
International Journal of Parallel Programming, Vol. 23, No. 6, 1995

A Scalable Method for Run-Time Loop
1 Parallelization

Lawrence Rauchwerger 2'3 Nancy M. Amato, 4 and
David A. Padua 3

Current parallelizing compilers do a reasonable job of extracting parallelism
from programs with regular, well behaved, statically analyzable access patterns.
However, they cannot extract a significant fraction of the available parallelism
if the program has a complex and/or statically insufficiently defined access
pattern, e.g., simulation programs with irregular domains and/or dynamically
changing interactions. Since such programs represent a large fraction of all
applications, techniques are needed for extracting their inherent parallelism at
run-time. In this paper we give a new run-time technique for finding an optimal
parallel execution schedule for a partially parallel loop, i.e., a loop whose
parallelization requires synchronization to ensure that the iterations are
executed in the correct order. Given the original loop, the compiler generates
inspector code that performs run-time preprocessing of the loop's access pattern,
and scheduler code that schedules (and executes) the loop iterations. The inspec-
tor is fully parallel, uses no sychronization, and can be applied to any loop
(from which an inspector can be extracted). In addition, it can implement at
run-time the two most effective transformations for increasing the amount of
parallelism in a loop: array privatization and reduction parallelization (element-
wise). The ability to identify privatizable and reduction variables is very power-
ful since it eliminates the data dependences involving these variables and

1 An abstract of this paper has been published in Ref. 1.
2 Center for Supercomputing Research and Development, University of Illinois at Urbana-

Champaign. (E-mail: rwerger@csrd.uiuc.edu). Research supported in part by Army contract
DABT63-92-C-0033. This work is not necessarily representative of the positions or policies
of the Army or the Government.

3 Research supported in part by Intel and NASA Graduate Fellowships.
4 Department of Computer Science, Texas A&M University. (E-mail: amato@cs.tamu.edu).

Research supported in part by an AT&T Bell Laboratories Graduate Fellowship and by the
International Computer Science Institute, Berkeley, California.

537

828Q3'6-4 0885-7458/95/1200-0537507.50/0 (•) 1995 Plenum Publishing Corporation

538 Rauchwerger, Amato, and Padua

thereby potentially increases the overall parallelism of the loop. W e also
describe a new scheme for constructing an optimal parallel execution schedule
for the iterations of the loop. The schedule produced is a partition of t h e set of
iterations into subsets called wavefronts so that there are no data dependences
between iterations in a wavefront. Although the wavefronts themselves are con-
structed one after another, the computation of each wavefront is fully parallel
and requires no synchronization. This new method has advantages over all
previous run-time techniques for analyzing and scheduling partially parallel
loops since none of them simultaneously has all these features.

KEY WORDS: Run-time: parallelization; schedule; doall; wavefront.

1. I N T R O D U C T I O N

To achieve a high level of performance for a particular program on today's
supercomputers, software developers are often forced to tediously hand-
code optimizations tailored to a specific machine. Such hand-coding is dif-
ficult, error-prone, and often not portable to different machines. Restruc-
turing, or parallelizing, compilers address these problems by detecting and
exploiting parallelism in sequential programs written in conventional
languages. Although compiler techniques for the automatic detection of
parallelism have been studied extensively over the last two decades/~,31
current parallelizing compilers cannot extract a significant fraction of the
available parallelism in a loop if it has a complex and/or statically insuf-
ficiently defined access pattern. This is an extremely important issue
because a large class of complex simulations used in industry today have
irregular domains and/or dynamically changing interactions. For example,
SPICE for circuit simulation, DYNA-3D and PRONTO-3D for structural
mechanics modeling, GAUSSIAN and DMOL for quantum mechanical
simulation of molecules, CHARMM and DISCOVER for molecular
dynamics simulation of organic systems, and FIDAP for modeling complex
fluid flows./41

Thus, since the available parallelism in theses types of applications
cannot be determined statically by present parallelizing compilers, ~*-6)
compile-time analysis must be complemented by new methods capable of
automatically extraction parallelism at run-time. The reason that run-time
techniques are needed is that the access pattern of some programs cannot
be determined statically, either because of limitations of the current
analysis algorithms or because the access pattern is a function of the input
data. For example, most dependence analysis algorithms can only deal with
subscript expressions that are linear in the loop indices. In the presence of
nonlinear expressions, a dependence is usually assumed. Compilers usually
also conservatively assume data dependences in the presence of subscripted
subscripts. More powerful analysis techniques could remove this last

A Scalable Method for Run-Time Loop Parallelization 539

limitation when the index arrays are computed using only statically-known
values. However, nothing can be done at compile-time when the index
arrays are a function of the input data. {7-91

Run-time techniques have been used practically from the beginning
of parallel computing. During the 1960s, relatively simple run-time tech-
niques, used to detect parallelism between scalar operations, were imple-
mented in the hardware of the CDC 6600 and the IBM 360/91J 1~ 111 Various
synchronization schemes have been proposed to delay execution until cer-
tain conditions are satisfied. For example, the HEP multiprocessor ~12~ has
a full/empty bit associated with each memory location and read (write)
accesses are delayed until the bit is full (empty). Similar data-level
synchronization schemes have also been proposed. 113"14~ Higher-level
sychnronization primitives such as lock or compare-and-swap can be used
in the same mannerJ 9' 15, 16) When parallelizing do loops, some of today's
compilers postpone part of the analysis to run-time by generating two-ver-
sion loops. These consist of an i f statement that selects either the original
serial loop or its parallel version. The Boolean expression in the i f state-
ment typically tests the value of a scalar variable.

During the last few years, techniques have been developed for the run-
time analysis and scheduling of l o o p s . 179" 16-26) The majority of this work
has concentrated on developing run-time methods for constructing execu-
tion schedules for partially parallel loops, i.e., loops whose parallelization
requires synchronization to ensure that the iterations are executed in the
correct order. Given the original, or source loop, most of these techniques
generate inspector code that analyzes at run-time the cross-iteration
dependences in the loop, and scheduler/executor code that schedules and
executes the loop iterations using the dependence information extracted by
the inspectorJ 8~

1.1. O u r R e s u l t s

In this paper we give a new inspector/scheduler/executor method for
finding an optimal parallel execution schedule for a partially parallel loop.
Our inspector is fully parallel, uses no synchronization, and can be applied
to any loop (from which an inspector can be extracted). In addition, our
inspector can implement at run-time the two most effective transformations
for increasing the amount of parallelism in a loop: array privatization and
reduction paralletization (element-wise). The ability to identify privatizable
and reduction variables is very powerful since it eliminates the data
dependences involving these variables. Thus, in addition to increasing the
available parallelism in the loop these dependence removing transforma-
tions also reduce the work required of the scheduler, i.e., it need not con-
sider the affected variables. We describe a scheme for constructing an

540 Rauchwerger, Amato, and Padua

optimal parallel execution schedule for the iterations of the loop. The
schedule produced is a partition of the set of iterations into subsets called
wavefronts, so that the iterations in each wavefront can be executed in
parallel, i.e., there are no data dependences between iterations in a
wavefront. Although the wavefronts themselves are constructed one after
another, the computation of each wavefront is fully parallel and requires no
synchronization. The scheduling can be dynamically overlapped with the
parallel execution of the loop iterations in order to utilize the machine
more uniformly. Therefore, our new method has advantages over all the
previous techniques cited earlier since none of them has all o f these
desirable properties (a comparison to previous work is contained in
Section 7).

After covering some necessary background information in Section 2,
we describe our methods for analyzing and scheduling partially parallel
loops in Sections 4 and 5. In Section 6, we discuss some strategies for
applying our techniques most effectively, and we compare o u r new
methods to previously proposed run-time methods for parallelizing loops
in Section 7. Finally, we present some experimental results in Section 8.

2. P R E L I M I N A R I E S

In order to guarantee the semantics of a loop, the parallel execution
schedule for its iterations must respect the data dependence relations
between the statements in the loop bodyJ 2" 3.27-29) There are three possible
types of dependences between two statements that access the same memory
location: flow (read after write), anti (write after read), and output (write
after write). Flow dependences express a fundamental relationship about
the data flow in the program. Anti and output dependences, also known as
memory-related dependences, are caused by the reuse of memory, e.g.,
program variables.

If there are flow dependences between accesses in different iterations of
a loop, then the semantics of the loop cannot be guaranteed unless those
iterations are executed in order of iteration number because values that are
computed (produced) in an iteration of the loop are used (consumed) dur-
ing some later iteration. For example, the iterations of the loop in Fig. la
must be executed in order of iteration number because iteration i + 1 needs
the value that is produced in iteration i, for 1 ~< i < n. In principle, if there
are no flow dependences between iterations of a loop, then those iterations
may be executed in parallel. The simplest situation occurs when there are
no anti, output, of flow dependences between iterations in a loop. In this
case, these iterations are independent and can be executed in parallel. If
there are no flow dependences, but there are anti or output dependences

A Scalable Method for Run-Time Loop Parallelization 541

do i=l, n do i = 1, n/2 do i=I, n
A(K(i)) = A(K(i)) + A(K(i- 1)) SI: unp = A(2*i) do j = l , m

if (A(K(i)) .eq..true.) then A(2*i) = A(2*i-1) SI: A(j) = A(j) + exp0

................. $2: A(2*i-l) = map enddo

endi f enddo enddo
enddo

(a) (b) (c)

Fig. 1. E x a m p l e s o f l oops w i t h d i f fe ren t d a t a d e p e n d e n c e s .

between iterations of a loop, then the loop must be modified to remove all
such dependences before these iterations can be executed in parallel. In
some cases, even flow dependences can be removed by simple algorithm
substitution, e.g., reductions. Unfortunately, not all such situations can be
handled efficiently. In order to remove certain types of dependences two
important and effective transformations can be applied to the loop:
privatization and reduction parallelization.

