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In this paper we present Safe Self-Scheduling (SSS), a new scheduling scheme 
that schedules parallel loops with variable length iteration execution times not 
known at compile time. The scheme assumes a shared memory space. SSS com- 
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from each. First, it reduces the dynamic scheduling overhead by statically 
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scheduling scheme. This indicates that SSS achieves a balanced workload with 
a very small afnount of overhead. 
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1. I N T R O D U C T I O N  

A difficult problem in the concurrent execution of a set of independent 
tasks on a parallel computer, particularly when the tasks have variable 
length execution times, is choosing a schedule minimizing the total execu- 
tion time. To execute a set of tasks on a parallel computer, we have to 
specify, for tasks, the processors that execute them and the order in which 
they are executed. Clearly, different specifications may yield different execu- 
tion times. Since one of the main reasons we employ parallel computers is 
to reduce the total execution time, specifications rendering short comple- 
tion times are always desirable. A schedule is a specification listing, for each 
task, the processor that executes the task and the order in which different 
tasks are executed. 

The scheduling problem has attracted the attention of many 
researchersJ 1-9) Many results are designed primarily to satisfy a partial 
ordering among a set of tasks scheduled to preserve the data dependencies 
defined by sequential execution of the set of tasks. ~~ In addition, the 
execution time of each task is assumed to be either known or identical. (2'1~ 

In many scientific applications, a set of independent tasks typically 
exists in a parallel loop, i.e., a loop in which each iteration is independent 
of all others. Loops are one of the richest sources of parallelism and can be 
found in many scientific applications. ~5"7) A parallel loop is also called a 
DoAll loop that has no cycles in its dependence graph. ~H) Iterations in a 
parallel loop are independent and can be executed in any order. Parallel 
Do and SPREAD Do in PCF Fortran and Butterfly Fortran are some of 
the other examples of parallel loops. 

A set of tasks is independent if there is no data dependence between any 
pair of tasks. Since a set of independent tasks can be referred by using a 
parallel loop in which each iteration is mapped to a task, the terms parallel 
loop and set of  independent tasks are used interchangeably in sequel. 

This paper discusses the problem of scheduling a set of tasks that are 
independent and that have variable length execution times not necessarily 
known at compile time. It is important to note that independent tasks can 
be executed in any order or simultaneously without affecting the final 
result. In addition, variable length iteration execution times are expected 
for real applications, tT) 

Based on whether the execution times of different iterations are the 
same or not, a parallel loop can be categorized as uniform or nonuniform. 
A parallel loop is uniform if the execution times of each of its iterations 
are roughly the same. To schedule uniform parallel loops for maximum 
performance, an equal number of iterations is assigned to each processor 
(assuming that processors start to execute the loop at the same time). 
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To schedule nonuniform parallel loops for maximum performance, the 
workloads among processors must be balanced with low scheduling over- 
head. A balanced workload is the key to the performance because a loop 
is finished only after all its iterations have been executed. Since the execu- 
tion times vary from one iteration to another, assigning an equal number 
of iterations to each processor, as we do in scheduling uniform parallel 
loops, may result in one processor finishing much later than the rest of the 
processors. We call this last finished processor the critical processor Pc. 
Such an unbalanced workload results in poor processor utilization that 
degrades the performance significantly. 

Many methods have been proposed to parallelize a wide range of serial 
loops.(5' 11,12) We assume that the loop has been parallelized and parallel loop 
nests have been coalesced/5) Parallel loops with variable length iteration 
execution times can be found in applications such as Monte Carlo calcula- 
tions, sparse matrix computation, numerical partial differential equation, and 
image processing applications. The execution time of a complicated operation 
may also greatly depend on its operands. For  example, integer multiplication 
under 2's complement representation using Booth's algorithm (13) computes 
263 x 127 faster than 263 x (-54) .  When a parallel loop encloses a triangular 
serial loop (e.g., matrix Adjoin-Convolution shown in Ref. 3), iterations of the 
parallel loop have different execution times. Even when iterations of a parallel 
-loop execute exactly the same statements, the execution times of different 
iterations may differ due to memory access interference such as cache misses, 
page faults, difference in execution cost depending on its operands, processor 
latency, and other "random events. ''~5"7'8) 

The rest of the paper is organized as follows. In the next section we 
review related work in self-scheduling. SSS strategy is presented in 
Section 3 and compared with other schemes. Section4 offers a list of 
modifications on SSS to further improve its performance and flexibility. In 
Section 5 we present experimental results. We summarize and conclude 
with a discussion in Section 6. 

2. RELATED WORK 

Scheduling has been studied by several researchers in a theoretical 
context. ~2,z~ Scheduling schemes can be classified as either static scheduling 
schemes or dynamic scheduling schemes. Static scheduling schemes assign 
iterations to processors at compile time while dynamic scheduling schemes 
do not determine the assignment of tasks until the execution is underway. 
The advantage of static scheduling schemes is that they impose no runtime 
overhead. The main drawback of static scheduling schemes is that they are 
unable to respond to an imbalance in the workload among the processors. 
Dynamic scheduling schemes are designed to alleviate this problem. 
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In the presence of variable length iteration execution times, dynamic 
approaches are in principle superior with respect to load balancing. (5) 
However, this comes at the cost of additional runtime scheduling overhead. 
The common approach of dynamic scheduling of parallel loops is the self- 
scheduling technique which maintains a global list of tasks. (1'3'5'7'8'i4) An 
idle processor selects and removes the next task from the list and executes 
it. That is, the processors "self-schedule" themselves as the program 
executes. (5"8'15) In the rest of this section we show how to schedule N itera- 
tions of a parallel loop L on a p-processor parallel computer using some 
of the well known self-scheduling schemes developed by other researchers. 

