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Abstract 
In this article we study approximate optinlMity in the setting of a Banach space. We 
study various solution concepts existing in the literature and develop very general 
necessary optinlMity conditions in terms of limiting subdifferentiMs. We also study 
saddle point conditions and relate them to various solution concepts. 
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1 A p p r o x i m a t e  O p t i m i z a t i o n  : B a s i c  M o t i v a t i o n  

To begin the  s tudy  of any m a them a t i ca l  subjec t  it is i m p o r t a n t  to  have 

some mot iva t ion  %r such a study. The  problem to de te rmine  a point  in a 

given set which minimizes a given numerical  funct ion  over t ha t  set remains  

an interest ing as well as chal lenging area of study. Consider  the  problem 

miny"(x),  x E X. 

Most  of the  pract ical  a lgor i thms will t r y  to find a point  x E X such t h a t  

V f ( x )  0 . In most  cases this m ay  not  be easy and one may  have to 

remain  content  wi th  f inding an x* such t h a t  

I lv f (x*) l l  < c. 
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where c > 0 is a preset value which is usually very small. Thus the point 
x* may not be exactly a critical or an optimal point but  may still serve our 
purpose from the practical point of view. Consider another example 

1 
m i n f ( x )  - subject  to x E [1,+oe).  

X 

In this case we are seeking to find a point in the convex set [1, +oe)  which 
1 

minimizes the convex function f (x )  - over it. Though the function 
X 

has an infimum over this set which is zero but  there is no x ¢ [1,+oe) 
such that  f (x )  0. But  for a given c > 0 in this case one will find 
x* ¢ [1, +oe)  such that  f (x*)  < c. This simple idea leads to the notion 
of an approximate minimum. In most decision making processes involving 
optimization the decision maker usually is satisfied with an approximate 
minima with a sufficient degree of accuracy. In this article we are concerned 
with the following problem (ME) 

m i n f ( x ) ,  subject  to x E S, (MP) 

with f : X --+ R and S c X,  where X is a Banach space. We shall denote 
by X* the dual space of X and by (., .} the canonical pairing between X* 
and X.  The norm of X will be denoted by II.ll and the dual space X* 
will be equipped with the weak-star topology. As usual B and B* stands 
for the unit balls in X and X*, respectively. We shall denote the interior, 
closure and the convex hull of a set S by intS, clS and c o s  respectively. 
We shall denote by cl* the weak-star closure in X*. We will also denote 
by R the extended real line R U { + o e , - o e }  wherever required. As usual 
we shall denote by d o m f  the domain of an extended real-valued function 

f : X - - + R .  

In this article we aim to develop a very general and sharp necessary 
optimality condition for an approximate minimum of a locally Lipschitz 
program. The necessary conditions will be in terms of the limiting s u b d i f  
ferential of Mordukhovich (1985). From the calculus rules of such subdiffer- 
entials it will be clear that  the subclasses of Banach spaces called Asplund 
Space (see for example Phelps (1993)), are the most natural  settings for 
studying such sharp optimali ty conditions. The paper has been organized 
as follows. In Section 2 we introduce the relevant solution concepts and var- 
ious definitions from the non-smooth analysis of Mordukhovich. In Section 
3 we present various optimality conditions. We begin by presenting some 
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results for the general program (MP) and then consider the case where 
the set S is described by equality and inequality constraints. In Section 4 
we describe the notion of an approximate saddle point and its relation to 
certain approximate solution concepts. 

There has been a considerable interest among researchers in the theo- 
retical s tudy of the notion of an approximate minimum. One of the earliest 
analysis was carried out by Loridan (1982) and Loridan and Morgan (1983) 
where various solution concepts have been introduced and necessary opti- 
mality conditions derived using the Clarke subdifferential. There has been 
some further  works due to Bustos (1989), Bustos (1994), and Liu (1991). 
For example in Bustos (1994) new notions of c-subgradients were defined for 
locally Lipschitz functions and optimality conditions were derived in terms 
of these c-subgradients. Very recently Mordukhovich and Wang (2002) 
have introduced a new variational principle using the tools of nonconvex 
variational analysis and have used it to s tudy optimality conditions in ap- 
proximate optimization. The above list is by no means exhaustive and some 
relevant references will also be given in connection with various results in 
this article. 

