
International Journal of Parallel Programming, Vol. 22, No. 6, 1994

Safe Self-Scheduling: A Parallel
Loop Scheduling Scheme for
Shared-Memory Multiprocessors 1

Jie Liu, 2 Vikram A. Saletore, 3 and Ted G. Lewis 4

Received August 16, 1993

In this paper we present Safe Self-Scheduling (SSS), a new scheduling scheme
that schedules parallel loops with variable length iteration execution times not
known at compile time. The scheme assumes a shared memory space. SSS com-
bines static scheduling with dynamic scheduling and draws favorable advantages
from each. First, it reduces the dynamic scheduling overhead by statically
scheduling a major portion of loop iterations. Second, the workload is balanced
with a simple and efficient self-scheduling scheme by applying a new measure,
the smallest critical chore size. Experimental results comparing SSS with other
scheduling schemes indicate that SSS surpasses other scheduling schemes. In the
experiment on Gauss-Jordan, an application that is suitable for static scheduling
schemes, SSS is the only self-scheduling scheme that outperforms the static
scheduling scheme. This indicates that SSS achieves a balanced workload with
a very small afnount of overhead.

KEY WORDS: Parallel loops; self-scheduling; scheduling overhead; load
balancing; shared-memory multiprocessors.

~This research has been supported in part by the National Science Foundation under
Contract No. CCR-9210568.

2 Department of Computer Science, Western Oregon State College, Monmouth, Oregon
97361.

3 Department of Computer Science, Oregon State University, Corvallis, Oregon 97331.
4 Current Address: Computer Science Department, Naval Postgraduate School, Monterey

California 93943.

589

0885-7458/94/1200-0589507.00/0 �9 1994 Plenum Publishing Corporation

590 Liu et al.

1. I N T R O D U C T I O N

A difficult problem in the concurrent execution of a set of independent
tasks on a parallel computer, particularly when the tasks have variable
length execution times, is choosing a schedule minimizing the total execu-
tion time. To execute a set of tasks on a parallel computer, we have to
specify, for tasks, the processors that execute them and the order in which
they are executed. Clearly, different specifications may yield different execu-
tion times. Since one of the main reasons we employ parallel computers is
to reduce the total execution time, specifications rendering short comple-
tion times are always desirable. A schedule is a specification listing, for each
task, the processor that executes the task and the order in which different
tasks are executed.

The scheduling problem has attracted the attention of many
researchersJ 1-9) Many results are designed primarily to satisfy a partial
ordering among a set of tasks scheduled to preserve the data dependencies
defined by sequential execution of the set of tasks. ~~ In addition, the
execution time of each task is assumed to be either known or identical. (2'1~

In many scientific applications, a set of independent tasks typically
exists in a parallel loop, i.e., a loop in which each iteration is independent
of all others. Loops are one of the richest sources of parallelism and can be
found in many scientific applications. ~5"7) A parallel loop is also called a
DoAll loop that has no cycles in its dependence graph. ~H) Iterations in a
parallel loop are independent and can be executed in any order. Parallel
Do and SPREAD Do in PCF Fortran and Butterfly Fortran are some of
the other examples of parallel loops.

A set of tasks is independent if there is no data dependence between any
pair of tasks. Since a set of independent tasks can be referred by using a
parallel loop in which each iteration is mapped to a task, the terms parallel
loop and set of independent tasks are used interchangeably in sequel.

This paper discusses the problem of scheduling a set of tasks that are
independent and that have variable length execution times not necessarily
known at compile time. It is important to note that independent tasks can
be executed in any order or simultaneously without affecting the final
result. In addition, variable length iteration execution times are expected
for real applications, tT)

Based on whether the execution times of different iterations are the
same or not, a parallel loop can be categorized as uniform or nonuniform.
A parallel loop is uniform if the execution times of each of its iterations
are roughly the same. To schedule uniform parallel loops for maximum
performance, an equal number of iterations is assigned to each processor
(assuming that processors start to execute the loop at the same time).

Safe Self-Scheduling 591

To schedule nonuniform parallel loops for maximum performance, the
workloads among processors must be balanced with low scheduling over-
head. A balanced workload is the key to the performance because a loop
is finished only after all its iterations have been executed. Since the execu-
tion times vary from one iteration to another, assigning an equal number
of iterations to each processor, as we do in scheduling uniform parallel
loops, may result in one processor finishing much later than the rest of the
processors. We call this last finished processor the critical processor Pc.
Such an unbalanced workload results in poor processor utilization that
degrades the performance significantly.

Many methods have been proposed to parallelize a wide range of serial
loops.(5' 11,12) We assume that the loop has been parallelized and parallel loop
nests have been coalesced/5) Parallel loops with variable length iteration
execution times can be found in applications such as Monte Carlo calcula-
tions, sparse matrix computation, numerical partial differential equation, and
image processing applications. The execution time of a complicated operation
may also greatly depend on its operands. For example, integer multiplication
under 2's complement representation using Booth's algorithm (13) computes
263 x 127 faster than 263 x (-54) . When a parallel loop encloses a triangular
serial loop (e.g., matrix Adjoin-Convolution shown in Ref. 3), iterations of the
parallel loop have different execution times. Even when iterations of a parallel
-loop execute exactly the same statements, the execution times of different
iterations may differ due to memory access interference such as cache misses,
page faults, difference in execution cost depending on its operands, processor
latency, and other "random events. ''~5"7'8)

The rest of the paper is organized as follows. In the next section we
review related work in self-scheduling. SSS strategy is presented in
Section 3 and compared with other schemes. Section4 offers a list of
modifications on SSS to further improve its performance and flexibility. In
Section 5 we present experimental results. We summarize and conclude
with a discussion in Section 6.

2. RELATED WORK

Scheduling has been studied by several researchers in a theoretical
context. ~2,z~ Scheduling schemes can be classified as either static scheduling
schemes or dynamic scheduling schemes. Static scheduling schemes assign
iterations to processors at compile time while dynamic scheduling schemes
do not determine the assignment of tasks until the execution is underway.
The advantage of static scheduling schemes is that they impose no runtime
overhead. The main drawback of static scheduling schemes is that they are
unable to respond to an imbalance in the workload among the processors.
Dynamic scheduling schemes are designed to alleviate this problem.