2.1. Stat ic  Schedul ing Schemes 

2. 1.1. Static Chunk (SC) 

The static chunk assigns each processor with FN/p] consecutive 
iterations at compile time. Except in cases when iteration execution times 
are roughly the same, such an assignment of iterations to processors may 
introduce an unbalanced workload. 

2. 1.2. Round Robin (RR) 
Round Robin is a modification of SC. Rather than assigning a 

processor with a consecutive block of iterations, iterations are assigned to 
processors in a round-robin fashion, i.e., iteration i is assigned to processor 
imod  p. This approach may produce a more balanced schedule than SC 
only for some parallel loops. This is because all processors execute the 
same number of iterations, about Nip to be exact, and clearly two 
processors assigned with the same number of iterations may not finish at 
the same time for nonuniform parallel loops. In addition, this approach 
may suffer a low cache hit ratio due to the way data is accessed. 

2.2. Sel f -Schedul ing Schemes 

2.2. I. Pure Self-Scheduling (PSS) 

In pure self-scheduling (PSS) a processor fetches one iteration at a time 
during runtime when it becomes idle. PSS always achieves a well balanced 
workload. However, this well balanced load does not always yield a good 
performance because the amount of scheduling overhead is proportional to 
the number of iterations of the scheduled parallel loop. For  fine-grain 
parallel loops, this amount could be large compared to the cost of 
computation. In addition, the high frequency of mutually exclusive access 
to shared variables, such as the loop index, may cause memory contention 
and seriously degrade performance. PSS may be appropriate for loops with 
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relatively few iterations but long variable length execution times compared 
to the overhead. Ni and Wu (16~ have performed an extensive study of the 
trade-offs between scheduling overhead and workload balancing. 

2.2.2. Chunk Self-Scheduling (CSS) 

The chunk self-scheduling (CSS) is designed to overcome the high 
scheduling overhead problem of PSS. CSS assigns a fixed number k 
iterations (chunk) at a time to an idle processor. When k =  1, CSS 
becomes PSS. When k=[-N/p-], this scheme can be realized using SC. 
When scheduling nonuniform parallel loops, this approach may cause an 
unbalanced workload. The main drawback of CSS is its performance 
depends on the chunk size and the characteristics of each loop which 
may be unknown even at runtime. Too large a chunk size may cause a load 
imbalance while too small a chunk size may increase the overhead and 
memory contention. Worse yet, even for the same loop, the execution time 
does not monotonically increase or decrease with the chunk size. 

2.2.3. Guided Self-Scheduling (GSS) 
Polychronopoulos and Kuck (5~ show that there cannot be an optimal 

value of k in CSS for even the simplest cases and present the guided self- 
scheduling (GSS) scheme. In GSS, lip of unscheduled iterations is assigned 
to an idle processor. When processors begin to execute the loop at different 
times, GSS generates a balanced schedule with low overhead for uniform 
parallel loops. When applying GSS to a nonuniform parallel loop with N 
iterations, assigning Nip iterations or close to Nip iterations to the first 
several fetching processors may cause an unbalanced workload. In addi- 
tion, near the end of the scheduling process, GSS assigns many iterations 
in groups of one or two. This increases the scheduling overhead. Thus, 
GSS(t) was proposed to avoid the problem by allocating no less than t itera- 
tions at a time to an idle processor. (5) Clearly, an optimal value of t that 
minimizes the overhead while maintaining a balanced workload is both 
application and hardware dependent. (5) Furthermore, when the granularity 
of a parallel loop is small, the accesses to the shared variables such as loop 
index in GSS algorithm may become a bottleneck on a system with a large 
number of processors. 

2.2.4. Trapezoid Self-Scheduling (TSS) 

Tzen and Ni ~8) proposed the trapezoid self-scheduling (TSS) algorithm 
to improve GSS. TSS(Ns, NI) assigns the first Ns iterations of a loop to the 
processor starting the loop and the last N s iterations to the processor 
performing the last fetch, where Ns and N I are both specified by either the 
programmer or the compiler. The number of iterations assigned to a 
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processor between the first and the last fetch is then between Ns and Nf  and 
linearly decreases based on some step d with each assignment. [d  is deter- 
mined by Ns, Ny, and N. The number of processors p is not considered 
unless the values of N~ or N s is related to p.] 

Tzen and Ni proposed TSS(N/2p, 1) as a general selection of N, and 
Nf.  TSS may yield an unbalanced workload because the difference between 
the number of iterations assigned to two processors on their last fetch can 
be as large as p x d. For example, when p = 256 and d = 2, the difference is 
512 iterations. 

2.2.5. Factoring 
Hummel et al. introduce Factoring in Ref. 3. In Factoring, fixed sized 

chunks of iterations are allocated to processors in batches (a set of p 
consecutive chunks forms a batch). With Factoring, c i = [ ' R i / 2 p  ] iterations 
are allocated to each of the p processors at each scheduling step i, where 
Ri is the number of iterations remaining, with R1 initially set to the total 
number of iterations. R~ is decremented at each scheduling step to obtain 
Ri+ 1 = R i - p c  i. The chunk size of each batch is halved from that of 
the previous batch. Thus, the algorithm evenly distributes half of the 
remaining iterations at each successive allocation. The basic idea of 
Factoring is the following: achieving an overall optimal finishing time 
requires, for each batch scheduled, enough work being left to smooth out 
the uneven finishing time of the batch. The main focus of Factoring is to 
achieve a balanced workload. 