2 B a s i c  D e f i n i t i o n s  a n d  R e s u l t s  

We will begin with the definition of some relevant solution concepts. 

D e f i n i t i o n  :2.1. Consider the problem (ME) given as 

m i n f ( x )  subject to x ¢ S~ 

where f " X --~ R and S c_ X. Let c >_ 0 be given then a point x* ¢ S is 
said to be an c-minimum (MP) if 

f(**) _< f ( . )  + < v .  c s. (2.1) 

If c 0 this reduces to the usual notion of a minimum. Thus in 
the s tudy of approximate optimality the case c > 0 is of interest. Lori- 
dan(1982) introduced another  notion of an approximate solution called c- 
quasiminimum. We provide the definition below: 

D e f i n i t i o n  :2.2. Let c _> 0 be given. Then  x '~ E S is said to be an c- 
quasiminimum of (MP) if 

f(**) _< f (*)  +  711x - **11  v .  c s. (2.2) 
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A point x* E S is called a regular c-minimum of (MP) if x* is an c- 
min imum and an c-quasiminimum. Thus an c-quasiminimum in effect is 
an exact minimum of a slighlty per turbed objective function over the saute 
constraint set. Thus x* is a solution of the problem 

mi~( f ( x )  +  llx - x *  II). 

It is interesting to note that  if a function f : X --+ R has an c- 
quasiminimum at x* then the function is calm from below at x* (see Rock- 
afellar and Wets (1998) for the definition of calmness). Conversely if a 
function is calm from below at x* with modulus c~ > 0 then x* is a c~- 
quasiminimum of f in a local sense. 

Very recently Huang and Yang (2001) also studied the above two no- 
tions of approximate minimum. In the definition of an c-quasimininimum 
Huang and Yang (2001) have replaced ~fZ with c. But  we will consider 
the definition as given in Loridan (1982). The above two definitions are in 
fact motivated by the Ekeland Variational principle which lies at the heart 
of the s tudy of approximate optimization. We state below the Ekeland 
Variational principle (see for example Phelps (1993)). 

T h e o r e m  2.1 (Ekeland Variational Principle). L e t  f : X ~ RU{+ee} 
be a lower-semicontinuous .function bounded below, whe~  X is a Banach 
space. Let c > 0 and x* E X be such that 

f (x*)  <_ inf f ( x )  + c. 
x c X  

For any ~ > 0 there exists x~ E X such that 

i) f(x),) <_ f (x*) .  

i i)  IIx  - x*ll <_ A. 

iii) f (x~)  <_ f (x )  + ~nx - x~ n. 
A 

Let us now consider the program (IV[P) where the set S is now de- 
scribed through some inequality and equality constraints. Thus S can be 
represented as 

s l , . . . ,m ,  he(x) O,j l , . . . , r } .  
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where gi : X --+ R and h j  : X ---+ R. We can further consider the fbllowing 

set. Given c _> 0 the g-feasible set for (MP) is denoted by S~ is given by 

S~ {x E X : gi(x) <_c,i l , . . . , m ~  - c  < hj(x) <_c,j l , . . . r } .  

This leads to the following notion of an almost g-minimum of (MP) due to 
Loridan (1982). 

D e f i n i t i o n  2.3. Let us consider the problem (MP). 
said to be an almost-c-minimum of (MP) if 

A point xe E S~ is 

f(x~) < f (x )  + c, Vx E S. (2.3) 

An important  notion related to a convex function is that  of the c- 
subdifferential. Consider a proper convex function f : X --+ R and let 
x0 E gomf .  Then given c _> 0 the c-subdifferential of f at x0 is given as 

0~f(w0) {~ E X* : f(w) - f(x0) _> (~, w - w0} - c, Vw E X}. 

