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A Scalable Method for Run-Time Loop 
1 Parallelization 

Lawrence Rauchwerger 2'3 Nancy M. Amato, 4 and 
David A. Padua 3 

Current parallelizing compilers do a reasonable job of extracting parallelism 
from programs with regular, well behaved, statically analyzable access patterns. 
However, they cannot extract a significant fraction of the available parallelism 
if the program has a complex and/or statically insufficiently defined access 
pattern, e.g., simulation programs with irregular domains and/or dynamically 
changing interactions. Since such programs represent a large fraction of all 
applications, techniques are needed for extracting their inherent parallelism at 
run-time. In this paper we give a new run-time technique for finding an optimal 
parallel execution schedule for a partially parallel loop, i.e., a loop whose 
parallelization requires synchronization to ensure that the iterations are 
executed in the correct order. Given the original loop, the compiler generates 
inspector code that performs run-time preprocessing of the loop's access pattern, 
and scheduler code that schedules (and executes) the loop iterations. The inspec- 
tor is fully parallel, uses no sychronization, and can be applied to any loop 
(from which an inspector can be extracted). In addition, it can implement at 
run-time the two most effective transformations for increasing the amount of 
parallelism in a loop: array privatization and reduction parallelization (element- 
wise). The ability to identify privatizable and reduction variables is very power- 
ful since it eliminates the data dependences involving these variables and 
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thereby potentially increases the overall parallelism of the loop. W e  also 
describe a new scheme for constructing an optimal parallel execution schedule 
for the iterations of the loop. The schedule produced is a partition of t h e  set of 
iterations into subsets called wavefronts so that there are no data dependences 
between iterations in a wavefront. Although the wavefronts themselves are  con- 
structed one after another, the computation of each wavefront is fully parallel 
and requires no synchronization. This new method has advantages over  all 
previous run-time techniques for analyzing and scheduling partially parallel 
loops since none of them simultaneously has all these features. 

KEY WORDS: Run-time: parallelization; schedule; doall; wavefront. 

1. I N T R O D U C T I O N  

To achieve a high level of performance for a particular program on today's 
supercomputers, software developers are often forced to tediously hand- 
code optimizations tailored to a specific machine. Such hand-coding is dif- 
ficult, error-prone, and often not portable to different machines. Restruc- 
turing, or parallelizing, compilers address these problems by detecting and 
exploiting parallelism in sequential programs written in conventional 
languages. Although compiler techniques for the automatic detection of 
parallelism have been studied extensively over the last two decades/~,31 
current parallelizing compilers cannot extract a significant fraction of the 
available parallelism in a loop if it has a complex and/or statically insuf- 
ficiently defined access pattern. This is an extremely important issue 
because a large class of complex simulations used in industry today have 
irregular domains and/or dynamically changing interactions. For example, 
SPICE for circuit simulation, DYNA-3D and PRONTO-3D for structural 
mechanics modeling, GAUSSIAN and DMOL for quantum mechanical 
simulation of molecules, CHARMM and DISCOVER for molecular 
dynamics simulation of organic systems, and FIDAP for modeling complex 
fluid flows./41 

Thus, since the available parallelism in theses types of applications 
cannot be determined statically by present parallelizing compilers, ~*-6) 
compile-time analysis must be complemented by new methods capable of 
automatically extraction parallelism at run-time. The reason that run-time 
techniques are needed is that the access pattern of some programs cannot 
be determined statically, either because of limitations of the current 
analysis algorithms or because the access pattern is a function of the input 
data. For example, most dependence analysis algorithms can only deal with 
subscript expressions that are linear in the loop indices. In the presence of 
nonlinear expressions, a dependence is usually assumed. Compilers usually 
also conservatively assume data dependences in the presence of subscripted 
subscripts. More powerful analysis techniques could remove this last 
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limitation when the index arrays are computed using only statically-known 
values. However, nothing can be done at compile-time when the index 
arrays are a function of the input data. {7-91 

Run-time techniques have been used practically from the beginning 
of parallel computing. During the 1960s, relatively simple run-time tech- 
niques, used to detect parallelism between scalar operations, were imple- 
mented in the hardware of the CDC 6600 and the IBM 360/91J 1~ 111 Various 
synchronization schemes have been proposed to delay execution until cer- 
tain conditions are satisfied. For example, the HEP multiprocessor ~12~ has 
a full/empty bit associated with each memory location and read (write) 
accesses are delayed until the bit is full (empty). Similar data-level 
synchronization schemes have also been proposed. 113"14~ Higher-level 
sychnronization primitives such as lock or compare-and-swap can be used 
in the same mannerJ 9' 15, 16) When parallelizing do loops, some of today's 
compilers postpone part of the analysis to run-time by generating two-ver- 
sion loops. These consist of an i f  statement that selects either the original 
serial loop or its parallel version. The Boolean expression in the i f  state- 
ment typically tests the value of a scalar variable. 