2.2. 6. Affinity Scheduling 
Affinity Scheduling demonstrates the benefit of processor affinityJ ~7) 

Affinity Scheduling divides the N iterations of a parallel loop into p chunks 
within FN/p-] iterations each. The ith such chunk is placed on the local 
work queue of processor i. An idle processor removes 1/k, where k is 
suggested to be equal to p, of the iterations from its local work queue and 
executes them. When a processor's work queue becomes empty, it finds 
"the most loaded processor," removes E1/k - ] of the iterations from that 
processor's work queue, and executes them. [Note  that "the most loaded 
processor" has to mean the processor that has the largest number of 
unscheduled iterations, rather than the processor that needs a longest time 
to finish its iterations, because we cannot determine how much time is 
needed to finish a given number of iterations.] 

3. SAFE S E L F - S C H E D U L I N G  A L G O R I T H M  

In this section we will first introduce a self-scheduling scheme called 
Safe Self-scheduling (SSS). ~24~ The theorems that support SSS and the basis 
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for combining static scheduling and self-scheduling in SSS are then given. 
We devote the last part  of this section comparing SSS with the Factoring 
scheme due the similarities between the implementations of the two. 

To facilitate our presentation, we assume that the parallel loop L's 
iteration execution times follow an unknown probability distribution D(L) 
with expectation #, standard deviation a, maximum execution time E . . . .  
and minimum execution time Emi,. We define a chore as a set of consecutive 
iterations defined by a starting and an ending iteration number; a fetching 
processor is a processor that modifies the global variables, such as the loop 
index to obtain more work in the form of a chore; the critical chore is the 
last finished chore; the critical processor is the processor that executes the 
critical chore; e(i) is the workload of iteration i, i.e., the execution time 
needed by iteration i; and E(Tj) is the workload of processor j, i.e., the sum 
of workload of iterations executed by processor j. 

Throughout  the rest of the paper, we assume that the number of itera- 
tions N,> p; the values of N and p are known before the loop is executed; 
tasks are nonpreemptive; the processors of the parallel machine are homo- 
geneous; and the parallel loop is executed in a dedicated environment. 

3.1. Safe Sel f -Schedul ing (SSS)  

The basic principle of SSS is to assign each processor the largest 
number m of consecutive iterations having a cumulative execution time just 
exceeding the average processor workload E/p, i.e., Z "+m-~ e(i)<E/p<. 
Z '+"  e~i~ where E = Z ~ = ~  e(i) and s is some starting iteration number  of 
the chore. We call m the smallest critical chore size because adding any 
more iterations to this chore further imbalances the schedule. On the other 
hand, assigning a processor any less iterations results in the processor 
being allocated a less-than-average processor workload and another or 
some other processors have to execute more iterations. Note that E may be 
estimated using the statistical information on the execution times of the 
tasks due to executing different branches of the parallel loop body, the 
expected execution time of tasks, the total number of tasks, and the 
number of processors. When a parallel loop is executed on a dedicated 
environment, the total number of tasks and the number of processors are 
known before the computation. The expected execution time of tasks and 
execution times of different branches of the parallel loop body can be 
obtained through profiling or previous runs. 

In the implementation of SSS, the size of chores in the first batch, 
denoted by CSo, is c~ x N/p, where 0<co ~< 1. c~ is called the Allocation 
Factor, and it determines the fraction of the unscheduled iterations 
allocated during each batch. The chores in the first batch are assigned to 
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processors at compile time. At runtime, when a processor finishes the 
iterations assigned to it at compile time, the ith fetching processor is then 
assigned a chore of max((1 - ~)rihq x N/p • ~, k) iterations, where k is used to 
control the granularity. A method for accurately calculating ~ is given later. 

After the value for c~ is determined, the SSS can be implemented as 
follows: 

1. (a) Before starting the statically assigned iterations, one 
processor (say processor 0) calculates the starting iteration 
numbers for the chores scheduled in the dynamic scheduling 
phase, stores them in an array, say chore_list, and appends 
it with p O's. 

(b) The same processor sets the shared variable count to 0 then 
starts to execute the chore assigned to it statically. 

(c) All other processors perform computation on the statically 
scheduled chores. 

2. During the dynamic scheduling phase an idle processor does the 
following in the given order: 

(a) begins mutual exclusion; 

(b) copies the value of count to i and increments count; 

(c) ends mutual exclusion; 

(d) if chore-listEi+ 1] >0,  then executes the chore defined by 
chore_list~i] and chore_list[i+ 1] - 1. 

For  systems such as IBM's RP3 and the Ultracomputer t18) that can 
perform fetch&add atomically, the first three items of step 2 can be reduced 
to i=fetch&add(count, l). 

Note that the calculation of chores can be modified to suit the charac- 
teristics of the loop executed to best realize the basic principle of SSS. 
Other scheduling schemes such as GSS, TSS, or Factoring can also be used 
to calculated the chore sizes scheduled in the dynamic scheduling phase. 

3.2. Theoretical Basis for SSS 

De f in i t i on  (Balanced Workload). A schedule that maps iterations 
of a parallel loop to processors of a parallel computer is balanced if the 
difference in workload between any two processors is no greater than the 
maximum execution time of a loop iteration. 