Privatization creates, for each processor cooperating on the execution
of the loop, private copies of the program variables that give rise to anti
or output dependences (see, e.g., Refs. 30-34). The loop shown in Fig. lb
is an example of a loop that can be executed in parallel by using privatiza-
tion; the anti dependences between statement $2 of iteration i and state-
ment S1 of iteration i + 1, for 1 ~< i<n/2, can be removed by privatizing the
temporary variable trap. In this paper, the following criterion is used to
determine whether a variable may be privatized.

Privation Criterion: Let A be a shared array (or array section) that is
referenced in a loop L. A can be privatized if and only if every read access
to an element of A is preceded by a write access to that same element of
A within the same iteration of L.

In general, dependences that are generated by accesses to variables
that are only used as workspace (e.g., temporary variables) within an itera-
tion can be elimentated by privatizing the workspace. However, according
to this criterion, if a shared variable is initialized by reading a value that
is computed outside the loop, then that variable cannot be privatized. Such
variables could be privatized if a copy-in mechanism for the external value
is provided. The last value assignment problem is the conceptual analog of
the copy-in problem. If a privatized variable is live after the termination of
the loop, then the privatization technique must ensure that the correct
value is copied out to the original (non privatized) version of that variable.
It should be noted that, based on our experience, the need for values to be
copied into or out of private variables occurs infrequently in practice.

Reduction parallelization is another important technique for transform-
ing certain types of data dependent loops for concurrent execution.

542 Rauchwerger, Amato, and Padua

D e f i n i t i o n : 1. A reduction variable is a variable whose value is used
in one associative operation of the form x =x | where | is the
associative operator and x does not occur in exp or anywhere else in
the loop.

Reduction variables are therefore accessed in a certain specific pattern
(which leads to a characteristic data dependence graph). A simple but typi-
cal example of a reduction is statement S1 in Fig. lc. The operator | is
exemplified by the + operator, the access pattern of array A(:) is read,
modify, write, and the function performed by the loop is to add a" value
computed in each iteration to the value stored in A(:). This type of reduc-
tion is sometimes called an update and occurs quite frequently in programs.
There are two tasks required for reduction parallelization: recognizing the
reduction variable, and parallelizing the reduction operation. (In contrast,
privatization needs only to recognize privatizable variables by performing
data dependence analysis, i.e., it is contingent only on the access pattern
and not on the operations.)

Parallel reduction algorithms have been known for quite some time.
If the reduction operation is commutative--a frequent case-- then the
implementation of such methods is less restrictive. One typical method
for the case of commutative reductions is to transform the do loop into a
d o a l l and enclose the access to the reduction variable in an unordered
critical section (29' 35)--a section of code guarded by a lock-unlock opera-
tion which allows mutually exclusive operations on the shared variable.
Drawbacks of this method are that it is not always scalable and requires
synchronizations that can be very expensive in large multiprocessor
systems.

A scalable method can be obtained by noting that a reduction opera-
tion is an associative recurrence and can thus be parallelized using a recur-
sive doubling algorithmJ 36'37) In this case the reduction variable is
privatized in the transformed d o a l l , and the final result of the reduction
operation is computed in an interprocessor reduction phase following the
d o a l l , i.e., a scalar is produced using the partial results computed in each
processor as operands for a reduction operation (with the same operator)
across the processors. We note here that if the reduction operation is com-
mutative then it can be parallelized using dynamically scheduled d o a l l s
(not only statically scheduled in monotonic order) and the cross-processor
merging phase can be done in any order. Most of the reductions encountered
in our experiments were commutative.

Thus, the difficulty encountered by compilers in parallelizing loops
with reductions arises not from finding a parallel algorithm but from
recognizing the reduction statements. So far this problem has been handled

A Scalable Method for Run-Time Loop Parallelization 543

at compile-time by syntactically pattern matching the loop statements with
a template of a generic reduction, and then performing a data dependence
analysis of the variable under scrutiny to guarantee that it is not used
anywhere else in the loop except in the reduction statement.

3. A N A L Y Z I N G PARTIALLY PARALLEL L O O P S AT R U N - T I M E

Given a do loop whose access pattern cannot be statically analyzed,
compilers have traditionally generated sequential code. Although this
pessimistic strategy is safe and simple, as mentioned in Section 1, it essen-
tially precludes the automatic parallelization of entire classes of programs,
e.g., those with irregular domains and/or dynamically changing interac-
tions. Since compile-time data dependence analysis techniques cannot be
used on such programs, methods of performing the analysis at run-time are
required. During the past few years, several techniques have been developed
for the run-time analysis and scheduling of loops with cross-iteration
dependences. ~v-9.16--'zz6~ However, for various reasons, such techniques
have not achieved widespread use in current parallelizing compilers.

In the following we describe a new run-time scheme for constructing
a parallel execution schedule for the iterations of a loop. The general struc-
ture of our method is similar to the previously cited run-time techniques:
given the original, or source loop, the compiler constructs inspector code
that analyzes, at run-time, the cross-iteration dependences in the loop,
scheduler code that schedules the loop iterations using the dependence
information extracted by the inspector, and executor code that executes the
loop iterations according to the schedule determined by the scheduler. In
the previous techniques, the scheduler and the executor are tightly coupled
codes which are collectively referred to as the executor, and the inspector
and the scheduler/executor codes are usually decoupledJ 8) Although for
efficiency purposes our methods can also interleave the scheduler and the
executor, we treat them separately since scheduling and execution are
distinct tasks that can be performed independently.

First, in Section 4, we describe a new inspector scheme that in many
cases should prove superior to previously proposed schemes. Next, in Sec-
tion 5, we describe a scheduler that can use the dependence information
found by the inspector to construct an optimal parallel execution schedule
for the loop iterations; in addition, we mention how the scheduler might
be interleaved with the executor to more efficiently utilize the machine.
After describing the basic components of our methods, in Section 6 we
discuss some strategies for applying them most effectively. Finally, we
compare our new methods to other run-time parallelization schemes in
Section 7.

544 Rauchwerger, Amato, and Padua

4. T H E I N S P E C T O R

In this section we describe a new inspector scheme that processes the
memory references in a loop and constructs a data structure which the
scheduler can use to efficiently assign iterations to wavefronts. In addition,
our inspector can implement at run-time two important transformations:
(element-wise) array privatization and reduction paralletization (see Sec-
tion 2). The ability to identify privatizable and reduction variables is very
powerful since it eliminates the data dependences involving these variables.
In particular, it increases the available parallelism in the loop and also
reduces the work required of the scheduler since it need not consider
dependences involving such variables when it constructs the parallel execu-
tion schedule for the loop iterations.

The basic strategy of our method is for the inspector to preprocess the
memory references and determine the data dependences for each memory

location accessed. Later, the scheduler will use this memory-location
dependence information to determine the data dependences between the
iterations. We describe the method as applied to a shared array A that is
accessed through subscript arrays that could not be analyzed at compile-
time (see Fig. 2a). For simplicity, we first consider only the problem of
identifying the cross-iteration dependences for each array element (memory

R 3
do i = 1,8 iter

A(W(i)) A(R(i)) tyPe
work(i) level

enddo (a)

W (h 8) = [1 3 2 4 3 5 6 3]
R (1 : 8) = [3 7 3 3 8 3 3 3]

1 2 3 4 5 6 7 8 9

I 2 3 4 5 6 7 8 8

r w r r w r r w r
1 2 3 3 4 5 5 6 7

H3 i 2 3 4 5 6 7

index[I in FI 3 l 2 3 5 6 8 9

(b)

(d)

level 1 2 3 4 5 6 7

Fig. 2. Data structures for array-element dependence graphs. A (a) source loop, (b) the
array R3 for A[3], (c) its dependence graph D3, and (d) its hierarchy vector H 3.

A Scalable Method for Run-Time Loop Parallelization 545

location). After describing this inspector, we then discuss how the
dependence information it discovers can be used to identify the array
elements that are read-only, privatizable or reduction variables. The inspec-
tor has two main tasks.

1. For each array element A[x] , the inspector collects all the referen-
ces to it into an array (or list) Rx and stores them in order of
iteration number. For each reference it stores the associated itera-
tion number and access type (i.e., read or write) (see Fig. 2b).

2. For each array element A[x], the inspector determines the data
dependences between all its references and stores them in a data
structure H,. for later use by the scheduler.

In section 4.1, we discuss how the references to each array element can be
collected and stored in the array (or list) R.,.. Thus, assuming that R,. is
available, we now describe how the inspector determines the dependences
among the references to A[x] and computes the data structure H,..

The relations between the references to A[x] can be organized (con-
ceptually) into an array-element dependence graph D.,.. If adjacent referen-
ces in R.,. have different access types, then a flow or anti dependence exists,
and if they are both writes, then an output dependence is signaled. These
dependences are reflected by parent-child relationships in D.,.. If adjacent
references are both reads, then there is no dependence between the
elements, but they may have a common parent (child) in D.,., i.e., the last
write preceding (first write following) them in R.,.. For example, the
dependence graph D3 for A[3] is shown in Fig. 2c.

Our goal is to encode the predecessor/successor information of the
(conceptual) dependence graph D,- in a hierarchy vector H.,. so that the
scheduler can easily look up the dependence information for the references
to A[x]. First, we add a level field to the records in R.,., and store in it the
reference's level in the dependence graph Dx (see Fig. 2b). Then, for each
level, we store in H,. the index (pointer to location) in R,_ of the first
reference at that level. Specifically, Hx is an array and H.,.[i] contains the
index in Rx of the first reference at level i, i.e., Hx will serve as a look-up
table for the first reference in Rx at any level (see Fig. 2d). Note that this
implies that Hx records the position in Rx of every write access and of the
first read access in any run of reads.

