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Run-time synchronization overhead is a crucial factor in limiting speedup for 
parallel computers. In this paper, we present a new two-phase algorithm for 
removing redundant dependencies and minimizing interprocessor synchroniza- 
tions when scheduling an acyclic task graph onto a multiprocessor system. The 
first phase removes redundant dependencies before scheduling; the second phase 
eliminates interprocessor synchronizations after scheduling. In a simulation 
using randomly generated task graphs, on the average, 98.28 % of the dependen- 
cies are eliminated in the first phase, and 65.86 % of the remaining dependencies 
are eliminated during the second phase, for a total of 99.41% removed. The 
approach has also been applied to some benchmark task graphs. The two-phase 
algorithm, which has O(n 3) time complexity and O(n 2) space complexity, 
utilizes a new algorithm which computes the transitive closure and reduction at 
the same time, storing results in a single matrix. 

KEY WORDS: Multiprocessor scheduling; redundant dependency; syn- 
chronization; transitive closure; transitive reduction, 

1. INTRODUCTION 

Run-time synchronization overhead is a crucial factor in limiting effective 
speedup when a system of tasks with dependencies among the tasks is 
executed on a MIMD machine with identical processing elements. In this 
paper, we present a new two-phase algorithm for removing redundant 
dependencies and minimizing interprocessor synchronizations when 
scheduling an acyclic task graph onto a multiprocessor system. The first 
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phase removes redundant dependencies before scheduling; while the second 
phase, given a scheduler, minimizes interprocessor synchronizations after 
scheduling. 

When dependent tasks are scheduled on different processors, (inter- 
processor) synchronizations are needed to ensure the correct execution 
of tasks. To achieve interprocessor communication, some multiprocessor 
systems use shared memory]  1'-'~ others use message passing. (3-5) To pass 
values from a task on one processor to a task on another processor intro- 
duces contention for shared resources (e.g., the shared memory, common 
buses). For  each pair of dependent tasks scheduled on different processors, 
one synchronization is required. Removing synchronizations potentially 
avoids multiple accesses to the shared resources. Obviously, to achieve 
greater speedup, synchronizations should be removed whenever they are 
not necessary. 

A task system can be characterized by a directed acyclic graph 
(DAG), G (called a task graph), where vertices represent the tasks and arcs 
represent the dependencies (vertex and task are used interchangeably in 
this paper). (6-8) Three types of data dependencies can be identified in 
programs: flow dependency, antidependency, and output dependency. ~9) 
Each required dependency represents a synchronization between tasks. If 
there is a dependency from task i to task j, then task j cannot start execu- 
tion until task i has completed execution (and the required data is trans- 
ferred). It is assumed that the task graph is acyclic; each strongly connected 
component can be detected and represented by a single vertex. 

The problem of minimizing synchronizations can be formalized as 
shown in Definition 1. 

Def in i t i on  1. Minimal  Synchronization Problem ( M S P )  

�9 Given: (G, m, S), where G = ( V, A) is a task graph, 
V=  { 1,..., n} is the set of vertices, 
A = { (i, j)} is the set of dependency arcs, 
m is the number of processors, 
S is a scheduler. 

�9 Objective: a minimal set of interprocessor synchronizations. 

�9 Constraint: if there is an arc (i, j )  in G, then task j cannot start 
execution until task i has completed execution. 

The required synchronizations will be a subset of A, the set of 
dependency arcs. The key to eliminating a redundant dependency is that an 
arc (i, j )  can be eliminated if it is transitive, i.e., there exists a path from i 
to j going through an intermediate vertex k which is not i or j in the task 
graph. 
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1.1. Related Work  

The multiprocessor scheduling problem has been studied extensively. 
A major difficulty in multiprocessor scheduling comes from the conflict 
between load balancing and communication overhead. Earlier work (v'~~ 
has focused on minimizing the schedule length. Price and Salama (3~ and 
Magirou and Mills ~15~ considered minimizing both the schedule length and 
the communication overhead. It is always possible to remove redundant 
dependencies without sacrificing the schedule length. 

