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A b s t r a c t  

In this paper an extension of the (rlXp)-medianoid on networks introduced by 
Hakimi (1983) is studied. In this extension the customer considers not only the 
distance but some characteristics of the facilities such as store size, quality of ser- 
vice and parking space. A new firm wants to establish r new facilities which have 
to compete with the p facilities that already exist in the market. The entry firm 
wants to find their locations and characteristics to maximize profits. Three differ- 
ent customer choice rules (binary, partially binary and proportional preferences) 
are considered. Some discretization results are obtained and a resolution procedure 
is proposed. The problem is solved combining a global search algorithm based on 
a branch and bound procedure with some combinatorial heuristics (greedy, inter- 
change, and tabu search). Some computational experiences are presented. 

K e y  W o r d s :  Competitive location, medianoid, attractiveness. 

A M S  s u b j e c t  c lass i f icat ion:  90B85. 

1 I n t r o d u c t i o n  

The  compet i t ive  locat ion analysis  was initialized by Hotel l ing in his work 

"S tab i l i ty  in Compe t i t i on"  (1929). La te r  m a n y  papers  in this field have 

appea red  where different compet i t ive  locat ion models  have been s tudied 

(Achabal ,  Gorr  and M a h a j a n  (1982), Drezner  (1994a, 1994b), Drezner  

and Drezner  (1996), Eiselt and L a p o r t e  (1989b), Friesz, Miller and To- 

bin (1988), Goodchi ld  (1984), Hakimi  (1983, 1990), Huff  (1964), Peeters  

and P las t r i a  (1998), ReVelle (1986)) and m a n y  reviews can be fbund in 

Partially supported by Ministerio de Ciencia y Tecnologfa (Spain) and FEDER, grant 
BFM2002-04525-C02-01. 

Manuscript received: November 2002. Final version accepted: November 2003. 



112 R. Sudrez-Vega~ D.R. Santos-Per~iate and P. Dorta-Gonzdlez 

the literature (Craig, Ghosh and McLafferty (1984), Eiselt and Laporte 
(1989a), Eiselt, Laporte and Thisse (1993), Plastria (2001), Serra and ReV- 
elle (1995)). 

Many competitive location models assume that  customers choose the 
facilities taking the distance as the unique criterion. Nevertheless, this 
assumption makes sense only if differences between facilities do not exist or 
transport  is difficult. Usually customers consider the distance and certain 
attributes of the facilities such as size, quality of products and services, 
parking space, etc. In this case the amount of demand in a zone which 
is captured by a facility depends on the attraction that  the facility exerts 
towards the customer at that  zone. This attraction can be fbrmulated 
as a function with two components, the first component depends on the 
distance between facilities and demand points and the second depends on 
its attributes. 

In the model proposed by Huff (1964), the attraction felt by a customer 
at zone i towards a facility j at x j  is directly proportional to the size of the 
facility and inversely proportional to a power of the distance between zone 
i and x j,  that  is 

(1.1) 
a i j -  d~ 

where aj is the attractiveness or quality (size) of the facility j and /3 is a 
parameter which represents the effect of travel distance (or travel time), 
d,ij, on the behaviour of consumers and must be estimated empirically. 

Models which use the previous attraction function can be found in 
Drezner (1994b), Eiselt and Laporte (1988a, 1988b, 1989b), Eiselt, Laporte 
and Pederzoli (1989), and Plastria (1997). 

A more general formulation of the attraction function is given by 

aj 

- f 

where f is a non-decreasing function. This attraction function was used 
by Peeters and Plastria (1998) in the analysis of the Huff and Pareto-Huff 
models on networks, fbr which they proved some discretization results. 

Nakanishi and Cooper (1974) introduced the Multiplicative Competitive 
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Interaction (MCI) model defining tim attra.ction function 

8 

(1.2) 
:=: ']~ i j  k ' 

£ = 1  

where xij~: is the ]gth attribute describing a facility j by customers at i, and 
/3~: is the weight of the k th attribute, t~nction (1.1) is a particular case of 
(1.2) when facility size and distance are the only attributes utilized. They 
estimated the parameters/3k by means of the ordinary least square method 
on the log-transfbrmed centered form of the equation. This multiplica- 
tive function has been employed by multiple authors, including Achabal, 
Corr and Mahajan (1982), Ghosh and McLafferty (1982) and Chosh and 
Craig (1983). Colom6 (2002) applied this methodology to solve a location- 
attractiveness problem in the supermarket sector. She estimated the su- 
permarket key attributes through a factor analysis applied to the survey 
database and used the factors found in this analysis as variables to specify 
the MCI model. 

Drezner (1994a) utilized an additive utility function of which the general 
expression is 

s 

k = : l  

where s attributes xk, k 1 ,2 , . . . ,  s are considered, each with an associated 
weight [3a:. In this problem, customers patronize the fa.cility with the highest 
utility (binary model) and the best location is found using the break-even 
distance concept. At this distance the utilities of the existing and new 
facilities are equal. In Drezner and Drezner (1996), a linear utility function 
is used to define a stochastic location model where the utility function is 
assumed to be normally distributed. 