592 Liu et al.

In the presence of variable length iteration execution times, dynamic
approaches are in principle superior with respect to load balancing. (5)
However, this comes at the cost of additional runtime scheduling overhead.
The common approach of dynamic scheduling of parallel loops is the self-
scheduling technique which maintains a global list of tasks. (1'3'5'7'8'i4) An
idle processor selects and removes the next task from the list and executes
it. That is, the processors "self-schedule" themselves as the program
executes. (5"8'15) In the rest of this section we show how to schedule N itera-
tions of a parallel loop L on a p-processor parallel computer using some
of the well known self-scheduling schemes developed by other researchers.

2.1. Stat ic Schedul ing Schemes

2. 1.1. Static Chunk (SC)

The static chunk assigns each processor with FN/p] consecutive
iterations at compile time. Except in cases when iteration execution times
are roughly the same, such an assignment of iterations to processors may
introduce an unbalanced workload.

2. 1.2. Round Robin (RR)
Round Robin is a modification of SC. Rather than assigning a

processor with a consecutive block of iterations, iterations are assigned to
processors in a round-robin fashion, i.e., iteration i is assigned to processor
imod p. This approach may produce a more balanced schedule than SC
only for some parallel loops. This is because all processors execute the
same number of iterations, about Nip to be exact, and clearly two
processors assigned with the same number of iterations may not finish at
the same time for nonuniform parallel loops. In addition, this approach
may suffer a low cache hit ratio due to the way data is accessed.

2.2. Sel f -Schedul ing Schemes

2.2. I. Pure Self-Scheduling (PSS)

In pure self-scheduling (PSS) a processor fetches one iteration at a time
during runtime when it becomes idle. PSS always achieves a well balanced
workload. However, this well balanced load does not always yield a good
performance because the amount of scheduling overhead is proportional to
the number of iterations of the scheduled parallel loop. For fine-grain
parallel loops, this amount could be large compared to the cost of
computation. In addition, the high frequency of mutually exclusive access
to shared variables, such as the loop index, may cause memory contention
and seriously degrade performance. PSS may be appropriate for loops with

Safe Self-Scheduling 593

relatively few iterations but long variable length execution times compared
to the overhead. Ni and Wu (16~ have performed an extensive study of the
trade-offs between scheduling overhead and workload balancing.

2.2.2. Chunk Self-Scheduling (CSS)

The chunk self-scheduling (CSS) is designed to overcome the high
scheduling overhead problem of PSS. CSS assigns a fixed number k
iterations (chunk) at a time to an idle processor. When k = 1, CSS
becomes PSS. When k=[-N/p-], this scheme can be realized using SC.
When scheduling nonuniform parallel loops, this approach may cause an
unbalanced workload. The main drawback of CSS is its performance
depends on the chunk size and the characteristics of each loop which
may be unknown even at runtime. Too large a chunk size may cause a load
imbalance while too small a chunk size may increase the overhead and
memory contention. Worse yet, even for the same loop, the execution time
does not monotonically increase or decrease with the chunk size.

2.2.3. Guided Self-Scheduling (GSS)
Polychronopoulos and Kuck (5~ show that there cannot be an optimal

value of k in CSS for even the simplest cases and present the guided self-
scheduling (GSS) scheme. In GSS, lip of unscheduled iterations is assigned
to an idle processor. When processors begin to execute the loop at different
times, GSS generates a balanced schedule with low overhead for uniform
parallel loops. When applying GSS to a nonuniform parallel loop with N
iterations, assigning Nip iterations or close to Nip iterations to the first
several fetching processors may cause an unbalanced workload. In addi-
tion, near the end of the scheduling process, GSS assigns many iterations
in groups of one or two. This increases the scheduling overhead. Thus,
GSS(t) was proposed to avoid the problem by allocating no less than t itera-
tions at a time to an idle processor. (5) Clearly, an optimal value of t that
minimizes the overhead while maintaining a balanced workload is both
application and hardware dependent. (5) Furthermore, when the granularity
of a parallel loop is small, the accesses to the shared variables such as loop
index in GSS algorithm may become a bottleneck on a system with a large
number of processors.

2.2.4. Trapezoid Self-Scheduling (TSS)

Tzen and Ni ~8) proposed the trapezoid self-scheduling (TSS) algorithm
to improve GSS. TSS(Ns, NI) assigns the first Ns iterations of a loop to the
processor starting the loop and the last N s iterations to the processor
performing the last fetch, where Ns and N I are both specified by either the
programmer or the compiler. The number of iterations assigned to a

594 Liu et al.

processor between the first and the last fetch is then between Ns and Nf and
linearly decreases based on some step d with each assignment. [d is deter-
mined by Ns, Ny, and N. The number of processors p is not considered
unless the values of N~ or N s is related to p.]

Tzen and Ni proposed TSS(N/2p, 1) as a general selection of N, and
Nf. TSS may yield an unbalanced workload because the difference between
the number of iterations assigned to two processors on their last fetch can
be as large as p x d. For example, when p = 256 and d = 2, the difference is
512 iterations.

2.2.5. Factoring
Hummel et al. introduce Factoring in Ref. 3. In Factoring, fixed sized

chunks of iterations are allocated to processors in batches (a set of p
consecutive chunks forms a batch). With Factoring, c i = [' R i / 2 p] iterations
are allocated to each of the p processors at each scheduling step i, where
Ri is the number of iterations remaining, with R1 initially set to the total
number of iterations. R~ is decremented at each scheduling step to obtain
Ri+ 1 = R i - p c i. The chunk size of each batch is halved from that of
the previous batch. Thus, the algorithm evenly distributes half of the
remaining iterations at each successive allocation. The basic idea of
Factoring is the following: achieving an overall optimal finishing time
requires, for each batch scheduled, enough work being left to smooth out
the uneven finishing time of the batch. The main focus of Factoring is to
achieve a balanced workload.

2.2. 6. Affinity Scheduling
Affinity Scheduling demonstrates the benefit of processor affinityJ ~7)

Affinity Scheduling divides the N iterations of a parallel loop into p chunks
within FN/p-] iterations each. The ith such chunk is placed on the local
work queue of processor i. An idle processor removes 1/k, where k is
suggested to be equal to p, of the iterations from its local work queue and
executes them. When a processor's work queue becomes empty, it finds
"the most loaded processor," removes E1/k -] of the iterations from that
processor's work queue, and executes them. [Note that "the most loaded
processor" has to mean the processor that has the largest number of
unscheduled iterations, rather than the processor that needs a longest time
to finish its iterations, because we cannot determine how much time is
needed to finish a given number of iterations.]