T h e o r e m  1. If (i) m is selected in the way that for the first m itera- 
m tions we have ~7'__-11 e(i) < E/p ..~ ~i= 1 e(i), and (ii) all p processors begin to 

execute the loop at the same time, then (a) i f  a processor, say Pl ,  executes 
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rn--  1 iterations then it finishes no later than the critical processor Pc and 
(b ) i f  the processor executes m iterations, the difference in workload 
between any two processors is less than p / ( p -  1) Ema x.  

ProoL Let E(TI) be the workload for processor pl and Ere,, be the 
maximum workload of the other p - 1  processors on the best possible 
distribution of the remaining iterations; 

(a) Ifp~ executes m -  1 iterations then we have 

E - E ( T ~ )  E - E ? u ~ ' e ( i )  E - E / p  E m--1  
E r e m  ~ - --= > =-->E(T,)= ~ e(i) 

p- -1  p- -1  p- -1  p i=, 

What is indicated by Ere m > E(T,) is that the processor p,  finishes no later 
than the critical processor Pc. That is, the critical processor Pc must be one 
of the other ( p -  1 ) processors different from p, .  

(b) If p~ executes m iterations then E ( T , ) = z i m , .  Let E/p<~ 
~ ' i  m= 1 e(i) be represented a s  ~im= 1 e(i) = E/p + ~, where 0 ~</~ < E . . . . .  then 
Ere m = ( E  - E/p - B)/(P - 1 ) = E/p - ~/(p - 1 ). The difference in workload 
between processor p, and any other processors is less than E( T t ) -  Ere m = 

E / p + [ 3 - E / p - ~ / ( p + l ) ,  which is 3 [ p / ( p - 1 ) ] .  Since / ~ < E  . . . . .  the dif- 
ference in workload between any two processors is less than p/(p - 1 ) Ema x. 

Theorem 1 states that assigning m consecutive iterations t.o the first 
fetching processor, when z im l  e(i)--E/p<~ [ ( p - -  1)/p] E . . . . .  achieves 
balanced workload with minimum scheduling overhead since the processor 
only fetches once and the difference in finish times between any two 
processors is less than Ema x.  The difference in workload between any two 
processors is no greater than E .. . . .  by our definition, the workload is 
balanced. When ~ ? = t e ( i ) - E / p > [ ( p - 1 ) / p ] E  . . . . .  the difference in 
workload between any two processors is less than p / ( p -  1) Em,x and can 
be considered to be very well balanced for large p. However, it is not 
generally possible to so determine m since e(i) can only be known after the 
task ti has been executed; therefore, m can only be estimated. Theorems 2 
and 3 specify the lower and upper bound of m. 

Theorem 2. If processor pj executes no more than (E/p)/Emaz- 1 
iterations and all the processors start to execute the loop at the same time, 
then processor pj will not be the critical processor. 

ProoL Let E(Tj) be the workload of processor p j, then 

< ~ ( E / p - 1 )  Ema x E Emax E(Tj) Ema.,c = ; - -  
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The average workload for the other p - 1  processors then is E - E ( T j ) /  
(p - 1 ). In addition, E -  E(Tj)/(p - 1 ) >>. E -  (E/p - E,.ax)/(P - 1 ) = E/p + 
E,,ax/(p - 1) > E/p. That is, there must exist at least one processor that has 
a workload greater than E(Tj), therefore, processor pj will not be the last 
one to finish. 

According to Theorem 2, assigning a chore with less than (E/p)~ 
Ema~,- 1 iterations to a processor guarantees that this particular chore will 
not imbalance the schedule. Therefore, (E/p)/E, ,~x-1 is called the safe 
chore size. Since it is desirable to assign chores with as many iterations as 
possible while maintaining load balance, chores with less than (E/p)~ 
Em~x- 1 iterations should never be considered. 

T h e o r e m  3. If (i) all the processors start to execute the loop at the 
same time; (i i)the loop body consists of an if-then-else statement and 
prob(then) is the probability of executing the then branch that has an execu- 
tion time of Em,x and is the same for all the iterations; (iii) processor pj is 
assigned a chore of size N/p and more than N/p xprob(then) iterations in 
the chore have a workload Emax; and ( i v ) E , ~  > 2Emi,, then the workload 
cannot be balanced. 

Proof. The average workload of a processor is: 

E N(prob(then) Era,., + prob(else) Emi,) 

P P 

Let N/pxprob( then )+  1 iterations (out of Nip iterations assigned to 
processor p j) have a workload of E,,ax, then there must be a processor that 
has no more than N/px  prob( then) -1  iterations having a workload of 
E,,,x. The minimum difference in workload between the two processors is 
2(Era,x-Emin), which is greater than Ema x. Then according to our defini- 
tion the workload is not balanced. 

Usually, for static scheduling, Nip iterations are assigned to a 
processor. When the execution times of iterations vary, chores of the same 
size may result in different finishing times. Only if iterations assigned to one 
processor happen to have more iterations having a long execution time, the 
workload cannot be balanced. For this reason, N/p is called the risk chore 
size. 