Finally, some location models (Hodgson (1981)) incorporate an expo- 
nential attraction function given by 

aij ........ a~g -fldij , 

where aj represents the quality (usually the facility size) of the facility and 
dij is the distance or travel time between demand point i and facility j .  The 
parameters ~ and/3 are determined empirically. Comparing this with Huff's 
model, here the exponential fornmlation accelerates the distance decay. 
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Most of papers cited previously only deal with either the location prob- 
lem or the attractiveness problem. To the authors'  knowledge the prob- 
lem where both location and attractiveness are decision variables has only 
been analysed on the plane (i.e. Plastria (1997), and Plastria and Carri- 
zosa (2003)) and in the discrete problem (i.e. Achabal, Gorr and Mahajan 
(1982) or Eiselt and Laporte (1989b)), but not on networks. In this paper, 
the ( r lXp) -med iano id  problem on networks is studied. The attractiveness 
of the facilities is incorporated into the model by using the attraction func- 

aj  
tion aij -- k(d~5) where fi is a positive, concave and non-decreasing function 

of distance. Three different customer choice rules (binary, partially binary 
and proportional prefbrences) are analysed. The entry firm wants to find 
the locations and the attractiveness of the new facilities in order to maxi- 
mize its profts.  For each customer choice rule, if the attractiveness of each 
new facility is given and its value is equal to 1, then the model studied by 
Hakimi (1990) is obtained. 

The rest of the paper is organized as follows. In section 2 the model and 
the different scenarios are defined. In sections 3, 4, and 5 some discretiza- 
tion results are proved. In section 6 the branch and bound based heuristic 
algorithm used in obtaining an g-optimal solution to the problem of finding 
the attractiveness levels given the location is analysed. The computational 
results for the resolution of the ditti~rent problems are presented in section 
7. Finally, section 8 includes some remarks and possible extensions. 

2 T h e  m o d e l  

Let N(f< E) be a weighted network with node set, V Q ,-t;'~ and edge set [ ' z J i  1 

E,  where each node v has associated a weight w ( v )  (> 0), and each edge 
e E E has associated a length l(e) (> 0). The network N(f~ E) represents 
a market where the demand (or buying power) at node v is w ( v ) ,  and l(e) 
is the unitary transportat ion cost along the edge e. A segment [Xl,X~] 
of the edge [vi, vj] is the subset of points of [vi, vj] between xl  and xe 
including xl and xe. The open segment ]xl, x2[ is [Xl, x2] - { x l , x 2 } ,  and 
]xl,x2] - [Xl,X2] - {Xl} and [Xl,X2[=: [xl,x2] - {x2}. Each facility j is 
characterized by its location x j  and its attractiveness aj, and the attraction 
fblt by customers at node v towards facility j at x j  is given by 

aj 

fv(d(v, xj)) 
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where ]~ is a non-decreasing and positive function, d(v, xj) is the distance 
between node v and point Xy, and ay E A c_ ~+,  with A being an interval. 

In the rest of the paper, the following conditions are assumed. 

A s s u m p t i o n  2.1. Functions ]~ : ~0 + --+ ~+ are concave and non-decreasing, 
Vv E V .  

A s s u m p t i o n  2 .2 .  For each facility (new or existing) its attractiveness is 
on [I,S], where 0 < I < S. 

A s s u m p t i o n  2.3. There exists a cost function of the attractiveness, F, 
which is a positive, continuous and non-decreasing function of a non-negative 
real variable. 

Given E, (Yl, Y2,. . . ,  Yr) and Xp (Xl, x 2 , . . . ,  xp), the locations of 
the facilities belonging to the entry firm, Fy, and the existing one, Fx, 
respectively, with attractiveness levels Ar (al,a2,...,ar) and Ap 
(bl, b2 , . . . ,  bp), where ai is the attractiveness of the facility at Yi and by 
is the attractiveness of the facility at Xy, the profit function for the entry 
firm is fbrmulated as 

r 

W(~,,ArIX>Ap) ~ wy(v) - ~ F(aj), 
vcV j 1 

with wy(v)  the demand at node v which is captured by Fly. 

The pair (Y~*, A*) ¢ N r x [I, S] r is an (rlXp, Ap)-medianoid if it verifies 
that  

W(Y/. , n*lx >np) max W(Y,., nrlx> np). 
Y,.EN", A,.E[I,S]" 

In this paper, essential demand and three different customer choice 
rules are considered, binary, partially binary, and proportional preferences. 
Binary preferences are assumed when each consumer selects the most at- 
tractive facility with respect to their own individual preferences. In par- 
tially binary preferences, customers'  demand is distributed among the most 
at tractive facilities of each competing firm. Finally, in proportional prefer- 
ences, customers'  demand is shared among all the facilities in the market.  
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3 Binary preferences 

For each X (Xl ,  . . . ,  xk) E N k with attractiveness levels Ax  ( a l , . . . ,  ak) E 
[I,S] k, let G(v,X, Ax)  1T~ax{ f,v(d~iv,xi)), i 1 , 2 , . . . , k } ,  and let G~ 
G(v, Xp, Ap). In binary preferences, the demand of a node v is captured 
by the most attractive facility. Then, given Xp and ALp, the set of nodes 
captured by Fly when its new facilities are located at E, with attractiveness 
levels At, is 

v(Y,,, ArlXp, Ap) {v E V : G(v, Y,,, At) > G~}. 

Therefbre, the profit function fbr Fy is 

W(Y~,,ArIX>Ap) 
veV(V,-,A,-IXp,Ap) j 1 

For simplicity, the following notation is used: 

V(Y,,, At) V(Y,,, Ar IXp, Ap) and W(Y,,, At) W(Y,,, Ar IXp, Ap). 

The binary model has been defined in such a way that  if attraction 
perceived from firm Fx and firm Fy  are equal, demand at v is captured by 
an existing facility, which means that  firm Fx has the advantage in case of 
equal attraction. 