Redundant dependencies can be eliminated both before and after 
scheduling; however, previous researchers have only utilized one reduction 
or the other. Li and Abu-Sufah, (9) Midkiff and Padua, ~16) and Krothapalli 
and Sadayappan (8) remove redundant dependencies only before scheduling; 
whereas, Shaffer (~7~ removes redundant dependencies only after scheduling. 

Li and Abu-Sufah ~91 and Midkiff and Padua 116~ studied the problem of 
removing redundant dependencies in simple loops, where a statement is 
considered as a task. Krothapalli and Sadayappan ~8~ further considered 
removing redundant dependencies in multi-dimensional loops, where the 
innermost loop body is considered as a task. 

When a task system is scheduled on a multiprocessor, additional 
precedence relations are introduced by the scheduler between the tasks 
scheduled on the same processor (the corresponding arcs are called 
precedence arcs). Shaffer ~7) developed an algorithm that used the 
precedence relations to eliminate interprocessor synchronizations after a 
task system is scheduled. Given dependency and precedence relations 
between tasks, an adjacency matrix is formed and its transitive closure is 
computed by using Warshall's algorithm. A dependency arc (i, j )  can be 
deleted i f j  can be reached through a successor k r  of i, requiring O(n) 
operations for each dependency arc. 

1.2. Our Approach and Contr ibut ions 

Our approach is to remove redundant dependencies in a directed 
acyclic task graph both before and after scheduling. Since each of the 
dependencies must be considered by the scheduler, removing redundant 
dependencies can often result in a more efficient scheduler. For  example, 
consider the task system in Fig. 1. When task 1 is scheduled, the scheduler 
might check tasks 2, 3, and 4; however, it is not necessary to check tasks 
3 and 4 because task 2 (which must precede tasks 3 and 4) has not been 
scheduled yet. If the arcs (1, 3) and (1, 4) are removed, the scheduler can 
immediately detect that only task 2 needs to be considered during the next 
cycle of scheduling. 
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Fig. 1. A complete DAG with four vertices. 

Our work is distinct from previous work in several respects: 

�9 We consider eliminating dependencies both before and after scheduling. 
In a simulation using randomly generated task graphs (see Section 4.1 ), 
on the average, 98.28% of the dependencies are eliminated before 
scheduling. This can have a dramatic impact on the efficiency of the 
scheduler. And on the average, 99.41% of the dependencies are finally 
eliminated. 

�9 Our model is valid for any acyclic task graph, which is more general 
than scheduling nested loops. (8"9' 16) 

�9 We develop a new algorithm for jointly computing the transitive 
closure and reduction of a DAG. The determination of dependency 
elimination is reduced to O(1) for each arc, as opposed to O(n) in 
Shaffer's algorithm. ~tT~ The technique is useful for all problems with 
precedence constraints (e.g., the pipeline scheduling problems, 118'~9) 
superscalar pipeline scheduling problems, ~2~ microcode compaction 
problems, ~2~ and channel routing problems~22)). 

The problem under consideration is closely related to the transitive 
closure and transitive reduction problems. ~23-28) In Section 2, we develop a 
new algorithm which computes the transitive closure and transitive reduc- 
tion of a DAG simultaneously. In Section 3, we introduce a new algorithm 
for solving the minimal synchronization problem. The experimental results 
are shown in Section 4, and conclusions are drawn in Section 5. 

2. TRANSITIVE CLOSURE AND TRANSITIVE REDUCTION 

The transitive closure, denoted by G +, of a directed graph (or digraph) 
G is obtained by adding an arc ( i , j )  if there is a path from i to j 
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in G. (24'25'27'28) The transitive closure of a graph indicates the reachability 
of all pairs of vertices in a graph. Two graphs G and G' are said to be 
transitively equivalent if they have the same transitive closure. Such graphs 
have the interesting property that a schedule satisfying the precedence 
relations in one graph satisfies the precedence relations in the other. The 
transitive reduction, denoted by G - ,  of G is obtained by removing as many  
arcs as possible, such that the resulting graph is transitively equivalent 
to G. 