3. SAFE S E L F - S C H E D U L I N G A L G O R I T H M

In this section we will first introduce a self-scheduling scheme called
Safe Self-scheduling (SSS). ~24~ The theorems that support SSS and the basis

Safe Self-Scheduling 595

for combining static scheduling and self-scheduling in SSS are then given.
We devote the last part of this section comparing SSS with the Factoring
scheme due the similarities between the implementations of the two.

To facilitate our presentation, we assume that the parallel loop L's
iteration execution times follow an unknown probability distribution D(L)
with expectation #, standard deviation a, maximum execution time E
and minimum execution time Emi,. We define a chore as a set of consecutive
iterations defined by a starting and an ending iteration number; a fetching
processor is a processor that modifies the global variables, such as the loop
index to obtain more work in the form of a chore; the critical chore is the
last finished chore; the critical processor is the processor that executes the
critical chore; e(i) is the workload of iteration i, i.e., the execution time
needed by iteration i; and E(Tj) is the workload of processor j, i.e., the sum
of workload of iterations executed by processor j.

Throughout the rest of the paper, we assume that the number of itera-
tions N,> p; the values of N and p are known before the loop is executed;
tasks are nonpreemptive; the processors of the parallel machine are homo-
geneous; and the parallel loop is executed in a dedicated environment.

3.1. Safe Sel f -Schedul ing (SSS)

The basic principle of SSS is to assign each processor the largest
number m of consecutive iterations having a cumulative execution time just
exceeding the average processor workload E/p, i.e., Z "+m-~ e(i)<E/p<.
Z '+" e~i~ where E = Z ~ = ~ e(i) and s is some starting iteration number of
the chore. We call m the smallest critical chore size because adding any
more iterations to this chore further imbalances the schedule. On the other
hand, assigning a processor any less iterations results in the processor
being allocated a less-than-average processor workload and another or
some other processors have to execute more iterations. Note that E may be
estimated using the statistical information on the execution times of the
tasks due to executing different branches of the parallel loop body, the
expected execution time of tasks, the total number of tasks, and the
number of processors. When a parallel loop is executed on a dedicated
environment, the total number of tasks and the number of processors are
known before the computation. The expected execution time of tasks and
execution times of different branches of the parallel loop body can be
obtained through profiling or previous runs.

In the implementation of SSS, the size of chores in the first batch,
denoted by CSo, is c~ x N/p, where 0<co ~< 1. c~ is called the Allocation
Factor, and it determines the fraction of the unscheduled iterations
allocated during each batch. The chores in the first batch are assigned to

596 Liu e t al.

processors at compile time. At runtime, when a processor finishes the
iterations assigned to it at compile time, the ith fetching processor is then
assigned a chore of max((1 - ~)rihq x N/p • ~, k) iterations, where k is used to
control the granularity. A method for accurately calculating ~ is given later.

After the value for c~ is determined, the SSS can be implemented as
follows:

1. (a) Before starting the statically assigned iterations, one
processor (say processor 0) calculates the starting iteration
numbers for the chores scheduled in the dynamic scheduling
phase, stores them in an array, say chore_list, and appends
it with p O's.

(b) The same processor sets the shared variable count to 0 then
starts to execute the chore assigned to it statically.

(c) All other processors perform computation on the statically
scheduled chores.

2. During the dynamic scheduling phase an idle processor does the
following in the given order:

(a) begins mutual exclusion;

(b) copies the value of count to i and increments count;

(c) ends mutual exclusion;

(d) if chore-listEi+ 1] >0, then executes the chore defined by
chore_list~i] and chore_list[i+ 1] - 1.

For systems such as IBM's RP3 and the Ultracomputer t18) that can
perform fetch&add atomically, the first three items of step 2 can be reduced
to i=fetch&add(count, l).

Note that the calculation of chores can be modified to suit the charac-
teristics of the loop executed to best realize the basic principle of SSS.
Other scheduling schemes such as GSS, TSS, or Factoring can also be used
to calculated the chore sizes scheduled in the dynamic scheduling phase.

3.2. Theoretical Basis for SSS

De f in i t i on (Balanced Workload). A schedule that maps iterations
of a parallel loop to processors of a parallel computer is balanced if the
difference in workload between any two processors is no greater than the
maximum execution time of a loop iteration.

T h e o r e m 1. If (i) m is selected in the way that for the first m itera-
m tions we have ~7'__-11 e(i) < E/p ..~ ~i= 1 e(i), and (ii) all p processors begin to

execute the loop at the same time, then (a) i f a processor, say Pl , executes

Safe Self-Scheduling 597

rn-- 1 iterations then it finishes no later than the critical processor Pc and
(b) i f the processor executes m iterations, the difference in workload
between any two processors is less than p / (p - 1) Ema x.

ProoL Let E(TI) be the workload for processor pl and Ere,, be the
maximum workload of the other p - 1 processors on the best possible
distribution of the remaining iterations;

(a) Ifp~ executes m - 1 iterations then we have

E - E (T ~) E - E ? u ~ ' e (i) E - E / p E m--1
E r e m ~ - --= > =-->E(T,)= ~ e(i)

p- -1 p- -1 p- -1 p i=,

What is indicated by Ere m > E(T,) is that the processor p, finishes no later
than the critical processor Pc. That is, the critical processor Pc must be one
of the other (p - 1) processors different from p, .

(b) If p~ executes m iterations then E (T ,) = z i m , . Let E/p<~
~ ' i m= 1 e(i) be represented a s ~im= 1 e(i) = E/p + ~, where 0 ~</~ < E then
Ere m = (E - E/p - B)/(P - 1) = E/p - ~/(p - 1). The difference in workload
between processor p, and any other processors is less than E(T t) - Ere m =

E / p + [3 - E / p - ~ / (p + l) , which is 3 [p / (p - 1)] . Since / ~ < E the dif-
ference in workload between any two processors is less than p/(p - 1) Ema x.

