution is determined by the following rules: 

(i") Every worker works with speed wi. 

(ii") Every worker keeps working as long as the road from his residence to 
his local community centre has not, been completed. 

(iii") Every worker does his job on an unfinished road segrnent between the 
local comnmnity centre and his home. 
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(iv") If the road between a worker's predecessor in the tree and the local 
community centre is not yet fully completed, he has to work on that  
part  of the network. 

(v") Every worker is doing his job as close to his residence as conditions 
(i")-(iv") allow. 

From Proposition 3.3 it follows that  every weighted down-home alloca- 
tion is a core element. The converse is also true, thus establishing a third 
characterisation of the core (Bjornda] et al. (1999)). 

T h e o r e m  3.3. Let F = (G, t, N)  be a maintenance problem. Then ]'or every 
x E C(cr)  there ezists a weight system [3 E B(F) such that x = P,~(F). 

A similar result in the context of irrigation networks can be found in 
Koster et al. (1998). Related problems with applications of fixed tree prob- 
lems are discussed in Megiddo (1978) and Galil (1980). Some computational  
issues are addressed in Granot and Granot (1992a). 

A maintenance problem in which the fixed tree is a line graph is called an 
airport problem. Airport problems were introduced by Littlechild and Owen 
(1973) and its Shapley value and nucleolus as well as their properties were 
studied in Littlechild (1974), LRtlechild and Owen (1977), LRtlechild and 
Thompson (1977), Dubey (1982) and Potters and SudhoRer (1999). 

The description of an airport problem can be shortened to a pair (N, k), 
where N = {1 , . . . ,  n} is the player set and k ff JR) r is a vector of marginal 
costs, which are interpreted as follows. Every player owns an airplane with 
certain characteristics, which determine the minimal length of a landing 
strip this plane can use. Assuming that  the players are ordered in increas- 
ing length of this strip (i.e., /~1 ~-~ " ' "  ~--- ~ 'n)  and maintenance costs are linear 

i in strip length, player i's total costs equal ~ j = l  kj, where kj represents the 
extra costs of maintaining the longer strip of player j in relation to the 
shorter strip of p l ~ e r  j - 1. The problem is how to divide the mainte- 
nance costs of a strip that  accommodates all airplanes, Y]icN ki, among the 
players. 

With  each airport problem (N, k) we associate an airport game (N, c) 
with cost function c(S) = 2 i kj, where i = m a x { j l j  E S}. Since this j = l  
game is a special case of a maintenance game, it is concave and we have a 
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nice expression for the Shapley value. First, note that  one can decompose 
the cost function c as follows: 

c = klu~v + k2u{~,...,~ d + " "  + knu{n}. 

Hence, the Shapley value of (N, c) equals 

O(C) kl(L,  . L) 1 1 
= . . ,  + k s ( 0 ,  - -  

n n n - - l ' ' " ' n - - 1  ) + "'" + kn(0 ' ' ' "  '0 '  1)" 

Of course, the results for maintenance games w.r.t, the core, the nucleolus 
and the weighted Shapley values induce easy expressions for airport games 
in a similar way. A nice application of airport games is provided by Aadland 
and Kolpin (1998), who look at irrigation networks. In Branzei et al. (2001), 
airport problems are considered in which there are restrictions on the level 
of side payments that  are feasible. 

Next, we consider a class of problems that is closely related to mainte- 
nance problems: minimum cost spannin 9 tree or mcst problems. Contrary 
to maintenance problems, in mcst problems the connecting network is not 
fixed, but  an integral part  of the decision problem. Our discussion is mainly 
based on Feltkamp (1995). 

Consider a group of villages, each of which needs to be connected to 
some source, either directly or via other villages. Every possible connection 
has some nonnegative costs associated with it and the problem is how to 
connect every village to the source such that the total costs of creating the 
network are minimal. Kruskal (1956) and Prim (1957) provide two greedy 
algorithms for solving this kind of problem. A historic overview of mcst 
problems can be found in Graham and Hell (1985). 

Constructing an mcst, however, is only part of the problem. In addition 
to minimising total costs, a cost allocation problem has to be addressed as 
well. Claus and Kleitman (1973) introduced this cost allocation problem, 
whereupon Bird (1976) treated this problem with game theoretic methods 
and proposed a cost allocation rule, known as the Bird rule. 

Formally, an msct problem is a triple 7- = (N, ,,  t), where N = {1 , . . .  n} 
is the player set, * is the source and t : EN. --+ R+ is the nonnegative cost 
function. Es is defined as the set of all edges between pairs of elements of 
S C N*, so that  (S, Es) is the complete graph on S: 

Es = {{i, j} l i, j c s, i ¢ j}. 
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Because connection costs are nonnegative, it is obvious that  a minimal cost 
graph that  connects all players to the source is indeed a tree, which explains 
the name of the problem. 

Given an mcst problem T = (N, ,, t) and an mcst (N*, R) for the grand 
coalition, Bird's tree allocation, [~R(T) is constructed by assigning to each 
player i C N the cost of the first edge on the unique path in (N*, R) from 
player i to the source ,. The computat ion of this allocation can be inte- 
grated into the Prim algorithm, which, starting from a fixed root, constructs 
an mcst by consecutively adding edges with the lowest cost, without intro- 
ducing cycles. 

Algorithm 3.4 (Bird's rule). 

input: an mcst  p',vblem (N,  , ,  t) 
output: an edge set R C EN.  of an mcst  and corresponding Bird allocation 

/~R(T) 

t .  Choose the source • as root. 

2. htit ialise R = ~. 

. Find a miniraal cost edge e = { i , j }  E E N . \ R  incident on , or any of 

the vertices present in one of the edges in R in such a way that joining 

e to R does not introduce a cycle. 

One of i and j ,  say j ,  was previously connected to the source and the 
other vertex i is a player who was not yet connected to the source. 

Assign the cost ~.~(T) = t(e) to agent i. 

5. Join e to R.  

6. I f  not all vertices are connected to the root in the graph (N*, R) ,  go 

back to step 3. 

Note that  the Bird allocation depends on the actual mcst the algorithm 
arrives at, which is determined by the choices made in step 3 of the algo- 
rithm. 

The following example illustrates the algorithm. 

E x a m p l e  3.3. Consider the mcst problem T with N = {1, 2, 3} as pre- 
sented in Figure 3, where the numbers on the edges represent the costs. 
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2 

3 

Figure  3: A minimum cost ,spanning tree problem T 

When we apply Algori thm 3.4 to this problem, the first edge we join 
to R is either {,,  1} or {*, 3}. Suppose we choose the first one, then we 
set /3~(T) = 10. Subsequently, we add {1,2} to R, set /3~(T) = 6, add 
{2, 3} and set/?3R(T) = 5. This gives us a cost allocation of (10, 6, 5). On 
the other hand,  suppose we start  with {,, 3}. Then we end up with cost 
allocation f in(T) = (6, 5, 10). 

The  two min imum cost spanning trees are drawn in Figure 4. 

2 2 

6 ~  6 5 

1 10 ~ 3 1 
3 

Figure  4: Two minimum cost spanning trees 

With  each mcst  problem T = (N, , ,  t) we associate a mcst game (N, c7-), 
where c7-(S) represents the minimal  costs of a tree on S* = S U {*}: 

cT(S) = m i n { ~  t(~)In C Es, and (S*, R)is  a tree} 
eER 

for all S C N, S ¢ 0 and cT(~)) = 0. The  following theorem comes from 
Granot  and Huberman  (1981). 
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T h e o r e m  3.5. Let T = (N, ,, t) be a minimum cost spanning tree problem. 
Then for every minimum cost spanning tree (N*,R),  Bird's allocation rule 
f in(T)  is an eztreme point of the core of the corresponding minimum cost 
spanning tree game (N, cT). 

It immediately follows that  every mcst is balanced. An alternative proof 
for nonemptiness of the core is given in Granot  and Huberman (1982). 

A thrther overview of mcst problems is given in Aarts (1994) and the 
core and nucleolus are studied in Granot  and Huberman (1984) and Soly- 
mosi et al. (1998). Aarts and Driessen (1993) s tudy the irreducible core of 
mcst games, which is a subset of the core, and present two algorithms to de- 
termine this set. In Morett i  et al. (2001) and Norde et al. (2001), existence 
of population monotonic allocation schemes for mcst games is investigated. 
In Nouweland et al. (1993) it is shown that  every nonnegative monotonic 
game arises from an mcst problem in which there are costs associated with 
the vertices as well as with the edges. 

There are a large number of variations on the mcst problem as presented 
above. In Feltkamp et al. (1994), mininmm cost spanning extension prob- 
lems are introduced, in which there is a fixed tree, which has to be extended 
in such a way that total extension costs are minimal. In this framework, 
two allocation rules are presented that  are inspired by Kruskal's algorithm 
for finding minimum cost spanning trees. In Suijs (2001), mcst problems 
are studied in which the connection costs consist of two parts: construction 
costs and maintenance costs. Since the latter costs are unknown ex ante, 
connection costs are represented by random variables. An algorithm to de- 
termine an "optimal" network is presented and a two stage Bird ~llocation is 
defined and shown to be a core allocation of the corresponding cooperative 
stochastic minimum spanning tree game (cf. Suijs (2000)). 