For  a general approach we propose to select the first chore that has 
a size such that the probability that a processor may or may not perform 
an additional fetch to be equal (see Fig. 1). For  loops where the execution 
times follow Bernoulli distribution with Emax having probability prob(Emax) 
and being constant for all the iterations, the size of the first chore is the 
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Probability for performing another fetch 
Probability for NOT performing another fetch 

/ N , /  probability(then) 
1 .,.,, / 

0 a v 

Eraaz P 

Fig. 1. Safe self-scheduling, calculation of the first chore size. 

average of the safe chore size and the risk chore size. Using/~ x N to replace 
its statistical equivalence E we have 

N I~N ( prob(Emin) Emin) t- - -  1 + prob(Em.x) + 
CSo_P E,.,,xp_N ~ (1) 

2 p 2 

prob(min) Emi n 1 + prob(max) + 
Emax 

_ ( 2 )  
2 

Note that, by assigning a larger number of iterations than the safe 
chore  size, we have accepted a moderate amount  of risk of imbalance in 
exchange for a lower overhead. In cases where the scheduling overhead is 
small compared to the iteration execution times, a smaller value of ~ may 
be used to balance the workload. The relationship among ~, workload 
balance, and scheduling overhead is that a small ~ generally offers a well 
balanced workload with the cost of high scheduling overhead. 

The smallest critical chore size can be calculated according to the 
theorem given here if we assume that the execution time of an iteration is 
independent and all the iterations have their execution times follow the 
same distribution function. 

Theorem 4. For  a given confidence factor c >~ ~/2 ln(p) and a set 
of n-iteration chores where n is given by 

2/~2 N + c20.2 X/(2#2 N 2 7+c2a 2) --4/-t2(~-~) 2 
P (3) 

n = 2/~2 

will, statistically speaking, not imbalance the workload. 

Proof. The Central Limit Theorem states that the sums of inde- 
pendent random variables tend to be normally distributed. Therefore, for a 
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set of  n-iteration chores, the expected execution time is n *  # and the 
variance is n �9 a 2. The normal  distribution curve is defined as, 

l -- l_gt--#n]2 

f ( t )  = ~ - -  e 
~/2~ a n  

for - o o < t < + ~  

where # .  and a .  are the expected value and s tandard deviation of  the 
values of the r andom variable that has a normal  distribution. In our  case 
# .  = n * # and an = x /~  * a. The probabili ty for an n-iteration chore to 
finish before time to is, 

pr(t <~ to)= f~~ ~ f ( t )d t  

Let 

t - -  ,ttn 
c = ~ ( 4 )  

O" n 

pr(t < to) can then be calculated by 

f 
co ~ _ _1c2 

pr(c<~Co)= e 2 dc 

Let c o denotes the value of  c in Eq. (4) when t = (N/p) p, we have 

N 
- - p - - n , p  
P ( 5 )  C0 

J / l  * 0 .2 

Kruskal  and Weiss ~t9) have shown that if each processor receives a chore 
of  equal size n the expected finishing time can be approximated as, 

n# + x /2na  2 In(p) 

Thus, by definition of  smallest critical chore n, 

n/t + x /2n �9 a 2 ln(p) ~<N/~ 
P 

N 
x/2n * G 2 In(p) ~< " ' p - -  n# 

P 
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N 
--/2--n*/2 
P ~/2 In(p) ~< /// * 0 .2 

N 
- - # - - n * / 2  
P .,/2 In(p) x//'t * 0 .2 CO 

Therefore, the lower bound of Co can be 

Co >~ ~/2 ln(p) 

Clearly, c o can then be interpreted as the confidence factor. The larger the 
co the smaller is the probability for the execution time of the chore to 
exceed (N/p)/2. Solving n from Eq. (5), we have, 

/Vq_ q- C20.2) 2 __4~2 2/22P C20.2 __ X/(2~2 ~ ( @ ) 2  
n__ 2/2 2 

3.3. Comparison of SSS and Factoring 

The particular implementation of SSS given in this paper is similar to 
that of Factoring in the methods used to calculate the chore sizes. Further- 
more, in both schemes the chores in the same batch have the same size. 
However, there are several main differences between the two schemes. The 
first one is that Factoring uses the no-more-than-half rule, i.e., c~<0.5 
while in SSS, 0 < e ~< 1. The second difference is that SSS has two phases: 
a static scheduling phase and a dynamic scheduling phase. In SSS, a 
processor starts to execute a parallel loop with statically assigned iterations 
and smoothes out the uneven finishing times with a self-scheduling scheme. 
Third, the implementation given in this paper assumes that little is known 
about the iteration execution times. When more information is available, 
the amount of iterations assigned to each processor can also vary to best 
fit SSS's basic principle. Fourth, SSS's static scheduling phase increases the 
level of affinity between iterations and the processor because the first N x 
iterations' designating processors do not change on different runs of the 
loop. This property improves the performance of SSS by increasing the 
cache hit ratio and is proved to be beneficial (17) and useful in implementing 
self-scheduling on distributed-memory machines. (2~ 
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The argument given by Factoring is that to achieve an overall optimal 
finishing time, for each batch scheduled there must be enough work left to 
smooth out the uneven-finishing times of that batch. ~3) They argue that for 
some of the common distributions of chunk execution times including 
bell-shaped distributions, the expected finishing time of the first batch 
approaches 2/~Fo (Fo is the same as CSo used in this paper) as the number  
of processors p increases. Therefore, there must be pFo iterations left to 
smooth out its unevenness. Hence, to have a high probabili ty of even finish 
times, no more than half the iterations should be scheduled in the first 
batch. 