Theorem 1 states that assigning m consecutive iterations t.o the first
fetching processor, when z im l e(i)--E/p<~ [(p - - 1)/p] E achieves
balanced workload with minimum scheduling overhead since the processor
only fetches once and the difference in finish times between any two
processors is less than Ema x. The difference in workload between any two
processors is no greater than E by our definition, the workload is
balanced. When ~ ? = t e (i) - E / p > [(p - 1) / p] E the difference in
workload between any two processors is less than p / (p - 1) Em,x and can
be considered to be very well balanced for large p. However, it is not
generally possible to so determine m since e(i) can only be known after the
task ti has been executed; therefore, m can only be estimated. Theorems 2
and 3 specify the lower and upper bound of m.

Theorem 2. If processor pj executes no more than (E/p)/Emaz- 1
iterations and all the processors start to execute the loop at the same time,
then processor pj will not be the critical processor.

ProoL Let E(Tj) be the workload of processor p j, then

< ~ (E / p - 1) Ema x E Emax E(Tj) Ema.,c = ; - -

598 Liu et al.

The average workload for the other p - 1 processors then is E - E (T j) /
(p - 1). In addition, E - E(Tj)/(p - 1) >>. E - (E/p - E,.ax)/(P - 1) = E/p +
E,,ax/(p - 1) > E/p. That is, there must exist at least one processor that has
a workload greater than E(Tj), therefore, processor pj will not be the last
one to finish.

According to Theorem 2, assigning a chore with less than (E/p)~
Ema~,- 1 iterations to a processor guarantees that this particular chore will
not imbalance the schedule. Therefore, (E/p)/E, ,~x-1 is called the safe
chore size. Since it is desirable to assign chores with as many iterations as
possible while maintaining load balance, chores with less than (E/p)~
Em~x- 1 iterations should never be considered.

T h e o r e m 3. If (i) all the processors start to execute the loop at the
same time; (i i)the loop body consists of an if-then-else statement and
prob(then) is the probability of executing the then branch that has an execu-
tion time of Em,x and is the same for all the iterations; (iii) processor pj is
assigned a chore of size N/p and more than N/p xprob(then) iterations in
the chore have a workload Emax; and (i v) E , ~ > 2Emi,, then the workload
cannot be balanced.

Proof. The average workload of a processor is:

E N(prob(then) Era,., + prob(else) Emi,)

P P

Let N/pxprob(then)+ 1 iterations (out of Nip iterations assigned to
processor p j) have a workload of E,,ax, then there must be a processor that
has no more than N/px prob(then) -1 iterations having a workload of
E,,,x. The minimum difference in workload between the two processors is
2(Era,x-Emin), which is greater than Ema x. Then according to our defini-
tion the workload is not balanced.

Usually, for static scheduling, Nip iterations are assigned to a
processor. When the execution times of iterations vary, chores of the same
size may result in different finishing times. Only if iterations assigned to one
processor happen to have more iterations having a long execution time, the
workload cannot be balanced. For this reason, N/p is called the risk chore
size.

For a general approach we propose to select the first chore that has
a size such that the probability that a processor may or may not perform
an additional fetch to be equal (see Fig. 1). For loops where the execution
times follow Bernoulli distribution with Emax having probability prob(Emax)
and being constant for all the iterations, the size of the first chore is the

Safe Self-Scheduling 599

Probability for performing another fetch
Probability for NOT performing another fetch

/ N , / probability(then)
1 .,.,, /

0 a v

Eraaz P

Fig. 1. Safe self-scheduling, calculation of the first chore size.

average of the safe chore size and the risk chore size. Using/~ x N to replace
its statistical equivalence E we have

N I~N (prob(Emin) Emin) t- - - 1 + prob(Em.x) +
CSo_P E,.,,xp_N ~ (1)

2 p 2

prob(min) Emi n 1 + prob(max) +
Emax

_ (2)
2

Note that, by assigning a larger number of iterations than the safe
chore size, we have accepted a moderate amount of risk of imbalance in
exchange for a lower overhead. In cases where the scheduling overhead is
small compared to the iteration execution times, a smaller value of ~ may
be used to balance the workload. The relationship among ~, workload
balance, and scheduling overhead is that a small ~ generally offers a well
balanced workload with the cost of high scheduling overhead.

The smallest critical chore size can be calculated according to the
theorem given here if we assume that the execution time of an iteration is
independent and all the iterations have their execution times follow the
same distribution function.

Theorem 4. For a given confidence factor c >~ ~/2 ln(p) and a set
of n-iteration chores where n is given by

2/~2 N + c20.2 X/(2#2 N 2 7+c2a 2) --4/-t2(~-~) 2
P (3)

n = 2/~2

will, statistically speaking, not imbalance the workload.

Proof. The Central Limit Theorem states that the sums of inde-
pendent random variables tend to be normally distributed. Therefore, for a

600 Liu et al.

set of n-iteration chores, the expected execution time is n * # and the
variance is n �9 a 2. The normal distribution curve is defined as,

l -- l_gt--#n]2

f (t) = ~ - - e
~/2~ a n

for - o o < t < + ~

where # . and a . are the expected value and s tandard deviation of the
values of the r andom variable that has a normal distribution. In our case
. = n * # and an = x /~ * a. The probabili ty for an n-iteration chore to
finish before time to is,

pr(t <~ to)= f~~ ~ f (t)d t

Let

t - - ,ttn
c = ~ (4)

O" n

pr(t < to) can then be calculated by

f
co ~ _ _1c2

pr(c<~Co)= e 2 dc

Let c o denotes the value of c in Eq. (4) when t = (N/p) p, we have

N
- - p - - n , p
P (5) C0

J / l * 0 .2

Kruskal and Weiss ~t9) have shown that if each processor receives a chore
of equal size n the expected finishing time can be approximated as,

n# + x /2na 2 In(p)

Thus, by definition of smallest critical chore n,

n/t + x /2n �9 a 2 ln(p) ~<N/~
P

N
x/2n * G 2 In(p) ~< " ' p - - n#

P

Safe Self-Scheduling 601

N
--/2--n*/2
P ~/2 In(p) ~< /// * 0 .2

N
- - # - - n * / 2
P .,/2 In(p) x//'t * 0 .2 CO

Therefore, the lower bound of Co can be

Co >~ ~/2 ln(p)