The revenue function is a discontinuous piecewise linear function with 
respect to the attractiveness level. This condition can be used to prove the 
existence of an g-optimal solution to the problem of obtaining the attrac- 
tiveness levels given Y~,. 

P r o p o s i t i o n  3.1. Given Xp, Ap, and Y,,, there exists art e-optimal solution 
to the problem of obtaining the optimal attractiveness levels of ~, for the 
binary (rlXp, Ap)-medianoid problem. 

Proof. For each location yj, j 1, 2 , . . . ,  r, let Pj {a{ G~f~(d(v, yj)) : 
I _< a{ < S, v E V}, and reindex the points in Pj by increasing values, I _< 

• _ " _ _ " [a j a j a~s < a~2 < "'" < a~ < S. The set of nodes captured by E, on ~ ~,~, ~,~+sJ 
is constant, and the cost function F is non-decreasing. Therefbre, the 
profits are higher for values closer to a{~. Something similar happens on 
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(I,a{s) and (a{,, S). Note tha t  if I < a{l , the max imum on [I, a{1 ) occurs  
at I. Consequently, an e-optimal at tractiveness levels a~ can be obtained 
investigating the sets {I} U {a 5 : a E Pj}, j = 1 ,2 , . . , r ,  with 5 > 0 
sufficiently smM1. [] 

From proposi t ion 3.1 it follows tha t  an e-optimal solution A~* given Y~., 
can be obtained evaluating at most  I1~ 1(1 + IPjl) ~ ( ] -k  IVI) r' r-tuples.  
Henceforth a binary (rlX > Ap)-medianoid will be unders tood  in terms of 
an g-optimal solution for the at tract iveness levels. 

Now consider the problem of determining the locations for the new 
facilities, given their  at tract iveness levels. In this case, f r m  F y  captures  
the  demand  of v if a facility at yj with at tract iveness aj exists, such tha t  

aj (d(v, vj))< GT 

If f~ is increasing, the previous inequality can be expressed as 

f~ d('u, yj) < fc7 -1 ~ . 

If a new t~cility with at tract iveness aj exists within a distance 'r~ from v, 
then  firm t ~  captures  the demand  of v. 

D e f i n i t i o n  3.1. Given X> dp, and a E [I, S], a point  x E N(V, t77) is a 
(v, a)-isoattractive point if 

a 

Gv" 

Let the following sets, 

ISOA(v,  a) {x E N(V, 15) : x is a (v, a)-isoattractive point}, 
IS'OA(a) U~ev ISOA(v,  a), 
ISOAij(a) ISOA(a)N]v,i, vj[, with [vi, vj] E E, 

r 

ISOA(A,.) U ISOA (a j ) ,  where Ar ( a l , . . . ,  a~). 
j 1 

Each element in ISOA(A,,,) is called an isoattractive point. The  concept  
of isoattractive point  in the  location-at tract iveness problem has a sense 
similar to the notion of isodistant  point  de fned  by Peeters and Plastr ia  
(1998). 
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P r o p o s i t i o n  3.2. Given Xp,  Ap, and A t ,  the set V ( ( y l ,  . . . , yj,  . . . , Yr) , At) 
is constant when yj varies on the open segment ]s, t[, with 

]s, t [ N I S O A ( a j )  0 and {s, t} C V U I S O A ( a j ) .  

Pro@ Let Y~. = (Yl, y 2 , . . . ,  Yr). Suppose, wi thout  loss of generality, tha t  
Yl is the location tha t  varies on ]s, t[. If V(Y~., A~) is not constant  when 
Yl E]s, t[, then there exist y~, y~ E]s, t[, such tha t  V((y~,  Y 2 , . . . ,  Y~.), A~.) # 
V ( ( y ~ , y 2 , . . . , y ~ ) ,  At ) .  Therefore, there exists v0 E V such tha t  v0 E 

/ /f V((Yl,  Y2, - - - ,  Yr), A,.) and v0 ~ . . .  V( (Y l ,  Y2, , y~), A~.) (or vice versa). 
Then  

G(v0, (Yl ,Y~ , . . . ,Yr ) ,A t )  > G~ 0 _> G(v0, (YI ' ,Y~, . . . ,Yr) ,At) ,  

from which it follows tha t  G~ o > G(Vo, (Y2 , . . . ,  Yr) , (a~ , . . .  , at)) and there- 
fore, as yl ~ [ S O A ( a l ) ,  

al al 
f~o(d(vo,Y~l)) > G~, o > f,o(d(vo,Y~l,))" 

As the function fvo(d(vo, y)) is continuous when y E]s,t[, it follows tha t  
there exists z E (Yl, Y~') such that 

But this is not possible because isoattractive points do not exist on ]s, t[. 
Therefore, V (Y~, A~.) is constant  on ]s, t[. [] 

For each ak ~ Ar and each edge [vi, vj], let I S O A i j ( a k )  x I x 2 { i jk '  i j k ' ' ' ' '  
xqijk ijk } where the points are ordered by increasing value of the distance to vi. 

Let the segments ]vi, 1 l l+1 1 qijtc vj[, Xijk[,]Xijk, Xij k [, 1 1, 2 , . . . ,  qijk - 1, and ~xij k , 
fyl -[qijk l 1 ~ l + l  0 and the set Ciy(ak) t ijkJl o with Yijk E]Xijk, ~ijk [, where vi Xiy k 

xqijk+ 1 and vj ~jk • If v~ is not an isoattractive point then set YijkO Vi. 
y qij~ Analogously, if vj is not an isoa.ttractive point then  set ij~ vj. If 

isoattraetive points do not exist on [vi, vj] then  Cij(ak) {re, vj}. Clearly, 
the set C,,j is not necessarily unique. Let C(a~) = [,Ji,j C,ij(ak). 