Clearly when 2# > E,~x the expected finishing time of the first batch 
does not approach 2#F0 because the execution times of chores in the first 
batch must not be greater than EmaxxFo. Let us further consider the 
following example. 

Consider a for loop that  has an if-then-else statement as its loop body. 
Let N = 400, E,,~x = 4.0 time units, E,,i, = 1.0 time unit, prob(Emax) = 0.75, 
prob(Emi,) = 0.25, and p = 5. Therefore, 

/~ = 0.75(4.0) + 0.25(1.0) = 3.25 

N 
/~ - - =  3.25(400/5)= 260.0 

P 

a 2 = 0.75(4.0-  3.25) 2 + 0.25(1.0-- 3.25) 2 = 1.6875 

chore size 400 53"25/4"0 = 65 safe 

400 
risk chore size = ,= 80 

5 

0.75 + 0.25 �88 + 1 
a - = 0.90625 

2 

400 
CSo = ~ x 0.90625 ,~ 72 

From the example we can see that assigning a processor a chore of 
65 iterations (safe chore size) cannot imbalance the workload. This is 
because each processor needs to spend an average of 260 time units to 
finish the given parallel loop. Had there existed a processor spending less 
than 260 time units on the loop, there would have been another processor 
spending more than 260 time units on the loop; therefore, the schedule 
would be less balanced. However, the longest execution time of a 65 itera- 
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tion chore is 260 time units. Hence we conclude that assigning a processor 
fewer than 65 iterations (equivalent to set a~<0.8125) only results in an 
increased scheduling overhead. Clearly, the no-more-than-half rule should 
not always be followed. 

In SSS, the value of a is a main factor determining the total number  
of chores produced during the execution of a given parallel loop. The larger 
the value of a, the smaller the number of chores produced, resulting in a 
smaller overhead. When a becomes too large, chores with long execution 
times may be produced resulting in an unbalanced workload. The smaller 
the value of ~, the fewer iterations in a chore, and the workload is more 
likely to be balanced because processors fetch small amounts of work at a 
time. However, scheduling overhead increases. Calculating CSo with an 
a smaller than #/E,,,~ increases scheduling overhead without further 
balancing the workload. 

The total number of chores produced by Factoring is at least 
p(1 +lg(N/p)). The total number of chores produced by SSS is plg(N/p)/ 
lg (1 / (1-c0) .  For the example given earlier, SSS produces 10 chores while 
Factoring produces at least 37 chores. Note that a scheduling function 
needs to modify some global variables that have to be accessed exclusively. 
Therefore, the more frequent accessing of the shared variables such as 
the loop index, the longer the average time required to access them. We 
believe that for fine and medium grain parallel loops or for systems where 
accessing shared variables is an expensive operation, SSS will surpass 
Factoring. For large grain parallel loops, SSS will perform as good as 
Factoring. This is because loops that are suitable for Factoring can be 
scheduled using SSS with a = 0.5. 

Finding an appropriate value of a requires some information, such as 
the maximum and the minimum execution times and prob(then). We argue 
that it is possible to obtain approximation of these pieces of information. 
The execution times can be obtained through profiling utilities. The 
probabilities of a particular execution time can be obtained through 
sampling. ~22) In addition, a program that solves a particular problem runs 
many times to solve different instances of the same problem. In cases like 
this, information regarding the parameters used in SSS can be collected 
from the earlier runs and used to benefit the later runs. 

Table I shows the chore sizes for several scheduling schemes on the 
example given earlier. Since the safe chore size is 65, it is not necessary to 
assign a processor a chore less than 65 iterations to start with. Note that 
although SSS generates a total of 15 chunks, which is the smallest among 
all the schemes, only 10 chunks are assigned to a processor during runtime. 
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4. M O D I F I C A T I O N S  TO THE SAFE 
SELF-SCHEDULING A L G O R I T H M  

In this section we introduce some simple modifications to the SSS 
algorithm that further improve the performance and the flexibility of SSS. 

4.1. Achieving a Higher Degree of Balanced Workload 

As mentioned earlier, selecting a value for e is a trade-off between 
increasing the scheduling overhead and achieving a more balanced 
workload among the processors. SSS can be easily modified to achieve a 
even better balanced workload with roughly the same amount of overhead 
by applying a smaller value for e during the dynamic scheduling phase. For  
example, using the no-more-than-half rule during the dynamic scheduling 
phase of SSS may improve the performance, particularly for a parallel loop 
where iterations at the end of the loop are likely to have longer execution 
times than iterations at the beginning of the loop. Reverse Adjoint-Con- 
volution application in Ref. 3 is an example that exhibits such a behavior. 

4.2. Tolerating Faulty Processors 

GSS is insensitive to faulty processors, i.e., even if one or more pro- 
cessors drop out after executing some chores, GSS would still balance the 
workload. This is not true with SSS. Consider the case when a processor 
drops out after executing some chores, the rest of the chores defined in the 
array chore_l is t  no longer reflect the configuration of the current system. 
This may cause an unbalanced workload. 

Simply using GSS in the dynamic scheduling phase makes SSS also 
insensitive to faulty processors. (23) The SSS-GSS scheduling can be 
described as given here. 