Clearly, c o can then be interpreted as the confidence factor. The larger the
co the smaller is the probability for the execution time of the chore to
exceed (N/p)/2. Solving n from Eq. (5), we have,

/Vq_ q- C20.2) 2 __4~2 2/22P C20.2 __ X/(2~2 ~ (@) 2
n__ 2/2 2

3.3. Comparison of SSS and Factoring

The particular implementation of SSS given in this paper is similar to
that of Factoring in the methods used to calculate the chore sizes. Further-
more, in both schemes the chores in the same batch have the same size.
However, there are several main differences between the two schemes. The
first one is that Factoring uses the no-more-than-half rule, i.e., c~<0.5
while in SSS, 0 < e ~< 1. The second difference is that SSS has two phases:
a static scheduling phase and a dynamic scheduling phase. In SSS, a
processor starts to execute a parallel loop with statically assigned iterations
and smoothes out the uneven finishing times with a self-scheduling scheme.
Third, the implementation given in this paper assumes that little is known
about the iteration execution times. When more information is available,
the amount of iterations assigned to each processor can also vary to best
fit SSS's basic principle. Fourth, SSS's static scheduling phase increases the
level of affinity between iterations and the processor because the first N x
iterations' designating processors do not change on different runs of the
loop. This property improves the performance of SSS by increasing the
cache hit ratio and is proved to be beneficial (17) and useful in implementing
self-scheduling on distributed-memory machines. (2~

602 Liu et al.

The argument given by Factoring is that to achieve an overall optimal
finishing time, for each batch scheduled there must be enough work left to
smooth out the uneven-finishing times of that batch. ~3) They argue that for
some of the common distributions of chunk execution times including
bell-shaped distributions, the expected finishing time of the first batch
approaches 2/~Fo (Fo is the same as CSo used in this paper) as the number
of processors p increases. Therefore, there must be pFo iterations left to
smooth out its unevenness. Hence, to have a high probabili ty of even finish
times, no more than half the iterations should be scheduled in the first
batch.

Clearly when 2# > E,~x the expected finishing time of the first batch
does not approach 2#F0 because the execution times of chores in the first
batch must not be greater than EmaxxFo. Let us further consider the
following example.

Consider a for loop that has an if-then-else statement as its loop body.
Let N = 400, E,,~x = 4.0 time units, E,,i, = 1.0 time unit, prob(Emax) = 0.75,
prob(Emi,) = 0.25, and p = 5. Therefore,

/~ = 0.75(4.0) + 0.25(1.0) = 3.25

N
/~ - - = 3.25(400/5)= 260.0

P

a 2 = 0.75(4.0- 3.25) 2 + 0.25(1.0-- 3.25) 2 = 1.6875

chore size 400 53"25/4"0 = 65 safe

400
risk chore size = ,= 80

5

0.75 + 0.25 �88 + 1
a - = 0.90625

2

400
CSo = ~ x 0.90625 ,~ 72

From the example we can see that assigning a processor a chore of
65 iterations (safe chore size) cannot imbalance the workload. This is
because each processor needs to spend an average of 260 time units to
finish the given parallel loop. Had there existed a processor spending less
than 260 time units on the loop, there would have been another processor
spending more than 260 time units on the loop; therefore, the schedule
would be less balanced. However, the longest execution time of a 65 itera-

Safe Self-Scheduling 603

E
e,,.

e,,

"',1

e,"

i .

N

O
t , " -

e~

q,%

1 " ~ o ~

r

I . - .

8 2 8 / 2 2 / 6 - 2

604 Liu et al.

tion chore is 260 time units. Hence we conclude that assigning a processor
fewer than 65 iterations (equivalent to set a~<0.8125) only results in an
increased scheduling overhead. Clearly, the no-more-than-half rule should
not always be followed.

In SSS, the value of a is a main factor determining the total number
of chores produced during the execution of a given parallel loop. The larger
the value of a, the smaller the number of chores produced, resulting in a
smaller overhead. When a becomes too large, chores with long execution
times may be produced resulting in an unbalanced workload. The smaller
the value of ~, the fewer iterations in a chore, and the workload is more
likely to be balanced because processors fetch small amounts of work at a
time. However, scheduling overhead increases. Calculating CSo with an
a smaller than #/E,,,~ increases scheduling overhead without further
balancing the workload.

The total number of chores produced by Factoring is at least
p(1 +lg(N/p)). The total number of chores produced by SSS is plg(N/p)/
lg (1 / (1-c0) . For the example given earlier, SSS produces 10 chores while
Factoring produces at least 37 chores. Note that a scheduling function
needs to modify some global variables that have to be accessed exclusively.
Therefore, the more frequent accessing of the shared variables such as
the loop index, the longer the average time required to access them. We
believe that for fine and medium grain parallel loops or for systems where
accessing shared variables is an expensive operation, SSS will surpass
Factoring. For large grain parallel loops, SSS will perform as good as
Factoring. This is because loops that are suitable for Factoring can be
scheduled using SSS with a = 0.5.

Finding an appropriate value of a requires some information, such as
the maximum and the minimum execution times and prob(then). We argue
that it is possible to obtain approximation of these pieces of information.
The execution times can be obtained through profiling utilities. The
probabilities of a particular execution time can be obtained through
sampling. ~22) In addition, a program that solves a particular problem runs
many times to solve different instances of the same problem. In cases like
this, information regarding the parameters used in SSS can be collected
from the earlier runs and used to benefit the later runs.

Table I shows the chore sizes for several scheduling schemes on the
example given earlier. Since the safe chore size is 65, it is not necessary to
assign a processor a chore less than 65 iterations to start with. Note that
although SSS generates a total of 15 chunks, which is the smallest among
all the schemes, only 10 chunks are assigned to a processor during runtime.

Safe Self-Scheduling 605

4. M O D I F I C A T I O N S TO THE SAFE
SELF-SCHEDULING A L G O R I T H M

In this section we introduce some simple modifications to the SSS
algorithm that further improve the performance and the flexibility of SSS.