During the last few years, techniques have been developed for the run- 
time analysis and scheduling of l o o p s .  179" 16-26) The majority of this work 
has concentrated on developing run-time methods for constructing execu- 
tion schedules for partially parallel loops, i.e., loops whose parallelization 
requires synchronization to ensure that the iterations are executed in the 
correct order. Given the original, or source loop, most of these techniques 
generate inspector code that analyzes at run-time the cross-iteration 
dependences in the loop, and scheduler/executor code that schedules and 
executes the loop iterations using the dependence information extracted by 
the inspectorJ 8~ 

1.1.  O u r  R e s u l t s  

In this paper we give a new inspector/scheduler/executor method for 
finding an optimal parallel execution schedule for a partially parallel loop. 
Our inspector is fully parallel, uses no synchronization, and can be applied 
to any loop (from which an inspector can be extracted). In addition, our 
inspector can implement at run-time the two most effective transformations 
for increasing the amount of parallelism in a loop: array privatization and 
reduction paralletization (element-wise). The ability to identify privatizable 
and reduction variables is very powerful since it eliminates the data 
dependences involving these variables. Thus, in addition to increasing the 
available parallelism in the loop these dependence removing transforma- 
tions also reduce the work required of the scheduler, i.e., it need not con- 
sider the affected variables. We describe a scheme for constructing an 
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optimal parallel execution schedule for the iterations of the loop. The 
schedule produced is a partition of the set of iterations into subsets called 
wavefronts, so that the iterations in each wavefront can be executed in 
parallel, i.e., there are no data dependences between iterations in a 
wavefront. Although the wavefronts themselves are constructed one  after 
another, the computation of each wavefront is fully parallel and requires no 
synchronization. The scheduling can be dynamically overlapped with the 
parallel execution of the loop iterations in order to utilize the machine 
more uniformly. Therefore, our new method has advantages over  all the 
previous techniques cited earlier since none of them has all o f  these 
desirable properties (a comparison to previous work is contained in 
Section 7). 

After covering some necessary background information in Section 2, 
we describe our methods for analyzing and scheduling partially parallel 
loops in Sections 4 and 5. In Section 6, we discuss some strategies for 
applying our techniques most effectively, and we compare o u r  new 
methods to previously proposed run-time methods for parallelizing loops 
in Section 7. Finally, we present some experimental results in Section 8. 

2. P R E L I M I N A R I E S  

In order to guarantee the semantics of a loop, the parallel execution 
schedule for its iterations must respect the data dependence relations 
between the statements in the loop bodyJ 2" 3.27-29) There are three possible 
types of dependences between two statements that access the same memory 
location: flow (read after write), anti (write after read), and output (write 
after write). Flow dependences express a fundamental relationship about 
the data flow in the program. Anti and output dependences, also known as 
memory-related dependences, are caused by the reuse of memory,  e.g., 
program variables. 

If there are flow dependences between accesses in different iterations of 
a loop, then the semantics of the loop cannot be guaranteed unless those 
iterations are executed in order of iteration number because values that are 
computed (produced) in an iteration of the loop are used (consumed) dur- 
ing some later iteration. For  example, the iterations of the loop in Fig. la 
must be executed in order of iteration number because iteration i + 1 needs 
the value that is produced in iteration i, for 1 ~< i < n. In principle, if there 
are no flow dependences between iterations of a loop, then those iterations 
may be executed in parallel. The simplest situation occurs when there are 
no anti, output, of flow dependences between iterations in a loop. In this 
case, these iterations are independent and can be executed in parallel. If 
there are no flow dependences, but there are anti or output dependences 
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do i=l, n do i = 1, n/2 do i=I, n 
A(K(i)) = A(K(i)) + A(K(i- 1)) SI: unp = A(2*i) do j = l , m  

if (A(K(i)) .eq..true.) then A(2*i) = A(2*i-1) SI: A(j) = A(j) + exp0 

................. $2: A(2*i-l) = map enddo  

endi f  enddo enddo  
enddo 

(a) (b) (c) 

Fig. 1. E x a m p l e s  o f  l oops  w i t h  d i f fe ren t  d a t a  d e p e n d e n c e s .  

between iterations of a loop, then the loop must be modified to remove all 
such dependences before these iterations can be executed in parallel. In 
some cases, even flow dependences can be removed by simple algorithm 
substitution, e.g., reductions. Unfortunately, not all such situations can be 
handled efficiently. In order to remove certain types of dependences two 
important and effective transformations can be applied to the loop: 
privatization and reduction parallelization. 

Privatization creates, for each processor cooperating on the execution 
of the loop, private copies of the program variables that give rise to anti 
or output dependences (see, e.g., Refs. 30-34). The loop shown in Fig. lb 
is an example of a loop that can be executed in parallel by using privatiza- 
tion; the anti dependences between statement $2 of iteration i and state- 
ment S1 of iteration i +  1, for 1 ~< i<n/2, can be removed by privatizing the 
temporary variable trap. In this paper, the following criterion is used to 
determine whether a variable may be privatized. 

Privation Criterion: Let A be a shared array (or array section) that is 
referenced in a loop L. A can be privatized if and only if every read access 
to an element of A is preceded by a write access to that same element of 
A within the same iteration of L. 

In general, dependences that are generated by accesses to variables 
that are only used as workspace (e.g., temporary variables) within an itera- 
tion can be elimentated by privatizing the workspace. However, according 
to this criterion, if a shared variable is initialized by reading a value that 
is computed outside the loop, then that variable cannot be privatized. Such 
variables could be privatized if a copy-in mechanism for the external value 
is provided. The last value assignment problem is the conceptual analog of 
the copy-in problem. If a privatized variable is live after the termination of 
the loop, then the privatization technique must ensure that the correct 
value is copied out to the original (non privatized) version of that variable. 
It should be noted that, based on our experience, the need for values to be 
copied into or out of private variables occurs infrequently in practice. 