The transitive reduction of a graph gives the most concise representa- 
tion of the set of precedence constraints that must be satisfied by a feasible 
solution. This is especially useful for exhaustive search algorithms (29'3~ 
since many unnecessary arcs can be removed before scheduling. Note  that 
the reduction can be substantial. Consider a complete DAG with n vertices 
(e.g., Fig. 1 is a complete DAG with n = 4); there are n ( n -  1)/2 arcs, but 
there are only n -  1 arcs in the reduced graph. 

For  any digraph, its transitive closure can be uniquely deter- 
mined. 123"24"2v) Finding the transitive reduction of an arbitrary digraph is 
NP-complete~Z6'28); however, if the digraph is acyclic, then its transitive 
reduction can be uniquely determined in polynomial time. 123'27) 

Warshall's transitive closure algorithm 124"25~ finds the transitive closure 
of a matrix that represents a binary relation in O(n 3) time with n being the 
number of vertices. Gries etal. 127) proposed a transitive reduction algo- 
rithm for an initially closed DAG by inverting Warshall 's transitive closure 
algorithm. Note that the transitive closure must be computed before com- 
puting the transitive reduction, which is needed to eliminate redundant  
dependencies. We will classify arcs in a DAG into transitive arcs and direct 
arcs as in the following definition: 

Definit ion 2. Transitive Arc and Direct Arc. An arc ( i , j )  in G is 
called a transitive arc if there exists k ~ i, j such that there is a path  from 
i to k and there is a path from k to j in G. Otherwise the arc is a direct 
arc. 

The transitive closure is formed by adding transitive arcs, while the 
transitive reduction is formed by removing transitive arcs. Note that all 
direct arcs must appear in the original graph, but not all arcs in the 
original graph are necessarily direct arcs. 

2.1. An Algorithm for Jointly Computing the Transitive 
Closure and Transitive Reduction for a DAG 

In this section, we present an efficient algorithm which is able to 
compute the transitive closure and transitive reduction for a D A G  

828/23/3-4 
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simultaneously. Warshall's algorithm for transitive closure is shown on the 
left in Fig. 2. 

The original graph G is represented by an adjacency matrix A such 
that a~= 1 if and only if there is an arc (i, j )  in G. The transitive closure 
is represented by a matrix C such that c,j = l if and only if there is a path 
from i to j in G. We have augmented the algorithm with two additional 
statements (underlined) to develop our transitive closure/transitive reduc- 
tion algorithm, without changing the results of the algorithm. 

T h e o r e m  1. When the Augmented Warshall's algorithm ter- 
minates, C is the matrix representing the transitive closure of A. If G + is 
a graph that has an arc (i,j) whenever c~= 1, then G § is the transitive 
closure of G. 

Proof. See Baase/24) [] 

L e m m a  1. At any time in the Augmented Warshall's algorithm, 
c,y= 1 r ry > 0. 

Proof. It follows because rv = c~ initially, and rij is set to 2 whenever 
c,j is set to 1. [] 

Our algorithm, which jointly computes the transitive closure and 
transitive reduction for a DAG (call it TC/'I-R), is shown on the right in 
Fig. 2. The time complexity of TC/TR is O(n3) .  Note that in step 5 of 
q'C/q'R, r~ is assigned a positive number which is not equal to 1 to indicate 
that (i, j )  is a transitive arc, not a direct arc. 

T h e o r e m  2. When the "I-C/'I'R algorithm terminates, R represents 
the transitive closure of G. If G § is a graph that has an arc (i, j )  whenever 
r~ > 0, then G § is the transitive closure of G. 