P r o p o s i t i o n  3.3. Given Xp,  Ap, and Ar,  then there exists Y~. (Yl, Y2, . . . , 
Yr) with yj E C(aj ) ,  j 1, 2 , . . .  r, such that Y~ is an r-tuple of  optimal 
locations for  the binary (rlXp, Ap)-medianoid problem. 
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Proof. Let Y~* (y{, y ~ , . . . , y * )  be an r-tuple of optimal locations such 
that  y~ ~ C(ak). Suppose, without loss of generality, that  y{ ~ C(a l )  and 
that  y{ • [s,t], with [s,t] C [vi, vj], such that  s,t  • V tO ISOdi j (a l )  and 
]s, t[KIISOAij(al) O. 

If y~ ~ ISOAij(al) ,  applying proposition 3.2, y~ can move to a point 
belonging to C(a l )  on Is, t[ without varying V(Y~*, At), that  is, y~ can be 
replaced by z ((Yijl ,Y2, ' ' ' ,Yr),  r) V(Y~*,Ar). Yijl • C(al )  C/ [8, t] and V z • * A 

If y{ • ISOAij(al) ,  then y{ s or y{ t. Furthermore, there exists 
Vo • V such that  

a l  Coo 

that  is, y{ is a (Vo, al)-isoattractive point. Suppose that  y{ s (the case 
• {v0 ,v0 , . . . ,v0  H} be the set of nodes such that  Yl t is similar) and let 1 2 

y~ is (v, al)-isoattractive. As ]s,t[Ndij(al) 0, fbr each node vt0 ~, h 
1, 2 , . . . ,  H, only two situations can ocurr: 

861 
1. £,o~(a(~4~y)) < C4~, Vy •]s,t[. 

861 2. 5~(d(~4~ y)) > C4~, Vy •]s,t[. 

Then only the fbllowing two cases can occur: 

(i) 

(ii) 

861 < C4~, Vy c]s, t[, Vh. 
Zvto~ ( d(~4~,y) ) 
In this case, no points on [s, t] capture vt0 ~, therefbre, y~ can be replaced 
by Y{j1 • C(al)N [s,t] and V({Y{jI,Y~,...  ,y~},dr) V(Yr*,dr). 

861 
3 h s u c h  t h a t  fvh(d(vhy)) > Gv~ , Vy •]8, t[. 

In this case, the node vt0 ~ is captured by every point on Is, t[. Therefbre, 
a movement from s to t implies the capture of vt0 ~ without the loss of 
any nodes already captured. Therefbre, choosing Y{jl • C(al) N [s, t], 

l * * it holds that  V(Y~*, At) C V({Yijl, Y2, . . . ,  Yr}, At), which means that  
Y~* is not a set of optimal locations. 

[] 
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On each edge [vi, vj] at most  two isoattractive points fbr each node exist 
and thus ICij(ak)l <_ 2 + IVI and IC(ak)l <_ IVI(1 + IEI). Therefbre, given 
At, opt imal  locations, y~, k 1, 2 , . . . ,  r, can be found in the set of r- tuples 
{(Yl,Y2,. . . ,Yr) : Yk E C(ak)} which has, at most,  IVr'(1 + IEI) r points. 

4 Partially binary preferences 

For partially binary preferences the demand  of a node v is shared between 
the most  at t ract ive facilities of F x  and Fy ,  and the amount  captured  by 
each firm is directly proport ional  to G~ and G(v, Y~., At), respectively. Then  

w(v)G(v, Y~,, At) _ ~ F(aj). 
W(Y,,, ArlXv, Av) ~oev~ G(v, Y,,, At) + G~o j 1 

P r o p o s i t i o n  4.1. Under assumption 2.1, the prvfit function for the par- 
tially binary- essential (rlXp, Ap)-medianoid, W(Y,,, A,,IXp, Ap), where Y,, 
( y l , . . . ,  yi, . . . , yr), is convex with respect to yi, when yi varies along an edge 
of the network and At, Xp, and Ap are fixed. 

Proof. The profit function is 

w(v)G(v, At) 

vcV 

- 

j 1 

Suppose, wi thout  loss of generality, tha t  the location which varies is Yl. 
Then,  the function W can be expressed as 

W(V)I~v(Yl) 
~V(yl) ~ /~Tv(Yl) + Gv 

vcV 

G~ ) - F, 
-- F ~ w(v) 1 -- /~Tv(Yl) + Gv 

vcV 

r 
where F ~ F(aj), and K~o(yl) max{ ~s * * f v(d(~<us)), G~}, with G~ 

j 1 
ITIaX{ aj fv(d(v,yj)) : J 2, 3 , . . .  r}. 

Suppose tha t  Yl is on edge [s, t] and its location is given by the variable 
z which represents the distance between the facility and the node s. The  
distance between any node v E V and the location Yl is a concave function 
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of z denoted by (~(z). Therefore it follows that  L((~.(z)) is concave and 
thus ~c~ is also a concave f'urlction of z. Then, 

f,,, (a,,(~)) kG~ 

Gv Gv 
C~, ....... rain{ ,. G~ ' ~: + G,, } 

K,,(y:) + Gv Gv + " f~(6~(~)) 

G~ is concave. Therefore, 1 /c~(m)+c:,o is a convex function on [s,t], Vv E V, 

and it follows that  ~(Yl) is convex on [s, t]. [] 

P r o p o s i t i o n  4.2. Under assumptions 2.I to 2.3, there exists (¼., At), with 
¼. E V r, which is a partially binary (r[X> Ap)-medianoid on N(V, E). 