Reduction parallelization is another important technique for transform- 
ing certain types of data dependent loops for concurrent execution. 
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D e f i n i t i o n :  1. A reduction variable is a variable whose value is used 
in one associative operation of the form x =x |  where | is the 
associative operator and x does not occur in exp or anywhere else in 
the loop. 

Reduction variables are therefore accessed in a certain specific pattern 
(which leads to a characteristic data dependence graph). A simple but typi- 
cal example of a reduction is statement S1 in Fig. lc. The operator | is 
exemplified by the + operator, the access pattern of array A(:) is read, 
modify, write, and the function performed by the loop is to add a" value 
computed in each iteration to the value stored in A(:). This type of reduc- 
tion is sometimes called an update and occurs quite frequently in programs. 
There are two tasks required for reduction parallelization: recognizing the 
reduction variable, and parallelizing the reduction operation. (In contrast, 
privatization needs only to recognize privatizable variables by performing 
data dependence analysis, i.e., it is contingent only on the access pattern 
and not on the operations.) 

Parallel reduction algorithms have been known for quite some time. 
If the reduction operation is commutative--a frequent case-- then the 
implementation of such methods is less restrictive. One typical method 
for the case of commutative reductions is to transform the do loop into a 
d o a l l  and enclose the access to the reduction variable in an unordered 
critical section (29' 35)--a section of code guarded by a lock-unlock opera- 
tion which allows mutually exclusive operations on the shared variable. 
Drawbacks of this method are that it is not always scalable and requires 
synchronizations that can be very expensive in large multiprocessor 
systems. 

A scalable method can be obtained by noting that a reduction opera- 
tion is an associative recurrence and can thus be parallelized using a recur- 
sive doubling algorithmJ 36'37) In this case the reduction variable is 
privatized in the transformed d o a l l ,  and the final result of the reduction 
operation is computed in an interprocessor reduction phase following the 
d o a l l ,  i.e., a scalar is produced using the partial results computed in each 
processor as operands for a reduction operation (with the same operator) 
across the processors. We note here that if the reduction operation is com- 
mutative then it can be parallelized using dynamically scheduled d o a l l s  
(not only statically scheduled in monotonic order) and the cross-processor 
merging phase can be done in any order. Most of the reductions encountered 
in our experiments were commutative. 

Thus, the difficulty encountered by compilers in parallelizing loops 
with reductions arises not from finding a parallel algorithm but from 
recognizing the reduction statements. So far this problem has been handled 
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at compile-time by syntactically pattern matching the loop statements with 
a template of a generic reduction, and then performing a data dependence 
analysis of the variable under scrutiny to guarantee that it is not used 
anywhere else in the loop except in the reduction statement. 

3. A N A L Y Z I N G  PARTIALLY  PARALLEL  L O O P S  AT R U N - T I M E  

Given a do loop whose access pattern cannot be statically analyzed, 
compilers have traditionally generated sequential code. Although this 
pessimistic strategy is safe and simple, as mentioned in Section 1, it essen- 
tially precludes the automatic parallelization of entire classes of programs, 
e.g., those with irregular domains and/or dynamically changing interac- 
tions. Since compile-time data dependence analysis techniques cannot be 
used on such programs, methods of performing the analysis at run-time are 
required. During the past few years, several techniques have been developed 
for the run-time analysis and scheduling of loops with cross-iteration 
dependences. ~v-9.16--'zz6~ However, for various reasons, such techniques 
have not achieved widespread use in current parallelizing compilers. 

In the following we describe a new run-time scheme for constructing 
a parallel execution schedule for the iterations of a loop. The general struc- 
ture of our method is similar to the previously cited run-time techniques: 
given the original, or source loop, the compiler constructs inspector code 
that analyzes, at run-time, the cross-iteration dependences in the loop, 
scheduler code that schedules the loop iterations using the dependence 
information extracted by the inspector, and executor code that executes the 
loop iterations according to the schedule determined by the scheduler. In 
the previous techniques, the scheduler and the executor are tightly coupled 
codes which are collectively referred to as the executor, and the inspector 
and the scheduler/executor codes are usually decoupledJ 8) Although for 
efficiency purposes our methods can also interleave the scheduler and the 
executor, we treat them separately since scheduling and execution are 
distinct tasks that can be performed independently. 

First, in Section 4, we describe a new inspector scheme that in many 
cases should prove superior to previously proposed schemes. Next, in Sec- 
tion 5, we describe a scheduler that can use the dependence information 
found by the inspector to construct an optimal parallel execution schedule 
for the loop iterations; in addition, we mention how the scheduler might 
be interleaved with the executor to more efficiently utilize the machine. 
After describing the basic components of our methods, in Section 6 we 
discuss some strategies for applying them most effectively. Finally, we 
compare our new methods to other run-time parallelization schemes in 
Section 7. 
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4. T H E  I N S P E C T O R  

In this section we describe a new inspector scheme that processes the 
memory references in a loop and constructs a data structure which the 
scheduler can use to efficiently assign iterations to wavefronts. In addition, 
our inspector can implement at run-time two important transformations: 
(element-wise) array privatization and reduction paralletization (see Sec- 
tion 2). The ability to identify privatizable and reduction variables is very 
powerful since it eliminates the data dependences involving these variables. 
In particular, it increases the available parallelism in the loop and also 
reduces the work required of the scheduler since it need not consider 
dependences involving such variables when it constructs the parallel execu- 
tion schedule for the loop iterations. 