Algorithm Augmenzed NarshaZl(A) 

I. C :=A,R:=A 

2. fork= itondo 

3. fori = iton do 

4. forj=Itondo 

5. if cik= i and ck.i = I then 

6. Cij : =  1, rij :---- 2 

7. endif 

Algorithm TC/TR(R) 

1. f o r k  = 1 t o n d o  

2. f o r i  = 1 to n do 

3. f o r j  = l t o n d o  

4. if rik > 0 and rkj > 0 t h e n  

5. rij  := 2 

6. endi f  

Fig. 2. The augmented Warshalrs algorithm and the TC/TR algorithm. TC/TR 
computes the transitive closure and transitive reduction for an adjacency matrix 
R. Note that R is passed by reference. 
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Proof. By Lemma 1, line 5 in the Augmented  Warshall 's  algorithm 
can be replaced by: 

if ri~ > 0 and rkj > 0 then 

C is the matrix representing the transitive closure of A when the 
Augmented  Warshall 's  algorithm terminates by Theorem 1. By Lemma 1, 
c~ = 1 r %. > 0. Hence, R represents the transitive closure of G if r,~ > 0, 
denoting the presence of a path in G. The C matrix is no longer necessary 
in TC/'I'R. [] 

Theorem 3. When the TC/1-R algorithm terminates, R represents 
the transitive reduction of the DAG G. If G -  is a graph that has an arc 
(i, j )  whenever ro= 1, then G -  is the transitive reduction of G. 

Proof. When TC/TR terminates, ry = 2 if and only if there exists k, 
rik > 0 and r~j > 0, that is, there is a path from i to k and there is a path 
from k to j in G. Hence ( i , j )  is a transitive arc in G + and should be 
removed to form the transitive reduction. On the other hand, if rr = 1 when 
TC/-I'R terminates, then ( i , j )  is an arc in G, and there does not exist any 
path from i to j going through an intermediate vertex k. Hence, (i, j )  is a 
direct arc in G and should be retained in the transitive reduction. Conse- 
quently, if G -  is a graph that has an arc (i, j)  whenever r ,)= 1, then G ~ 
is the transitive reduction of G. [] 

3. M I N I M I Z I N G  INTERPROCESSOR S Y N C H R O N I Z A T I O N S  

In this section, we present a new heuristic algorithm for the minimal 
synchronization problem. An efficient two-phase algorithm, Min-Sync,  
that finds the minimal set of interprocessor synchronizations required for a 
static schedule is shown in Fig. 3. 

Algorithm Min-Sync(G,m,S) 

1. for each arc (i,j) in G, set rlj := 1. 
2. ca l l  TC/TR(R) (phase-I) .  

3. ca l l  S to find a schedule by considering ( i , j )  as an arc if rij = 1 (assume task  

i is assigned to processor Pi at t ime ti). 

4. sort tasks  in nondecreasing order into a list using Pl as the  pr imary  key and 

ti as the secondary key. 

5. for  each pair  of consecutive elements i , j  in the list,  set rij := 2 i f p i  = pj. 

6. ca l l  TC/TR(R) (phase-2). 

7. fo r  each arc ( i , j )  in G, delete i t  if rlj  ~ 1 . 

Fig. 3. A two-phase algorithm for the minimal synchronization problem. 
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In the first phase of Min-Sync, redundant dependencies are eliminated 
before scheduling; while in the second phase, unnecessary interprocessor 
synchronizations are removed by using the precedence relations introduced 
by the schedule. When the algorithm Min-Sync terminates: 

�9 if rij= 2, then (i, j )  is either a precedence arc or a transitive arc, and 
is not a required dependency. 

�9 if rij = 0, then there is no arc from i to j. 

�9 if r~j = 1, then (i, j) is a dependency arc, and there is no other path 
from i to j in G. This arc must be retained and denotes a required 
synchronization. 