4 Routing 

In this section we discuss classes of operations research problems in 
which the objective is to find a route of minimal costs within a graph. First, 
we discuss the class of Chinese postman games as introduced in Hamers et 
al. (1999a). Second, we discuss travelling salesman games as introduced in 
Potters  et al. (1992). We discuss two variants of the travelling salesman 
problem: the fixed routing problem and the Steiner travelling salesman 
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problem. 

In the Chinese postman problem, whirl1 is introduced in Mei-Ko Kwan 
(1962), one considers a situation in whidl a pos tman has to deliver mail to 
each street, of a certain city. He has to start  and finish at the post  ot~ce. 
For each street costs are involved each time the pos tman visits this street. 
The pos tman should choose a route to visit all streets in such a way that  
costs are minimised. The main difference between several classes of Chinese 
postman problems can be found in the underlying graph that describes the 
street plan of the city. For the classical problem, in which the underlying 
graph is undirected, Edmonds and Johnson (1973) present a polynolnially 
bounded matching algorithm that provides a route with minimal costs. 

A cost allocation problem arises if in the underlying graph each edge 
corresponds to a different player. Because all players need the mail delivery 
service and the nature of this service requires the server to travel from the 
post  otYice and visit all edges (players) before returning to the post office, 
the cost allocation problem is concerned with a fair allocation of the cost 
of a cheapest Chinese postman l;our in the graph. That  is, the cost of a 
cheapest tour, which starts  at the post  office, visits each edge at least once 
and returns to the post  office. 

Formally, a Chinese postman or CPprvblem is a tuple F = (N, G, v0, g, t), 
where N = { 1 , . . . ,  n} is the set of players, G = (V, E) is a connected undi- 
rected graph with vertex set V and edge set E, v0 C V represents the 
post  orifice, g : E --+ N is a bijection relating the players to the edges and 
t : E --+ F'% is a nonnegative cost function assigning costs to the edges. An 
E-tour with respect to v0 associated with coalition S C N is a closed walk 
(vO, e l , . . . ,  ek, vo) that  starts  at the post  otfice v0, visits each player in S at 
least once and returns to v0, i.e., S C {g(ej) I j C { 1 , . . . ,  k}}. Note that  an 
S-tour  may also use edges corresponding to players outside S. The set of 
all S-tours is denoted by D(S). 

Suppose a coalition S is served according to the S-tour  (v0, e l , . . . ,  ek, v0) 
E D(S)  then the total costs of this tour are y~k t(ej) We will assume ' j = l  " 

that  each player i E S pays t, he costs t (g - l ( i ) )  himself. In this way we 
already allocate the separable costs Y~.i~s t(g-l(i)) of an S-tour. Note that  
these separable costs are independent of the chosen S-tour. The remaining 
nonseparable costs for coalition S, y~k t(ej) - ~ i~s t (g - l ( i ) ) ,  have to be j = l  
allocated to its members in some way. This gives rise to the Chinese postman 
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or UP game (N, c) corresponding to P = (N, G, v0, g, t), defined by 

e ( S )  = 

k 

min [~-~ t(ej) - E t(g-l(i))]" 
D ~- '* '¢  (vo,el,...,ek, vo)E (S) j=l .  iCS 

for all S C N. In the following example, we show that  a CP game need not 
be balanced. 

E x a m p l e  4.1. Consider the CP problem (N, G, v0, g, t) with N = {1 , . . . ,  5}, 
graph G = (V, E)  as depicted in Figure 5, t(ej) = 1 and g(ej) = j for all 
j • {1,... ,5}. 

v 1 

e 1 
/ 

\ \  \ \ 

e 2 
\ \ \ \  

5 \ 
v 2 A 

e4 ~ / .................... e 3 

v 3 

Figure  5: A C*Jinese postman problem 

Denote the corresponding CP game by (N,c).  Then c(N) = 1 and 
c(S) = 0 for S • A = {{1,2 ,5},{a ,4 ,5},{1,2 ,3 ,4}}.  Let x • R x and 
suppose x • C(c). Then 

2= 2c(N)= Z Z xi _< Z c(s)= 0. 
SEA iCS SEA 

Contradiction, so (N, c) is not balanced. 

In spite of this result, balancedness, total balancedness and concavity 
have been established for CP games that  arise from some specific classes 
of graphs. A graph G = (V, E) is said to be globally UP balanced (totally 
balanced, concave) if the induced CP game is balanced (totally balanced, 
concave) fbr all possible v0 E V and all nonnegative cost functions on the 
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edges. G is called locally CP balanced (totally balanced~ concave) if the  

induced  CP game is ba lanced  ( to ta l ly  balanced,  concave) for some v0 E V 

and all cost funct ions.  

In T h e o r e m s  4.1 - 4.4 some resul ts  are s t a ted  f rom Hamers  (1997), Gra-  

not et al. (1999) and Granot  and Hamers (2000). 

T h e o r e m  4 .1 .  Let G be a connected undirected graph. Then the following 
three assertions are equivalent: 

(i) G is weakly Enler. 

(ii) G is globally CP balanced. 

(iii) G is locally CP balanced. 

A graph  is called weakly Euler  if each b iconnec ted  componen t  1 in G is 

Euler ian  (i.e., the  degree of every  ver tex  is even). 

T h e o r e m  4 .2 .  Let G be a connected undirected graph. Then the following 
five assertions are equivalent: 

(i) G is weakly cyclic. 

(ii) G is globally CP concave. 

(iii) G is globally CP totally balanced. 

('iv) G is locally CP concave. 

(v) G is locally CP totally balanced. 

A graph  G is called weakly cyclic if each b iconnec ted  componen t  is a 

circuit .  

T h e  Chinese p o s t m a n  prob lem in which the  under ly ing  graph  is d i rec ted  

has also been  s tudied  in the  l i tera ture .  All definit ions for the  und i rec ted  case 

as p resen ted  above can be ex tended  to  the  d i rec ted  case in a s t ra igh t forward  

way. 

1A biconnected component of a graph G is a maximal subgraph of G in which each 
pair of vertices is connected by at least two edge disjoint paths. 
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T h e o r e m  4.3. Let G be a strongly connected directed graph. Then G is 
globally CP balanced. 

The proof of Theorem 4.3 translates the problem to a linear program- 
ming problem and applies a balancedness result established in Owen (1975). 

T h e o r e m  4.4. Let G be a strongly connected directed graph. Then G is 
directed weakly cyclic if  and only if  G is globally CP concave. 

A directed weakly cyclic graph is a 1-sum 2 of directed circuits. 

We conclude the discussion on CP games by considering an allocation 
rule for the class of problems in which the underlying graph is an undirected 
weakly Euler graph. This class of CP problems with player set N is denoted 
by W E  N . 

In order to introduce a rule that  divides for each P = (N, G, v0, g, t) E 
W E  N the costs of a minimal N-tour  among the players, we need the notion 
of followers of a bridge with respect to v0. An edge of G is called a bridge 
if removal of this edge leads to a disconnected graph. We denote the set of 
bridges in G by B(G).  Edge e E E is called a follower of b with respect 
to v0 if each path that  contains both v0 and e also contains b. The set of 
followers of b will be denoted by Fb(G, vo). Note that  b E F~(G, vo) and 
that  the set of followers depends on the location of v0 in the graph. 

Let b E B(G) .  Then the postman needs to cross this bridge twice if he 
is to make a tour containing some edge in Fb(G, vo). It seems reasonable 
that  each player in Fb(G, v0) will pay an equal share of the costs of crossing 
b for the second time. So, if a tour that  visits a certain player contains 
bridges, he has to contribute a fair share in the nonseparable costs of all 
these bridges. Formally, the division rule 7 : W E N  --+ RN is defined for all 
F = (N ,G ,  vo,g, t )  E W E  N by 

for all e E E. 

t(b) 

IF (a, 0)l 

The following example illustrates the 7 rule. 

2The 1-sum of graphs G and H is defined as the graph derived from G and H by 
coalescing one vertex in G with another vertex in H. 
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E x a m p l e  4.2. Consider the CP problem (N, G, vo,g,t), where the graph 
G is depicted in Figure 6 (left), t(bl) = 52, t(b2) = 44 and t(b3) = 33. 

E 2  

go vo 

E3 

Figure  6: Weakly Euler graph G (left); the components of G after removal of 
bridges (right) 

Observe that  G is indeed a weakly Euler graph, because the removal of 
the bridges bl, b2 and b3 leads to the components E0, El, E2 and Ea, which 
are all Eulerian. Because IF(G, bl)l = 26, IF(G, b2)l = 11 and IF(G, b3)l = 
11, according to the ~, rule each player in F(G, bl)\(F(G, b2) U F(G, b3)) 

52 52 44 pays ~; = 2, each player in F(G, b2) pays 5g + 1~ = 6 and each player in 
52 33 F(G, b3) pays ~ + ~ = 5. 