We now give an example of how the hierarchy vector serves as a look-
up table for the predecessors and successors of all the accesses. Consider
the read access to A[3] in the sixth iteration, which appears as the sixth
entry in R 3. Its level is 5, and thus it finds its successor by looking at the
5 + 1 = 6th element of the hierarchy vector H3, which contains the value 8

546 Rauchwerger, Amato, and Padua

indicating that its successor is the 8th element in R 3. Similarly, its prede-
cessor is found by looking in the 5 - 1 = 4th element of H3, which indicates
that its predecessor is the 5th element of R3.

4.1. Implementing the Inspector

We now consider how to collect the accesses to each array element
A[x] into the arrays Rx. Regardless of the technique used to construct
these arrays, to ensure the scalability of our methods we must process
(mark) the references to the shared array A in a d o a l l (see Fig. 3a and
b). The computation performed in the m a r k i n g operations will depend
upon the technique used to construct the arrays R,.. In any case, no te that
since we are interested in cross-iteration data dependences we need only
record at most one read and write access in R,. for any particular iteration,
i.e., subsequent reads or writes to A[x] in the same iteration can be
ignored.

4. 1.1. Lexicographic Sort

Perhaps the simplest method of constructing the element arrays R , is
to first place a record for each memory reference into an array RA, and
then sort these records lexicographically by array element (first key) and
iteration number (second key). After this sort, each array R,. will occupy
a contiguous portion (a subarray) in the sorted array Ra. In this case the
marking operations will simply record the information about the access
into R A. After the lexicographic sort, the level of each reference in Dx can
be computed by a prefix sum computation.

4. 1.2. Bucket Sort

Since the range of the values to be sorted is known in advance (it is
given by the dimension of the shared array A), a linear time bucket or bin
sort can be used in place of the more general O(n log n) lexicographic sort.
Moreover, if the inspector's marking phase is chunked (i.e., statically
scheduled), then further optimization is possible. In this case, processor i
will be assigned iterations iFn/p-] through (i + 1)Fn/pq-1, where p is the
total number of processors, n is the number of iterations in the loop, and
0 ~< i <p. The basic idea is as follows. First, in a private marking phase, each
processor marks the references in its assigned iterations, and constructs ele-
ment arrays Rx and hierarchy vectors Hx as described earlier, but only for
the references in its assigned iterations. Then, in a cross-processor analysis
phase, the hierarchy vectors for the whole iteration space of the loop are
formed using the processors' hierarchy (sub)vectors.

A Scalable Method for Run-Time Loop Parallelization 547

The private marking phase proceeds as follows. Let A [l : s] be the
shared array under scrutiny, and suppose each processor has a separate
array pR[l:s, l:2n/p] in which to store the records of the references in its
set of iterations. Each record contains the iteration, type of reference, and
level as described previously. (The second dimension of l:2n/p follows
since, as noted before, at most one read and write to any element will be
marked in each iteration, and each processor has nip iterations). Assuming
a processor marks its iterations in order of increasing iteration number, it
can immediately place the records for the references into its array pR in
sorted order of iteration number. In addition to the array pR, each
processor has a separate array pH[l:s, l:2n/p] used to store the hierarchy
vectors for the references in its assigned set of iterations. Again, assuming
that iterations are processed in increasing order of iteration number, the
hierarchy vectors can be filled in at the same time that the references are
recorded in pR (see Fig. 3c).

In the analysis phase we need to find for each array element A[x] the
predecessor, if any, of the first reference recorded by each processor, i.e., we
need to fill in the value in processor i's hierarchy vector for the reference
that immediately precedes (in the dependence graph D,.) the first reference
to A[x] that was assigned to processor i. Similarly, we must find the
immediate succesor of the last reference to A[x] that was assigned to pro-
cessor i. Processor i can find the predecessors (successors) needed for its
hierarchy vectors by scanning the arrays of the processors less than (larger
than) i. For example, the "?" at the end of p H I 3] for processor 1 in Fig.
3 would be filled in with a pointer to the first element in the array p R [3]
of processor 2. Hence, the initial and final entries in the hierarchy vectors
also need to store the processor number that contains the predecessor and
successor. These scans can be made more efficient by maintaining some
auxiliary information, e.g., for each array element, each processor computes
the total number of accesses it recorded, and the indices in pR of the first
and last write to that element. In any case, we note that filling in the pro-
cessors' hierarchy vectors requires a minimal amount of interprocessor
communication, i.e., it requires only a "connecting" and not a full
"merging" of the different hierarchy vectors.

There are several ways in which the above sketched analysis phase can
be optimized. For example, in order to determine which array elements
need predecessors and successors (i.e., the elements with nonempty arrays
Rx), the processor needs to check each row of its array pR (row i of pR
corresponds to the array Ri). This could be a costly operation if the dimen-
sion of the original array is large and the processor's assigned iterations
have a sparse access pattern. However, the need to check each row in pR
can be avoided by maintaining a list of the nonempty rows. This list can

548

d o i = 1,8
A(W(i))

. . . . A(R(i))
work(i)

e n d d o

W(h8) = [1 3 2 4 3 5 6 3]
R(l:8) = [3 7 3 3 8 3 3 3]

Rauchwerger, Amato, and Padua

doai i p = 1,nproc
p r i v a t e integer j
d o j=start(p,niter),end(p,niter)

markwrite(W(j))
markread(R(j))

e n d d o
e n d d o a l l

(a) (b)

Proc 1
pR

index ~ iter PrOC 2 index

[~ (L_j_Jle'el pR (c)

43r :" ~ w6788'2r 2i3r w r 14]

pH
index

~ index in PR

3~. "~ 1t2131 ?l

index

PH~~'~I?I1t2 r 4t5r
Fig. 3. Result of the marking phase. An example of the private element arrays pR and
hierarchy vectors pH (c) when two processors are used in the inspector d o a l l loop (b) for
the source do loop (a).

be constructed during the marking phase, and then traversed in the analysis
phase--thereby avoiding the need to check every row. Another source of
inefficiency for machines with many processors is the search for a particular
predecessor (or successor) since each processor might need to look for a
predecessor in all the preceding (succeeding) processors' iterations. The
cost of these searches can be reduced from p to O(logp) using a standard
parallel divide-and-conquer "pair-wise" merging approach, 137~ where p is
the total number of processors.

4.2. Privatization and Reduction Recognition at Run-Time

The basic inspector described above can easily be augmented to find
the array elements that are independent (i.e., accessed in only one iteration),

A Scalable Method for Run-Time Loop Parallelization 549

read-only, privatizable, or reduction variables. We first consider the
problem of identifying independent, read-only, and privatizable array
elements. During the marking phase, a processor maintains the status of
each element referenced in its assigned iterations with respect to only these
iterations. In particular, if it finds that an element is written in any of its
assigned iterations, then it is not read-only. If an element is accessed in
more than one of its assigned iterations, then it is not independent. If an
element was read before it was written in any of its assigned iterations, then
it is not privatizable. Next, the final status of each element is determined
in the cross-processor analysis phase as follows.

�9 An element is independent if and only if it was classified as inde-
pendent by exactly one processor, and was not referenced on any
other processor.

�9 An element is read-only if and only if it was determined to be read-
only by every processor that referenced it.

�9 An element is privatizable if and only if it was privatizable on every
processor that accessed it.

Thus, the elements can be categorized by a similar process to the one used
to find the predecessors and successors when filling in the processors'
hierarchy vectors. Finally, if we maintain a linked list of the nonempty
rows of p R as mentioned earlier, then the rows corresponding to elements
that were found to be independent, read-only, or privatizable are removed
from the list, i.e., accesses to these elements need not be considered when
constructing the parallel execution schedule for the loop iterations.

We now consider the problem of verifying that a statement is a reduc-
tion using run-time data dependence analysis. Recall, as mentioned in Sec-
tion 2, that potential reduction statements are generally identified by syn-
tactically matching the statement with the generic reduction template
x = x | exp, where x is the reduction variable, and | is an associative and
commutative operator. The statement is validated as a reduction if it can
be shown through dependence analysis that x is not referenced in exp or
anywhere in the loop body outside the reduction statement. Sometimes the
necessary dependence analysis cannot be performed at compile-time. This
situation could arise if the reduction variable is an array element accessed
through subscripts, and the subscript expressions are not statically
analyzable. For example, although statement $3 in the loop in Fig. 4a
matches a reduction statement, it is still necessary to prove that the
elements of array A referenced in S! and $2 do not overlap with those
accessed in statement $3, i.e., that: K (i) r and L (i) # R (j ') , for all
1 < i,j<~ n. It turns out that this condition can be tested in the same way

550 Rauchwerger, Amato, and Padua

doall i = l , n
private integer j

do i = 1, n do j=start(p,niter),end(p.niter)
S 1: A(K(i)) markwrite(K(i))
$2: A(L(i)) markredux(K(i))
$3: A(R(i)) = A(R(i)) + exp0 markread(L(i))

enddo markredux(L(i))
markwrite(R(i))

(a) enddo
enddoall

(b)

Fig. 4. Example of an inspector loop with privatization and reduction detection. The inspec-
tor of the do loop in (a) is shown in (b). The markwri~:e (markread) operation adds a
record to the processor's array pR (if it is not a duplicate), and updates the hierarchy vector
pH appropriately. The marknoredux operation invalidates the indicated array element as a
reduction variable since it is accessed outside the reduction statement $3.

that read-only and privatizable ar ray elements are identified. In part icular ,
during the marking phase, whenever an element is accessed outs ide the
reduct ion statement the processor invalidates that element as a reduct ion
variable. Again, the final status of each element is determined in the cross-
processor analysis phase, i.e., an element is a reduct ion variable if and only
if it was not invalidated as such by any processor.

This strategy can also be used when the exp part of the RHS o f the
reduction statement contains references to the array A that are different
from the pat tern matched LHS and cannot be statically analyzed, i.e., the
elements referenced in exp are invalidated dur ing the marking phase. A
more complicated situation is when the loop contains several reduc t ion
statements that refer to the same array A. In this case the type of the reduc-
t ion opera t ion performed on each element must be the same t h r o u g h o u t
the loop execution, e.g., a variable cannot participate in bo th a mult i-
plicative and an additive reduction since the resulting operat ion is no t com-
mutat ive and associative and is therefore not parallelizable. The solut ion to
this problem is to also maintain the reduct ion type with each potent ia l
reduct ion variable. Whenever a reference in a reduct ion s ta tement is
marked, the current reduction type (e.g., summat ion , mult ipl icat ion) is
checked with previous one. If they are not the same, the cor responding ele-
ment is invalidated as a reduct ion variable.