The time complexity of Min-Sync is O ( n  3) and the space complexity is 
O(n-') where n is the number of vertices. Note that in Min-Sync,  the 
addition of precedence arcs (Steps 4, 5) is performed in O(n log n) time and 
the deletion of each redundant dependency arc (Step 7) is determined in 
O(1) time; while the time complexity is O(n 2) and O(n) respectively in 
Shaffer's algorithm. r 

Note that the scheduler S in Min-Sync can be arbitrary. In our 
simulations, we have chosen the Highest- level-Firs t  (HLF) algo- 
rithm I12"13'311 (see Fig. 4). The level of a vertex i in G is defined as: 

1 if i does not have successors in G 

li := max{lj:j isachild ofi} + 1 otherwise (1) 

We say that a task is ready at time t if all of its parents are scheduled at 
a time earlier than t. 

Algorithm HLF (G,m) 

1. compute the level li for each task i 

2. t : = 0  

3. let Q be the set of unscheduled ready tasks at t 

4. if Q is empty, t h e n  return 

5. k : = 0  

6. whi le  k < m a n d  Q is not empty 

7. i = the task in Q with highest level (ties are broken arbitrarily) 

8. schedule i at time t on processor k and remove i from Q 

9. k : = k + l  

10. end  

11. t := t § 1, go to  step 3 

Fig. 4. A Highest-Level-First scheduling algorithm, where m is the number  of  
processors and l i is computed by Eq. (1). 
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The H LF algorithm has a running time which is linear in the number of 
arcs in the graph. Hence it is desirable for Min-Sync to eliminate as many 
redundant arcs as possible prior to scheduling. Furthermore, other scheduling 
algorithms could require an even greater running time. Hence, we believe that 
phase one reduction is a useful computation step in M in-Sync, especially since 
the overall time complexity is unchanged. 

An example of the reduction process for scheduling a task graph on 
three processors (m = 3) by using the Min-Sync algorithm is shown in 
Fig. 5. The original graph has 13 arcs as shown in (a). In (b), two transitive 
arcs (3, 9) and (3, 10) are removed. The schedule obtained by using the 
HLF algorithm is shown in (c). In the first cycle of the HLF algorithm, Q =  
{ 1, 2, 3, 4, 6}, l 2 = l 3 = 3, l I = l 4 = l 6 = 2 .  T h e  s c h e d u l e r  first c h o s e  2 a n d  3, 
and then chose 6 arbitrarily. Hence, {2, 3, 6} are scheduled in the first 
cycle. After the schedule is imposed on the graph, the precedence arcs (the 
dotted arcs) from the schedule are added to the graph. These arcs are not 
synchronizations. Note that three arcs (1, 8), (3, 5), (2, 7) in (b) can be 
removed by imposing the schedule in (c). Finally, the TC/TF1 algorithm is 
applied again to G, and arcs (2, 8), (6, I0), (7, 10) are removed in (d). Only 
five interprocessor synchronizations are required. 

jjJ'" 

(a) initial graph 
P1 P2 P3 

( 3 ) ~ 2  ~!  
C 

time 
(c) add precedence arcs 

(b) after phase-1 reduction 

P1 P2 P3 

/ 

.\ .  / /  

time 
(d) final graph 

Fig. 5. The reduction process of a task graph by using the Min-Sync algorithm: (a) original 
graph, (b) after removing transitive arcs in phase-l, (c) after considering the precedence con- 
straints (the dotted arcs), (d) final graph. The schedule in (c) is obtained by using the HLF 
algorithm. Note that tasks 2, 3, and 6 may not be finished at the same time. 
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4. EXPERIMENTAL RESULTS A N D  ANALYSIS  

To test the effectiveness of our approach, we have performed a set of 
simulations on randomly generated DAGs and the task graphs described in 
Price's paper (3) using the Min-Sync algorithm and the H LF algorithm for 
scheduling. 