If f is a proper and lower-semicontinuous convex function then it is well 
known tha t  O~f(*o) ~ 0 for a l l ,  E d o m f  (see for example Phelps (1993)). 
Moreover for any lower-semicontinuous convex function f : X --+ R, a point 

• o E d o m f  is an c-minimum of f if and only if 0 E O~f(*o). 

The upper Dini directional derivative of f : X --+ R at x and in the 
direction v is given as 

f ( .  + - f ( . )  v) lira sup 
~t0 fl 

If f is locally Lipschitz then v H J~(x~ v) is also locally Lipschitz but need 
not be convex. 

We now need to introduce the notion of the contingent cone or the 
Bouligand Tangent which is an important  tool in expressing optimality 
conditions. Let S c_ X and x0 E S. An element v E X is said to be a 
tangent  to the set S at x0 if there exists a sequence v,~ --+ v and t~ ~ 0 
such tha t  Xo + t~v,,~ E S. Equivalently we can say that  v is a tangent  
to ~5' at x0 if there exists a sequence xn --+ Xo with x,,~ E S for each n 
and £,~ > 0 such tha t  A~(x ,~-x0)  ~ v. The set of all such v forms a 
closed cone denoted by T(& x0) and is termed as the contingent cone or 
the Bouligand tangent cone. If S is convex then T(& x0) is convex but in 
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general it need not be convex. Again the convexity of the set S guarantees 
tha t  T(S, x0) c l cone (S-x0)  ({br example see aahn (1996)). For a convex 
set S the fbllowing set 

N(S, .0)  V. c S }  

is said to be the normal cone to the convex set S at the point x0. 

We will now introduce the various definitions and results from the non- 
smooth analysis of Mordukhovich. 

D e f i n i t i o n  2.4. For a set valued map F : X + X* we denote by 

lira sup F(x) 
X~XO 

the sequential Kuratowski-Painleve upper limit with respect to the norm 
topology on X and weak-star toplology on X*, which is given as 

lira sup F(x)  {x* E X* : 3 
X---+X0 

, W* X ,  sequences xk -+ Xo, and x k ~ , 

with x* k E F(xk), Vk 1, 2, . . .} ,  

where ~ denotes convergence in the weak-star topology of X*. 

D e f i n i t i o n  2.5 (Mordukhovich and Shao (1996)). Let S be a non-empty 
subset of X and let c _> 0. Given x E c l S  the non-empty set 

N f  (S,x) { x* E X* ' limsup ( x * ' y -  x} < ~ I l y -  xll - 

is called the set of Frechet c-normals to S at x. When c 0 then the 
above set is a cone is called the set of Frechet normals and is denoted by 
N F (s, . ) .  

Let x0 EclS.  The non-empty cone 

NL(S,*o) = l i m s u p  XJ(S,x) 
X--+XO~C---+O 

is called the limiting normal cone or the Mordukhovich normal cone to S 

at x0. 
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It is important  to note that  the set of Frechet c-normals is a convex 
set for every c > 0 but the limiting normal cone is in general non-convex. 
For more details on limiting normals see for example Mordukhovich (1985) 
and Mordukhovich and Shao (1996). For a t reatment  of limiting normals in 
finite dimension see for example Mordukhovich (1994). When S is a convex 
set then the limiting normal cone reduces to the standard normal cone of 
convex analysis which has been defined earlier. Moreover it is important  
to note tha t  if X is an Asplund spa~e then we have 

NL(S, Xo) lim sup NF(S, x). 
2g ---+ X 0 

D e f i n i t i o n  2 .6 .  Let f : X -+ R be a given function and Xo E domf .  The 
set 

OLf(Xo) = {x* E X* : (x* , -1 )  E NL(epif, (Xo,/(Xo))} 

is called the limiting subdifferential or the Mordukhovich subdifferential of 

f at Xo. If Xo ¢ d o m f  then we set OLf(xo) ~. 