4.3. Complex i ty of the Inspector

The worst case complexity of the inspector is O(a logp) , where a is the
max imum number of references assigned to each processor and p is the
total number of processors. In particular, using the bucket sort implemen-

A Scalable Method for Run-Time Loop Parallelization 551

tation, each processor spends constant time on each of its O(a) accesses in
the marking phase. The analysis phase takes time O(alogp) using a
parallel divide-and-conquer pair-wise merging strategy ~37~ as follows. First,
in O(a) time each processor finds, for each element A[x] accessed in its
assigned iterations, the indices pR x of the first and last write to A[x], and
the total number of references to A[x] stored in pR,.. Then, in each of
O(logp) iterations, this information is pair-wise merged across the pro-
cessors so that after the ith iteration the information for groups of 2 i con-
secutive processors is available. Also in every iteration, for the O(a)
elements accessed in its assigned references, each processor checks in O(1)
time for potential predecessors or successors in the group that will be
merged with his current group (which depends on whether the processor is
in the first or the second of the groups to be merged).

We remark that since the cost of the analysis phase is proportional to
the number of distinct elements accessed (i.e., the number of nonempty
rows in the pR array) the complexity of this phase could be significantly
less than O(a logp) if there are many repeated references in the loop. Also,
if a log p > s, then the merge among the processes can be improved to
O(s + l o g p) time by chunking the pR arrays.

5. T H E S C H E D U L E R

We now consider the problem of finding an execution schedule for the
iterations of the loop. We assume that the inspector described in Section 4
has been used on the loop. The scheduler derives the more restrictive itera-
tion-wise dependence relations from the memory location dependence
information found by the inspector. Formalizing this, the memory location
dependences define a directed acyclic graph (dag) D = (V, E) describing the
cross-iteration dependences in the loop: there is a node vi ~ V for each itera-
tion i in the loop, and there is a directed edge (vi, vj) s E if some memory
location has a dependence from iteration i to iteration j. Note that D is
implicit in the reference arrays pR and their hierarchy vectors pH. A valid
parallel execution schedule for a loop is a partition of the set of iterations
into ordered subsets called wavefronts, so that all dependences go from an
iteration in a lower numbered wavefront to an iteration in a higher num-
bered wavefront. We say that a valid parallel execution schedule is optimal
if it has a minimum number of wavefronts, i.e., it has as many wavefronts
as the longest path (the critical path) in the dag.

We remark that the schedulers described next can be used to construct
the full iteration schedule in advance (which is how we describe them for
simplicity), or alternatively, they can be interleaved with the executor, i.e.,
the iterations could be executed as they are found to be ready.

552 Rauchwerger, Amato, and Padua

5.1. A Simple Scheduler

A simple scheduler that finds an optimal schedule is sketched in Fig. 5a.
In the figure, an array wf(i) stores the wavefront found for iteration i, the
global variable done flags if all iterations have been scheduled, r d y (i)
signals if iteration i is ready to be executed, lower case letters (a , b) are
used for references to array elements, a . i t e r is the iteration which con-
tains reference a, and Pred (a) is the set of immediate predecessors of a
in the array element dependence graph. The scheduling is performed in cpl
phases (line 4) so that in phase i the iterations belonging to ith wavefront
are identified. In each phase, all the references recorded in the pR arrays
are processed (lines 7-13), and the predecessors of all references whose
iterations have not been scheduled (line 8) are examined. An iteration is
found not ready if the iterations of any of its reference's predecessors were
not assigned to previous wavefronts (line 10). After all the references are
processed, all the iterations are examined (lines 14-17) to see which can be
added to the current wavefront: an iteration i is ready (line 15) if none of
its references set r d y (i) to false. Advantages of this scheduler are that it
is conceptually very simple and quite easy to implement.

Optimizing the simple scheduler. There are some sources of inefficiency
in this scheduler. First, since a write access could potentially have many
"parent" read accesses, it could prove expensive to require such a write to
check all of its "parents" (line 9). Fortunately, this problem is easily

wf(l:rmmiter)=0 D X for A[x]
done = .false. level
cpl = I

4 do while (done.eq..fatse.)
rdy(l:numiter) = .false. 1 " " ~ " i t e r a t i o n
done = .true.

7 doali i ~ l ~ a ~ c e s s : :

8 2
9 for each (b inPred(a))
10 if (wf(b.iter).eq.0) done,rdy(a.iter) = .false. 3

endfor
endif

14 enddoall 4
15 doall i = l,numiter
16 if (rdy(i).eq..true.) wffi) = cpl
18 enddoall

cpl = cpl + 1
enddo while (b)

(a)

Fig. 5. A simple scheduler. In (a) , w f (i) stores the wavefront found iteration i, the global
variable d o n e flags if all iterations have been scheduled, r dy (i) signals if iteration i is ready
to be executed, lower case letters (a , b) are used for references to memory locations,
a . i t e r is the iteration which contains reference a, and Pred (a) is the set of immediate
predecessors of a in the memory location dependence graphs. The dependence graph for one
of the memory locations accessed in the loop is shown in (b) .

A Scalable Method for Run-Time Loop Parallelization 553

circumvented by requiring an unscheduled read access to inform its suc-
cessor's iteration (the successor, if any, is a write to the same address) that
it is not ready. Then, a write access only needs to check its predecessor if
the (single) predecessor is also a write.

Another source of inefficiency arises from the fact that each inner
d o a l l (lines 7-13) requires time O(n,/p) to identify unscheduled iterations
(line 8), where n a is the total number of accesses to the shared array and
p is the number of processors. Thus, the scheduler takes time O((na/p)cpl),
where cpl is the length of the critical path. Thus, i fp = O(cpl), then it can-
not be expected to offer any speedup over sequential execution, and even
worse, it could yield slowdowns for longer critical paths.

However, note that in any single iteration of the scheduler, the only
iterations that could potentially be added to the next wavefront must have
all their accesses at the lowest unscheduled level in their respective element-
wise dependence graphs. For example, consider the dependence graph
shown in Fig. 5b. If iteration 2 (level 1) has not been scheduled yet, then
none of the iterations with accesses in higher levels could be added to the
current wavefront. Thus, in each of the cpl iterations of the outer do while
loop, we would like to examine only those references that are in the top-
most unscheduled level of their respective dependence graph. First note
that we can easily identify the accesses on each level of the array element
dependence graphs since references are stored in increasing level order in
the pR arrays and the pH arrays contain pointers to the first access at each
level. However, to process only the accesses on the lowest unscheduled
level it is useful to have a count of the total number of (recorded) accesses
in each iteration. This information can easily be extracted in the marking
phase and stored in an array indexed by iteration number. Then, in the
scheduler, a count of the number of ready accesses for each iteration can
be computed on a per-processor basis in the first d o a l l (lines 7-13). In
the second d o a l l (lines 14-17), the cross-processor sum of the ready
access counts for each unscheduled iteration is compared to its total access
count, and if they are equal the iteration is added to the current wavefront.

In summary, we would expect this optimized version to outperform
the original scheduler if there are multiple levels in the array element
dependence graphs, i.e., because it only examines the accesses at the lowest
unscheduled level in any iteration of the outer do while. However, note that
if there are not many repeated write accesses (and thus few levels), then it
is possible that this version could in fact prove inferior to the original (due
to the cross-processor summation of the counts). Therefore, the determina-
tion of which version to use should be made using knowledge gained about
the access pattern by the inspector. These issues are discussed in more
detail in Section 6.

828/23 6-5

554 Rauchwerger, Amato, and Padua

Overlapping scheduling and execution. As mentioned earlier, the
scheduler can construct all the wavefronts in advance or it can be inter-
leaved with the executor so that wavefronts are executed as they are found.
A third alternative is to overlap the computation of the wavefronts with the
execution of the loop. First, all the processors compute the first wavefront.
Then, some processors are assigned to execute the iterations in that
wavefront, and the rest of the processors compute the next wavefront. The
strategy is carried out repeatedly until all wavefronts are computed. The
number of processors assigned to each task would depend upon the
amount of work contained in the wavefront. Thus, this approach "fills out"
the wavefronts that cannot employ all the processors, i.e., in effect we
dynamically merge the parallelism profiles of the wavefront computation
and the loop execution to more fully utilize the machine.

Remark: 1. In this paper we are mainly concerned with constructing a
parallel execution schedule for the iterations of the loop. However, we
would like to note that the array element dependence information extracted
by the inspector could also be used for producing schedules that overlap
iterations or for creating multiple threads of execution.

6. S T R A T E G Y FOR A P P L Y I N G R U N - T I M E P A R A L L E L I Z A T I O N

In this section we outline the basic strategy for using the methods in
a real application environment.

At Compile-Time.

1. A cost~performance analysis is performed to evaluate whether a speedup
can be obtained by these methods (which is not always the case).

2. I f the compiler decides to perform run-time parallelization, then an
inspector for the marking phase is extracted from the source loop
and any other code needed for the methods is generated.

Cost/Performance Analysis. The cost/performance analysis is
primarily concerned with evaluating the amount of available parallelism in
the loop. Since the data dependence relations between the loop iterations
cannot be analyzed statically, an estimate of the available parallelism in the
loop can only be made at compile-time using meaningful statistics from
previous runs of the program. If the loop is instantiated several times in the
same program, then an estimate of the available parallelism in a future
instantiation could be made at run-time using statistics from previous
invocations of the loop within the same run. For every given (estimated)
amount of parallelism, the potential speedup is a function of the ratio
between the work of the loop body and the number of accesses that are

A Scalable Method for Run-Time Loop Parallelization 555

shadowed using our methods. The smaller this ratio, the more difficult
it will be to obtain a speedup, with the worst case being what we call a
"kernel," i.e., a loop that performs only data movement and no computa-
tion. Therefore, in order to obtain a speedup, a substantial amount of
parallelism, and sufficient processors to exploit it, are needed.