The basic strategy of our method is for the inspector to preprocess the 
memory references and determine the data dependences for each memory  

location accessed. Later, the scheduler will use this memory-location 
dependence information to determine the data dependences between the 
iterations. We describe the method as applied to a shared array A that is 
accessed through subscript arrays that could not be analyzed at compile- 
time (see Fig. 2a). For simplicity, we first consider only the problem of 
identifying the cross-iteration dependences for each array element (memory 

R 3 
do i = 1,8 iter 

A(W(i)) . . . .  . . . .  A(R(i)) tyPe 
work(i) level 

enddo (a) 

W ( h 8 ) = [ 1 3 2 4 3 5 6 3 ]  
R ( 1 : 8 )  = [ 3 7 3 3 8 3 3 3 ]  

1 2 3 4 5 6 7 8 9 

I 2 3 4 5 6 7 8 8 

r w r r w r r w r  
1 2 3 3 4 5 5 6 7 

H3 i 2 3 4 5 6 7 

index[ I in FI 3 l 2 3 5 6 8 9 

(b) 

(d) 

level 1 2 3 4 5 6 7 

Fig. 2. Data structures for array-element dependence graphs. A (a) source loop, (b) the 
array R3 for A[3], (c) its dependence graph D3, and (d) its hierarchy vector H 3. 
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location). After describing this inspector, we then discuss how the 
dependence information it discovers can be used to identify the array 
elements that are read-only, privatizable or reduction variables. The inspec- 
tor has two main tasks. 

1. For  each array element A[x ] ,  the inspector collects all the referen- 
ces to it into an array (or list) Rx and stores them in order of 
iteration number. For each reference it stores the associated itera- 
tion number and access type (i.e., read or write) (see Fig. 2b). 

2. For  each array element A[x], the inspector determines the data 
dependences between all its references and stores them in a data 
structure H,. for later use by the scheduler. 

In section 4.1, we discuss how the references to each array element can be 
collected and stored in the array (or list) R.,.. Thus, assuming that R,. is 
available, we now describe how the inspector determines the dependences 
among the references to A[x] and computes the data structure H,.. 

The relations between the references to A[x ]  can be organized (con- 
ceptually) into an array-element dependence graph D.,.. If adjacent referen- 
ces in R.,. have different access types, then a flow or anti dependence exists, 
and if they are both writes, then an output dependence is signaled. These 
dependences are reflected by parent-child relationships in D.,.. If adjacent 
references are both reads, then there is no dependence between the 
elements, but they may have a common parent (child) in D.,., i.e., the last 
write preceding (first write following) them in R.,.. For example, the 
dependence graph D3 for A[3]  is shown in Fig. 2c. 

Our goal is to encode the predecessor/successor information of the 
(conceptual) dependence graph D,- in a hierarchy vector H.,. so that the 
scheduler can easily look up the dependence information for the references 
to A[x]. First, we add a level field to the records in R.,., and store in it the 
reference's level in the dependence graph Dx (see Fig. 2b). Then, for each 
level, we store in H,. the index (pointer to location) in R,_ of the first 
reference at that level. Specifically, Hx is an array and H.,.[i] contains the 
index in Rx of the first reference at level i, i.e., Hx will serve as a look-up 
table for the first reference in Rx at any level (see Fig. 2d). Note that this 
implies that Hx records the position in Rx of every write access and of the 
first read access in any run of reads. 

We now give an example of how the hierarchy vector serves as a look- 
up table for the predecessors and successors of all the accesses. Consider 
the read access to A[3]  in the sixth iteration, which appears as the sixth 
entry in R 3. Its level is 5, and thus it finds its successor by looking at the 
5 + 1 = 6th element of the hierarchy vector H3, which contains the value 8 
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indicating that its successor is the 8th element in R 3. Similarly, its prede- 
cessor is found by looking in the 5 - 1 = 4th element of H3, which indicates 
that its predecessor is the 5th element of R3. 

4.1. Implementing the Inspector 

We now consider how to collect the accesses to each array element 
A[x] into the arrays Rx. Regardless of the technique used to construct  
these arrays, to ensure the scalability of our methods we must process 
(mark) the references to the shared array A in a d o a l l  (see Fig. 3a and 
b). The computation performed in the m a r k i n g  operations will depend 
upon the technique used to construct the arrays R,.. In any case, no te  that 
since we are interested in cross-iteration data dependences we need only 
record at most one read and write access in R,. for any particular iteration, 
i.e., subsequent reads or writes to A[x] in the same iteration can be 
ignored. 

4. 1.1. Lexicographic Sort 

Perhaps the simplest method of constructing the element arrays R ,  is 
to first place a record for each memory reference into an array RA, and 
then sort these records lexicographically by array element (first key) and 
iteration number (second key). After this sort, each array R,. will occupy 
a contiguous portion (a subarray) in the sorted array Ra. In this case the 
marking operations will simply record the information about the access 
into R A. After the lexicographic sort, the level of each reference in Dx can 
be computed by a prefix sum computation. 