Pro@ From proposition 4.1, since the profit function is convex when a 
location varies on an edge and the rest of locations and all the attractiveness 
levels are fixed, any non-node location of the solution can be moved to one of 
the nodes of the edge where it, is located without  decreasing the profits. [] 

The following results will be taken into account in the algorithm used 
to find the optimal attractiveness levels. 

D e f i n i t i o n  4.1. The function f " C C Rr > R is non-decreasing if 

a (a l ,  as , . . . ,  a,~), b = (b:, b2,. . . ,  br) E C, with ae <_ be ~ f(a) <_ f(b), 

and it is increasing if 

a ( a l , a 2 , . . . , a n ) , b  = (bl ,b2, . . . ,br . )  E C, 

with ae <_ be, a /k b ~ f(a) < f(b). 

P r o p o s i t i o n  4.3. Under assumptions 2.1 and 2.2, given the locations E., 
the revenue function in the partially binary (rIXp, Ap)-medianoid prvblem 
is non-decreasing on [I, S] ~ and quasiconcave with respect to each attr'ac- 
tiveness component ai. 

Proof. Given the locations, the revenue function is 

REV(A~.) = R E V ( a t ,  a 2 , . . . ,  a~) = ~ wy(v) 
v E V  
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where wv(v)  = h,,(G(v, Y~., At)) ,  with hv(x) *~(~')~ x+c,~," The  function 
G(v, Yr., At) is non-decreasing on [I, S] r and hv is increasing for x > 0, 
therefore wy is non-decreasing on [I, S] r and, consequently, R E V ( A r )  is 
non-decreasing. 

Suppose, wi thout  loss of generality, tha t  ai al  varies on [I, S] and 
the rest of the at tractiveness levels are fixed. Then  G(al)  ......... G(v, Y~., At)  

, a j  
ITIaX{ fv(d(v,yl))'al G ; }  where G~o = inaX{fv(d~7~,yj) ) , j 2, . . . ,  r}, and 

w(v)G(a l )  { w(v)G; 

al dfv (d(v,yl))Cv 

i f  a:~ < . f,v(d(v,yl)) -- Gv 

i f  < * fv(d(v,yl)) > Gv" 

The demand  Wy(V) is a continuous function of al,  it is constant  if ~s f,v(d(v,yl)) 
< G*, and increasing and concave if ~s , _ f,v(d(~<yl) ) > G~. Therefore wv(v)  is 
a quasiconcave and non-decreasing function of al.  Therefore the revenue 
function R E V ( A r )  is non-decreasing on [I, S] r and quasiconcave with re- 
spect to a~, i - 1, 2 , . . . ,  r. 

[] 

5 Proportional preferences 

For proport ional  preferences the demand  of a node is shared among all the 
facilities operat ing in the market  and the amount  of demand  captured  by 
each of them is directly proport ional  to the a t t rac t ion felt; by the demand  
node towards the facility. Let X,.+p = (Xl,X2,. . . ,x~. ,x~.~l,  . . . , xr+p)  be 
the r locations of Fv,  ~ -- (X l ,X2 , . . .  ,x,~), and the p locations of Fx ,  
X ;  - (xr .+l , . . - ,  x~.+;). Let Ar+p ...... (al, a2 , . . . ,  a~., a~.+l,. . . ,  at+p) be the  
at tractiveness levels associated to Y~. (A~), and Xp (Ap). Let );(d(v, xj)) 

~J and let wj(v) be the part  of the demand  of v captured  f , j  and avj : -  fvj' 
by the facility located at x j, Vv E V, j - 1 , . . . ,  r + p. Then  

avj 
r+p 

ark 
k 1 

Vv E V, j 1 , . . . , r  q p. 

Proposition 5.1. Let N(V,  E) be a network and assume that p + r < IVI. 
Then, under assumptions 2.1 to 2.3, there exists (¼.,A~), with ¼. E V*', 
which is a proportional (r[Xp, Ap)-medianoid on N(V,  E). 
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Proof. It is an extension to multiple facilities of the node optimali ty result 
given by Peeters and Plastr ia (1998). [] 

Proposition 5.2. Under assumptions 2.1 and 2.2, given the locations E., 
the revenue function in the proportional (rlXp, Ap)-medianoid problem is 
increasing and strictly concave on [I, ,ST ~. 

Proof. Given E., the revenue function is REV(A,.)  ~ u e v  REV~(Ar) 
where 

r a j  
E j : I  

: : : : : : :  

~J +K,~ REV~(A~) w ( v ) - ~ _  1 .f~J 

with K.~ V'r+P a5 A_,j r+l f ' ,3" 

The function REVv can be expressed as REV~ F~ o g~, where 

aj 7 x 
= a n d  ,) = + K j  

j=l 

Since g~ is linear and increasing, and £',, is increasing and strictly concave 
for x > 0, it follows that  REVv(Ar) is increasing and strictly concave. 
Therefore REV(A~,) ~ v e v  REIJ~(Ar) is strictly concave. [] 

6 Resolut ion of the  attractiveness problem 

Depending on the properties of the attractiveness cost function, the prob- 
lem of obtaining the optimal attractiveness levels when the new facilities 
locations are given can be mult iextmmal.  To solve this problem a branch 
and bound based algorithm is proposed. 