Instrumentation and Code Generation. For the marking phase, the
compiler needs to extract a marking loop, i.e., a parallel loop that traverses
the access pattern of the source loop without side effects (without modify-
ing the original data). It is imperative that the marking loop be parallel, for
otherwise it defeats the purpose of run-time parallelizationJ 7' 2L) (Next, we
mention some special circumstances in which speedups might still be
obtained using a sequential marking loop.) A parallel marking loop can be
distributed into a loop computing the addresses of the array under test and
another loop which uses those addresses (i.e., when the address computa-
tion and data computation are not contained in the same strongly con-
nected component of the dependence graph). Unfortunately, in some cases
such a marking loop does not exist, in particular, when the data computa-
tion in the loop affects future address computations in the loop. After
extracting a marking loop, if possible, the compiler augments it with the
code for the marking operations, and generates the code for the analysis
phase, and for the scheduling and execution of the loop iterations. If a
marking loop cannot be extracted, then the compiler must choose between
sequential execution and a speculative parallel execution. ~24~

At Run-Time.

1. At run-time [and possibly also at compile-time] an evaluation of the
storage requirements of the methods is performed. If these
requirements are prohibitive for the full iteration space of the loop,
then the marking loop can be strip-mined and the method (i.e.,
marking, analysis, and scheduling) can be applied to each strip.
Even in the case of strip-mining, an optimal schedule can be
obtained since the scheduling method can be easily modified to
assign iterations in each strip to a single wavefront structure.

2. The marking phase is executed.
3. Using information gathered during the marking phase, the compiler

decides whether to continue with run-time parallelization. A lower
bound on the length of the critical path is the maximum level
(across processors) assigned to any individual array element. If
this lower bound is too high, then parallelization should be
abandoned and the source loop should be executed sequentially
since speedups are unlikely.

556 Rauchwerger, Amato, and Padua

.

.

The analysis phase is executed. Recall that the analysis phase iden-
tifies all elements that are independent, read-only, privatizable, or
reduction variables, and that accesses to these elements are
removed from consideration by the scheduler. If all elements fall
into one of these categories, then the loop can be executed as a
d o a l l and the scheduling step is omitted.

Execute an appropriate scheduler (overlapping it with ready itera-
tions of the source loop). The optimized simple scheduler should
prove superior to the original version unless the element-wise
dependence graphs have large average degree (see Section 5).
Since the optimal parallel schedule may be imbalanced (the num-
ber of iterations in a wavefront can vary significantly between
wavefronts), it is desirable to interleave the scheduler and the
executor, i.e., overlap the scheduler's wavefront computations with
the actual execution of the ready iterations. This can either be
achieved with a dynamic partition of the processors among these
two tasks (see Section 5) or with a dynamic ready queueJ 38,39~

Schedule reuse and decoupling the inspector/scheduler and the executor.
Thus far, we have assumed that our methods must be used each time a
loop is executed in order to determine a parallel execution schedule for the
loop. However, if the loop is executed again, with the same data access pat-
tern, the first schedule can be reused amortizing the overhead of the
method over all invocations. This is a simple illustration of the schedule
reuse technique, in which a correct execution schedule is determined once,
and subsequently reused if all of the defining conditions remain invariant
(see, e.g., Saltz et al. ~s)) If it can be determined at compile time that the
data access pattern is invariant across different executions of the same loop,
then no additional computation is required. Otherwise, some additional
computation must be included to check this condition, e.g., for subscripted
subscripts the old and the new subscript arrays can be compared. Although
a parallel marking loop is always desirable, if schedule reuse can be applied
then it may still be possible to obtain speedups with a sequential marking
loop since its one sequential execution will be amortized over all loop
instantiations.

Another method to reduce the cost associated with these methods is to
hide their overheads by executing them as soon as all the necessary data
are available. If this type of decoupling is possible, then the inspector phase
could be overlapped with other portions of the program--thereby more
fully exploiting the processing power of the machine (of course support for
M I M D execution is highly desirable in this case).

A Scalable Method for Run-Time Loop Parallelization 557

7. A C O M P A R I S O N W I T H P R E V I O U S M E T H O D S

In this section we compare the methods described in this paper to
several other techniques that have been proposed for the run- t ime analysis
and scheduling of do loops. Most of the previous work has concent ra ted
on developing inspectors. Consequent ly , a wide variety of inspectors have
been proposed that differ according to the types of loops on which they can
be applied, the techniques they use, and the informat ion they gather. In the
following, we briefly describe some of the previous methods, placing par-
t icular emphasis on the differences from and similarities to our methods.
A high level compar ison of the various methods is given in Table I.

Methods utilizing critical sections. One of the first run- t ime methods
for scheduling partially parallel loops was proposed by Zhu and Yew. (91 It
computes the wavefronts one after another using a method similar to the
simple scheduler described in Section 5.1. Dur ing a phase, an i terat ion is
added to the current wavefront if none of the data accessed in that i terat ion

Table I. A Comparison of Runtime Parallelization Techniques for do Loops ~

Method

Obtains Contains Requires Restricts Privatizes
Optimal Sequential Global Type of or Finds
Schedule Portions Synchron. L o o p Reductions

This Paper Yes No No No P,R
Zhu/Yew 19~ Nob No Yes" No No
Midkiff/Padua ~ 16) Yes No Yes" No No
Krothapalli/Sadayappan t 19) No u No Yes c No P
Chen/Yew/Torrellas 1 is) N o b'a No Yes No No
Saltz/Mirchandaney ~2n No u No Yes Yes j No
Saltz et aL Is~ Yes Yes e Yes Yes f No
Leung/Zahorjan 171 Yes No Yes Yes f No
Polychronopoulous ~2~ No No No No No
Rauchwerger/Paduat23. 24) No g No No No P,R

~P and R indicates the method identifies privatizable and reduction variable, respectively.
b The method serializes all read accesses.
" The performance of the method can degrade significantly in the presence of hotspots.
UThe scheduler/executor is a doacross loop (iterations are started in a wrapped manner)

and busy waits are used to enforce certain data dependences.
The inspector loop sequentially traverses the access pattern.

rThe method is only applicable to loops without any output dependences (i.e., each memory
location is written at most once).
The method only identifies fully parallel loops.

558 Rauchwerger, Amato, and Padua

is accessed by any lower unassigned iteration; the lowest unassigned iteration
to access any array element is found using atomic compare-and-swap syn-
chronization primitives and a shadow version of the array. Midkiff and
Padua 1~6~ extended this method to allow concurrent reads from a memory
location in multiple iterations. Due to the compare-and-swap synchroniza-
tions, this method runs the risk of a severe degradation in performance for
access pattems containing hot spots (i.e., many accesses to the same memory
location). However, when there are no hot spots and the critical path length
is very small, then this method should perform well. An advantage of this
method is reduced memory requirements: it uses only a shadow version of
the shared array under scrutiny whereas all other methods (except (Refs. 20,
23, and 24) unroll the loop and store all the accesses to the shared array.

Krothapalli and Sadayappan ~9) proposed a run-time scheme for
removing anti and output dependeces from loops. Their scheme includes a
parallel inspector that determines the number of accesses to each memory
location using critical sections as in the method of Zhu and Yew (and is
thus sensitive to hotspots). Using this information, for each memory loca-
tion, they place all accesses to it in a dynamically allocated array and then
sort them according to iteration number. Next, the inspector builds a
dependence graph for each memory location (similar to our Rx arrays),
dynamically allocates any additional global storage needed to remove all
anti and output dependences (using renaming), and explicity constructs the
mapping between all the memory accesses in the loop and the storage, both
old and new, thereby inserting an additional level of indirection into all
memory accesses. The loop is executed in parallel using synchronization
(full/empty bits) to enforce flow dependences. To our knowledge, this is the
only other run-time privatization technique except refs. 23 and 24.

Recently, Chen et aL ~8~ proposed an inspector that has a private
phase and a merging phase. In the private phase, the loop is chunked and
each processor builds a list of all the accesses to each memory location for
its assigned iterations. This is similar to the private marking phase of
our inspector except that they serialize read accesses (i.e., they have a list
of the dependence graph). Next, the lists for each memory location are
linked across processors using a global Zhu/Yew algorithm. ~9) Their
scheduler/executor uses d o a c r o s s parallelization, I-'~2) i.e., iterations are
started in a wrapped manner and processors busy wait until their operands
are ready. Although this scheme potentially has less communication over-
head than ref. 9, it is still sensitive to hot spots and there are cases (e.g.,
d o a l l s) in which it proves inferior to ref. 9.

Methods for loops without output dependences. The problem of
analyzing and scheduling loops at run-time has been studied extensively by

A Scalable Method for Run-Time Loop Parallelization 559

Saltz et al. ~1'8"21"22"26~ Most of their work assumes that there are no
output dependences in the source loop. In d o a c r o s s parallelization,(2 ~ ~ an
inspector finds the (at most one) iteration in which each variable is written.
The scheduler/executor starts iterations in a wrapped manner and pro-
cessors busy wait until their operands are available. In Ref. 8, the inspector
constructs wavefronts that respect flow dependences by performing a
sequential topological sort of the accesses in the loop, and the scheduler/
executor enforces any anti dependences using old and new versions of each
variable (possible since each variable in the source loop is written at most
once). The topological sort can be parallelized somewhat using d o a c r o s s
parallelization. Leung and Zahorjan ~7~ proposed methods of parallelizing
the sequential inspector of ref. 8. In sectioning, the loop is chunked and
each processor computes an optimal parallel schedule for its chunk, and
then these schedules are concatenated together, separated by synchroniza-
tion barriers. In bootstrapping, the inspector is parallelized using sectioning.
Although bootstrapping might not optimally parallelize the inspector (due
to the synchronization barriers introduced for each processor), it will
produce the same optimal schedule as the original sequential inspector.