Let [G[ be the number of arcs in G, [G'[ be the minimal number of 
synchronizations required in the final graph, and ]G+[ be the number of 
arcs in G § For  a graph G, define the reduction rate, R(G), and maximal 
reduction rate, R*(G), as follows: 

R(G):=(IGI-IG'I)/IGI, R*(G):=([G+I-IG'[)/[G + ] 

Note that R(G) <-N R*(G) because ]G[ ~ [G + I- For a complete DAG, G, with n 
vertices, R(G)= R*(G)>~ 1 --2In since there are n ( n -  1 )/2 arcs in G and the 
number of arcs in G' is less than or equal to n - 1 (there are n - 1 arcs in G- ) .  

For any graph G generated, the reduction rate indicates the gain obtained 
by this reduction process. There are many graphs that are transitively 
equivalent to G. The maximal reduction rate indicates the largest possible gain 
that can be obtained by this reduction process on these graphs. 

4.1. Simulat ion on Randomly Generated DAGs 

We have performed simulations on randomly generated DAGs. A ran- 
dom DAG generator is shown in Fig. 6, where n is the number of vertices, 
p is the arc occurrence probability, r andom()  is a random number 
generator that generates random numbers in (0, 1), and A is a matrix 
representing the DAG with aij-- 1 if and only if there is an arc in the graph 
from i to j. Note that the graph represented by A is acyclic since a~j can be 
set to 1 only if i < j. In Step 5, vertices are renumbered and A is modified 
accordingly to create more randomness. 

In our simulation, n ranges from 50 to 500 with an increment of 50, 
p ranges from 0.1 to 1 with an increment of 0.1, and m is 2, 4, or 8. For  

Algorithm DAG-Genera~or (A,n,p) 

1. alj := 0, Vi, j 

2. f o r i =  1 t o n - 1  do 

3. f o r j = i +  l t o n d o  

4. i f r~adom()  < p t h e n  alj := 1 

5. randomly renumber the vertices and modify A accordingly 

Fig. 6. A random DAG generator. 
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each (n, p)-pair, ten random instances (DAGs) are generated (1000 DAGs 
in total). Hence, each data point in the figures represents the average of the 
results of ten random instances. For each instance, the program is run for 
rn = 2, 4, and 8. The average number of arcs in the initial graph is shown 
in Fig. 7 ( 100 data points). The average number of arcs after phase- 1 reduc- 
tion is shown in Fig. 8 (100 data points). The number of arcs in the final 
graph is different when different numbers of processors are used. The 
average number of arcs after phase-2 reduction for m = 2, 4, 8 is shown in 
Fig. 9 (100 data points each). The minimum (Min), average (Mean), and 
maximum (Max) over the data points in each of the figures are listed in 
Table I (where IGf is depicted in Fig. 7, IG-I in Fig. 8, and IG'I in Fig. 9). 
On the average, 98.28 % (25920/26374) of the initial arcs are eliminated in 
phase-l; and 65.86% of the remaining dependencies are eliminated during 
phase-2, for a total of 99.41% (26219/26374) of the initial arcs removed (or 
0.59 % of the initial arcs are required synchronizations). The average reduc- 
tion rate and maximal reduction rate for rn = 2, 4, 8 are shown in Fig. 10. 
Note that the performance could have been different if a different scheduler 
had been chosen. 

10- 
8. 

4. 

2.  

O: 
500 

x 104 
12. 

300 

200 
1 O0 

Initial 

0 0 
0.2 

0.4 

Fig. 7. Average number of initial arcs. 

~ .  1 
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Phase-1 

1500. 

1000- 

500- 

0~ 
500 

300 0.8 1 

0.4 
100 ~ "0.2 

0 0 n p 

Fig. 8. Average number of direct arcs after phase-1 reduction. 

F r o m  the s imula t ion  results (Figs.  7-10) ,  some observa t ions  can be 
drawn:  

�9 The  number  of  arcs increases as n increases in the init ial  g raph ,  after 
phase-1 reduct ion,  and  in the final graphs.  