Let the general non-linear program 

max f ( x )  
s.t. x ff D c 3~ ~" 

such tha t  an optimal solution exists. The branch and bound method con- 
sists of generating a partit ion of D to determine the subset where the op- 
timal solution is. Although this algorithm can converge to the optimal so- 
lution, for computat ional  efficiency, an c-optimal solution, with prescribed 
c > 0, is accepted. 
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The branch and bound algorithm applied in this paper is an adaptation 
of the one proposed by Horst and Tuy (1993). 

B r a n c h  and B o u n d  

S tep  0: 

Let Do D, k 0. Obtain Po {Di : i E Io} a partition of Do. 

For each Di E Po calculate the vertex set of Di, V(Di), and the bounds 

(i) fl(Di, xi) max f(vi) (lower bound of sup f in Di reached at 
vieV(Di) 

node xi). 

(ii) ~ (Di) (upper bound of" f in Di). 

Set the "overall" bounds 

C~o max{c~ (Di) :Di  E Po} and 

/3o max{fl(Di, xi) :Di  E Po} reached at x0. 

If ~*o-flo 0 (_< c) stop. The (c-)optimal solution is x0. Otherwise, go 
C~o 

to step 1. 

Step  1: 

(i) Delete from Pk all subsets satisfying ~ (Di) < ilk, Di E Pk. 

(ii) Bet k k + 1 and select Dk E Pk-1. 

Obtain P£, a partition of Dk, and update the list of subsets changing 
Dk by P£, set Pk P£ U (Pk-1 - -  Dk). 

(iii) Calculate the bounds for every subset D~ E P£ ((~' (D~), fl'(Di; xi) ) . '  
Let min{ ' (>k)}. 

(iv) Update the "overall" bounds 

c~/~ max{c~(Di) :D~: E P/~} and 

/3k max{fl(Di, xi) : Di E Pk} reached at xk. 

If ~*~-fl~ 0 (_< c), stop. The (c-)optimal solution is xk. Otherwise, 
c~ k 

go to step 1. 
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To adapt this algorithm to a particular problem it is necessary to decide 
three basic points: the choice of an appropriate partition, the calculation 
of the bounds, and the selection of the subset t.hat must be partitioned in 
each iteration. 

As in the attractiveness problem studied, the %asible set. is an r-rectangle, 
D [I, S] r, a partition of D into 2 'r r-rectangles has been chosen. These 
new subsets are obtained lay perpendicular hyperplanes to each facet pass- 
ing through their midpoints. This type of partition has been used by Has-  
tria (1992), and Hansen, Peeters and Thisse (1995, 1997), among others. 
Hence%rth, the notation D(x,  y) will be used to denote the r-rectangle de- 
termined by the vectors x (the lower left vertex) and y (the upper right 
vertex). 

Sometimes, a prefxed tolerance in size is taken as a stopping rule. 
In these eases, a determined approximation of the optimal values fbr the 
decision variables is sufficient so the minimum diameter (rod) parameter is 
defined to determine the smaller size of a set; which can be partitioned. This 
condition can be incorporated into step l ( i )  to delete all the sets D(x ,y ) ,  
wi thx ,  y e R r  such that  max{Ix~-y , t l : i  .......... ] , 2 . . . r }  < rod .  

Given the locations of the new facilities, for each customer choice rules 
analysed, the revenue function of the (rlX,r~ , A~)-medianoid is non-decreasing 
with respect to the attractiveness level. Taking into account assumption 
2.3, an upper bound of the profit ffmction in D(a, b) is 

a(D(a,  b)) .... tU~'V(b) - C(a), 

where REV( . )  and C(.) are the revenue and cost functions, respectively. To 
obtain tile lower bound, the higher objective value in V(D(a, b)) is selected. 

The choice of the set to partition in each it.eration is very important  in 
relation to the speed of the algorithm convergence. In this case, %llowing 
the rule employed by Plastria (1992), and Hansen, Peeters and Thisse (1995, 
1997), the most "promising" rectangle is partitioned. 

The convergence of the branch and bound algorithm proposed in this 
paper can be deduced from the results given by Horst and Tuy (1993). In 
the binary case, only an a-optimal solution is guaranteed. 
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7 Computational results 

In this section, some computational results are presented. First, in sec- 
tion 7.1, a branch and bound algorithm is used to solve the problem of 
obtaining the optimal attractiveness levels for the new facilities when their 
locations are given. In the binary case, this algorithm is compared to 
an enumerative algorithm based on proposition 3.1. In section 7.2, the 
location-attractivenes problem is treated combining the global search pro- 
cedure with three combinatorial heuristics. First a greedy algorithm (GR) 
(Kuehn and Hamburger (1963)) is employed. Then, taking the greedy solu- 
tion as the initial solution, an interchange algorithm (TB) (Teitz and Bart 
(1968)) and a tabu search algorithm (TS) (Glover (1993)) are applied. 

To compare the behavior of the heuristics, the problems were solved on 
13 different networks. These networks can be divided into two groups. The 
first group consisting of 10 randomly generated networks (5 containing 50 
nodes and 5 containing 75 nodes) and the second fbrmed by three networks 
already used in previous papers. 