Other methods. In contrast to these methods which place iterations
in the lowest possible wavefront, Polychronopoulos, ~2~ gives a method
where wavefronts are maximal sets of contiguous iterations with no cross-
iteration dependences. Dependences are detected using shadow versions of
the variables, either sequentially, or in parallel with the aid of critical
sections as in Ref. 9.

All of the previously mentioned methods attempt to find a valid
parallel execution schedule for the source do loop. Recently, some of us
considered a related problem (23' 24~: testing at run-time whether the loop is
fully parallel, i.e., whether there are any cross-iteration dependences in the
loop. Our interest in fully parallel loops is motivated by the observation
that they arise frequently in real programs. The test uses shadow versions
of the shared variables, is fully parallel, requires no synchronization, and
can be applied to any loop. If desired, it can be used speculatively (i.e.,
without an inspector), and can also identify privatizable and reduction
variables.

8. E X P E R I M E N T A L R E S U L T S

In this section we present experimental results obtained on two
modestly parallel machines with 8 (Alliant FX/80 (4~ and 14 processors
(Alliant FX/2800~41)).

560 Rauchwerger, Amato, and Padua

To demonstrate that the new methods can achieve speedups, we
applied them to three loops contained in the PERFECT Benchmarks ~4-'~
that could not be parallelized by any compiler available to us. In addition,
in order to analyze the overhead incurred by the methods, we applied them
to different access patterns taken from loops in the PERFECT Benchmarks
and to synthetic access patterns generated to test their behavior in various
situations.

The methods were implemented in Cedar Fortran. ~43~ The inspector
was essentially as described in Section 4. In particular, we implemented the
bucket sort version using separate pR and pH data structures for each pro-
cessor. To avoid checking each row in pR during the analysis phase of the
inspector and in the scheduler, each processor constructed a linked list of
the non-empty rows in its pR array during the marking phase. Checks for
independent, read-only, and privatizable elements were implemented in the
inspector (we did not yet incorporate the test for reduction variables). In
the analysis phase, these elements are classified at the same time that the
predecessors and successors are found for each row. One optimization that
we did not yet implement was the "pair-wise" merge across processors when
searching for predecessors or successors in the analysis phase (or when
classifying elements as independent, read-only, or privatizable). However,
this is an important optimization since, as previously noted, without it the
analysis phase of the inspector may fail to scale with the number of pro-
cessors. Since we implemented the optimized version of the simple
scheduler described in Section 5, a count of the total number of accesses in
each iteration was computed in the marking phase (no inter-processor
communication is needed to determine these counts since each iteration is
assigned to a single processor). For simplicity, the scheduler and the
executor were completely decoupled in the implementation. In general,
however, better speedups should be obtainable by interleaving these two
tasks (see Section 5).

8.1. Synthet ic Access Patterns

Using synthetic loops, we now study the sensitivity of the overhead of
the methods to two characteristics of the source do loop: its average
parallelism (the number of iterations divided by the number of wavefronts
in an optimal parallel execution schedule) and its hotspot degree (the
maximum number of repeated accesses to any array element). To simplify
the generation of the synthetic workloads, we did not identify independent,
read-only, or privatizable elements in the analysis phase. This should not
affect our conclusions, however, since these computations can be folded
into the searches for predecessors and successors (with little extra work).

A Scalable Method for Run-Time Loop Parallelization 561

Average parallelism. To isolate the affect of the average parallelism in
the source loop on the overhead of the methods, we generated access pat-
terns that were as similar as possible in all aspects except for the average
parallelism. In particular, there were two accesses in every iteration (a read
followed by a write), and every array element was accessed approximately
twice (at some boundary conditions some elements are accessed either once
or three times).

First, we would not expect the inspector execution time to be depen-
dent on the average parallelism in the loop. In the marking phase each pro-
cessor marks nJp accesses in its private shadow array (to isolate the effects
of the average parallelism, we assume that the marking phase is balanced).
The overhead of the analysis phase is primarily dependent upon the num-
ber of distinct array elements marked in its pR array (since it must find
successors and predecessors for each nonempty row). Thus this overhead
might vary inversely with the hotspot degree, but it is not necessarily
dependent on the average parallelism because for the same critical path
length the hotspot degree can be anywhere between 2 and the number of
iterations. In Figs. 7 and 8, we display results from a loop with 2048 itera-
tions run on 10 processors. The plot shows the overhead incurred for a
loop with a critical path length of "Step" (the average parallelism is the
number of iterations divided by the critical path length). As expected, the
overhead of the inspector is invariant with the length of the critical path,
and that of the schedule grows linearly with this length.

We now consider how the speedup of the overheads relates to the
average parallelism. Since the execution time of the inspector is indepen-
dent of the average parallelism, its speedup should not depend on it either.
Even though the scheduling time does depend on the average parallelism,
its speedup is not necessarily similarly correlated. This is because each
wavefront is calculated in a d o a l l loop, i.e., each iteration of the scheduler
as a whole can be expected to obtain good speedups as well. In Figs. 9 and
10, we show the speedup obtained for the inspector and executor, respec-
tively, on a loop with 2048 iterations and three different values of average
parallelism. In both cases similar speedups are obtained for the sequential
loop (average parallelism 1) and the loop that is almost fully parallel
(average parallelism 1024). In Figs. 11 and 1.2 we show analogous results
on a loop with 1024 iterations. Recall that in our implementation we did
not use a "pair-wise" merge among the processors, i.e., in our implementa-
tion each processor checks all p - 1 other processors for predecessors and
successors whereas in the pair-wise merge only O(logp) operations would
be needed. This fact is most likely the cause of the slightly diminished slope
of the speedup curve after about 10 processors for the overhead of the
inspector.

562 Rauchwerger, Amato, and Padua

Overhead (msec)
15

14

13

12

11-

10-

9 i

Bi

z i

6

5

Marking and Analysis Phase Overhead for:
Loops with Various Average Parallelism

Input : Synthetic Loop with N = 2048 Iterations

Fig. 6,

1000 2000 3(300
Steps

Marking, analysis phase overhead.

Overhead (msec)
6000~

5OOO

4000

3000

2000

1000.

0-

Scheduling Phase Overhead for:
Loops with Various Average Parallelism

Input : Synthetic Loop with N = 2048 Iterations

0 1000 2000 3000
Steps

Fig. 7. Scheduling overhead.

A S c a l a b l e Method for Run-Time Loop P a r a l l e l i z a t i o n 5 6 3

Hotspots. To isolate the effect of the hotspot degree in the source
loop on the overhead of the methods, we generated access patterns that
were as similar as possible in all aspects except for the hotspot degree. In
particular, all loops had 2048 iterations, two accesses in each iteration, and
an average parallelism of 51 (a critical path length of 40). Also, a loop with
hotspot value h contained h references to each of n/h array elements, where
n = 2048 is the number of iterations in the loop. In principle, we would not
expect our methods to be negatively affected by the hot spot degree. In fact,
a larger hotspot degree implies fewer nonempty rows in the pR array, and
thus we might see improved results in the analysis and scheduling phase
since fewer rows would need to be accessed. The results in Fig. 6 show that
in fact the total overhead (inspector + scheduler) is nearly the same for all
hotspot degrees.

8.2. Real Access Patterns

Now we would like to look at access patterns arising in real applica-
tions to demonstrate the diversity of partially parallel access patterns and
their associated parallelism profiles. By applying the new methods to such
access patterns, we can reconfirm the conclusions reached above using
synthetic reference patterns. For this purpose we have chosen a loop
out of MA28, a blocked sparse unsymmetric linear solver. 144~ Loop

Overhead Speedup
6 -

Marking and Analysis Phase Speedup for:
Loops with Different Average Parallelism

Input : Synthetic Loop with N = 2048 Iterations

2 3 4 5 6 7 8 9 10 11

AVG PAR : = = 1 , , 45 1024

Fig. 8. Marking, analysis phase speedup.

12 13 14

Processors

2 3

R a u c h w e r g e r , A m a t o , and P a d u a

Overhead Speedup
9 -

8-

7

6

5

4

3

2

Scheduling Phase Speedup for:
Loops with Different Average Parallelism

Input : Synthetic Loop with N = 2048 Iterations

Overhead Speedup
6 -

4 5 6 7 8 9 10 11 12 13 14

Processors

AVG PAR : : �9 1 - �9 �9 45 I024

Fig. 9. Scheduling phase speedup.

5-

i

4-

3 -

1

2

Marking and Analysis Phase Speedup for:
Loops with Different Average Parallelism

Input : Synthetic Loop with N = 1024 Iterations

564

3 4 5 6 7 8 9 10

AVG PAR -- = = 1 32 512

Fig. 10. Marking, analysis phase speedup.

11 12 13 14

Processors

A Scalable Method for Run-Time Loop Parallelization 5 6 5

Overhead Speedup
8-

7-

6-

5-

4 -

3

2

1 ,

2

Scheduling Phase Speedup for:
Loops with Different Average Parallelism

Input : Synthetic Loop with N = 1024 Iterations

r

3 4 5 6 7 8 9 10

AVG PAR = = = 1 ~ 32 512

Fig. 11. Scheduling phase speedup.

11 12 13 14

Processors

MA30cd/DO_ 120 performs the forward-backward substitution in the final
phase of the blocked sparse linear system solver (MA28). We selected this
loop because it can generate many diverse access patterns when using the
Harwell-Boeing matrices as input. Unfortunately, however, the loop itself is
not a good candidate for parallelization since it performs very little work
and is highly imbalanced due to the blocked nature of the algorithm
employed by MA28.