�9 The  n u m b e r  of  arcs in the initial  g r aph  increases as p increases  (see 
Fig. 7). However ,  the number  of  arcs after phase-1 r educ t ion  
decreases slowly as p increases (see Fig. 8). 

Table I. The Minimum, Mean, and Maximum Number of Arcs in G, G +, G - ,  
and G', Where IG- I  is the Number of Arcs After Phase-1 Reduction, 

and IG'I is the Final Number of Synchronizations Required 

Min Mean Max Comment 

]GI 121.75 26374 124750 initial graph G 
I G § I 420.2 46728 124750 transitive closure of G 
]G-I 49 454 1430  transitive reduction of G 
I G'I 0 155 780 f'mal graph 
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Phase-2 (m=,2) 
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5OO 40O 

n 0 
P 

Phase-2 (m=4) 

6CO 

5OO 

g 

5 
300 0.8 

n 0 0 P 

Phase-2 (m=8) 

n 0 0 P 

Fig. 9. Average number of direct arcs after phase-2 reduc- 
tion for m = 2, 4, and 8. 
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Fig. 10. Average reduction rate and maximal reduction rate for rn = 2, 4, and 8. 

- -  For  small p, the graphs are sparse. When  there are fewer arcs 
in the original graph, it is more  likely that these arcs are direct 
arcs (and must  be retained).  Hence,  mos t  of  these are required 
synchronizations in the final graph. 

- - F o r  large p, the graphs are dense. When  there are m o r e  arcs in 
the original graph, it is more  likely that these arcs are transitive 
arcs (and can be el iminated) .  Hence,  fewer arcs remain in the 
final graph. 
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(a) 

Fig. 11. 

iii xx 
/I x\ 

/ \ \  

iii III xx\~\x\ 

(b) 

A simple task graph, where (b) is obtained by adding an arc (1, 2) to (a). 

The result may not be intuitive at first glance. Adding more arcs to 
a DAG does not necessarily increase the number of direct arcs. 
Consider the task graphs in Fig. 11, where (b) is obtained by adding 
an arc (1, 2) to (a). Note that there are four direct arcs in (a), but 
there are only three direct arcs in (b). Adding arc (1, 2) causes arcs 
(1, 3) and (1,4), which are direct arcs in (a), to become transitive 
arcs (they are solid arcs in (a), but dotted arcs in (b)). 
The number of arcs in the final graph increases as m increases. When 
there are more processors available, a greedy scheduler (e.g., HLF) 
tends to schedule tasks among processors to minimize the total 
execution time. Hence, more dependencies are interprocessor 
dependencies, and are required synchronizations. 

The reduction rates are high (close to 1 ) except for small n and small 
p. These graphs are sparse graphs and less reduction can be 
achieved, especially for large m. 

4.2. S imula t ion  on Benchmark  Task Graphs 

Price and Salama (3~ tested the performance of three heuristic 
scheduling algorithms and the simulated annealing approach on a variety 
of task graphs representing real problems. Cases 1, 2, 3, and 6 use a task 
graph in which tasks are fully dependent (i.e., the vertices form a chain); 
cases 4, 5, 13, and 14 use a task graph in which tasks are fully independent 
(i.e., no arcs between vertices); case 9 uses a task tree; cases 10 and 11 use 
a task graph for the parallel Cholesky factorization with 25 tasks; and 
case 15 is an air defense case study with 20 tasks. We have applied the 
Min-Sync algorithm to all task graphs except for the extreme cases where 
the tasks are fully dependent and fully independent. The simulation results 



260 Chao and Harper 

Table II. The Simulation Results of Applying the Min-Sync Algorithm 
to the Test Cases "b 

Case n m S IGI IG+I IG-I I@1 IG'I R(G) R*(G) 