4. 1.2. Bucket Sort 

Since the range of the values to be sorted is known in advance (it is 
given by the dimension of the shared array A), a linear time bucket or bin 
sort can be used in place of the more general O(n log n) lexicographic sort. 
Moreover, if the inspector's marking phase is chunked (i.e., statically 
scheduled), then further optimization is possible. In this case, processor i 
will be assigned iterations iFn/p-] through ( i +  1)Fn/pq-1, where p is the 
total number of processors, n is the number of iterations in the loop, and 
0 ~< i <p.  The basic idea is as follows. First, in a private marking phase, each 
processor marks the references in its assigned iterations, and constructs ele- 
ment arrays Rx and hierarchy vectors Hx as described earlier, but only for 
the references in its assigned iterations. Then, in a cross-processor analysis 
phase, the hierarchy vectors for the whole iteration space of the loop are 
formed using the processors' hierarchy (sub)vectors. 
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The private marking phase proceeds as follows. Let A [ l : s ]  be the 
shared array under scrutiny, and suppose each processor has a separate 
array pR[ l:s, l:2n/p] in which to store the records of the references in its 
set of iterations. Each record contains the iteration, type of reference, and 
level as described previously. (The second dimension of l:2n/p follows 
since, as noted before, at most one read and write to any element will be 
marked in each iteration, and each processor has nip iterations). Assuming 
a processor marks its iterations in order of increasing iteration number, it 
can immediately place the records for the references into its array pR in 
sorted order of iteration number. In addition to the array pR, each 
processor has a separate array pH[ l:s, l:2n/p] used to store the hierarchy 
vectors for the references in its assigned set of iterations. Again, assuming 
that iterations are processed in increasing order of iteration number, the 
hierarchy vectors can be filled in at the same time that the references are 
recorded in pR (see Fig. 3c). 

In the analysis phase we need to find for each array element A[x] the 
predecessor, if any, of the first reference recorded by each processor, i.e., we 
need to fill in the value in processor i's hierarchy vector for the reference 
that immediately precedes (in the dependence graph D,.) the first reference 
to A[x] that was assigned to processor i. Similarly, we must find the 
immediate succesor of the last reference to A[x] that was assigned to pro- 
cessor i. Processor i can find the predecessors (successors) needed for its 
hierarchy vectors by scanning the arrays of the processors less than (larger 
than) i. For  example, the "?" at the end of p H I 3 ]  for processor 1 in Fig. 
3 would be filled in with a pointer to the first element in the array p R [ 3 ]  
of processor 2. Hence, the initial and final entries in the hierarchy vectors 
also need to store the processor number that contains the predecessor and 
successor. These scans can be made more efficient by maintaining some 
auxiliary information, e.g., for each array element, each processor computes 
the total number of accesses it recorded, and the indices in pR of the first 
and last write to that element. In any case, we note that filling in the pro- 
cessors' hierarchy vectors requires a minimal amount of interprocessor 
communication, i.e., it requires only a "connecting" and not a full 
"merging" of the different hierarchy vectors. 

There are several ways in which the above sketched analysis phase can 
be optimized. For  example, in order to determine which array elements 
need predecessors and successors (i.e., the elements with nonempty arrays 
Rx), the processor needs to check each row of its array pR (row i of pR 
corresponds to the array Ri). This could be a costly operation if the dimen- 
sion of the original array is large and the processor's assigned iterations 
have a sparse access pattern. However, the need to check each row in pR 
can be avoided by maintaining a list of the nonempty rows. This list can 
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d o  i = 1,8 
A(W(i)) . . . .  

. . . .  A(R(i)) 
work(i) 

e n d d o  

W(h8) = [1 3 2 4 3 5 6 3] 
R(l:8) = [3 7 3 3 8 3 3 3] 
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doai i  p = 1,nproc 
p r i v a t e  integer j 
d o  j=start(p,niter),end(p,niter) 

markwrite(W(j)) 
markread(R(j)) 

e n d d o  
e n d d o a l l  

(a) (b) 

Proc 1 
pR 

index ~ iter PrOC 2 index 

[ ~ ( L_j_Jle'el pR (c) 

43r :" ~ w6788'2r 2i3r w r 14] 

pH 
index 

~ index in PR 

3~. "~  1t2131 ?l 

index 

PH~~'~I?I1t2 r 4t5r 
Fig. 3. Result of the marking phase. An example of the private element arrays pR and 
hierarchy vectors pH (c) when two processors are used in the inspector d o a l l  loop (b) for 
the source do loop (a). 

be constructed during the marking phase, and then traversed in the analysis 
phase--thereby avoiding the need to check every row. Another source of 
inefficiency for machines with many processors is the search for a particular 
predecessor (or successor) since each processor might need to look for a 
predecessor in all the preceding (succeeding) processors' iterations. The 
cost of these searches can be reduced from p to O(logp) using a standard 
parallel divide-and-conquer "pair-wise" merging approach, 137~ where p is 
the total number of processors. 

4.2. Privatization and Reduction Recognition at Run-Time 

The basic inspector described above can easily be augmented to find 
the array elements that are independent (i.e., accessed in only one iteration), 
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read-only, privatizable, or reduction variables. We first consider the 
problem of identifying independent, read-only, and privatizable array 
elements. During the marking phase, a processor maintains the status of 
each element referenced in its assigned iterations with respect to only these 
iterations. In particular, if it finds that an element is written in any of its 
assigned iterations, then it is not read-only. If an element is accessed in 
more than one of its assigned iterations, then it is not independent. If an 
element was read before it was written in any of its assigned iterations, then 
it is not privatizable. Next, the final status of each element is determined 
in the cross-processor analysis phase as follows. 