Moreover if X is an Asplund space and f : X --+ R is locally Lipschitz 
around x0 then we have 

0°f (a0)  cl*co~)rf(zo), 

where O°f(xo) denotes the Clarke subdifferential of f at x0. For more 
details on the Clarke subdifferential see Clarke (1983). 

In Mordukhovich and Shao (1996) there is an interesting construction of 
an ¢-subdifferential fbr a lower-semicontinuous function which we provide 
below. 

D e f i n i t i o n  2.7. Let f : X --* R be a lower-semicontinuous function. Then 
for ¢ _> 0 the ¢-subdifferential (or the limiting ¢-subdifferential) is given as 

oLI(xo) limsupO~f(x), 
f 

x----+xO 

where ~FJ'(x) denotes the Frechet c-subdifferential of f at x E domf is 
given as follows 

O:f(x) = { x* E X* : liminf f(u) - f(x) - <x*'u- x} } 
17--  >_ - c  

Further f) denotes f dependent convergence i.e. x --+ x0 and f(x) --+ 
f(xo). 
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In Mordukhovich and Shao (1996) it has been mentioned that  the above 
construction is originally due to Jofre et al. (1996) where they studied the e- 
convexity of extended real-valued functions in terms of the e-monotonicity 
of their subdifferentials. The notion of e-convexity will be defined in Section 
3 of this paper and its use in the study of approximate optimization will be 
explored. The following result due to Mordukhovich and Shao (1996) makes 
the e-subdifferential an important  tool to represent optimality conditions 
for approximate minima in both constrained and unconstrained case. 

m 

L e m m a  2.1. Let X be an Asplund space and let f • X ~ R be lower- 
semicontinuous around Xo E dom f . Then 

oL f ( xo )  = COLf(Xo) + eB* 

Using Proposition 2.5 and Lemma 6.3 in Mordukhovich and Shao (1996) 
we have the following lemmas. 

m 

L e m m a  2.2. Let X be an Asplund space and let xo E X .  Let f~ : X ~ R, 
i 1, 2 be lower-sernicontinuous and one of these is Lipschitz near Xo ( i .e .  
locally Lipschitz at Xo ) then one has 

DL(fl + f2)(XO) ~ OLfl(XO) + OLf2(XO). 

L e m m a  2.3. Let X be an Asplund space and f : X ~ R be locally Lipschitz 
near Xo and let g : R ~ R be locally Lipschitz near Yo f ( xo) .  Then 

~L(g o f)(Xo) C U ~L(Y*f)(xo)  
y* ~aLg(yo) 

3 Optimality Conditions 

In this section we shall discuss various necessary and sufficient conditions 
for tile existence of an approximate minimum of tile problem (MP). One of 
the first detailed study of optimality conditions for approximate optimiza- 
tion was done by Loridan (1982) where he developed necessary conditions 
for problems with objective functions which are directionally differentiable. 
He had also studied the Lagrange multiplier rule for Mmost-c-minimum 
for locally Lipschitz functions. Hiriart-Urruty (1982) had developed a La- 
grangian multiplier rule for c-minimization of a convex programming prob- 
lem in terms of the c-subdifferentials of the related functions. Strodiot et 
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al. (1983) had also studied Lagrange multiplier rules for the c-minimization 
of a convex programming problems in terms of the c-subdifferential of the 
functions involved. Very recently Hamel (2001) also developed a Karush- 
Kuhn-Tucker type condition for a locally Lipschitz program in terms of the 
Clarke subdifferential of the fuctions involved. 

We first present the following simple result without proof. 

