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Abstract

Many problems in continuous location theory, reduce to finding a best location, in
the sense that a facility must be located at a point minimizing the sum of distances
to the points of a given finite set (median) or the largest distances to all points
(center). The setting is often assurmed to be a Banach space.

To have a better understanding concerning the structure of location problems, it
is nice to see how, if the space is infinite-dimensional, the lack of optimal solutions
may occur also in rather simple cases.

In this paper we indicate two simple examples of four-point sets such that one of
the two problems indicated has a solution, while the other one has no solution.
Also, we list papers containing examples previously given, dealing with this lack of
optimal solutions.
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1 Introduction

Let X be a normed real space. Given a set A, we set:

r(4,2) = sup{lle —ala € A}; - 7(4) = inf r(4,2).

We say that c is a center of A if r(A4,¢) = r(A).

Let A = {a1,as,...,a,} be a finite set; we set
1 n
p(A,z) = — Z; e — all; - p(A) = inf u(A,2);

for a finite set, we say that m is a median of A if u(A,m) = u(A).
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Many problems in continuous location theory reduce to finding a best
location, in the sense that we must find a center or a median.

These two problems are often considered in two-dimensional spaces: in
this case, from a theoretical point of view, things concerning existence of
solutions go smoothly. Already for spaces of three or more dimensions,
things behave in a different way: compactness helps in proving existence
theorems, but when the setting is not Euclidean, solutions can be outside
the convex hull of the set.

In general the setting is assumed to be a Banach space. If the underlying
space has some “good” properties, but also in some “bad” spaces, it is
known that both problems always admit (at least) one solution; but in
general, if the space is infinite-dimensional, the two above problems do not
necessarily have solutions.

Examples are known of sets where these problems have no solution. The
general feeling on these optimization problems seems to be the following:
at least for very simple sets, the above problems have solutions. Also,
from the theoretical point of view, both problems are convex: it is rather
unexpected to find simple examples where there are solutions for one of the
two problems but not for the other one.

An example of a three-point set without a center was given already in
Garkavi (1964), Theorem 1; we do not know if such a set has a median.

An example of a three-point set without a median was given in Vesely
(1993), Remark; we do not know if such a set has a center.

An example of a three-point set without a median and without a center
was given in Baronti et al. (1993), Example 5.2.

In this paper we want to indicate two examples of four-point sets: the
first one, is a set having a center but no median. The second one, is a set
having a median but no center.

This shows that having a median or a center are independent properties.
As known, in many Banach spaces all closed bounded sets have centers, all
finite sets have medians (see e.g. Vesely (1997) for general results of this

type).

The following questions can be raised:

Q1 Are there spaces such that every finite set has a center but not every
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finite set has a median?

Q2 Are there spaces such that every finite set has a median but not every
finite set has a center?

Recall that there are spaces such that every finite set (also, every com-
pact set) has a center but there exist closed bounded and convex sets with-
out a center (see Vesely (2002)). With respect to some properties, con-
sidering three-point sets isenough: for example, among normed spaces of
dimension at least three, Hilbert spaces can be characterized by the prop-
erty that for any three-point set, there exists a center which belongs to
its convex hull; a similar characterization holds with existence of medians,
see Benitez et al. (2002). Also, a characterization of reflexivity in terms of
existence of centers and /or medians for three-point sets was given in Vesely
(1993).

2 Examples

Our examples are given in the following space, already considered in Baronti
et al. (1993). Let ¢, be the space of all real sequences converging to 0,
with the max norm; denote by e;, i € N, the elements of the natural
basis. Consider the following functional on ¢,: f = (f,,) where f,, = 1 for
n=1234 f,= 271—14- forn > 5.

We denote by X the subspace of ¢, containing all sequences x = (21, 22,
ooy Xp, ... ) such that >°>° | foa, = 0.

Example 2.1. Let A = {a,b,¢,d} where a = e; —eq; b = ey — ie4 — es;
. n—1
= 63—i64—e5; d= 62+63—64—€5—Z?:+65 20e; with o = 22n_1 (e (%, 1)).

Note that A C X; in particular d € X since & — 2a(f + -+ + Qnﬁﬂ-) =
1 1y _

We have: ||c — d|| = 2q, so r(A) > « if we take:

a+d 111 1
A = 15757 57 _17 P S 70707“->
T (2’2 2 g e “
we have: ||z —al|l = [[x—0b]| = |lx —¢| = ||x —d|| = «; therefore (A, ) =

so r(A) = a and x is a center of A.
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Now we want to prove that u(A4) = 241 and that A has no median.