We will limit our discussion to two input sets: gematl2, which
generates 4929 iterations, and bp_1600, which generates 822 iterations.
After extracting and precomputing the linear recurrences from the source
loop (based on the methods described in ref. 45) we generated a fully
parallel inspector and applied our methods to compute an optimal parallel
execution schedule for the loop.

From the data obtained we constructed the parallelism profiles
depicted in Figs. 13 and 14. These profiles show the size of the wavefronts
of the optimal parallel execution schedule. As we can see from the figures,
the same loop can have vastly different dependence relations between its
iterations. These figures clearly point out both the need for run-time
analysis techniques and for dynamic and adaptive scheduling schemes

Overhead (msec)
2 0 0 -

190

180-

170 -
160-
150-

140-
130 -

120 -
110
100

Rauchwerger, Amato, and Padua

Run-Time Overhead for:
Loops with and without Hotspots
Input : ~/nthet lc Loop with N = 2048 I t~at lons

5 6 6

1 2 3 4 5 6 7 8 9 10

Processors

HOTSPOT = = = 2 ~ : ~ 4 8 - - 16 32

F i g .] 2 . O v e r h e a d w i t h , w i t h o u t h o t s p o t s .

capable of overlapping scheduling and execution. Figure 13 shows that
most of the iterations of the loop can be executed in the initial wavefronts
(the critical path length is 114). This suggests that in this case it would be
more beneficial to interleave the parallel wavefront computation with the
execution of previous wavefronts than it would be to overlap them, so that
parallelization (and its associated overhead) can be abandoned when the
sequential tail of the profile is reached. Although in Fig. 14 most of the
iterations are also executed in the initial wavefronts, in this case it appears
that some benefit could be gained by overlapping, i.e., we can take advan-
tage of the "pauses" in parallelism to compute future (hopefully larger)
wavefronts. The histograms in Figs. 15 and 16 underscore the need for
scheduling and execution strategies that can be dynamically adapted
depending upon the type of parallelism encountered to more fully utilize
the machine.

Despite the differences in the parallelism profiles Figs. 17 and 18 show
that the overhead of the run-time methods described in this paper achieve
similar performance. The reason that larger speedups were not obtained is
that the loop is heavily imbalanced due to the blocked nature of the
algorithm used in MA28.

A Scalable Method for Run-Time Loop Parallelization 567

% of Iterations
18-

Parallelism Profile of MA28/MA28CD/DO_120
Input �9 GEMAT 12 - Total Iterations: 4929

17 ~
16 ~
15
14

13
12
11
10

8
7,
6-
5

4- I
3-
2-
1-
0-

0 10 20 30 40 50 60 70 80 90

Fig. 13. Para l le l i sm profile.

100 110 120

Step

% of Iterations
30.

20-

10

Parallelism Profile of MA28/MA28CD/DO_120
Input' BP_1600 - Total Iterations: 822

I l l l , i I I l l l l
10 20 30 40 50

Fig. 14. Para l l e l i sm profile.

60

Step

568 Rauchwerger, Amato, and Padua

Parallelism Histogram of MA28/MA28CD/DO 120
Input - GEMAT 12 - Total Iterations: 4929

% of Steps
4O

30

20 ~

1 2 4 8 16 32 64 128 256 512 1024
Iterations/Step

Fig. 15. Parallelism histogram.

Parallelism Histogram of MA28/MA28CD/DO_120
Input BP_1600 - Total iterations: 822

%of Steps
30

20

10-

1 2 4 8 16 32 64 128
Iterations/Step

Fig. 16. Parallelism histogram.

569

J

Speedup
7

6~

Overhead Speedup for MA28/MA28CD/DO_120
Input GEMAT_12 - Total Iterations: 4929

A Scalable Method for Run-Time Loop Parallelization

3 4 5 6 7 8 9 10 11 12 13 14
Number of Processors

Fig. 17. Overhead speedup.

Speedu
5

Overhead Speedup for MA28/MA28CD/DO_120
Input' BP_1600 - Total Iterations: 822

3 .

2 ~

3 4 5 6 7 8 9 10 11 12 13 14
Number of Processom

Fig . 18. Overhead speedup.

828/23'6-6

570

Speedup
13

12

11

10

9 .

8 -

7 -

6~

5i
41
3

2

1

Rauchwerger, Amato, and Padua

Speedup of Loop BDNA_ACTFOR_240
vs. Number of Processors (FX/2800)

/ f

i
!
!

3 4 5 6 7 8 9 10 11 12 13 14

Number of Processors

_ _ SPECULATIVE _ _ _ INSPECT/EXEC., . . . , IDEAL

Fig. 19. Speedup.

Speedu
13

12

11

10.

9 .

8 .

7-

6 -

4i

3i
2

1

Speedup of Loop MDG_INTERF_1000
vs. Number of Processors (FX/2800)

f

J ~ 1 ~ /

3 4 5 6 7 8 9 10 11 12 13 14

Number of Processors

_ _ SPECULATIVE _ _ - INSPECT,'EXEC IDEAL

Fig. 20. Speedup.

A Scalable Method for Run-Time Loop Parallelization 571

Speedup
8"

7~

6

5

4

3

2

1

Speedup of Loop OCEAN_FTRVMT_109
vs. Number of Processors (FX/2800)

with Schedule Reuse

i
/

3 4 5 6 7 8 9 10

ACTUAL IDEAL

11 12 13 14

Number of Processors

Fig. 21. Speedup.

8.2. 1. Parallelizing Benchmark Loops

We applied the methods to three loops contained in the P E R F E C T
Benchmarks ~441 that could not be parallelized by any compiler available to
us. In the analysis phase of the inspector it was found that one of the loops
was fully parallel, and that the other two could be transformed into
d o a 1 1 s by privatizing the shared array under test. We show in Figs. 19-21
the speedup measured for each loop as a function of the number of pro-
cessors used. As a reference, we give the ideal speedup, which was
measured using an optimally parallelized (by hand) version of the loop.
These graphs show that the speedup scales with the number of processors
and is a significant percentage of the ideal speedup. Next, we discuss each
loop in more detail.

We remark here that these loops could also be identified by the LRPD
test,(23. 24) a run-time test for identifying fully parallel loops, or loops that
can be transformed into d o a l l s using privatization and reduction
parallelization. An advantage of the LRPD test is that it has a smaller
overhead than the methods we present here. The disadvantage of the
LR P D test is that if the loop cannot be transformed into a doa11 , then

572 Rauchwerger, Amato, and Padua

the overhead of applying the method is added to cost of the sequential
execution, i.e., a slight "slowdown" may be incurred. Ideally, in order to
exploit the relative advantages of the two methods, one would like to apply
them both simultaneously.

BDNA-ACTFOR-Loop 240. This loop selects certain elements from
a large array, and processes the selected elements later in the loop. The
shared array is accessed through a subscript array that is computed inside
the loop (and thus cannot be analyzed at compile-time). Although there
are repeated accesses in this loop, it is determined in the analysis phase of
the inspector that the entire shared array is privatizable, i.e., that the loop
can be transformed into a doall by privatizing the array. As shown in
Fig. 19, the obtained speedup scales with the number of processors and is
a significant percentage of the ideal speedup.

MDG-INTERF-Loop 1000. This loop calculates inter-molecular
interaction forces. In the marking loop, to avoid introducing false
dependences we computed the branch predicates that guard accesses to the
shared array under scrutiny. As with the array in the loop from BDNA, it
is found in the analysis phase of the inspector that the entire shared array
is privatizable. The speedup obtained scales with the number of processors
and is a significant fraction of the ideal (see Fig. 20).

OCEAN-FTRVMT-Loop 109. This kernel-like loop is utilized in the
computation of a 2-dimensional FFT and accesses a vector with run-time
determined strides. During the analysis phase of the inspector it is found
that all accesses in the loop are unique, i.e., it is a fully parallel loop. Since
this loop is invoked 26,000 times, and accounts for 40% of the sequential
execution time of the program, it is an excellent candidate for schedule

reuse (see Section 6). The access pattern for each instantiation of the loop
is determined by a set of five scalars. In order to apply schedule reuse, we
checked whether the current set of scalars matched a previously analyzed
set. If not, then we applied the parallelization techniques, and if they did
match then we simply executed the loop as a d o a l l . As can be seen in
Fig. 21, with schedule reuse we obtain scalable speedups that are com-
parable to the ideal speedup.

9. CONCLUSION

Parallelizing statically intractable loops at run-time is an important
task since automatic, compile-time parallelization had stopped with
regular, well-behaved, statically defined programs--which represent only a

A Scalable Method for Run-Time Loop Parallelization 573

fraction of all applications. We believe that aggressive, dynamic techniques
can break this barrier and extract much of the available parallelism from
even the most complex programs. Motivated by these concerns, we
proposed new run-time inspector and scheduler methods for parallelizing
partially parallel loops. The inspector is fully parallel, uses no synchroniza-
tion, and can be applied to any loop (from which an inspector can be
extracted). In addition, it can implement at run-time the two most effective
transformations for increasing the amount of parallelism in a loop:
array privatization (element-wise) and reduction parallelization. The
scheduler/executor constructs an optimal parallel execution schedule for
the iterations of the loop. Although the wavefronts of the schedule are con-
structed in sequence, the computation of each wavefront is fully parallel
and requires no synchronization. These new methods improve on all pre-
viously proposed techniques since none of them simultaneously has all
these features (Section 7). The experimental results show that the proposed
methods are capable of obtaining speedups. In particular, since their over-
head scales with the number of processors, given sufficient processors it will
become a very small fraction of the sequential execution time of the loop.
Therefore, we believe that the significance of these methods will increase
with the advent of massively parallel processors (MPPs) in which the
penalty of not extracting the available parallelism in a loop could cause a
massive performance degradation.