4.1. Achieving a Higher Degree of Balanced Workload

As mentioned earlier, selecting a value for e is a trade-off between
increasing the scheduling overhead and achieving a more balanced
workload among the processors. SSS can be easily modified to achieve a
even better balanced workload with roughly the same amount of overhead
by applying a smaller value for e during the dynamic scheduling phase. For
example, using the no-more-than-half rule during the dynamic scheduling
phase of SSS may improve the performance, particularly for a parallel loop
where iterations at the end of the loop are likely to have longer execution
times than iterations at the beginning of the loop. Reverse Adjoint-Con-
volution application in Ref. 3 is an example that exhibits such a behavior.

4.2. Tolerating Faulty Processors

GSS is insensitive to faulty processors, i.e., even if one or more pro-
cessors drop out after executing some chores, GSS would still balance the
workload. This is not true with SSS. Consider the case when a processor
drops out after executing some chores, the rest of the chores defined in the
array chore_l is t no longer reflect the configuration of the current system.
This may cause an unbalanced workload.

Simply using GSS in the dynamic scheduling phase makes SSS also
insensitive to faulty processors. (23) The SSS-GSS scheduling can be
described as given here.

1. Calculate the value for ~.

2. Each processor is then assigned (N / p) ~ iterations statically.

3. Set the global variable count to the first unscheduled iteration's
number.

4. The processors then

(a) begin mutual exclusion;

(b) copy the value of count to i;

(c) t *-- m a x ((N - count)/p, 1);

(d) count*-- count + t;

(e) end mutual exclusion;

(f) execute the chore defined by i and i + t and repeat step 4 if
i > N;

606 Liu et al.

When the number of processors p is large, the value o fp does not need
to be modified if some processors become faulty and drop out of the
system. This is because the old values of the chore sizes are only slightly
smaller than the new ones calculated based on the new value of p. As we
already know, a schedule using smaller chores, in general, results in at least
as well balanced a workload as a schedule using larger chores. Note that
step 4 can be precalculated and stored in an array. By doing so, the critical
section can be replaced by a fetch&add command.

4.3. Di f fer ing Start Times

It is possible that not all of the processors begin to execute the loop
at the same time. Waiting until all processors become free to start the loop
will reduce the overall processor utilization. However, assigning chores in
the first batch of (N/p)c~ iterations to a processor that starts at a much
later time than the first processor that starts the execution of the loop may
lead to an unbalanced workload. To prevent this from happening, we
propose that SSS immediately enters the dynamic phase and determines the
first batch of chore sizes as follows. Let ts be the starting time of the pro-
cessor that starts first, and t~ be the starting time of processor p,.. Then, a
chore of the size

max a - ,0 (6)

is assigned to processor Pi- When (N/p) ~ < (t z - ts)/la, the processor should
then use the first available chore in the chore_list. The effect of this rule
is that the later a processor starts, the less work it needs to complete.
Following the first batch, the remaining batches are computed with the
same approach previously described. This way, SSS continues to provide
the benefits of a low overhead and a balanced workload. If the maximum
delay time tx=max~'=,(t j - - ts) for a processor is known, then ((N /p)c~ -
t U#) p iterations can be scheduled statically by assigning to that processor
with (N/p) c~ - tx/Iz iterations.

5. EXPERIMENTAL RESULTS

Different scheduling schemes are evaluated on a 20-processor Sequent
Symmetry, a shared-memory parallel computer. In this section, we discuss
the results of three different tests. The first test compares the SSS scheme
with other well-known scheduling schemes GSS,(5) TSS, IS) and Factoring (3)
using a parallel loop with an if-then-else statement as its loop body. We

Safe Self-Scheduling 607

Doall i = 1 to SIZE do
if (A(i))

then for (j =0; j < DIVERSITY*N1; j + +) ctl += 1;
else for (j =0; j < N1; j++) ct2 + = 1;

Fig. 2. A parallel loop containing branches.

implement GSS as GSS(1) and TSS as TSS(N/2p, 1). In the other two
experiments, we apply SSS scheme to real applications, namely matrix
multiplication and Gauss-Jordan.

5.1. A Paral lel Loop w i t h an I f - then -e lse S t a t e m e n t

The first test was conducted on the loop shown in Fig. 2. The loop has
four parameters, i.e., SIZE, 2(), N1, and DIVERSITY. SIZE indicates the
problem size. 2() determines the frequency of executing the then branch.
Parameter N1 specifies the granularity of an iteration. Parameter D I V E R -
SITY specifies the diversity between the two branches.

We define the cost of executing a problem on a parallel system as the
product of the parallel execution time and the number of processors used.
The cost curves for different self-scheduling schemes executing the loop of

293
Parallel Loop with Branches

�9 SSS

292 o Factoring

291 >TSS /

o GSS 290 /

289

288

287 /

286 --"
Seq. Exe. Time: 285.96 sec

285 ~ i i I t I I
3 5 7 9 11 13 15 17

N u m b e r of Processors

Fig. 3. Cost curves for different scheduling schemes.

I

19

608 Liu et al.

E
o ~

200
* SSS

180 c, TSS

160 o c s s \

140

120 -

1 0 0 -

8 0 -

6 0 -

4 0

20

1 3 5 7 9 11 13 15 17 19

Number of Processors

Fig. 4. Standard deviations in workload for different scheduling schemes.

Fig. 2 up to 19 processors are shown in Fig. 3. SSS outperforms the other
scheduling schemes. The static scheduling scheme performs fairly well because
the probability of executing the then branch is the same for all iterations.

Figure 4 shows the standard deviations for the processor workload on
the corresponding runs of Fig. 3. The workload was calculated by counting
DIVERSITY time units for each then branch and 1 time unit for each else
branch. All the self-scheduling schemes except TSS provide a balanced
workload. Factoring gives the most balanced workload followed by GSS and
SSS. The well balanced workload of Factoring does not result in a good per-
formance because it comes at the cost of an increased overhead in scheduling.

Figure 5 shows the speedup achieved by different scheduling schemes
using different values of granularity of iterations, i.e., N1. Increasing
the granularity of an iteration decreases the ratio between communication
time and computation time. Therefore, all the scheduling schemes tested
show improvement in performance. SSS scheme surpasses other schemes
in all the tests with noticeable margins. The corresponding workload
balance indicated by the standard deviations is given in Fig. 6. The
workload for static scheduling is 28.3 and is not shown in the figure.
The workload for TSS is also not shown in the figure since it is too large
(170) and does not change much. Although both GSS and Factoring have
a better balanced workload than SSS, they do not result in a better perfor-

Safe Self-Scheduling

15-21

15"0 }0 1'0 2~0 3'0 4'0 5'0 6'0

I tera t ion Granular i ty

Fig. 5. Speedup of different schemes for different granularities.