The first group of networks was randomly generated in a square of 
500 x 500 units. The degree of the nodes varies between 3 and 8, and the 
distance is defined as the Euclidean norm between any pair of adjacent 
nodes. 

The second group of networks is fbrmed by specific cases: a 32 node net- 
work (Su~rez, Santos and Dorta (2001)), another of 55 nodes (Serra (1996)), 
and the last one made up of 79 nodes (Serra (1989)). These networks are 
inscribed in a square of 95 x 95, 60 x 60, and 7 x 7 units, respectively. 

In this analysis, the parameters r and p vary with r,p E {1, 2, 3}. Fur- 
thermore, three different demand distributions were used. In the first case, 
the demand is equal to 1 fbr all the nodes; in the second and third cases, 
the demand fbllows a unifbrm distribution with values between 9 and 10, 
and between 5 and 15, respectively. 

The computational experience was carried out using the concave cost 
function F(a)  a + 2~7. All the heuristics have been programmed in 
C + +  and executed on a computer working at 450 Mhz. 
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7.1 T h e  a t t r a c t i v e n e s s  p r o b l e m  

To obtain the attractiveness levels when the locations of the new facilities 
are given, a non-linear mult iextreme problem must be solved. To analyse 
the computat ional  times required for the branch and bound algorithm 102 
problems have been solved on a 50 node network where three competing 
facilities exist. The attractiveness level of the entry facilities can be chosen 
on [0.9, 9] while the attractiveness level for each existing facility is three. 
The problems were solved both for r ....... 2 and r = 3. The simulations were 
conducted varying the parameter  c (maximum percentage of error allowed) 
and taking values 0.0001(0.01%) and 0.001(0.1%). The maximum error for 
the attractiveness level (rnd) also varies between 0.0005 and 0.05. 

Times, in seconds, and iterations (number of partitions made) needed 
to solve these problems are presented in table 1. Note that  there exists a 
significant difference between times required by the proportional case and 
the other two models. To obtain the highest precision when r - 3, in the 
proportional case, 83.843 seconds am required. For the binary and partially 
binary times are 0.251 and 2.701 seconds, respectively. Times for r 2 are 
significantly lower, 4.403, 0.593, and 0.035 seconds in the most difficult 
case for the proportional, partially binary and binary cases, respectively. 
The computat ional  times show a high dependence on the number of new 
facilities while the influence on the number of nodes of the network is less 
significant. 

The problem of obtaining the optimal attractiveness levels in the binary 
case, when the locations of the new facilities are given, can also be solved 
using an enumerative algorithm based on proposition 3.1. To compare both 
the enumerative and the branch and bound algorithms, 102 problems were 
solved in five networks with a different number of nodes. The problems 
were solved taking c - rnd = 0.000001 fbr the branch and bound algorithm 
and 5 0.000001 for the enumerative approach. For problems with r 2, 
t imes are very low and no difference exists between the two algorithms. For 
r 3, the enumerative algorithm is competitive only when the number of 
nodes is small ( u p t o n  - 32). When n increases, the times required for this 
algorithm are much higher than the branch and bound procedure. This 
difference can be observed in table 2. 
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SECONDS 
( ITERATIONS)  md 0.0005 rod:=0.001 md 0.005 md=0.01 md 0.05 

II BINARY II 
0.035 0.035 0.026 0.026 0.023 r l 2 ,  a =0.0001 
(25) (25) (22) (20) (18) 

0.028 0.022 0.026 0.029 0.022 r--2, e =0.001 
(20) (20) (20) (20) (18) 

0.251 0.239 0.230 0.219 0.201 r--3, c =O.O001 
(29) (28) (25) (24) (21) 

0.219 0.222 0.221 0.214 0.203 r--3, c =0.001 
(24) (24) (24) (24) (21) 

II PARTIALLY BINARY II 
0.593 0.492 0.263 0.190 0.093 r--2, e =0.0001 
(435) (435) (246) (172) (79) 
O. 175 O. 166 O. 166 O. 163 0.088 r 2, a =0.001 
(126) (126) (126) (126) (75) 
2.701 2.211 1.191 0.854 0.426 

r 3, a =0.0001 
(486) (485) (270) (190) (92) 
0.835 0.829 0.830 0.757 0.417 r--3, ¢ =0.001 
(155) (155) (155) (155) (155) 

PROPOICPlONAL 

4.403 3.680 1.576 1.166 0.615 
r--2, c --0.0001 

(3666) (3530) (1708) (1267) (685) 
1.534 1.536 1.332 1.064 0.595 r - 2 ,  c =0.001 

(1233) (1233) (1229) (1074) (652) 
83.843 70.475 31.480 23.565 12.753 r 3, e =0.0001 

(15499) (14607) (7316) (5503) (3075) 
30.479 30.480 26.237 21.115 12.293 r 3, ~ =0.001 
(5351) (53.51) (5244) (4063) (2901) 

T a b l e  1: Computational times (secs.) and iterations (in brackets) for the branch 
and bound algorithm 

II BINARY II n : 3 2  
E N U M E R A T I V E  0.3287 

B R A N C H  A N D  B O U N D  0.3943 

n=:-50 

1.5916 
0.1713 

n 55 

1.9664 
0.1993 

n 75 

7.7827 
0.2101 

,~=79 tl 
7.7619 
0.2214 

T a b l e  2:  Computational times (secs.) for the enumerative and the branch and 
bound algorithms for r 3. 
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7.2 The  locat ion-attract iveness  problem 

To solve the problem of obtaining the optimal locations and the attractive- 
ness levels for the new facilities, some combinatorial heuristic algorithms 
combined with the branch and bound algorithm are used. To compare the 
results of the throe combinatorial heuristics two aspects were analysed: the 
percentage of failure and the average percentage error with respect to the 
best solution found for each scenario. Table 3 shows these results fbr the 
binary, partially binary and proportional cases. Note that results corre- 
sponding to different networks have been aggregated. 