The 7 rule can be characterised by two different sets of properties. The 
first characterisation uses five properties called efficiency, standard, null, 
symmetry  and additivity. This characterisation is based on decomposing 
a CP problem into a number of simple subproblems and uses the additive 
structure of the 7 rule. 

The second characterisation uses three properties that  are explained 
below. Before we can formulate these properties, we need the notions of 
bridge cluster of a weakly Euler graph and the condensation of a graph 
with respect to an extreme bridge. A bridge cluster is a maximal set of 
edges that  need the same set of bridges to be connected to the post  office. 
So for P = (N,G, vo,g,t) E W E  N and B(G) = {b l , . . . , bq}  we have the 
bridge clusters {CN(G , v0)}j~{0,...,q}, where 

Co(G, vo) = E\  Ube.(c) Fb(G, vo) 
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is the set of edges that  do not need any bridge to be connected to v0 and 
for all j c {1,.. . ,  q} 

Cj(G, vo) = (G, vo)\ Ub B(a)nFv  (a,vo),b bj F (G, v0) 

is the cluster of edges that  need the bridges {b E B(G) ]bj E Fb(G, v0)} to 
be connected to v0. A bridge bj E B(G) is called an eztreme bridge of G if it 
has no other bridge as a tbllower, or equivalently, if Cj(G, v0) -- Fb~ (G, v0). 
The following example illustrates the notions of bridge cluster and extreme 
bridge. 

E x a m p l e  4.3. Consider the graph G in Example 4.2. Then Co(G, vo) = Eo 
and Cj(G, vo) = Ej U {bj} for j E {1,2,3}. The extreme bridges are b2 and 

b3. 

Next, we describe a procedure to construct the condensed graph of a 
weakly Euler graph G with respect to an extreme bridge. Let v0 E V 
and let b E B(G) be an extreme bridge of G. Let v{ be incident on b 
such that  there exists a path between v0 and v{ in the graph (V, E\{b}).  
Let V(Fb(G, vo)) be the set of vertices incident on the edges in Fa(G, vo). 
The graph __G arises from G by removing all edges Fb(G, vo) and vertices 
V(Fb(G, vo))\{v~}. Let IFb(G, vo)l = m, then the graph G* arises from __G 
by connecting a circuit of length m to the vertex v~. The graph G* is called 
the condensed graph of G with respect to the extreme bridge b. Note that  
G* is also a weakly Euler graph. Moreover, the number of edges in G and 
G* coincide. 

E x a m p l e  4.4. Consider the graph G in Example 4.2. Figure 7 shows the 
graph G* that  arises from G by condensation with respect to the extreme 
bridge ba. 

The condensed CP problem of P = (N, G, vo, t, g) E W E  N with respect 
to the extreme bridge b E B(G) is Pb = (N, G*,vo,t*,g*), where G* = 
(V*,E*) is the condensed graph of G with respect to b, g* : E* + N is 
a bijection such that  g*(e) = g(e) for all e E E\Fb(G, vo) and the cost 
function t* : E* ~ IlK_ is defined by 

S t(e) i f e  E E\Fb(G, vo), 
t*(e) [ 0 otherwise. 

Let P = ( N, G, vo, g, t) E W E  N. Consider the following three properties for 
a division rule f : W E  N --+ RN: 
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V 4 

v14 v13 

11 

V4 V5 V4 V5 

Figure  7: The condensed graph G* from G with respect to b3 

• Efficiency: ~ i e N  k(P)  = ~be,~(c:) t(b). 

• Bridge cluster symmetry: Let B(G)  = { b l , . . . ,  bq}, then fv(~,)(P) = 
f~(~.,)(r) for an < ,~2 e c j (a ,  vo), j e {0, . . .  ,q}. 

• Condensation property: Let b be an extreme bridge of G and let Pb = 
(N, G*, vo,g*, t*) be the condensed problem with respect to b, then 
f~(~)(r) = .&~(rb)  for an ~ e E \ u d a ,  v0). 

Bridge cluster symmetry  states that  eadl  group of players that  need the 
same set of bridges to be connected to the post  office will contribute the 
same share in the nonseparable costs. Tile condensation property is a kind 
of consistency property. All players who are not in the bridge cluster cor- 
responding to the removed bridge face the same problem in this reduced 
graph as in the original graph. Now, a rule is called consistent if in both  
situations this rule assigns to each player in this group the same costs. 

T h e o r e m  4.5. The allocation rule 7 : W E N  --+ RN is the unique rule that 
satisfies efficiency, bridge cluster' symmetry and the condensation property. 

Whereas in the Chinese postman problem each edge in the graph has to be 
visited at least once, in the travelling salesman problem one aims to find a 
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tour that  visits all the vertices in the graph exactly once. For example, a 
professor has to make a trip visiting several universities. He has to start  at 
his own university, visit all other universities exactly once and then return 
to his home university. The problem is to select a route in which total travel 
costs are lninimised. It is well known that  finding such a route is an NP-hard 
problem. Nevertheless, many real liI> problems are related to the travelling 
salesman problem. This has resulted in many heuristic approaches to find 
good solutions to several variants of this problem. For a review on the 
travelling salesman problem we refer to Lawler et al. (1985). 

Fishburn and Pollack (1983) introduce the cost allocation problem that  
arises if in the underlying graph each vertex, except the one that  corresponds 
to the home location, corresponds to a dill>rent player. The cost allocation 
is concerned with a fair allocation of the cost of a cheapest Halniltonian 
circuit in the graph. That  is the cheapest tour that  starts in the vertex that  
corresponds to the home location, visits all other vertices precisely once and 
returns home. 

Formally, a travelling salesman or TS problem is a tuple (N, ,,  t), where 
N = {1 , . . .  ,n} is the set of players, • represents the home location and 
t : EN* --+ IR+ is the cost thnction assigning costs to the edges connecting 
the vertices in N* = N tO {,}. We assume that t satisfies the triangle 
inequality. Es is defined as the set of all edges between pairs of elements of 
S, so that  (S, Es) is the complete graph on S: 

E s =  {{ i , j } l i , j  E S, i ¢ j}. 

By defining the worth of a coalition S as the minimal costs of a Halniltonian 
circuit in the graph (Sto {*}, Esu{,}) , we obtain the corresponding travelling 
salesman or TS game. 

The following example, due to Tamir (1989), illustrates that  TS games 
need not be balanced. 

E x a m p l e  4.5. Consider the TS problem ( N , , , t )  with player set N = 
{ 1 , . . . , 6 } ,  t({i,j}) = 1 for all edges {i,j} depicted in Figure 8 and tbr all 
other edges {i, j} ,  t({i,j}) equals the minimal costs of a path connecting i 
to j using the depicted edges. 

We denote the corresponding TS game by (N, c). Then c(N) = 8 (with 
optimal tour (, ,  4, 5, 6, 1, 2, 3, *)), c({1, 2, 4, 5}) = 5, c({3, 4, 5, 6}) = 5 and 
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5 1 

Figure 8: A travelling salesman problem 

4 { 1 ,  2, 3, 6}) = 5. Let  x ~ R N and suppose  x c C(~), t hen  

16=2 (N)= Z xi+ Z xi+ E 
i6{1&4,5} i6{3,4,5,6} i6{1,2,3,6} 

Contradiction, so (N, c) is not balanced. 

In case there are less than six players some results with respect to bal- 
ancedness are established. Potters et al. (1992) show that  3-person TS 
games have a nonempty core. Tamir (1989) shows that  each 4-person TS 
game has a nonempty core and provides Example 4.5 showing that  a 6- 
person TS game can have an empty core. Finally, Kuipers (1993) proves 
that  5-person TS games are balanced. 

The travelling salesman model can be extended to the case in which the 
costs depend on the direction in which the salesman travels through the 
edges. In this context, Potters et al. (1992) provide a 4-person TS game 
with an empty core. 

Potters et al. (1992) also introduce the class of fixed routing games. 
The idea of a fixed routing game is that  the salesman decides about the 
Hamiltonian circuit he will use to visit all the players. Then the value of a 
coalition S in a fixed routing game is defined as the costs of the restricted 
tour that  visits the players in S in the same order as prescribed by the orig- 
inal Hamiltonian circuit and skips all other players. Potters et al. (1992) 
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show that  fixed routing games have a nonempty core if the chosen Hamil- 
tonian circuit is an optimal route tbr the related TS problem. Derks and 
Kuipers (1997) give a t ime efficient algorithm that  calculates core elements 
of fixed routing games. In Kuipers et al. (2000) and Solymosi et al. (1998) 
O(n 4) algorithms are provided that  calculate the nucleolus of fixed routing 
games. 

Finally, we mention Steiner TS games. These games arise from situa- 
tions in which some of the edges between pairs of players may be absent. 
The value of a coalition in a Steiner TS game corresponds to the costs of 
the cheapest Steiner tour. A Steiner tour is a closed trail that  starts in the 
home location and visits each vertex of S at least once. For these games 
Herer and Penn (1995), Granot et al. (2000) and Granot and Hamers (2000) 
have characterised concavity by the structure of the available edges. 