�9 An element is independent if and only if it was classified as inde- 
pendent by exactly one processor, and was not referenced on any 
other processor. 

�9 An element is read-only if and only if it was determined to be read- 
only by every processor that referenced it. 

�9 An element is privatizable if and only if it was privatizable on every 
processor that accessed it. 

Thus, the elements can be categorized by a similar process to the one used 
to find the predecessors and successors when filling in the processors' 
hierarchy vectors. Finally, if we maintain a linked list of the nonempty 
rows of p R  as mentioned earlier, then the rows corresponding to elements 
that were found to be independent, read-only, or privatizable are removed 
from the list, i.e., accesses to these elements need not be considered when 
constructing the parallel execution schedule for the loop iterations. 

We now consider the problem of verifying that a statement is a reduc- 
tion using run-time data dependence analysis. Recall, as mentioned in Sec- 
tion 2, that potential reduction statements are generally identified by syn- 
tactically matching the statement with the generic reduction template 
x = x | exp, where x is the reduction variable, and | is an associative and 
commutative operator. The statement is validated as a reduction if it can 
be shown through dependence analysis that x is not referenced in exp or 
anywhere in the loop body outside the reduction statement. Sometimes the 
necessary dependence analysis cannot be performed at compile-time. This 
situation could arise if the reduction variable is an array element accessed 
through subscripts, and the subscript expressions are not statically 
analyzable. For example, although statement $3 in the loop in Fig. 4a 
matches a reduction statement, it is still necessary to prove that the 
elements of array A referenced in S! and $2 do not overlap with those 
accessed in statement $3, i.e., that: K ( i ) r  and L ( i ) # R ( j ' ) ,  for all 
1 < i,j<~ n. It turns out that this condition can be tested in the same way 
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doall i = l , n  
private integer j 

do i = 1, n do j=start(p,niter),end(p.niter) 
S 1: A(K(i)) ........ markwrite(K(i)) 
$2: ............. A(L(i)) markredux(K(i)) 
$3: A(R(i)) = A(R(i)) + exp0 markread(L(i)) 

enddo markredux(L(i)) 
markwrite(R(i)) 

(a) enddo 
enddoall 

(b) 

Fig. 4. Example of an inspector loop with privatization and reduction detection. The inspec- 
tor of the do loop in (a) is shown in (b). The markwri~:e (markread) operation adds a 
record to the processor's array pR (if it is not a duplicate), and updates the hierarchy vector 
pH appropriately. The marknoredux operation invalidates the indicated array element as a 
reduction variable since it is accessed outside the reduction statement $3. 

that  read-only and privatizable ar ray  elements are identified. In part icular ,  
during the marking phase, whenever an element is accessed outs ide  the 
reduct ion statement the processor invalidates that element as a reduct ion  
variable. Again, the final status of  each element is determined in the cross-  
processor  analysis phase, i.e., an element is a reduct ion variable if and  only 
if it was not  invalidated as such by any processor. 

This strategy can also be used when the exp part  of the RHS o f  the 
reduction statement contains references to the array A that  are different 
from the pat tern matched LHS and cannot  be statically analyzed, i.e., the 
elements referenced in exp are invalidated dur ing the marking  phase.  A 
more  complicated situation is when the loop contains several reduc t ion  
statements that  refer to the same array A. In this case the type of  the reduc-  
t ion opera t ion performed on each element must  be the same t h r o u g h o u t  
the loop execution, e.g., a variable cannot  participate in bo th  a mult i-  
plicative and an additive reduction since the resulting operat ion is no t  com-  
mutat ive and associative and is therefore not  parallelizable. The solut ion to 
this problem is to also maintain the reduct ion type with each potent ia l  
reduct ion variable. Whenever  a reference in a reduct ion s ta tement  is 
marked,  the current  reduction type (e.g., summat ion ,  mult ipl icat ion) is 
checked with previous one. If  they are not  the same, the cor responding  ele- 
ment  is invalidated as a reduct ion variable. 

4.3. Complex i ty  of the Inspector 

The worst  case complexity of  the inspector is O(a logp) ,  where a is the 
max imum  number  of  references assigned to each processor  and p is the 
total number  of  processors. In particular,  using the bucket  sort implemen- 
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tation, each processor spends constant time on each of its O(a) accesses in 
the marking phase. The analysis phase takes time O(alogp) using a 
parallel divide-and-conquer pair-wise merging strategy ~37~ as follows. First, 
in O(a) time each processor finds, for each element A[x] accessed in its 
assigned iterations, the indices pR x of the first and last write to A[x], and 
the total number of references to A[x] stored in pR,.. Then, in each of 
O(logp) iterations, this information is pair-wise merged across the pro- 
cessors so that after the ith iteration the information for groups of 2 i con- 
secutive processors is available. Also in every iteration, for the O(a) 
elements accessed in its assigned references, each processor checks in O(1) 
time for potential predecessors or successors in the group that will be 
merged with his current group (which depends on whether the processor is 
in the first or the second of the groups to be merged). 