Let m — (l 1111 ...,~%,—f},—ﬁ,...,—6,0,0,...): 1
appears from the 5-th to the (n + 5)-th position, and —f in the next &
positions with k > n.

We have: m € X if

11<1+1++11>ﬁ<1++1>70
2 4 2 a
1

222 ' 223 gt 2712 gk
1 1 1

@2_5(1+ +2n—1>:ﬁ2n+2(1+ ’+W>:O
1 1/1—5= 1— 1 1
1 1) () e mownl-5)
4 ] 1_5 on+2 1_5 4-9n gn+1 2k
k-1 1

<:> — - .

p 2k—1<€(2’a))
Therefore: |m —al| = ||m —b|| = ||[m —¢| = 8 ; |m —d|| = 2a — 3, so

4p(A,m) = 2a — 5 + 3.
For k — oo, the value of 5 goes to %, so p(A) = infyex p(A, ) < 2%“;
but also, for any x € X we have:
1
u(A ) = 3 (I = all o = bl + e~ el + o = d] ) =

1 2041
(lla=bll +fle—dl) = =—.

so we conclude that p(A)=2%4

Now suppose that = is a median of A; clearly we must have 20 + 1 =
(A, z) = |z —al +[z=b + [z —c|+ |l —d]| = [la—bl+]lc—dl = 1+2a,
so | —all+ ||z —b]| = 1, and ||z —c|| + ||& — d|| = 2¢; also, since |la—c|| =1
and [[b—d|| = 2a, ||z —al| + |l —c| = 1 and [ — ]| + |lo — dl| = 205
similarly, ||b —¢|| = 1 and |ja — d|| = 2, imply ||z = b|| + ||z —¢|| = 1
and ||z — al| + ||z — d|| = 2a. These inequalities together imply ||z —al| =
|z —b|| = ||z — || = &; |lx —d|| = 2cc— 3. But the first three conditions are
not compatible since, as shown in Example 5.2 in Baronti et al. (1993), the
set A’ = {a,b,c} has no median (r(A’) = p(A’) = 3); so A has no median.
Example 2.2. Consider again the space X defined above. Let B =
{a,b,c,e} where a, b, ¢ are the same points as in Example 2.1, while

{41 9 1
e— (3,3,0,—E,—3,0,0,...).
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Ifw € X, then ||z —all+ [z —bll+ [z —cl|+|le—el = [la—bll+[lc—el = 2;
also, |le —all + |le —b|| + |le —¢|]| = £ + %+ 1 = 2: this shows that e is a
median of B.

Now let 2 = %, with d the point in Example 2.1; we have: sup{||z —

n—1 .
all, lz = bll, |z — ||, ||z — e||} = @ = 2= > r(B); since we can take n as
large as we wish, we obtain r(B) < % Also, it C' = {a,b,c} C B, then
1 = diameter(C) < 2r(C) < 2r(B) < 1, so r(C) = r(B) = 4. But it
was shown in Baronti et al. (1993) that there exists no y € X such that
ly—all <3, [ly—20l <31, ly—cll <3 (soC has no center); this implies
that neither B can have a center.

Remark 2.1. In example 2.2, we have u(B) = r(B) = 3: note that when

a set satisfies a similar equality, centers (if they exist) are also medians.
Remark 2.2. Let A be a finite set and co(A) its convex hull; consider the
numbers:

(A) = inf r(A2); ps(A) = inf u(A ).
rs(A) xeché(A)’r( z);  ps(A) weﬂm)”( )

Clearly, these numbers are also minima.

In Example 2.1, we have: rs(A) = r(A); also, it is not difficult to see
that us(A) = o (which is achieved by 2 = ¢52).

In Example 2.2, we have us(B) = u(B); also, it is not difficult to see
that rs(A) = 2 (which is achieved by # = 2(a + b +¢)).
Remark 2.3. Example 2.1 shows a four point set which has a center, but
there are three-point subsets (like {a, b, c}) without a center; Example 2.2
shows a similar fact for medians.

It could be of some interest to indicate a four-point set without a me-
dian, such that all three-point subsets have a median; similarly for centers.

Also, it could be interesting to produce similar examples in strictly
convex spaces. We note in passing that an example of an infinite set without
a center, in a strictly convex space, was given in Amir et al. (1982) (3.2.
Example).
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