5 Scheduling 

In this section we discuss classes of operations research games that  are 
related to scheduling problems. First, we discuss various classes of sequenc- 
ing games as initiated by Curiel et al. (1989). We focus on balancedness 
and convexity and discuss two context specific solution concepts: the equal 
gain splitting rule and the split core. Second, we consider permutat ion 
games, introduced in Tijs et al. (1984), where we focus on total balanced- 
ness. Finally, we discuss assignment games, introduced in Shapley and 
Shubik (1971), which form a special class of permutat ion games and have 
some appealing properties with respect to the structure of the core. 

The main characteristic of a sequencing situation is that  a number of jobs 
(tasks, operations) have to be processed in some order on a (number of) 
machine(s) in such a way that  some cost criterion is minimised. In spite of 
this common characteristic, sequencing situations can be classified on the 
basis of many features. We mention the number of machines, the specific 
properties of machines (e.g., parallel, serial), the chosen cost criterion (e.g., 
maximum completion time, weighted completion time), restrictions on the 
jobs (e.g., ready times, due dates) and possibly the specific order in which 
the jobs have to be processed on the machines (e.g., job-shop, flow-job). 
Obviously, sequencing situations arise in many applications: the process of 
manufacturing cars, allocating patients to surgery rooms, maintenance of 
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airplanes, etc. For a review of scheduling theory we recommend Lawler et 
al. (1993). 

As a specific example we describe the class of one-ma&ine sequencing 
situations as introduced in Curiel et al. (1989). In a one-machine sequencing 
situation there is a queue of players, each with one job, in front of a machine. 
Each player must have his job processed on this machine. The finite set of 
players is denoted by N = {1, ...,n}. The positions of the players in the 
queue are described by a bijection cr C [IN. We. assume that there is an 
initial order a0 C FIN on the jobs before the processing of the machine 
starts. The processing time Pi of the job of player i is the time the machine 
takes to handle this job. For each player i C N the costs of spending time in 
the system can be described by a linear cost fhnction ci : R+ -+ R defined 
by ci(t) = c~it with ai > 0. A sequencing situation as described above is 
denoted by (N, cro,p,a) with p , a  C R~+.  

The completion time C(a,  i) of the job of player i if the jobs are processed 
(in a semi-active way) according to the order a E FIN is given by 

= Z PJ" 
{j  E N [(7(j ) <_~( i) } 

A processing order is called semi-active if there does not exist a job which 
could be processed earlier without altering the processing order, i.e., if there 
are no unnecessary delays. The total  costs of all players if the jobs are 
processed according to the order a equal Y'~i~N triG(a, i). Clearly, because 
IIN is finite, there exists an order for which total costs are minimised. A 
processing order that  minimises total  costs and thus maximises total cost 
savings is an order in which the jobs are processed in decreasing order with 
respect to the urgency index ui defined by ui = ~ (cf. Smith (1956)). Pi 

E x a m p l e  5.1. Consider a one-machine sequencing situation (N, cr0,p, c~), 
w h e r e  N = {1, 2, 3}, = (1, 2, 3), p = (2, 2, 1) a n d  = (4, 6, 5). T h e n  t he  
urgencies for the players are ul = 2, u2 = 3 and u3 = 5, respectively. Hence, 
the optimal processing order is (3, 2, 1) with total costs 5 . 1 + 6 . 3 + 4 . 5  = 43. 

Note that  an optimal order can be obtained from the initial order by 
consecutive switches of neighbours i , j  with i directly in front of j and 
rui < uj. This process will be referred to as the Smith algorithm. 

By rearranging from the initial order to an optimal order, an allocation 
problem arises: how should the maximal total cost savings the players can 
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obtain be divided among the plas, ers? Again, this problem is tackled using 
cooperative game theory by analysing corresponding sequencing games. 

For a sequencing situation (N, a0 ,p , a )  the costs Cs(a) of coalition S 
with respect to a processing order a equal Cs(a) = ~ i ~ s  c~iC(a,i). We 
want to determine the maximal cost savings of a coalition S when its mem- 
bers decide to cooperate. For this, we have to define which rearrangements 
of the coalition S are admissible with respect to the initial order. A bijection 
cr E IIN is called admissible for S if it satisfies the following condition: 

P(a , j )  = P ( a 0 , j )  

for all j E N \ S ,  where for any T E IIN the set of predecessors of a player 
j E N with respect to ~- is defined as P(T,j)  = {k E N IT(k ) < T(j)}. 

This condition implies, in particular, that  the starting time of each 
player outside the coalition S is equal to his starting time in the initial 
order and the players of S are not allowed to "jump" over players outside 
S. The set of admissible orders for a coalition S is denoted by A(S).  

By defining the value of a coalition S as the maximum cost savings 
coalition S can achieve by means of an admissible rearrangement we obtain 
the corresponding sequencing game (N, v), which is defined by 

v ( s )  = m a x  i )  - ( 5 . 1 )  

for all S C N. 

Expression (5.1) can be rewrit ten in terms of g.ij = max{0, o~jp i - - o z i P j }  , 

which equMs the cost sa~ings attainable by pla~er i and j when i is directly 
in front of j ,  regardless of the exact position in the order. For this we need 
the notion of connected coalition. A coalition S is called connected with 
respect to cr if for all i , j  E S and k C N such that  or(i) < or(k) < or(j) 
it holds that  k E S. The Smith algorithm and (5.1) imply the following 
proposition. 

P r o p o s i t i o n  5.1. Let ( N, ~ro,p, c~) be a sequencing situation and let (N,v) 
be the corresponding sequencing game. Then ]'or any coalition S that is 
connected with respect to ao we have 

v(s )  = )_2 
i,j~S:~o(i)<~o (j) 
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For a coalition T that is not connected with respect to or0 the definition 
of admissible orders implies that  

v ( T )  = v(S), 
SET\~o 

where T\cr 0 is the set of componenl, s of T, a component of T being a max- 
imally connected subset of T. 

E x a m p l e  5.2. Let N = {1, 2,3}, a0 = (1, 2,3), p = (2, 2, 1) and c~ = 
(4, 6, 5). It is readily verified that  g12 = gu3 = 4 and g13 = 6. Then v({i}) = 
0 for all i • N,  v({1,2}) -- v({2,3}) -- 4, v({1,3}) -- v({1}) + v({3}) -- 0 
and v(N)  = 14. 

The following theorem, due to Curiel et al. (1989), shows that sequencing 
games are convex games. 

T h e o r e m  5.1. Let (N, cro, c~,p) be a sequencing situation. Then the corre- 
sponding sequencing game (N, v) is convex. 

In particular, Theorem 5.1 implies that  sequencing games are (totally) 
balanced. 

Another way of proving balancedness of sequencing games is by explic- 
itly constructing core allocations. We will show that the the equal gain 
splitting rule, introduced in Curiel et al. (1989), and the split core, intro- 
duced in Hamers et al. (1996), are rules that  yield allocations that  are in 
the core of the corresponding sequencing games. 

Recall that  the set of predecessors of player i E N with respect to the 
processing order cr is given by P(cr, i) = {j E N l a ( j  ) < a(i)}.  We define 
the set of tbllowers of i E N with respect to cr to be F ( a , i )  = {j E N I 
or(j) > or(i)}. The equal gain splitting or EGS rule is a map that assigns to 
each sequencing situation (N, a0,p, c~) a vector in IR N, which is defined by 

1 1 

for all i E N.  Equation (5.2) means that  the EGS rule assigns to each player 
half of the gains of all neighbour switches he is actually involved in when 
reaching an optimal order from the initial order. 
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From (5.2) it readily follows that  the EGS rule is efl:icient, i.e., 

Z EaSi(N,(7o,]9,~) = Z g~j = v(N). 
iE N i , j  E N :c~o( i) < ao(j)  

E x a m p l e  5.3. Let N = {1, 2, 3}, (7o = (1, 2, 3), p = (2, 2, 1) and c~ = 
(4, 6, 5). Because g 1 2  = g 2 3  = 4 and g 1 3  = 6 we have E G S I ( N ,  (7o,]9, c~) = 
½(4 + 6) = 5, EGS~(N,(7o,p,c~) = ½(4 + 4) = 4 and EGS3(N,(7o,p ,  cJ = 
½(6 + 4) = 5. Moreover, we have EieN EGSi(N,(70,]9,~) = 4 + 4 + 6 = 
14 = v(N) 

A nice t~ature of the EGS rule is that  it can be characterised using 
three appealing properties. Let S E Q  x denote the class of one-machine 
sequencing situations with player set N. Consider the following properties 
for a rule f :  S E Q  N --+ R~ with (N, (T0,P, c~) E S E Q N :  

EJficiency: Let 7c be an optimal processing order for N. Then f is 
called efficient if ~ i ~ N  f i (N ,  (7o,]9, c~) = CN((70) -- CN(TC). 

Equivalence property: Let i E N and (N, (71,P, c~) E S E Q  N be such 
that  P((70, i) = P((71, i). Then f satisfies the equivalence property if 
f i ( N , (70, ]9, oL ) = fii ( N , (71, ]9, oL ) . 