Although these new methods illustrate the potential benefits of run-
time parallelization, there is still much work left to be done. For example,
there are many potential scheduling strategies that need to be studied such
as decoupling the inspector/scheduler and the executor in order to hide the
overheads, dynamically overlapping scheduling and execution, or con-
structing parallel threads of execution (as opposed to wavefronts). In any
case, further investigation is needed to determine the relative performance
of the various strategies in different circumstances. Another important task
is to devise effective, automatable strategies for determining when and how
to use run-time parallelization. Since speedups obtainable from run-time
parallelization are limited by the inherent parallelism of the loop, the
compiler needs to estimate obtainable parallelism. Such estimates can be
produced only through collection and interpretation of valid statistics from
programs in different application domains. The new methods provide a
useful tool for such studies since they determine the dependence graph and
parallelism profile of the loop. It should be noted that run-time overhead
could be significantly reduced through architectural support.

We view the methods described in this paper as a building block in
an evolving framework of run-time parallelization as a complement to the
existing techniques. ~23-25)

574 Rauchwerger, Amato, and Padua

ACKNOWLEDGMENTS

We would like to thank Paul Petersen for his useful advice, and
William Blume and Brett Marsolf for identifying and clarifying applications
for our experiments. We are also grateful to Richard Cole for his sugges-
tions regarding sorting algorithms.

REFERENCES

1. L. Rauchwerger, N. Amato, and D. Padua, Run-Time Methods for Parallelizing Partially
Parallel Loops, Proc. of the Int. Con/: on Supercomputing, Barcelona, Spain, pp. 137-146
(July 1995).

2. D. A. Padua and M. J. Wolfe, Advanced Compiler Optimizations for Supercomputers,
Comm. ACM 29:1184-1201 (December 1986).

3. M. Wollb, Optimizing Compilers for Supercomputers, The MIT Press, Boston,
Massachusetts (1989).

4. W. J. Camp, S. J. Plimton, B. A. Hendrickson, and R. W. Leland, Massively Parallel
Methods for Engineering and Science Problems. Comm. ACM 37(4):31-41 (April 1994).

5. W. Blume and R. Eigenmann, Performance Analysis of Parallelizing Compilers on the
Perfect Benchmark T M Programs, IEEE Trans. on Parallel and Distr. Syst. 3(6):643-656
(November 1992).

6. R. Eigenmann and W. Blume, An Effectiveness Study of Parallelizing Compiler
Techniques, Proc. lnt'l. Conf. on Parallel Processing, pp. 17-25 (August 1991).

7. S. Leung and J. Zahorjan, Improving the Performance of Runtime Parallelization,
4th PPOPP pp. 83-91 (May 1993).

8. J. Saltz, R. Mirchandaney, and K. Crowley, Run-Time Parallelization and Scheduling of
Loops, [EEE Trans. Comp. Vol. 40, No. 5 (May 1991).

9. C. Zhu and P. C. Yew, A Scheme to Enforce Data Dependence on Large Multiprocessor
Systems, IEEE Trans. Softw. Eng. 13(6):726-739 (June 1987).

10. J. E. Thornton, Design of a Computer: The Control Data 6600. Scott, Foresman,
Glenview, Illinois (1971).

11. R. M. Tomasulo, An E-/ficient Algorithm for Exploiting Multiple Arithmetic Units, 1BM
Journal of Res. and Dev. 11:25-33 (Januray 1967).

12. B. J. Smith, A Pipelined, Shared Resource MIMD Computer, Proc. of the Int'l. Conf. on
Parallel Processing (1987).

13. Daniel Gajski, David Kuck, Duncan Lawrie, and Ahmed Sameh, CEDAR--A Large
Scale Multiprocessor, Proc. of the Int'l. Conf. on Parallel Processing, pp. 524-529 (August
1983).

14. J.-K. Peir and D. D. Gajski, Data Flow Execution of Fortran Loops, Proc. First Int'l.
Conf. on Supercomputing Systems [SCS 85], pp. 129-139 (December 1985).

15. A. K. Jones and P. Schwartz, Using Multiprocessor Systems--A Status Report, ACM
Computing Surveys 12(2):121-166 (1980).

16. S. Midkiff and D. Padua, Compiler Algorithms for Synchronization, IEEE Trans. Comput.
C-36(12):1485-1495 (1987).

17. H. Berryman and J. Saltz, A Manual for PARTI Runtime Primitives, Interim Report
90-13, ICASE (1990).

18. D. K. Chen, P. C. Yew, and J. Torrellas, An Efficient Algorithm for the Run-Time
Parallelization of doacross Loops, Proc. of Supercomputing, pp. 518-527 (November 1994).

A Scalable Method for Run-Time Loop Parallelization 575

19. V. Krothapalli and P. Sadayappan, An Approach to Synchronization of Parallel Comput-
ing, Proc. of the Int'L Conf. on Supercomputing, pp. 573-581 (June 1988).

20. C. Polychronopoulos, Compiler Optimizations for Enhancing Parallelism and Their Imp
act on Architecture Design, IEEE Trans. Comput. C-37(8):991-1004 (August 1988).

21. J. Saltz and R. Mirchandaney, The Preprocessed doacross Loop, In Dr. H. D.
Schwetman, (ed.) Proc. of" the Int'l. Conf. on Parallel Processing, Vol. II - Software, CRC
Press Inc., pp. 174-178 (1991).

22. J. Saltz, R. Mirchandaney, and K. Crowley, The doconsider Loop, Proc. of the lnt'l. Conf.
on Supercomputing pp. 29~,0 (June 1989).

23. L. Rauchwerger and D. Padua, The Privatizing doall Test: A Run-Time Technique for
doall Loop Identification and Array Privatization, Proc. of the lnt'L Conf. on Super-
computing, pp. 33~-3 (July 1994).

24. L. Rauchwerger and D. A. Padua, The LRPD Test: Speculative Run-Time Parallelization
of Loops with Privatization and Reduction Parallelization, Proc. of the SIGPLAN Conf.
on Progr. Lang. Design and Implementation, La Jolla, California, pp. 218-232 (June 1995).

25. L. Rauchwerger and D. Padua, Parallelizing WHILE Loops for Multiprocessor Systems,
Proc. of 9th Int'l. Parallel Processing Symp. (April 1995).

26. J. Wu, J. Salz, S. Hiranandani, and H. Berryman, Runtime Compilation Methods for
Multicomputers, In Dr. H. D. Schwetman, (ed.) Proc. of the Int'L Conf. on Parallel
Processing, pp. 26-30. CRC Press Inc., Vol. II--Software, (1991).

27. D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, Dependence Graphs
and Compiler Optimizations, Proc. of the 8th ACM Syrup. on Principles of Programming
Languages, pp. 207-218 (January 1981).

28. U. Banerjee, Dependence Analysis for Supercomputing, Kluwer. Boston, Massachusetts
(1988).

29. H. Zima, Supercompilers for Parallel and Vector Computers, ACM Press, New York
(1991).

30. M. Burke, R. Cytron, J. Ferrante, and W. Hsieh, Automatic Generation of Nested,
Fork-Join Parallelism, Journal of Supercomputing pp. 71-88 (1989).

31. Z. Li, Array Privatization for Parallel Execution of Loops, Proc. of the 19th Int'l Symp.
on Computer Architecture, pp. 313-322 (1992).

32. D. E. Maydan, S. P. Amarasinghe, and M. S. Lam, Data Dependence and Data-Flow
Analysis of Arrays, Proc. 5th Workshop on Progr. Lang. and Compilers for Parallel
Computing (August 1992).

33. P. Tu and D. Padua, Array Privatization for Shared and Distributed Memory Machines,
Proc. 2nd Workshop on Languages, Compilers, and Run-Time Environment for Distributed
Memory Machines (September 1992).

34. P. Tu and D. Padua, Automatic Array Privatization, Proc. 6th Annual Workshop on
Languages and Compilers for Parallel Computing, Portland, Oregon (1993).

35. R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua, Experience in the Automatic Paralliza-
tion of Four Perfect-Benchmark Programs, Lecture Notes in Computer Science 589. Proc.
of the Fourth Workshop on Language and Compilers for Parallel Computing, Santa Clara,
California, pp. 65-83 (August 1991).

36. C. Krnskal, Efficient Parallel Algorithms for Graph Problems, Proc. of the Int'l. Conf. on
Parallel Processing, pp. 869-876 (August 1986).

37. F. Thomson Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypereubes, Morgan Kaufmann (1992).

576 Rauchwerger, Amato, and Padua

38. J. E. Moreira and C. D. Polychronopoulos, Autoscheduling in a Distributed Shared-
Memory Environment, Technical Report 1373, University of Illionois at Urabana-
Champaign, Center for Supercomputing Research and Development (June 1994).

39. C. Polychronopoulos, Nawaf Bitar, and Steve Kleiman, nano Threads: A User-Level
Threads Architecture. Proc. of the lnt'L Conf. on Parallel Computing Technologies, Moscow,
Russia (September 1993).

40. Alliant Computer Systems Corporation, FX/Series Architecture Manual (1986).
41. Alliant Computers Systems Corporation, Alliant FX/2800 Series System Description

(1991).
42. M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, R. Roloff, A. Sameh, E. Clementi,

S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung, J. Schwarzmeier,
K. Lue, S. Orzag, F. Seidl, O. Johnson, G. Swanson, R. Goodrum, and J. Martin. The
PERFECT Club Benchmarks: Effective Performance Evaluatiofi of Supercomputers.
Technical Report CSRD-827, Center for Supercomputing Research and Development,
University of Illinois, Urbana, Illinois (May 1989).

43. M. Guzzi, D. Padua, J. Hoeflinger, and D. Lawrie, Cedar Fortran and other Vector and
Parallel Fortran Dialecets, J. Supercomput. 4(1):37-62 (March 1990).

44. I. S. Duff, Ma28- A Set of Fortran Subroutines for Sparse Unsymmetric Linear Equations,
Techniqual Report AERE R8730, HMSO, London (1977).

Printed in Belghtm
Verantwoordelijke uitgever:
Hubert Van ,~taele
Altenastraat 20- B-8310 St,.Kruis