609

Fig. 6.

22
\\ �9 SSS

k~\ o GSS
17

0

0 10 20 30 40 50 60
I tera t ion Granular i ty

Standard deviations in workload for different schemes using different granularities.

610 Liu et al.

16.0

15.6

15.2

14.8

14.4

14.0

o N l = l

I I I

Fig. 7.

0.5 0.6 0.7 0.8 0.9

O~

Speedup of different granularities for different ~ values.

61

51

r
~

41 ~

"~ 31-

Fig. 8.

21-

I I -

* N I = 6 0

�9 N1 = 30

. N1 = 15

~,NI = 6

o N l = 3

o N l = l

a .

1 T i i
0.5 0.6 0.7 0.8 0.9

O l

Standard deviations in workload for different granularities.

Safe Self-Scheduling 611

mance than SSS because the balanced workload is achieved at the cost of
a much higher scheduling overhead.

Figure 7 shows the speedup achieved by SSS for different values of
for different granularities. Again, the performance of SSS improves as the
iteration granularity increases. When the granularity is small, the selection
of c~ has a greater influence on the performance. An accurate value of e that
reflects the characteristics of the loop produces better performance. When
we increase iteration granularities, the value of e that yields the best perfor-
mance decreases. This mainly is because the performance degradation
caused by scheduling overhead becomes less significant. This suggests that
a relatively smaller value of e should be used when scheduling parallel
loops with a large granularity.

The workload balances of Fig. 7 are indicated by the standard devia-
tions given in Fig. 8. The figure shows that the workload is more balanced
when the iteration granularity increases. It also shows that as long as the
value of c~ is not too large, smaller c~ values do not necessary result in a
more balanced workload, except when N1 = 1. Also, since with a larger
value of c~, more iterations are scheduled statically (i.e., smaller scheduling
overhead), a larger value of c~ should be used whenever possible to reduce
scheduling overhead.

5.2. Ma t r ix Mul t ip l icat ion

The code in Fig. 9 performs matrix multiplication when many elements
of matrix a are zero. In our experiment, 43.75 % of the elements in a are
zero and all of them are located at lower-triangular of the matrix. The
outer two loops are coalesced using the technique in Ref. 5. The execution
time of an iteration is between 297 gs (microseconds) and 793 #s. Using
the idea of Theorem 1, we find that c~ = 0.67. Note that Eq. (1) is no longer
applicable because the loop body is no longer a parallel loop with an ~-
then-else statement. Rather, the loop body is a sequential loop. The results
of using SSS are shown in Fig. 10 with the comparative results given by SS
(static scheduling), TSS, GSS, and Factoring. GSS assigns too much work
at the beginning. This result in a very unbalanced workload and poor
performance.

f o r i = 1 t o N
for j = 1 to N

f o r k = l t o N
if a[i][k] <> 0 then

c[i][j] = c[i][j] + a[i][k]*b[k][j];

Fig. 9. Matrix multiplication where many elements of array a are zero.

612

L)

330

320 -

310 -

300 -

290

280

270

260

250

240

230

M a t r i x M u l t i p l i c a t i o n

* Fac tor ing

�9 SSS

oGS, S f

r r r =. " O

I I I I I I / l I

0 2 4 6 8 10 12 14 16 18 20

n u m b e r o f p r o c e s s o r s

Fig. 10. Execution cost for the matrix multiplication loop given in Fig. 9.

Liu e t al.

5.3. Gauss-Jordan

Figure 11 shows the algorithm that performs Gauss-Jordan on an
N x N array in Ref. 3. Note that the iteration granularity of Gauss-Jordan
is small and is independent of the problem size. The amount of variance in
the iteration length is also small. Problems of this kind are more suitable
for static scheduling schemes than self-scheduling schemes. To outperform
the static scheduling schemes on problems of this kind, a self-scheduling
scheme must be able to achieve load balance with very small scheduling
overhead. As shown in Fig. 12, SSS is the only dynamic scheduling scheme
that outperforms the static scheduling scheme. The reason is that SSS

fori = 1 t o n
Doall l = i to N*(N - i) {

j = l d i v (N - i) ;
k = i + 1 + l m o d (N - i) ;
if (i # j) then a[j][k] = a[j][k] - a[j][i]*a[i][k]/a[i][i];
}

f o r j = O t o N - 1
if (i # j) then a[j][i] = O;

Fig. 11. Gauss-Jordan.

Safe Self-Scheduling

210

205 -

�9 200-

195 -"
o

190 2

185 -

180 -

175
0

�9 SSS /

o SS /

TSS . 4 / '

o Gss . /

I I I I I L i I i

2 4 6 8 10 12 14 16 18 20

n u m b e r o f p r o c e s s o r s

Fig. 12. Costs of running different schemes on Gauss-Jordan.

613

23.6

23.4 -

23.2 -

E

o 23 .0 -
~

~ 22 .8 -

22.6 -

�9 SSS ~ T S S o S S o GSS * F a c t o r i n g

-),. .,I,. k ' k A ,t,) ,

22.4 I , i
0.4 0.6 0.8 1.0

Fig. 13, The effect of using different values of a in Gauss-Jordan.

614 Liu e t aL

schedules a major portion (over 80 %) of iterations to processors statically,
the rest of the iterations being used to balance the workload dynamically.

Factoring does not perform well, particularly when the number of
processors increases. This is because in Factoring the processors perform
the largest number of fetches. The second reason is that since all except one
processor obtain the same amount of work, when one processor finishes its
work, all other processors (except one) also finish their work; therefore, the
contention to access the critical section is likely to be much higher than
that for other schemes. This problem becomes even more serious when the
number of processors increases.

Figure 13 shows how the scheduling overhead affects the performance
on eight processors. When a is small, the scheduling overhead is high. The
result is that the static scheduling scheme performs well. As the value of
increases, SSS's performance improves. Finally, SSS outperforms the static
scheduling scheme.