P r o p o s i t i o n  3.1. Consider the problem (MP) where f : X --+ R is a 
locally Lipschitz function. If  Xo • S is an c-quasiminimum of f over S 
ther~ following results hold, 

and 
F(x0 ,~)  + ~11~11 >- 0, Vv • T(s ,  x0), 

where f°(xo,v)  denote the Clarke directional derivative of f at xo in the 
direction f (see Clarke (1983)). 

We will now introduce the notion of c-convexity due to Jofre et al. 
(1996). 

D e f i n i t i o n  3 .1 .  Given c _> 0, the function f : X --+ R is called c-convex if 
fbr x , y  E X and k E (0, 1) we have 

f ( ~ x  + (1 - ~)y)  _< h i ( x )  + (1 - ~ ) f ( v )  + ~ ( 1  - ~) l lx  - vii. 

P r o p o s i t i o n  3.2. Let us consider the problem (MP) where f is locally 
Lipschitz and ~/7-convex over X and S is a convex set. Assume that there 
exists xo E S such that 

Then Xo is a 4c-quasiminimum of (MP). 

Proof. Since f is ~/T-convex we have for any x E S and ~ E (0, 1) 

f ( x o  + A(x - ~o)) <_ A f ( ~ )  + (1 - ~ ) f ( x o )  + ,/7;~(1 - ~)llx - x0l[. 

This shows that  

fd+(X0~ X -- X0) ~ f (x)  -- f (x0)  + ~711x - x011 
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Since S is convex we have S - Xo C T ( &  Xo). This shows that  

-~/Tiix - xoiI _< f ( x )  - f (xo)  + ~/Tiix - xoiI. 

This shows that  for all x • S one has 

f (xo)  <_ f ( x )  + ~47Iix - xoiI. 

This proves the result. [] 

T h e o r e m  3.1. Let X be art Asplund Space. Consider the pwblem (MP) 
where f : X ~ R is a locally Lipschitz function and S is a closed and proper 
subset of X .  Let Xo • S be an c-minimum for (MP).  Then there, exists 
Yo • S such that Yo is also an c-minimum for (MP) such that ]]xo-Yoi] _< 1 
and 

0 • O~ f (>)  + :VL(S'~ >) .  

I f  S X then f cart be considered to be art extended-valued prvper lower- 
semicontinuous function bounded below and one has 0 • O~ f(yo).  

Pr'oof. Since Xo E S is an c-minimum of (MP) it is clear that  Xo is an 
c-minimum of the unconstrained problem 

+ as(*)), 

where 6s is the indicator function of S. Now by considering A 1 in the 
Ekeland Variational principle one can assert the existence of Y0 E S such 

that  ]]Yo -xo l ]  _< 1 and 

f(Yo) < f ( x )  + 6s(x) + ell* - y011 

Thus by using Proposit ion 7.8 in Mordukhovich and Shao (1996) we have 

0 E OL(f + 6s + II C - yoll)(yo). 

Now by using Lemma 2.2 and using the fact that  DL6S(yo) NL(S, YO) 
fl'om Mordukhovich and Shao (1998) we have that  

0 • aLf(Yo) + NL(S, Xo) + eB*. 

Now by using Lemma 2.1 we have the result. 

When S X and f is proper lower-semicontinuous and bounded below 
then one can immediately apply the Ekeland's variational principle with 
A 1 and then use Lemma 2.1 to come to the conclusion. [] 
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R e m a r k  3.1. It is important  to observe that  the whole emphasis on the 
s tudy of c-minimum is to get a bet ter  idea about  the true minimum of the 
problem. Let f : R ~ -+ /~ be a convex function which is bounded below 
and let us consider a sequence c~ --+ 0. Let for each k, xk denote the 
ok-minimum of f .  Now by setting Ak @ 7  in the Ekeland Variational 
Principle, we can assert the existence of Yk such that  Ilxk -Ykll -< @ 7  and 

0 • a f (yk )  + ~-~B*  

Let Yk --+ Y0, then as ck --+ 0 by using the fact that  Of is locally bounded 
set-valued map with a closed graph, eventually we have 

0 • (gf(y0) 

Thus Yo is a minimum for f .  Thus at least in the convex case the true min- 
imum can sometimes be thought of as a limit of a sequence of approximate 
minimizers. 