7, 8 16 2 9 17 80 17 12 7 0.588 0.913 
16 4 6 17 80 17 13 13 0.235 0.837 
16 8 6 17 80 17 13 13 0.235 0.837 

9 16 2 lO 15 49 15 10 2 0.867 0.959 
16 4 6 15 49 15 11 10 0.333 0.796 
16 8 5 15 49 15 12 12 0.200 0.755 

10, 11 25 2 13 30 98 30 20 8 0,733 0.918 
25 4 9 30 98 30 25 18 0,400 0.816 
25 8 7 30 98 30 25 24 0,200 0.755 

12 40 2 21 57 96 57 52 8 0.860 0,917 
40 4 12 57 96 57 54 20 0.649 0.792 
40 8 7 57 96 57 53 30 0.474 0.688 

15 20 2 12 47 133 27 21 8 0.830 0.940 
20 4 10 47 133 27 19 13 0.723 0.902 
20 8 9 47 133 27 21 16 0.660 0.880 

" Price and Salama, ~3~ where column 1 is their test case number. 
h n, number of tasks; m, number of processors; S, schedule length; IGI, number of arcs in the 

original graph; I G +1, number of arcs in the transitive closure of G; I G-I, number of direct 
arcs after phase-1 reduction; IGel, number of direct arcs after adding precedence arcs; IG'I, 
number of direct arcs after phase-2 reduction; R(G), reduction rate; R*(G), maximum 
reduction rate. 

a re  s h o w n  in T a b l e  II. The  t w o  c o l u m n s  of  special  in teres t  (i.e., ]GI a n d  

I G'I) are  b o l d f a c e d  for c o m p a r i s o n .  T h e  c o m m u n i c a t i o n  cos ts  in P r i ce ' s  

p a p e r  (3~ are  c o m p u t e d  by us ing  the  n u m b e r s  in c o l u m n  5 (i.e., IGI); 
h o w e v e r ,  the i r  c o m m u n i c a t i o n  cos ts  w o u l d  h a v e  been  r educed  s ign i f ican t ly  

by us ing  the  n u m b e r s  in c o l u m n  9 (IG'I) ins tead.  N o t e  tha t  the  schedu le  

l eng th  in T a b l e  II  (i.e., S)  equa l s  the o p t i m a l  l eng th  specif ied in P r i ce ' s  

paper .  (3~ Hence ,  we h a v e  r e d u c e d  the  c o m m u n i c a t i o n  costs  w i t h o u t  

sacr i f ic ing the  schedule  length ,  a n d  the  p r o g r a m  is g u a r a n t e e d  to  r u n  
cor rec t ly .  

5. C O N C L U S I O N S  

In  this pape r ,  we p resen t  an  efficient a l g o r i t h m  M i n - S y n c  to  f ind a 

m i n i m a l  set o f  i n t e rp roces so r  s y n c h r o n i z a t i o n s  for a t a sk  sys tem to  be  

execu t ed  on  a m u l t i p r o c e s s o r  sys tem.  T h e  a l g o r i t h m  uses a n e w  a l g o r i t h m  

T C / T R  w h i c h  j o i n t l y  c o m p u t e s  the  t r ans i t ive  c losure  a n d  t r ans i t ive  r educ -  

t i on  for a D A G  in a single mat r ix .  Th i s  m a t r i x  a l lows  us to  d i s t ingu i sh  
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direct arcs from transitive arcs and  should be useful for a variety of graph-  
based problems. For  any scheduling algori thm, the M i n - S y n c  a lgor i thm 
can be used to eliminate r edundan t  synchronizat ions  without  sacrificing the 
schedule length. For  many  opt imizat ion problems, the precedence con-  
straints (or dependencies) are represented as DAGs.  For  example, the data  
dependency graphs in superscalar pipeline scheduling problems, microcode 

compact ion  problems, mult iprocessor scheduling problems, and the vertical 
const ra int  graphs in channel  rout ing problems. All these problems should 

also benefit from the TC/-FR algorithm. 
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