6. C O N C L U S I O N S

We have presented the Safe Self-Scheduling (SSS) scheme to schedule
parallel loops with variable length iteration execution times not necessarily
known at compile time. We have shown how to combine static and
self-scheduling schemes in SSS and draw the advantages from both. SSS
schedules statically a major portion of the loop iterations to processors to
reduce the scheduling overhead while it uses self-scheduling to balance the
workload at runtime.

Experimental results obtained from a shared-memory parallel com-
puter indicate that while maintaining a well-balanced workload, the
performance of SSS is superior to those provided by other well-known
scheduling schemes.

SSS achieves a well-balanced workload with a low scheduling over-
head. SSS's static scheduling phase improves the performance in two ways.
One is that it increases the affinity between an iteration and the processor
that executes the iteration thus increasing the cache hit ratio. The other is
that it reduces the scheduling overhead by assigning a large portion of
iterations to processors statically. The importance of having a static
scheduling phase is further demonstrated when self-scheduling is imple-
mented on distributed-memory machines. ~2~

The preliminary work of adopting SSS to a distributed memory
machine can be found in Ref. 21. We believe that scheduling parallel loops
on distributed-memory parallel computers can benefit from the two phase
approach of SSS, since the increased communication cost for a completely
self-scheduling scheme will degrade the performance.

Safe Self-Scheduling 61 5

A C K N O W L E D G M ENTS

We would like to thank the Computer Systems Architecture p rogram at
CCR Divis ion at the Nat iona l Science Founda t ion , and the College of
Engineer ing and Prof. Walter G. Rudd of the Depa r tmen t of Compu te r
Science at Oregon State Universi ty for support ing this research in part. Our
thanks go to Prof. Michael J. Qu inn for reading an earlier version of this
paper and for his constructive suggestions. We also thank Yiu B. Lam for
developing the model for statistical analysis for our loop scheduling scheme.

R E F E R E N C E S

1. Z. Fang, P. Tang, P. Yew, and C. Zhu, Dynamic Processor Self-Scheduling for General
Parallel Nested Loops, IEEE Trans. on Computers 39(7):919-929 (1990).

2. R. L. Graham, Bounds on Multiprocessor Scheduling Anomalies and Related Packing Algo-
rithms, Proc. of Spring Joint Computer Conf. (1972).

3. S. F. Hummel, E. Schonberg, and E. L. Flynn, Factoring: A Method for Scheduling Parallel
Loops, Comm. of the ACM 35(8):90-101 (1992).

4. K. Kimura and N. Ichuyoshi, Probabilistic Analysis of the Optimal Efficiency of the Multi
Level Dynamic Load Balancing Scheme, Proc. of the Sixth Distributed Memory Comput.
Conf., pp. 145-152 (1991).

5. C. Polychronopoulos and D. J. Kuck, Guided Self-Scheduling: A Practical Scheduling
Scheme for Parallel Supercomputers, IEEE Trans. on Computers 36(12):1425-1439 (1987).

6. V. A. Saletore, A Distributed and Adaptive Dyanmic Load Balancing Scheme for Parallel
Processing of Medium-Grain Tasks, Proc. of the Fifth Distributed Memory Co.mput. Conf.,
pp. 994-999 (1990).

7. P. Tang, P. Yew, and C. Zhu, Compiler Techniques for Data Synchronization in Nested
Parallel Loops, Proc. oflnt'l. Supercomputing Conf., pp. 177-186 (1990).

8. T. H. Tzen and L. M. Ni, Trapezoid Self-Scheduling: A Practical Scheduling Scheme for
Parallel Compilers, IEEE Trans. on Parallel and Distrib. Syst. 4(1):87-98 (1993).

9. J. Xu and K. Hwang, Heuristic Methods for Dynamic Load Balancing in a Message-
Passing Supercomputer, Proc. of Supercomputing, pp. 888-897 (1990).

I0. E.G. Coffman, Computer and Job-Shop Scheduling Theory, John Wiley and Sons, New York
(1976).

11. T. G. Lewis and H. E1-Rewini, Introduction to Parallel Computing, Prentice-Hall,
New York (1992).

12. M. Wolfe, Loop Rotation, Language and Compilers for Parallel Computing, Research
Monographs in Parallel and Distributed Computing, MIT Press (1990).

13. W. Stallings, Computer Organization and Architecture, Macmillan, New York (1990).
14. E. L. Lust and R. A. Overbeek, Implementation of monitors with macros: A programming

aid for the HEP and other parallel processors, Argonne National Laboratory, ANL-83-97,
Argonne, IL (1983).

15. M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New
York (1987).

16. L. M. Ni and C. E. Wu, Design Tradeoffs for Process Scheduling in Shared Memory
M ultiprocessor Systems, IEEE Trans. on Software Engineering 15(3):327-334 (1989).

17. E. P. Markatos and T. J. LeBlance, Using Processor Affinity in Loop Scheduling on Shared-
Memory, The University of Rochester, Computer Science Department, TR 410 (1992).

616 Liu e t al,

18. A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir, The
NYU ultracomputer--Designing an MIMD shared-memory parallel computer, IEEE
Trans. on Computers C-32(2):175-189 (1983).

19. C. P. Kruskal and A. Weiss, Allocating Independent Subtasks on Parallel Processors,
IEEE Trans. Software Engineering SE-11(10):1001-1016 (1985).

20. J. Liu and V. A. Saletore, Self-Scheduling on Distributed-Memory Machines, Proc. o f
Supercomputing, Portland, Oregon, pp. 814-823 (1993).

21. V. A. Saletore, J. Liu, and B. Y. Lam, Scheduling Non-uniform Parallel Loops on
Distributed Memory Machines, Proc. of Hawaii Int'l. Conf. on Syst. Sci. 2:516-525 (1993).

22. K. Kant, Introduction to Computer System Performance Evaluation, McGraw-Hill, New
York (1992).

23. J. Liu, J. C. Marsaglia, B. Broeg, and V. A. Saletore, Scheduling Parallel Loops Under
Faulty Processors, Proc. of Sixth Int'l. Conf. on Parallel and Distrib. Comput. Syst.,
pp. 387-392 (1993).

24. J. Liu, V. A. Saletore, and T. G. Lewis, Scheduling Parallel Loops with Variable Length
Iteration Execution Times on Parallel Computers, Proc. of I S M M 5th Int'l. Confer. on
Parallel and Distrib. Comput. and Syst., pp. 83-89 (1992).