In all the cases, the solutions obtained by the GR are significantly im- 
proved by the TB and the TS. For these cases, the worst results are reached 
in the binary case where the percentage of failure, when r = 3, is 10.256%. 
Nevertheless, these percentages decreases when tile error is analysed. The 
results for the partially binary and proportional cases are significantly bet- 
ter, with percentage of failure and error less than 4.273% and 0.0005%, 
respectively. 

The TB usually needs, at most, one iteration to stop the search when the 
starting solution is derived fl'om the greedy algorithm. This means that the 
number of pairs, or trios, of potential solutions evaluated, i.e., the number 
of non-linear programs solved using the branch and bound algorithm, in 
addition to the programs solved by the GR algorithm, is about r x n. This 
implies that the problems solved by the TS, in addition to those by the 
GR, are approximately (r x n) x 1.5. Average times employed by the TB 
algorithm to solve the problems when the maximum ;precision is required 
(c - 0.0001 and drn - 0.0005) for the 50 node networks are shown in 
the last column of table 3. The highest times are required to solve the 
proportional problem. 

It seems that a general tendency with respect to the variations of the 
parameters p, r, and the demand distribution, does not, exist. The number 
of failures is usually similar when r 2 and r = 3, independently of the 
algorithm used and the customer choice rule considered. This difference is 
more significant in the proportional preferences case and the GR algorithm. 
On the other hand, the only cases where a tendency with respect to the dis- 
tribution of the demand seems to exist, is for the GR applied to the binary 
and partially binary preferences. In contrast to the partially binary case, 
in the binary case the number of failures increases with demand variation. 
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II F~il. G R  Fail.  T B  Fail.  T S  I E r ro r  GR, ] E r ro r  T B  E r r o r  T S  T B  T i m e s  II 

II BINARY II 
r 2 35.897 7.692 4.273 0 .0200  ] 0 .0057  0 .0005 5.112 
r 3 35.897 10.256 5.128 0 .0109  ] 0 .0046 0 .0004 49 .512  

II P A R T I A L L Y  B I N A R Y  II 

r 2 16.239 0 0.008 0 .0005  I 0 1.5 10 ~ 86.590 
r 3 16.239 4.273 0 0 .0005 [ 3.36 10 ~ 0 542.339 

II PROPORqPIONAL II 
t" 2 17.094 0.342 0.008 0 .0012 ] 0 .0002 2.41 10 8 642.938 
r 3 33.333 0.007 0.342 0 .0042 I 0 .0005 0 .0001 16408.613 

Table 3: Results fi:)r the GR, TB(GR), and TS(GR) 

8 C o n c l u s i o n s  

In this paper, the (rIXp)-medianoid problem for essential demands (Hakimi 
(1983)) is generalized to the case where customers' choice is based not only 
on distance between demand points and facilities but on certain attributes 
of the facilities such as size. The attraction felt by a customer towards a 
facility is fbrmulated as an increasing flmction of the quality of the facility 
and non-increasing with respect to distance. The objective of the entry 
firm is to determine the locations and the attractiveness levels in order to 
maximize its profits. 

This problem has been analysed under different customer choice rules, 
binary,, partially bina W and proportional preferences. The existence of a 
nodal solution has been proved in the partially binary and proportional 
network problems. For bina,\y preferences, a discretization of the location 
problem can be applied if the attractiveness levels are given. 

To solve the discrete problem three combinatorial heuristics (greedy, in- 
terchange and tabu search) combined with a global search procedure based 
on branch and bound techniques are used. The location problem is solved 
by means of the combinatorial heuristics and, given the locations, the r~mx- 
imum profit is obtained using the branch and bound algorithm. In the 
binary case, the opt imum attractiveness levels can be found evaluating, at 
most, (IVI + 1) r candidates. 

The three combinatorial heuristics were compared by evaluating the 
average percentage of error with respect to the best solution found. The 
error for the GR varied between 0.015%, for the binary preferences, and 
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0.0005%, for the partially binary preferences. The TB and TS algorithms 
were run taking the greedy solution as the initial solution. These algorithms 
reduce the error, especially the TS (with almost insignificant errors). 

A possible extension to this work consists of considering other more re- 
alistic customer choice rules. In this sense, the Pareto-Huff  model (Peeters 
and Plastr ia (1998)) is a modified Huff model where a customer patron- 
izes a more distant facility only if that  facility is more attractive. Another 
possibility is to consider that  the at tract ion felt by a consumer towards a 
facility decreases when other facility exerting a higher at t ract ion on the 
consumer exists. This assumption is based on the idea that  if the differ- 
ence between the best and the "second best" facilities is big, the consumer 
has not any incentive to patronize the second best facility. On the other 
hand, the fbrmulation of the at tract ive as a function of a unique variable 
such as the facility size may be too simple. Usually, the behaviour of the 
consumer depends on several factors (size, parking space, price and others) 
which would be incorporated in the at t ract ion functions. These functions 
would be associated to different groups of customers charaterized by certain 
properties such as the purchasing power. Finally, a dynamic formulation of 
the problem would be useful to solve situations where demand and other 
elements vary with the time. 
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