1. Calculate the value for ~. 

2. Each processor is then assigned ( N / p ) ~  iterations statically. 

3. Set the global variable count to the first unscheduled iteration's 
number. 

4. The processors then 

(a) begin mutual exclusion; 

(b) copy the value of count to i; 

(c) t *-- m a x (  ( N -  count )/p, 1); 

(d) count*-- count + t; 

(e) end mutual exclusion; 

(f) execute the chore defined by i and i +  t and repeat step 4 if 
i >  N; 
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When the number of processors p is large, the value o fp  does not need 
to be modified if some processors become faulty and drop out of the 
system. This is because the old values of the chore sizes are only slightly 
smaller than the new ones calculated based on the new value of p. As we 
already know, a schedule using smaller chores, in general, results in at least 
as well balanced a workload as a schedule using larger chores. Note that 
step 4 can be precalculated and stored in an array. By doing so, the critical 
section can be replaced by a fetch&add command. 

4.3. Di f fer ing Start  Times 

It is possible that not all of the processors begin to execute the loop 
at the same time. Waiting until all processors become free to start the loop 
will reduce the overall processor utilization. However, assigning chores in 
the first batch of (N/p)c~ iterations to a processor that starts at a much 
later time than the first processor that starts the execution of the loop may 
lead to an unbalanced workload. To prevent this from happening, we 
propose that SSS immediately enters the dynamic phase and determines the 
first batch of chore sizes as follows. Let ts be the starting time of the pro- 
cessor that starts first, and t~ be the starting time of processor p,.. Then, a 
chore of the size 

max a -  ,0  (6) 

is assigned to processor Pi- When (N/p) ~ < ( t z -  ts)/la, the processor should 
then use the first available chore in the chore_list. The effect of this rule 
is that the later a processor starts, the less work it needs to complete. 
Following the first batch, the remaining batches are computed with the 
same approach previously described. This way, SSS continues to provide 
the benefits of a low overhead and a balanced workload. If the maximum 
delay time tx=max~'=,( t j - - ts)  for a processor is known, then ( (N /p )c~ -  
t U#) p iterations can be scheduled statically by assigning to that processor 
with (N/p) c~ - tx/Iz iterations. 

5. EXPERIMENTAL RESULTS 

Different scheduling schemes are evaluated on a 20-processor Sequent 
Symmetry, a shared-memory parallel computer. In this section, we discuss 
the results of three different tests. The first test compares the SSS scheme 
with other well-known scheduling schemes GSS,(5) TSS, IS) and Factoring (3) 
using a parallel loop with an if-then-else statement as its loop body. We 
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Doall i = 1 to SIZE do 
if (A(i)) 

then for (j =0; j < DIVERSITY*N1; j + + )  ctl +=  1; 
else for (j =0; j < N1; j++)  ct2 + =  1; 

Fig. 2. A parallel loop containing branches. 

implement GSS as GSS(1) and TSS as TSS(N/2p, 1). In the other  two 
experiments, we apply SSS scheme to real applications, namely matrix 
multiplication and Gauss-Jordan.  

5.1. A Paral lel  Loop w i t h  an I f - then -e lse  S t a t e m e n t  

The first test was conducted on the loop shown in Fig. 2. The loop has 
four parameters, i.e., SIZE, 2(), N1, and DIVERSITY.  SIZE indicates the 
problem size. 2() determines the frequency of executing the then branch. 
Parameter  N1 specifies the granularity of an iteration. Parameter  D I V E R -  
SITY specifies the diversity between the two branches. 

We define the cost of executing a problem on a parallel system as the 
product  of the parallel execution time and the number  of processors used. 
The cost curves for different self-scheduling schemes executing the loop of 

293 
Parallel Loop with Branches  

�9 SSS 

292 o Factoring 

291 >TSS / 

o GSS 290 / 

289 

288 

287 / 

286 --" 
Seq. Exe. Time:  285.96 sec 

285 ~ i i I t I I 
3 5 7 9 11 13 15 17 

N u m b e r  of  Processors  

Fig. 3. Cost curves for different scheduling schemes. 

I 

19 



608 Liu et  al. 

E 
o ~  

200 
* SSS 

180 c, TSS 

160 o c s s  \ 

140 

120 - 

1 0 0  - 

8 0 -  

6 0 -  

4 0  

20 

1 3 5 7 9 11 13 15 17 19 

Number of Processors 

Fig. 4. Standard deviations in workload for different scheduling schemes. 

Fig. 2 up to 19 processors are shown in Fig. 3. SSS outperforms the other 
scheduling schemes. The static scheduling scheme performs fairly well because 
the probability of executing the then branch is the same for all iterations. 

Figure 4 shows the standard deviations for the processor workload on 
the corresponding runs of Fig. 3. The workload was calculated by counting 
DIVERSITY time units for each then branch and 1 time unit for each else 
branch. All the self-scheduling schemes except TSS provide a balanced 
workload. Factoring gives the most balanced workload followed by GSS and 
SSS. The well balanced workload of Factoring does not result in a good per- 
formance because it comes at the cost of an increased overhead in scheduling. 

Figure 5 shows the speedup achieved by different scheduling schemes 
using different values of granularity of iterations, i.e., N1. Increasing 
the granularity of an iteration decreases the ratio between communication 
time and computation time. Therefore, all the scheduling schemes tested 
show improvement in performance. SSS scheme surpasses other schemes 
in all the tests with noticeable margins. The corresponding workload 
balance indicated by the standard deviations is given in Fig. 6. The 
workload for static scheduling is 28.3 and is not shown in the figure. 
The workload for TSS is also not shown in the figure since it is too large 
(170) and does not change much. Although both GSS and Factoring have 
a better balanced workload than SSS, they do not result in a better perfor- 
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mance than SSS because the balanced workload is achieved at the cost of 
a much higher scheduling overhead. 