Switch property: Let i , j  E N be such tha t  1(70(i) - (70(J)l = 1. Let 
(N,(71,p,o 0 E S E Q  N be such that  (71(i) = g0(j)  , (71(j) = g0(i) and 
(71(h) = (70(k) for all k E N \ { i , j } .  Then  f satisfies the switch prop- 

erty if f i  (N,  (7o, P, c~) - f i  (N,  a l ,  p, 0~) = f j  (N,  go, p, c~) - f j  (N,  a l ,  p, 00. 

The equivalence property states that  the order of a player's predecessors 
does not aff>ct his allocation. For explaining the switch property, let two 
players be neighbours in a sequencing situation. If these players switch 
positions, then the switch property states that  in this new situation the 
allocation is increased (or decreased) equally for both players. These three 
properties characterise the EGS rule. 

T h e o r e m  5.2. The EGS rule is the unique rule on S E Q  N that satisfies 
e]~ficiency, the equivalence property and the switch property. 

The proof of Theorem 5.2 is one by induction on the number of mis- 
placements. A pair { i , j }  is called a misplacement in an order a if they are 
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neighbours in a and the urgency of the player in front is smaller than the 
urgency of its neighbour. 

Generalising the EGS rule, we consider gain splitting (GS) rules in which 
each player obtains a nonnegative part  of the gain of all neighbour switches 
he is involved in to reach the optimal order. Again, the total gain of a 
neighbour switch is only divided among the two players that  are involved. 
Formally, we define for all i E N and all ~ E A 

jEF(ao,i) kEP(ao,i) 

where a = {{Aij}i,j~N,~o(i)<,,o(j)Ivi,jEN,,,o(i)<,,o(j) : 0  _< Aij <_ 1}. Note 
1 that  GS)'(N, ao,p, o~) = E G S ( N ,  cro,p, o~) in case every A~j equals 3" 

1 E x a m p l e  5.4. If we take A12 = 4 a-, As3 = 5 and A23 = 1 in the sequencing 
situation of Example 5.3, then GS)'(N, cr0,p, a) = (5, 5, 4). 

The split core of a sequencing situation (N, cro,p, c~) is defined by 

S P C ( N ,  ao,p,c~) = {aS~(N ,  cro,p,c~) l )~ E a}.  

The split core can be characterised using similar properties as in the char- 
acterisation of the EGS rule. Finally, we state that  the EGS rule and the 
split core generate core allocations fbr sequencing games. 

T h e o r e m  5.3. Let (N, ao,p,a) E S E Q  N and let (N,v)  be the correspond- 
ing sequencing game. Then S P C ( N ,  ao,P, c~) C C(v). 

Yet another proof for balancedness is provided in Curiel et al. (1995). 
They introduce the class of component additive games, which contains 
the class of sequencing games, and prove that the average of two specific 
marginal vectors, the /3 rule, lies in the core of such a game. In fact, it 
turns out that  the /3 rule coincides with the EGS rule within the class of 
sequencing games. 

In the literature many other classes of sequencing games are studied. 
Hamers et al. (1995) extend the class of one-machine sequencing situations 
considered by Curiel et al. (1989) by imposing ready times on the jobs. In 
this case the corresponding sequencing games are balanced, but  not neces- 
sarily convex. For a special subclass of sequencing games with ready times, 
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however, convexity can be established. Borm et al. (1999) consider some 
classes of sequencing situations in which due dates are imposed on the jobs 
and dittbrent cost criteria are used: weighted completion time, weighted 
tardiness and weighted penalty. Several convexity results are established. 

Instead of imposing restrictions on the jobs, Hamers et al. (1999d), 
Calleja et al. (2001a) and Nouweland et al. (1992) extend the nmnber 
of machines. Hamers et al. (1999d) consider sequencing situations with m 
parallel and identical machines in which no restrictions on the jobs are im- 
posed. Again, the weighted completion time criterion is used. Balancedness 
is established ~br two-lnachine situations by showing that  these games are 
component additive games. In case there are more than two machines, bal- 
ancedness is shown tbr two special classes. Calleja et al. (2001a) establish 
balancedness tbr a special class of sequencing games that  arise from two- 
machine sequencing situations in which a maximal weighted cost criterion 
is considered. Nouweland et ah (1992) consider multiple machine flow-shop 
sequencing situation with a dominant machine. Convexity is established 
in case the first machine is the dominant machine by showing that  this 
class of games coincides with the class of sequencing games discussed in 
Curiel et al. (1989). In case another machine is the dominant machine, the 
corresponding game need not be balanced. 

Velzen and Hamers (2001) consider some classes of sequencing games 
that  arise from relaxations of classical sequencing situations. By allowing 
more admissible rearrangements,  coalitions have more possibilities to max- 
imise their profit. Balancedness is shown for some of these classes. Other 
related papers in the field of sequencing games are Curiel et ah (1994), 
Hamers (1995), Suijs et al. (1997) and Curiel et al. (1997). 

Permutat ion games, introduced by Tijs et al. (1984), arise from situations 
in which every player has one job and one machine. Every job has to 
be processed on a machine and each machine can process every job, but no 
machine is allowed to process more than one job. If player { processes his job 
on the machine of player j ,  the processing costs are aij. Let N = {1 , . . . ,  n} 
be the set of players. The corresponding permutation game (N,v) is the 
cooperative game defined by 

v(S) = E a i i -  min E air(i) 
~rCII s 

iES iES 

for all S C N, S # O and v(O) = O. The number v(S) denotes the maximal 
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cost savings a coalition S can obtain by processing their jobs according 
to an optimal schedule compared to the situation in which every player 
processes his job on his own machine. The fbllowing example illustrates 
that, a permutation game need not be convex. 

E x a m p l e  5.5. Let N = {1, 2, 3} be the player set and let 

be the cost matrix. 
given by: 

8 4  2 )  
A =  2 4 10 

5 6 10 

Then the corresponding permutation game (N,v) is 

S I{1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} 
v(S) [ 0 0 0 6 11 0 12 

E.g., the optimal schedule for the grand coalition is to process player l 's  job 
on machine 3, player 2% job on machine 1 and player 3's job on machine 2, 
giving total cost savings of 8+4+10-(2+2+6)=12.  

For this game we have 

v({1,2,3}) - v ({1 , 3 } )  = 1 < 6 = v({1,2}) -v ({1}) ,  

which implies that  (N, v) is not convex. 

It can be shown that  the core of a permutation game is nonempty. Since 
every subgame of a permutation game is again a permutation game, we have 
the following result. 

T h e o r e m  5.4. Permutat ion games are totally balanced. 

For Theorem 5.4 several proof~s are presented in the literature. We men- 
tion Tijs et al. (1984), using tile Birkhoff-Von Neumann theorem on doubly 
stochastic matrices. Curiel and Tijs (1986) use an equilibrium existence 
theorem of Gale (1984) for a discrete ex&ange economy with money. Klijn 
et al. (2000) use the existence of envy-free allocations in specific economies 
with indivisible objects and money to prove balancedness of permutat ion 
games. 
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An interesting subclass of permutat ion games is the class of assignment 
games, introduced in Shapley and Shubik (1971). These games are inspired 
on two-sided markets in which indivisible objects are exchanged for money. 
Applications that  can be analysed using assignment gaines are, e.g., private 
markets in used cars, real estate markets and auctions. 

Formally, assignment games arise from biparti te matching situations. 
Let M and N be two finite, disjoint sets. For each i E M and j E N 
the monetary value of a matching between i and j is given by aij > O. 
Corresponding to this situation an assignment game is defined in the fol- 
lowing way. On the player set M tO N,  the value of the coalition S tO T, 
S C M , T  C N is defined to be the maximum that  S tO T can obtain by 
making matchings between players in S and T. If S = 0 or T = (~ no suit- 
able pairs can be made and therefore the value of such a coalition equals 
0. 

The following example illustrates that  an assignment game need not be 
convex. 

Example  5.6. Let _~// = {1,2} and N = {3,4}. Let a13 = 3, a14 = 5 ,  

a% = 1 and a24 = 4. The coalitions with nonzero value in the corresponding 
assignment game (N, v) are presented in the following table: 

s [{1,3} {1,4} {2,3} {2,4} 
v(S) [ 3 5 1 4 

s 1{1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4} 
v(S) I 3 5 5 4 7 

E.g., the optimal assignment for the grand coalition consists of a matching 
between players 1 and 3 and a matching between players 2 and 4. 

For this game we have 

v({1,2 ,3 ,4})  - v({1,2,4})  = 2 < 3 = v({1,3}) - v({1}), 

which implies that  (N, v) is not; convex. 

Every assignment game is a permutat ion game. Let A = (aij)iEM,jEN 
denote a matrix with corresponding assignment game (M tO N, v), then the 

IM u NI × IM U NI matrix 

1 0 0 
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gives rise to a permutat ion game, which equals v. Hence, it follows fl'om 
Theorem 5.4 that  assignment games are totally balanced. 