We will now present the last result of this section where we will consider 
S to be described by equality and inequality constraints. 

T h e o r e m  3.2. Let X be art Asplund Space. Consider the problem (MP) 
wherv f : X --+ R is locally Lipschitz which is bounded below on X .  The set 
S is given as 

S { x E X : g ~ ( x ) < O , i  1 , . . . , m  hi(x)  0 , j  = 1 , . . . , m } ,  

where, gi : X ~ R and hj : X ~ R are locally Lipschitz functions. Then 
given any c > 0 and xo an c -min imum of (MP) there exists x* which 
is an almost-c-minimum for (MP) with IlXo - x*ll < x/7 and there exists 
)~.(c) > O, i 1 , . . . , m  and ltj(c) E R, j 1 , . . . , r  such that 

m T 

0 • aLf(x*) + + + 
i=  1 j 1 

Proof. The proof follows along the lines of Theorem 5.1 of Loridan (1982). 
In this direction we shall introduce the penalty function for the problem 
(ME) and this is given as 

)7Z r 

1 [max{O, + fr(x)  f ( x )  + ~ r~ 
i l  j l  
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where ri > 0 for all i and kj > 0 fbr all j .  Since f is bounded below it is 
clear the fr  is bounded below and locally Lipschitz on X. Then from the 
Ekeland Variational Principle we have that  there exists x* such that  

L(x*)  _< L ( x )  + c, Vx ~ x (3.1) 

and 

f~(x*) <_ fi.(x) + ~ l l x  - x*ll, 

It is clear from (3.1)that 

w ~ x .  (3.2) 

f (x*)  <_ f~(x*) <_ f~(x) + c, Vx E X .  

Thus fbr all x E S we have 

f (x*) ~ f ( x ) + c .  (3.3) 

Fur ther  observe that  infxcx f ( x )  < f(x*) .  Now f~(z*) < inf~cs f ( x )  + c. 
This shows us that  

1 [hi(x,)] 2 < a + e, ±[max{0,g~(x*)}] 2 + ~ ~ - 
i 1 pi j 1 

(3.4) 

where 0 < (~ infxcs f ( x )  - infxcx f (x ) .  Let us consider ro(c) ko(c) 
C 2 

Hence tbr any real positive number rp < ro(c) and kp < ko(c), it (~ + c)" 
is clear from (3.4) that  gi(x*) < c fbr all i 1 , . . . ,  m and - c  <_ hi(x*) < c 
fbr all j 1 , . . . ,  r. This shows that  x* E S~. This along with (3.3) shows 
that  x* is an almost-c-minimum of (MP). Now using (3.2), Proposition 7.8 
in Mordukhovich and Shao (1996), Lemma 2.2 and Lemma 2.3 we have 

OeOLf(x*)+~OL 2gt(X*)gi (x*)+~oL(2h~(~*) 
i 1 )% j 1 ~k ~JJ h j  (X*) + ~/~B*, 

where + * gi ( x )  max{0, gi(x*)} , fbr all i. 
+ * 

,h(c) 2g i ( x )  > 0 and py(C) 2hy(x*) 
r i  - -  k j  

Hence the result holds with 

[] 

R e m a r k  3.2. It is interesting to note that  Mordukhovich and Wang (2002) 
have characterized an Asplund space in terms of a subdifferential variational 
principle and used it to develop necessary conditions for the existence of 



Approximate Optimization in Banach Spaces 139 

c-minimum of a locally Lipschitz program in an Asplund Space. However 
in this article we use the Ekeland Variational Principle and characterize an 
almost c-minimum for a locally Lipschitz program in an Asplund space as 
is evident from the above theorem. It is further interesting to note that  the 
above theorem provides a much sharper necessary optimality condition in 
the setting of an Asplund space than that  given in Loridan (1982) (Theorem 
5.1) in terms of the Clarke subdifferential. 