We remark that since the cost of the analysis phase is proportional to 
the number of distinct elements accessed (i.e., the number of nonempty 
rows in the pR array) the complexity of this phase could be significantly 
less than O(a logp) if there are many repeated references in the loop. Also, 
if a log p >  s, then the merge among the processes can be improved to 
O(s + l o g p )  time by chunking the pR arrays. 

5. T H E  S C H E D U L E R  

We now consider the problem of finding an execution schedule for the 
iterations of the loop. We assume that the inspector described in Section 4 
has been used on the loop. The scheduler derives the more restrictive itera- 
tion-wise dependence relations from the memory location dependence 
information found by the inspector. Formalizing this, the memory location 
dependences define a directed acyclic graph (dag) D = ( V, E) describing the 
cross-iteration dependences in the loop: there is a node vi ~ V for each itera- 
tion i in the loop, and there is a directed edge (vi, vj) s E if some memory 
location has a dependence from iteration i to iteration j. Note that D is 
implicit in the reference arrays pR and their hierarchy vectors pH. A valid 
parallel execution schedule for a loop is a partition of the set of iterations 
into ordered subsets called wavefronts, so that all dependences go from an 
iteration in a lower numbered wavefront to an iteration in a higher num- 
bered wavefront. We say that a valid parallel execution schedule is optimal 
if it has a minimum number of wavefronts, i.e., it has as many wavefronts 
as the longest path (the critical path) in the dag. 

We remark that the schedulers described next can be used to construct 
the full iteration schedule in advance (which is how we describe them for 
simplicity), or alternatively, they can be interleaved with the executor, i.e., 
the iterations could be executed as they are found to be ready. 
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5.1. A Simple Scheduler 

A simple scheduler that finds an optimal schedule is sketched in Fig. 5a. 
In the figure, an array wf(i) stores the wavefront found for iteration i, the 
global variable done  flags if all iterations have been scheduled, r d y ( i )  
signals if iteration i is ready to be executed, lower case letters ( a ,  b) are 
used for references to array elements, a .  i t e r  is the iteration which con- 
tains reference a, and Pred (a)  is the set of immediate predecessors of a 
in the array element dependence graph. The scheduling is performed in cpl 
phases (line 4) so that in phase i the iterations belonging to ith wavefront 
are identified. In each phase, all the references recorded in the pR arrays 
are processed (lines 7-13), and the predecessors of all references whose 
iterations have not been scheduled (line 8) are examined. An iteration is 
found not ready if the iterations of any of its reference's predecessors were 
not assigned to previous wavefronts (line 10). After all the references are 
processed, all the iterations are examined (lines 14-17) to see which can be 
added to the current wavefront: an iteration i is ready (line 15) if none of 
its references set r d y ( i )  to false. Advantages of this scheduler are that it 
is conceptually very simple and quite easy to implement. 

Optimizing the simple scheduler. There are some sources of inefficiency 
in this scheduler. First, since a write access could potentially have many 
"parent" read accesses, it could prove expensive to require such a write to 
check all of its "parents" (line 9). Fortunately, this problem is easily 

wf(l:rmmiter)=0 D X for A[x] 
done = .false. level  
cpl = I 

4 do while (done.eq..fatse.) 
rdy(l:numiter) = .false. 1 " " ~ " i t e r a t i o n  
done = .true. 

7 doali i ~  l ~ a ~ c e s s  : : 

8 2 
9 for each (b inPred(a)) 
10 if (wf(b.iter).eq.0) done,rdy(a.iter) = .false. 3 

endfor 
endif 

14 enddoall 4 
15 doall i = l,numiter 
16 if (rdy(i).eq..true.) wffi) = cpl 
18 enddoall 

cpl = cpl + 1 
enddo while (b) 

(a) 

Fig. 5. A simple scheduler. In ( a ) ,  w f ( i )  stores the wavefront found iteration i, the global 
variable d o n e  flags if all iterations have been scheduled, r dy ( i )  signals if iteration i is ready 
to be executed, lower case letters ( a ,  b )  are used for references to memory locations, 
a .  i t e r  is the iteration which contains reference a, and Pred  (a)  is the set of  immediate 
predecessors of  a in the memory location dependence graphs. The dependence graph for one 
of the memory locations accessed in the loop is shown in (b) .  
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circumvented by requiring an unscheduled read access to inform its suc- 
cessor's iteration (the successor, if any, is a write to the same address) that 
it is not ready. Then, a write access only needs to check its predecessor if 
the (single) predecessor is also a write. 

Another source of inefficiency arises from the fact that each inner 
d o a l l  (lines 7-13) requires time O(n,/p) to identify unscheduled iterations 
(line 8), where n a is the total number of accesses to the shared array and 
p is the number of processors. Thus, the scheduler takes time O((na/p)cpl), 
where cpl is the length of the critical path. Thus, i fp  = O(cpl), then it can- 
not be expected to offer any speedup over sequential execution, and even 
worse, it could yield slowdowns for longer critical paths. 