In contrast to permutat ion games, the structure of the core of assign- 
ment games has been studied extensively. Shapley and Shubik (1971) show 
that  the set of core allocations coincides with the set of solutions of the 
linear programming problem that  is the dual of the optimal assignment 
problem. Moreover, they observe that  the core corresponds to the set of 
competitive price equilibria of an economy associated with the assignment 
problem (cf. Debreu and Scarf (1963)). Shapley and Shubik (1971) also 
prove that  the core expressed as a set of utility vectors Ibr the players in M 
(or N) is a lattice. It is easy to see that  the lattice is of a special type called 
the "45°-lattice ''. Quint (1991b) shows that  also the converse is true, i.e., 
that  every 45°-lattice can be associated with the core of an appropriately 
defined assignment game. Balinsky and Gale (1990) show that  the number 
of extreme points of tile core cannot exceed (~k), where k = min{lM], INI}. 
More recently, Halners et al. (1999c) have shown that  the core of an assign- 
merit game satisfies the CoMa property, i.e., the core is the convex hull of 
some marginal vectors. Nufiez and Rafels (2000) relate the extreme points 
of the core to reduced marginal vectors. Solymosi and Raghavan (1994) 
present an O(n 4) algorithm to find the nucleolus of assignment games. In 
Solymosi and Raghavan (2000) the stability of the core of assignment games 
is investigated. For neighbour games, i.e., the class of games that  equals 
the intersection of the classes of assignment games and component additive 
games, Hamers et al. (1999b) provide an O(n ~) algorithm to find the nucle- 
olus. The relation between the core of assignment games and permutat ion 
games has been studied in Curiel and Tijs (1986) and Quint (1996). 

Further papers dealing with assignment problems or closely related games 
are Kaneko (1982), Owen (1992), Sasaki (1995), Llorca et al. (1999), Sanchez 
Soriano et al. (2000,2001), Quint (1991a) and Roth and Sotomayor (1990). 
The latter provides an overview of stable matchings, a concept tbrmalised 
and analysed first in Gale and Shapley (1962). 

6 P r o d u c t i o n  

This section first surveys the results in the model of production eco- 
nomics as initiated by Owen (1975). The prime fbcus is on the Owen set 
and, in particular, on its characterisation as provided in Gellekom et al. 
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(2o0o). 
In Owen's production economy the situation is as follows. The produc- 

t, ion process is linear and freely accessible ['or every group of agents (players). 
There is a finite set N of players, a finite set R of resources and these re- 
sources can be used to produce consumption goods (products).  The finite 
set of products  is denoted by P .  The production technologies are described 
by a production matrix A, where Arp represents the number of units of 
resource r E R necessary to produce one unit of product  p C P .  The 
products  can be sold at a fixed market price (independent of the quantities 
produced),  given by a vector c E R e .  

The maximal profit that  can be made from a resource bundle b E R R is 
then equal to the maximum of" the linear program 

max {c-Ca:lAx < b}, 
xEN~ 

where the coordinate xp denotes the amount of product  p that  is produced. 
Further, each player owns a bundle of resources. These resource bundles are 
summarised in a matrix B of size 1t71 x INI: the column of B corresponding 
to player i denotes player i's initial resource bundle. 

The players try to maximise their profits. They can work on their own, 
but  they are allowed to cooperate by pooling their resources. Pooling is 
favourable, because the maximal (joint) profit after pooling is always at 
least as high as the sum of the profits of the players separately. For, when 
cooperating, they could still make the stone products  they make on their 
own. Therefore, it is assumed that all players cooperate, yielding a maximal 
(total) profit. The question arises how to divide this profit among the 
agents in a fair way. So, again, this type of situation features not only 
an optimisation aspect in finding an optimal production plan, but  also an 
allocation aspect in how to divide the corresponding profits. 

A situation as described above is called an L P  process and it is sum- 
marised by L = (N, R, P, A, B,  c). We make the following natural assump- 
tions: 

(i) A>_O,B>_O, 

(ii) Be "~vT > O, 

(iii) 3p~p : cp > O, 
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(iv) cp > 0 ~ 3.r.¢[~ : Arp > 0 (no gains without input). 

The class of LP processes with arbitrary but finite player set satisfying 
(i)-(iv) is denoted by/2. 

To analyse the allocation problem due to cooperation, we consider as- 
sociated TU games. For L = (N, R, P, A, B, c) E E, the corresponding LP 
game VL is defined by 

v L ( S ) =  max c=z 
x~F(S) 

for every S c N, where F(S) = {z C R ~ I A x  < Bes}. Note that Be 's' 
represents the total resource bundle available to coalition S and vf(S)  is 
the maximal profit the players in S can jointly generate by pooling their 
resources. 

From duality theory we know that 

VL(S) = min y T B e S  
yEF* 

with F* = {y c R+ R [yTA > c -} ,  since it is readily checked that  the f~asible 
regions F(S)  and F* are both nonempty. 

It is important to :note that the f~asible region F* of the dual program 
does not depend on the coalition S one is considering and hence can be 
readily used to determine vr. just by changing the objective fhnction. 

E x a m p l e  6.1. Consider the LP process L with N = {1, 2, 3}, two resources 
and two products: 

1 4 ' 28 0 35 

The dual feasible region F* (for any coalition) is given by 

2yl + Y2 _> 6, Yl -I-4y2 ~ 8, Yl ~ 0, Y2 ~ 0. 

From this we readily derive (e.g., by comparing the value of the objective 
function in the corner points) that  the corresponding LP game VL is given 
by 

s 0 {1.} {2} {3} {1,2} {1,3} {2,3} {1,2,3} 
VL(S) 0 104 0 0 168 154 146 250 
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Note that  (BEN) T = [ 70 63 ] and minv~f,  yq-Be N = 250 is (uniquely) 
at tained in ( ~ , ~ ) ,  while for S = {1,2}, (BeS) T = [ 7 0  2 8 ]  and 

rain yq-Be s = 168 is at tained in (0, 6). 
ycF* 

For L = (N, R, P, A, B,  c) 6 £ we define the Owen set by 

Owen(L) = {yV B E 5P~ ly E F*,vL(N) = yT BeN}. 

So to determine an element of the Owen set, an Owen vector', we first have 
to determine an optimal solution y E R R of the dual program for the grand 
coalition N.  For each r 6 JR, Yr is interpreted as the shadow price for 
resource r. Then, for each i E N,  (yq-B)i represents the shadow value of 
the initial resource bundle for player i. 

E x a m p l e  6.2. Consider the LP process L of Example 6.1. As we have seen, 
the unique optimal solution of the dual program for N equals y = ( ~ ,  ~ ) .  

Hence, the Owen set of this LP process consists of one point z with [lO:] 
where for example 96 = ~ .  42 + ~ .  0 reflects the shadow value of the initial 
resource bundle (42, 0) of player 2. Note that  Owen(L) C C(vc). 

Each Owen vector belongs to the core of the corresponding LP game. 

T h e o r e m  6.1. Let L = (N, R, P, A, t3, c) E £.  Then Owen(L) C C(vr). 

Proof. Take z E Owen(L) and let y 6 F* with yTBeN : vL(N) be such 
that  z = yq-B. Then 

iCN 

and, for all S C N,  

: Z(yTB)  =yTB  N =  L(N) 

iEN 

zi = y r BeS Z vL(S), 
iCS 

since y E F* and thus y is feasible for the dua] program corresponding to 
S. [] 
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In particular, Theorem 6.1 implies that  every LP game is balanced. In 
fact, since each subgame of an LP game is also an LP game itself (corre- 
sponding to the natural  "sub"-LP process), LP games are totally balanced 
and nonnegative (by definition). LP gaines even fill up the class of all 
nonnegative total ly balanced gaines. 

T h e o r e m  6.2. Every L P  game is 'nonnegative and totally balanced and, 
conversely, every nonnegative and totally balanced TU game is an L P  game. 

Pro@ It suffices to show the "converse" part. Let v _> 0 be a totally 
balanced TU game. Define D(v)  = ( N , R , P , A , B , c )  by R = N,  P = 
2N\{O}, A = [ . . . e S . . . ] ,  B = IN and c T = [ . . . v ( S ) . . . ] .  It is easy to 

check that  D(v)  E £ and VD(v) = v. [] 

The LP process D(v)  in the proof of Theorem 6.2 is called the direct LP  
process corresponding to the TU game v. Here, players are the resources 
(think of labourers), coalitions can be produced, each player has only himself 
to of[~r on the labour market and, finally, the price of each coalition (a 
product)  is determined by the underlying game v. For direct LP processes, 
the Owen set exhausts the core. 

P r o p o s i t i o n  6.1. Let ( N , v )  be a T U  game. Then O w e n ( D ( v ) )  = C(v) .  

Taking into account Example 6.2 and Proposit ion 6.1, one can conclude 
that  the Owen set is not a game theoretic solution concept: it does not 
depend on the data  of the game v only, but  it; needs more. Put  dif[~rently, 
two ditt~rent LP processes which both  lead to the same LP game may have 
different Owen sets. 

Owen (1975) has shown that  the core of the r-fbld replication of an 
LP process converges to the Owen set when r tends to infinity. Samet and 
Zemel (1984) give a necessary and sufficient condition tbr finite convergence. 