4 Approximate Saddle Points 

In this section we shall s tudy the approximate optimality conditions in 
terms of the well known Lagrangian function. We shall present some saddle 
point results related to c-minimization of a convex program. 

Let us consider the program (Mr )  where f : X --+ R and the set 
S is described by inequality constraints and is given as S {x E X : 
gi(x) _< 0, i 1 , . . . ,  m}. The Lagrangian function associated with such 
a program (Mr )  is defined as a function L : X × R~ ~ --+ R given as 

L(x,  A) f ( x )  + (A, g(x)}, 

where g(x) (g l (x ) , . . . , g ,~ (x ) ) .  a point (x0, £0) E X × R~ ~ is said to be 
an c-saddle point if 

L(xo, ~) - c <_ L(xo, ~o) <_ L(x,  ~o) + < 

for any x E X and ~ E R~ ~. 

Loridan (1982) also introduced the notion of an c-quasisaddle point as 
follows. A point (x0, k0) E X × R~ ~ is said to be an c-quasisaddle point if 

L ( . o ,  - -  ,oll _< L ( * o ,  _< L ( . ,  +  11" - *o11, 

We now present the following result. 

T h e o r e m  4.1. Consider the program (Mr )  given as 

m i n f ( x )  subject to gi(x) < 0, i 1 , . . . , m .  

Let f and each gi , i 1, 2 , . . .  , m  be convex functions and let c > 0 be 
given. Assume that the Slater Constraint Qualification holds, i.e. therv 
exist x* E X such that gi(x*) < 0 for all i 1, . . . ,  m. Then we have the 
following, 
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i) Let Xo E S be an c -min imum of (MP). Then there exists to E R~ ~ such 
that (Xo, to) is an c-saddle point of L(x ,  I)  and c + (to, g(xo)) _> O. 

ii) Let Xo E S be an c-quasiminirnum of (MP). Then there exists ho E R~ ~ 
such that (xo, Ao) is an c-quasisaddlc point of L(x ,  A). 

Proof. Since Xo is an c-minimum of (MP) the fbllowing system 

( f (x )  - f (xo)  + c,g(x))  E - i n t  (R+ × R'+*), x E X .  

has no solution. Thus by s tandard separation argument  we have that  there 
exists (0, 0) /~ (to, Io) E (R+ × R~ *) such that  

t o ( / ( x )  - f (xo))  + 7oc + (Ao,g(x)} > O, (4.1) 

for all x E X. Assume now that  ro 0. Since there exists x* E S such 
that  gi(x*) < 0. This shows that  we have ( lo,g(x*))  < 0. This contradicts 
(4.1). Thus ro ~ 0 and we may without loss of generality consider that  
TO 1. Thus we have 

f ( x )  - f (xo)  + c + (Ao, g(x)) > O. (4.2) 

If we now put x Xo then we have from (4.2), c + (Ao, g(xo)) > 0. 
From (4.2) we can see that  

f ( x )  + (Ao, g(x)} + c > f(xo).  (4.3) 

Since ( lo,g(xo))  _< O, (4.3) reduces to 

f ( x )  + (Ao,g(x)} ÷ c  _> f(xo) ÷ (Ao,g(xo)}. 

Thus we have 
L(xo, ~o) <_ L(x,  ~o) + e, Vx E X.  

For any t E R~ ~ we clearly have that  ( t ,  g(xo)} < 0. Thus we have 

f (xo)  + (I, g(Xo)) <_ f (xo) .  

Since c > 0 we have that  

f (xo)  ÷ (A,g(Xo)} - c  < f (xo)  - c .  