Figure 7 shows the speedup achieved by SSS for different values of 
for different granularities. Again, the performance of SSS improves as the 
iteration granularity increases. When the granularity is small, the selection 
of c~ has a greater influence on the performance. An accurate value of e that 
reflects the characteristics of the loop produces better performance. When 
we increase iteration granularities, the value of e that yields the best perfor- 
mance decreases. This mainly is because the performance degradation 
caused by scheduling overhead becomes less significant. This suggests that 
a relatively smaller value of e should be used when scheduling parallel 
loops with a large granularity. 

The workload balances of Fig. 7 are indicated by the standard devia- 
tions given in Fig. 8. The figure shows that the workload is more balanced 
when the iteration granularity increases. It also shows that as long as the 
value of c~ is not too large, smaller c~ values do not necessary result in a 
more balanced workload, except when N1 = 1. Also, since with a larger 
value of c~, more iterations are scheduled statically (i.e., smaller scheduling 
overhead), a larger value of c~ should be used whenever possible to reduce 
scheduling overhead. 

5.2.  Ma t r ix  Mul t ip l icat ion 

The code in Fig. 9 performs matrix multiplication when many elements 
of matrix a are zero. In our experiment, 43.75 % of the elements in a are 
zero and all of them are located at lower-triangular of the matrix. The 
outer two loops are coalesced using the technique in Ref. 5. The execution 
time of an iteration is between 297 gs (microseconds) and 793 #s. Using 
the idea of Theorem 1, we find that c~ = 0.67. Note that Eq. (1) is no longer 
applicable because the loop body is no longer a parallel loop with an ~- 
then-else statement. Rather, the loop body is a sequential loop. The results 
of using SSS are shown in Fig. 10 with the comparative results given by SS 
(static scheduling), TSS, GSS, and Factoring. GSS assigns too much work 
at the beginning. This result in a very unbalanced workload and poor  
performance. 

f o r i =  1 t o N  
for j = 1 to N 

f o r k =  l t o N  
if a[i][k] <> 0 then 

c[i][j] = c[i][j] + a[i][k]*b[k][j]; 

Fig. 9. Matrix multiplication where many elements of array a are zero. 
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5.3. Gauss-Jordan 

Figure 11 shows the algorithm that performs Gauss-Jordan on an 
N x N array in Ref. 3. Note that the iteration granularity of Gauss-Jordan 
is small and is independent of the problem size. The amount  of variance in 
the iteration length is also small. Problems of this kind are more suitable 
for static scheduling schemes than self-scheduling schemes. To outperform 
the static scheduling schemes on problems of this kind, a self-scheduling 
scheme must be able to achieve load balance with very small scheduling 
overhead. As shown in Fig. 12, SSS is the only dynamic scheduling scheme 
that outperforms the static scheduling scheme. The reason is that SSS 

fori = 1 t o n  
Doall l = i to N*(N - i) { 

j = l d i v ( N - i ) ;  
k = i +  1 + l m o d ( N - i ) ;  
if (i # j) then a[j][k] = a[j][k] - a[j][i]*a[i][k]/a[i][i]; 
} 

f o r j = O t o N -  1 
if (i # j) then a[j][i] = O; 

Fig. 11. Gauss-Jordan. 
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schedules a major portion (over 80 %) of iterations to processors statically, 
the rest of the iterations being used to balance the workload dynamically. 

Factoring does not perform well, particularly when the number of 
processors increases. This is because in Factoring the processors perform 
the largest number of fetches. The second reason is that since all except one 
processor obtain the same amount of work, when one processor finishes its 
work, all other processors (except one) also finish their work; therefore, the 
contention to access the critical section is likely to be much higher than 
that for other schemes. This problem becomes even more serious when the 
number of processors increases. 

Figure 13 shows how the scheduling overhead affects the performance 
on eight processors. When a is small, the scheduling overhead is high. The 
result is that the static scheduling scheme performs well. As the value of 
increases, SSS's performance improves. Finally, SSS outperforms the static 
scheduling scheme. 

6. C O N C L U S I O N S  

We have presented the Safe Self-Scheduling (SSS) scheme to schedule 
parallel loops with variable length iteration execution times not necessarily 
known at compile time. We have shown how to combine static and 
self-scheduling schemes in SSS and draw the advantages from both. SSS 
schedules statically a major portion of the loop iterations to processors to 
reduce the scheduling overhead while it uses self-scheduling to balance the 
workload at runtime. 

Experimental results obtained from a shared-memory parallel com- 
puter indicate that while maintaining a well-balanced workload, the 
performance of SSS is superior to those provided by other well-known 
scheduling schemes. 

SSS achieves a well-balanced workload with a low scheduling over- 
head. SSS's static scheduling phase improves the performance in two ways. 
One is that it increases the affinity between an iteration and the processor 
that executes the iteration thus increasing the cache hit ratio. The other is 
that it reduces the scheduling overhead by assigning a large portion of 
iterations to processors statically. The importance of having a static 
scheduling phase is further demonstrated when self-scheduling is imple- 
mented on distributed-memory machines. ~2~ 

The preliminary work of adopting SSS to a distributed memory 
machine can be found in Ref. 21. We believe that scheduling parallel loops 
on distributed-memory parallel computers can benefit from the two phase 
approach of SSS, since the increased communication cost for a completely 
self-scheduling scheme will degrade the performance. 
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