In the literature many generalisations of LP processes can be found. 
Granot  (1986) and Curiel et al. (1989) consider LP processes where (sim- 
ple) control games on (bundles of) resources determine the resource bundle 
ax-ailable to each coalition. If the underlying control games are balanced, 
then, fbllowing the Owen approach, core elements of the corresponding LP 
games can be constructed. 

Feltkamp et al. (1993) analyse production economies with a finite num- 
ber of (linear) production sites at diffk~rent locations. At each location there 
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are fixed prices for the products  (in an insatiable market) and there is a fi- 
nite amount of resources available, which is controlled by the players. If the 
production sites were isolated, nothing new would be obtained. However, 
t ransport  of products,  resources and technology between the sites is allowed 
along exogenously given routes. The possible t ransport  routes are modelled 
by directed graphs. It is assumed that  there are linear losses during trans- 
port  and linear t ransportat ion costs. Conditions are provided such that the 
corresponding LP game is balanced, and that  a core element can be found 
by solving only the dual of the linear program of the grand coalition. 

Another extension is provided by Timlner et al. (2000a), where situa- 
tions are considered involving the linear transformation of products  (LTP 
situations). A typical t>ature of LTP situations is the fact that  resources 
themselves have economic value, since they can be sold directly next to 
being used in several transformation techniques. Moreover, transformation 
techniques can have more than one output  good, so the model allows for 
byproducts.  Again, (total) balancedness of the corresponding LTP games 
can be derived. 

Extensions of the results on both  LP and LTP situations to a context 
of a countable, infinite number of product ion/ tansforlnat ion techniques can 
be found in Fragnelli et al. (1999), Timmer et al. (2000b) and Tijs et al. 
(2001). Multiobjective LP games are considered in Nishizaki and Sakawa 
(2001). Existence of stable outcomes is shown and, using a duality theorem 
from lnultiobjective programming, the concept of Owen set is generalised 
to this framework. Linear production in a monotonic setting is studied in 
Bird (1981). A nice survey can be found in Tilnmer (2001). 

Now we return to our original setting of LP processes and provide a 
characterisation of the Owen set. 

An LP rule F is a set valued function on £ such that  

F ( N , R , P , A , B , c )  C R N 

for each ( N , R , P , A , B , c )  E E. 

An LP rule F satisfies one-person eJficiency if for all L = (N, R, P, A, B,  c) E 
12 with INI = 1 and B = c R we have that  

F(L) = {vL(N)}, 

i.e., if there is only one agent owning one unit of all resources, then F assigns 
to him the maximal profit that  can be made from his resource bundle. 
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The property of rescaling means that  an LP rule should be independent 
of the units in which the resources are measured. Formally, an LP rule F 
satisfies rescaling if for all (N, R, P, A, B, c) • £ and all R x R diagonal 
matrices D with positive diagonal elements, it holds that  

F ( N ,  R, P, DA,  D B ,  c) = F ( N ,  R, P, A, B,  c). 

The property of shuffling considers the influence of (combinations of) the 
splitting and merging of the resource bundles of the various players (in the 
process possibly changing the number of players). An LP rule F satisfies 
shuffling if for all (N, R, P, A, B, c) • £ and all nonnegative N x M matrices 
X with M finite and X e  M = e N it holds that  

F ( N , R , P , A , B , c ) X  = F ( M , R , P , A ,  B X ,  c). 

Here, with L • £,  F ( L ) X  = { z T x  I z • F(L)} .  

The property of consistency has to do with the special case that  every 
player owns exactly one unit of exactly one resource and different players 
own different resources. Suppose now that  the agents agree on an element y 
prescribed by the solution rule F and suppose player i takes Yi and leaves. 
In the reduced LP process without player i we now impose that  the resources 
of i can still be used but  at a price of Yi per unit, which is equivalent to 
saying that  the price of a product  decreases with Yi for every unit needed 
of this resource. The rule F is said to satisfy consistency if the restriction 
of y to the remaining agents is a solution prescribed by F in the above 
defined reduced LP process. An LP rule F satisfies consistency if for all 
L = (N, R, P, A, B,  c) • £ w i t h N  = R, B = I x  and INI _> 2 and for all 
y • F(L)  and i • N we have 

• 

where 

L - i  -- (N\{ i} ,  R \ { i } ,  P, A - i , ,  lrN\{i}, ~) 

with A - i ,  denoting the submatr ix of A obtained by deleting the ith row 
and 

~p = cp - yiAip 

for all p E P .  

The final property we introduce is deletion. It says that  if a production 
technology is not needed to make the maximal profit for the grand coalition 
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of all players, this technology can be deleted without deleting solutions 
prescribed by the LP solution rule. As is the case for consistency, deletion 
is only required for special LP processes. An LP rule F satisfies deletion 
if for all L = (N, R, P, A, B, c) E £ with N = R and B = IN and for all 
Q c P for which 

is such that  

it holds that  

L-e  = (N, R, P\Q, A_, e, B, c-e)  

v (N) = (N) 

r(L) c F(L-Q). 

Here, A_,Q denotes the submatrix of A obtained by deleting all columns 
corresponding to elements in Q. 

It is interesting to note that  the five properties above imply nonempti- 
ness and (general) efficiency of an LP rule. 

T h e o r e m  6.3. The Owen set is the unique LP rule satisJying one-person 
eJficiency, rescaling, shuffling, consistency and deletion. Moreover, these 
five properties are logically independent. 

Another type of production economy is represented by a flow situation. 
Flow situations were first investigated from an interactive cooperative point 
of view by Kalai and Zemel (1982a,b). To let the reader get acquainted with 
the subject, we have chosen to follow the lines set out by Curiel et al. (1988). 

Without  giving precise definitions, a flow situation is modelled as a 
directed graph with two distinct nodes: a source and a sink. On each of the 
arcs there is a (nonnegative) capacity restriction and an associated simple 
control game which describes which coalitions of players are allowed to use 
the arc. A game (N, v) is called simple if v(S) E {0, 1} for all S C N and 
v(N) = 1. A coalition is allowed to use a particular arc if its value equals 1 
in the associated control game. In the corresponding flow game the value of 
a coalition S is the maximal flow through the network from source to sink 
where only arcs are used which are controlled by S. 

E x a m p l e  6.3. Consider the network of Figure 9 with one source, one sink, 
one intermediate node and three arcs al,au,aa with capacities cl = 10, 
c2 = 3 and ca = 6, respectively. The corresponding control games, with 

player set N = {1, 2, 3}, are Wl = n{1}, wu = n{1,u} and wa = u{1,3}. 
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0 
s o u r c e  

a l  

~ k  
Figure 9: A flow network 

The coalition {1, 3} controls the arcs a l  and a3, so the maximal flow for 
{1, 3} equals 6, resulting in v({1, 3}) = 6 in the corresponding flow game 
v. This flow game is given by v({i}) = 0 for all i E N, v({1,2}) = 3, 
v({1,3}) = 6, v({2,3}) = 0 and v(N) = 9. The unique minimum cut 
corresponding to the coalition N is {au,aa}. By the max-flow min-cut 
theorem of Ford and Fulkerson (1962), the sum c2 + c3 equals v(N).  

To define a minimum cut solution (MC solution), take arbitrary core 
elements of the control games w2 and wa corresponding to the ares au and 
aa in the minimum cut and divide the corresponding capacities proportional 
to these core elements. Taking, e.g., (5, 5,2 0) C C(w2) and (1, 0, !2) E C(w3), 
one obtains the MC solution (1, 2, 0) + (3, 0, 3) = (4, 2, 3), which belongs to 
the core of the flow game v. 

Note that  an MC solution can only be defined if all control games (in a 
minimum cut) have a nonempty core. 

T h e o r e m  6.4. 

(ii) 

(iii) 

f f  all control games are balanced, then MC solutions belong to the core 
of the flow game and hence, the flow game is balanced. 

Every nonnegative balanced game arises f i rm  a flow situation with 
balanced control games. 

f f  all contrvl games are dictatorial (i.e., .for every arc ak~, there is a 
player i E N such that the contwl game w~: equals u{~}), then the 
corresponding flow game is totally balanced. 

Every nonnegative totally balanced game arises from a flow situation 
with dictatorial control. 

Related results on flow situations can be found in Granot and Granot 
(1992b). Extensions to multicomlnodity flow situations (cf. Assad (1978)) 
can be found in Derks and Tijs (1985,1986). 
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An interesting recent contribution to tile theory of float situations is the 
characterisation of the MC solution (as a set valued solution) for so-called 
simple flow situations, i.e., situations where each player dictatorially con- 
trols exactly one arc, other arcs are publicly available (with control games 
w with w(S) = 1 for all coalitions S) and all arcs have a capacity of 1. 
The MC solution in this context has to be unders tood as the set of all the 
vectors e s E R N for coalitions S which fully control a minimum cut (i.e., 
without  public arcs). This characterisation can be found in Reijnierse et 
al. (1996) and uses the properties of one-person efficiency, consistency and 
converse consistency. Moreover, it is shown that  the extreme points of the 
core of a simple flow game coincide with the MC solution. So, in particular, 
for simple flow situations the core of the related flow game is nonempty if 
and only if there is a minimum cut which does not contain a public arc. 