Since we have c + (lo,9(Xo)} > 0 we conclude that  

L(xo, l )  - c <_ L(xo, lo), V I E R ~  ~. 

The part  (ii) can also be proved in a similar fashion and hence we omit 
it. [] 
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P r o p o s i t i o n  4.1. Let us consider the convex progrum (MP) with S as 

described in the previous theorem. Let c >_ 0 be given and Xo E S be 

an c - m i n i m u m  of (MP). Then there exists scalars Co > 0 and ci > 0 , 
ft~ i 1, . . . ,  m such that Co + ~-~,~ 1 £ i  = £ and scalars A~ > 0 , i 1, . . . ,  m 

such that 

i) 0 E O~of(Xo ) + Eirn 1 [)ei(/\igi)(Xo) 

ii) c + Eirr~l ,\igi(xo) 2 0 .  

Pry@ It follows from Theorem 3.1 and the sum rule tor c-subditt~rentials 
(see for example Hiriar t-Urruty (1982)). [] 

R e m a r k  4.1. Let us observe that  the necessary conditions stated above 
need not be sufficient. This fact will be made clear by the next theorem. 
However if }-~i" 1 )~igi(xo) 0 and x0 E S, then the above condition is also 
sufficient. 

The converse of Theorem 4.1 may not always hold but we have the 
fbllowing for part  i) of Theorem 4.1 and for a somewhat converse of part  
ii) of Theorem 4.1 see Theorem 6.2 in Loridan (1982). 

T h e o r e m  4.2. Let us consider (xo, ~o) C X x R~  ~ such that Xo is an Ca- 

m i n i m u m  of L(.,)~o) , )~o E R ~  ~ and Ao is an c2 -max imum of L(xo,  .) , 
x E X .  Then Xo is an almost-(cl + c~) -min imum of (MP). 

Proof. Since Ao E R~ ~ is an c2-maxirnum of L(xo, ~) we have that  for any 

L(Xo, ~k) - c2 _< L(Xo, ~o). 

This reduces to 
((~ - ~o),g(xo)) < c2, V.,k E R ? .  (4.4) 

W e c l a i m t h a t x o E S ~ 2 ,  w h e r e S ~ 2 = { x c X : g , ~ ( x )  S c 2  , Vi 1 , . . . , m } .  
On the contrary let us assume that  Xo ¢ S~2. Thus we have c2e - g(xo) f~ 
R~ ~, where e ( 1 , . . . ,  1) E R~). Thus by standard separation argument  we 
can deduce tha t  there exists 0 ~ p E R~  such that  

(p, f 2 e  } l (p ,g (Xo) )  ( 0" 
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Since p /~  0 we can consider without  loss of generality that  (p, e} 1. Thus 
we have that  

~ - (v ,g (*0 ) )  < 0. 

Hence we have that  

( v , g ( * o ) )  > ~ (4.5) 

Now as I0 E R ~  and p E R~ ~ it is clear that  I0 + P  E R~ ~. Thus from we 
(4.4) we have that  

(v ,g (*o ) )  _< ~ 

This is clearly a contradiction to (4.5). Hence Xo E S~ 2 and thus Xo E 

Sos+e2, where 

~1q-~2 • {X E X : gi(x) <_ £1 + £ 2 ,  Vi : 1 , . . . , ?7t} .  

Now as x0 is an c l -minimum of L(x, k0) we have for all x E X,  

f(x) - f(xo) + (Ao,g(x) -g(xo)} +£i ~ O. 

For any x E S, where S is the feasible set of (MP),  we have (A0,g(x)} _< 0 
and thus the above expression reduces to 

f(x) -/(xo) - (Ao,g(xo)) +c, _> o. 

Again from (4.4), setting k 0 we have that  ( t0,g(x0))  > -e2 .  This 
clearly shows that  

f ( x )  - f ( x o )  k --(£1 + £2), VX C S. 

This proves the result. [] 
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