Various instances of LP games and flow games can be seen as special 
cases of linear programmirtg games (cf. Dubey  and Shapley (1984)). An 
interesting paper which aims at a unification of techniques within combi- 
natorial game theory, providing a unified proof of balancedness, is Potters  
(1987). 

To conclude this section on production, we want to mention Shapley 
and Shubik (1967), where more general types of production functions are 
considered, and Sandsmark (1999), where uncertainty is taken into account. 
An interesting recent application of flow techniques is found in Koster et al. 
(1999). 

7 Inventory 

In this section we consider a recent application of game theory within 
models of inventory control. Inventory management  itself is a relatively old 
branch within operations research and many books have been written on 
mathematical  inventory models, e.g. Hax and Candea (1984) and Tersine 
(1994). The main objective of inventory management  is to minimise average 
(long term) costs per time unit, while guaranteeing a prespecified minimal 
level of service. 

Firms can save on inventory costs by cooperating. For instance, if there 
is a fixed cost per order, firms will have to pay less ordering costs if they 
order simultaneously as a group, :rather than separately. This again raises 
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an allocation problem: how should the tota] minimal inventory costs of 
the grand coalition be divided among tile firms? This problem has been 
analysed in Meca et al. (1999), on which this section is based. 

To fix ideas, we first look at an extremely basic one-firm inventory prob- 
lem. The firm faces a (deterministic) demand of d units of a specific good 
per time unit. It is not allowed to run out of stock and the lead time, the 
time between placement of the order and arrival of the goods, is assumed to 
be zero. The firm faces two kinds of' costs. First, there are ordering costs. 
For each order the firm places it has to pay a fixed cost a, independent of 
the quanti ty ordered. Second, there are holding costs: the costs of carrying 
one good in stock for one time unit are assumed to be constant and are 
denoted by h. 

Denote by Q the quanti ty ordered each time the firm places an order. 
The time between two successive orders then equals Q/d time units. A cycle 
is defined as a time interval of length Q/d starting at a point in time when 
an order is placed. By m we denote the number of orders placed per time 
unit: m = d/Q. Because there are on average d/Q orders per time unit, 
the average ordering costs equa] ad/@ The average inventory level equals 
Q/2,  so the average holding costs per time unit equal hQ/2. In total, the 
average inventory costs are AC(Q) when ordering the quanti ty Q per order: 

AC(O) = aQ + hQ---'2 

Minimising average costs over all Q > O, we obtain an optimal ordering 
size of Q* = ~ / h ,  giving an optilnal number of orders per time unit of 
m* = d/Q* = ~ and a minimal average costs of AC(Q*) = 2am*. 

An n-firm inventory situation, denoted by (N, d, h, a), consists of a fn i t e  
set N = { 1 , . . . , n }  of firms, a vector d C R~_+ of demand levels, a vector 
h C R~_+ of holding cost parameters  and an ordering costs parameter  a > 0. 
By @ we denote the ordering quanti ty (per order) of firm i E N.  

We claim that  in the optinmm, firms always synchronise their cycle 
lengths and place their orders simultaneously. To see this, suppose firm 
2 has a longer cycle than firm 1. Then total cost will decrease if firm 2 
shortens its cycle length to player 1% length. Ordering costs will decrease, 
because the number of orders goes down, and holding costs will decrease, 
because firm 2% average inventory level goes down. 
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The cycle length of firm i E N equals Qi/di, so in optimum we have 

Qi = ~1Q1 

for all i C N. Using this, the average costs for the firms in N, 

dl , Qi 
AC(Q1 , . . . ,Qn)  = a ~ l  1 + E ni-~-, 

iEN 

reduce to 
d l  Q 1  

AC(Q1) = a-~l + ~ ~ hid.~. 
iEN  

Minimising this with respect to Q1 yields and optimal ordering level 

2ad~ 
= 

and an optimal number of orders per time unit of 

?TtN - -  
,/2j  hJ 2 

- V 2 a  - -  

A and minimal average costs C(Q1) = 2amN. In fact, both ordering costs 
and holding costs equal arnN in the optimum. Note that the minimal costs 
only depend on a, which is public information, and the mi. So in order to 
calculate the minimal costs, it suffices for each firm i E N only to reveal 
their private optimum rni and not the actual di and hi. 

In view of these last remarks, in the remainder of this section we only 
look at ordering costs and suppress the private parameters d and h. An 
ordering cost situation can then be described by a 3-tuple (N,a ,m)  with 
m E R~+. If a coalition S of firms cooperates, then their optimal ordering 
C o s t s  a r e  

a ?T~ i . 

Consequently, we define a corresponding ordering cost game (N, Co), where 
Co(S) equals the expression in (7.1) tbr all S C N. 
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P r o p o s i t i o n  7.1. Let (N, a, rn) be an ordering cost situation and let (N, Co) 
be the corresponding ordering cost game. Then (N, Co) is concave and mono- 
tonic. 

Another property of the class of ordering cost games is that  it is closed 
with respect to nonnegative scalar multiplication, but  not with respect to 
addition. 

Ordering cost games are a special kind of production games, as intro- 
duced by Shapley and Shubik (1967). An interesting solution concept for 
this general class of games is the proportional rule, which for ordering cost 
games boils down to 

for all i E N. 

7ri(Co)- b({i}) _ arn~ 

b(N) V/EJ N'C 

This proportional rule has some nice properties. First of all it provides 
a core element which is pmas extendable. Note that  since (N, Co) is a cost 
game, the reverse inequality in monotonicity condition (2.1) should hold. 

T h e o r e m  T.1. Let (N, co) be an ordering cost game. Then there exists a 
population monotonic allocation scheme y = {Yis}, i E S, S C N,  S ~ 0 of 
(N, co) such that YiN = 7ci(Co) for all i E N .  

Proof. Define for all i E S, S C N, S ¢ 

Then, for all S C N, S ¢ 0 

= - -  2 Z 2 = C o ( S )  

and for a l lS ,  T c N s u c h t h a t  S ¢ ~ a n d S C T a n d f o r a l l i E S  

> 
- - 

T,~j 
v 

In particular, we have YiN = 7ci(Co) for all i E N,  so the proportional rule 
provides a core element. [] 
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The proportional rule can be characterised by means of a monotonicity 
property. An ordering cost rule f is called monotonic if for all ordering cost 

games (N, Co) and (N, to) we have that co(N)f~(Co) _> eo(N)f~(~o) whenever 
Co({i}) >_ to({i}). Basically, if we have two inventory situations with the 
same total costs to share and a player generates more costs on his own in 
one situation than in the other, then he should pay more in the former 
situation than in the latter. 

T h e o r e m  7.2. The proportional rule is the unique rule on the class of 
ordering cost games satisfying efficiency and monotonicity. 

An alternative characterisation of the proportional rule using a kind 
of transfer property and null player property instead of monotonicity is 
provided in Meca et al. (2001). In this paper also equilibrium outcomes of 
a "constructive" noncooperative approach are analysed. In the same spirit, 
but  tbcusing on sharing the benefits from joint storage, is Tijs et al. (2000). 

A model of inventory games within a context of stochastic uncertainty 
is given in Har tman et al. (2000). In Miiller et al. (2000) and Slikker et al. 
(2001), news vendor problems are modelled in a similar framework. 

8 F u t u r e  

Notwithstanding the huge literature on operations research games, our 
general impression is that  the theory is still only in a rather initial phase. 
This has to do with two related aspects: simplicity and (restricted) appli- 
cability of the current models. 

Issues to be considered in the future involve: 

• dynamics: changes in the player set and other time-related aspects, 

• strategic incentives (coopetition), 

• minimising private information exchange, 

• consistency, monotonicity and continuity arguments for allocation rules, 

• stochastic uncertainty, 

• asymmetric information between the players with respect to the data  
of the underlying operations research problem. 
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D I S C U S S I O N  

I m m a  Cur ie l  

University of Maryland, U.S.A. 

In this paper tile authors purport to give an, albeit restricted, survey 
of operations research games. The restraint of the authors in not trying to 
give a "complete" survey should be applauded. The subject is so vast that 
such a survey would only result in a mentioning of games without providing 
any insights in the material. 

Instead the paper considers five categories of operations research games 
and discusses one or two classes in eadl category. The result is an in- 
formative and interesting paper whidl gives a good idea of the different 
techniques used in applying concepts from cooperative game theory to the 
different situations under consideration. 

Having said this, I have to admit that it is not completely clear to me 
what the authors mean by "operations research game". The fourth para- 
graph of the paper which discusses tile relation between operations research 
and cooperative game theory does not clarify the concept su~ciently. In 
fact, some of the classes studied in the paper do not posses the properties 
mentioned in this paragraph. Linear production games and ordering cost 
games do not have a graph associated with them. Neither do the games 
studied by Dubey and Shapley (1984) which surely, any definition of ope- 
rations research games should include. 