However, note that in any single iteration of the scheduler, the only 
iterations that could potentially be added to the next wavefront must have 
all their accesses at the lowest unscheduled level in their respective element- 
wise dependence graphs. For example, consider the dependence graph 
shown in Fig. 5b. If iteration 2 (level 1) has not been scheduled yet, then 
none of the iterations with accesses in higher levels could be added to the 
current wavefront. Thus, in each of the cpl iterations of the outer do while 
loop, we would like to examine only those references that are in the top- 
most unscheduled level of their respective dependence graph. First note 
that we can easily identify the accesses on each level of the array element 
dependence graphs since references are stored in increasing level order in 
the pR arrays and the pH arrays contain pointers to the first access at each 
level. However, to process only the accesses on the lowest unscheduled 
level it is useful to have a count of the total number of (recorded) accesses 
in each iteration. This information can easily be extracted in the marking 
phase and stored in an array indexed by iteration number. Then, in the 
scheduler, a count of the number of ready accesses for each iteration can 
be computed on a per-processor basis in the first d o a l l  (lines 7-13). In 
the second d o a l l  (lines 14-17), the cross-processor sum of the ready 
access counts for each unscheduled iteration is compared to its total access 
count, and if they are equal the iteration is added to the current wavefront. 

In summary, we would expect this optimized version to outperform 
the original scheduler if there are multiple levels in the array element 
dependence graphs, i.e., because it only examines the accesses at the lowest 
unscheduled level in any iteration of the outer do while. However, note that 
if there are not many repeated write accesses (and thus few levels), then it 
is possible that this version could in fact prove inferior to the original (due 
to the cross-processor summation of the counts). Therefore, the determina- 
tion of which version to use should be made using knowledge gained about 
the access pattern by the inspector. These issues are discussed in more 
detail in Section 6. 

828/23 6-5 
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Overlapping scheduling and execution. As mentioned earlier, the 
scheduler can construct all the wavefronts in advance or it can be inter- 
leaved with the executor so that wavefronts are executed as they are found. 
A third alternative is to overlap the computation of the wavefronts with the 
execution of the loop. First, all the processors compute the first wavefront. 
Then, some processors are assigned to execute the iterations in that 
wavefront, and the rest of the processors compute the next wavefront. The 
strategy is carried out repeatedly until all wavefronts are computed. The 
number of processors assigned to each task would depend upon the 
amount of work contained in the wavefront. Thus, this approach "fills out" 
the wavefronts that cannot employ all the processors, i.e., in effect we 
dynamically merge the parallelism profiles of the wavefront computation 
and the loop execution to more fully utilize the machine. 

Remark: 1. In this paper we are mainly concerned with constructing a 
parallel execution schedule for the iterations of the loop. However, we 
would like to note that the array element dependence information extracted 
by the inspector could also be used for producing schedules that overlap 
iterations or for creating multiple threads of execution. 

6. S T R A T E G Y  FOR A P P L Y I N G  R U N - T I M E  P A R A L L E L I Z A T I O N  

In this section we outline the basic strategy for using the methods in 
a real application environment. 

At Compile-Time. 

1. A cost~performance analysis is performed to evaluate whether a speedup 
can be obtained by these methods (which is not always the case). 

2. I f  the compiler decides to perform run-time parallelization, then an 
inspector for the marking phase is extracted from the source loop 
and any other code needed for the methods is generated. 

Cost/Performance Analysis. The cost/performance analysis is 
primarily concerned with evaluating the amount of available parallelism in 
the loop. Since the data dependence relations between the loop iterations 
cannot be analyzed statically, an estimate of the available parallelism in the 
loop can only be made at compile-time using meaningful statistics from 
previous runs of the program. If the loop is instantiated several times in the 
same program, then an estimate of the available parallelism in a future 
instantiation could be made at run-time using statistics from previous 
invocations of the loop within the same run. For every given (estimated) 
amount of parallelism, the potential speedup is a function of the ratio 
between the work of the loop body and the number of accesses that are 
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shadowed using our methods. The smaller this ratio, the more difficult 
it will be to obtain a speedup, with the worst case being what we call a 
"kernel," i.e., a loop that performs only data movement and no computa- 
tion. Therefore, in order to obtain a speedup, a substantial amount of 
parallelism, and sufficient processors to exploit it, are needed. 

Instrumentation and Code Generation. For the marking phase, the 
compiler needs to extract a marking loop, i.e., a parallel loop that traverses 
the access pattern of the source loop without side effects (without modify- 
ing the original data). It is imperative that the marking loop be parallel, for 
otherwise it defeats the purpose of run-time parallelizationJ 7' 2L) (Next, we 
mention some special circumstances in which speedups might still be 
obtained using a sequential marking loop.) A parallel marking loop can be 
distributed into a loop computing the addresses of the array under test and 
another loop which uses those addresses (i.e., when the address computa- 
tion and data computation are not contained in the same strongly con- 
nected component of the dependence graph). Unfortunately, in some cases 
such a marking loop does not exist, in particular, when the data computa- 
tion in the loop affects future address computations in the loop. After 
extracting a marking loop, if possible, the compiler augments it with the 
code for the marking operations, and generates the code for the analysis 
phase, and for the scheduling and execution of the loop iterations. If a 
marking loop cannot be extracted, then the compiler must choose between 
sequential execution and a speculative parallel execution. ~24~ 

At Run-Time. 

1. At run-time [and possibly also at compile-time] an evaluation of the 
storage requirements of the methods is performed. If these 
requirements are prohibitive for the full iteration space of the loop, 
then the marking loop can be strip-mined and the method (i.e., 
marking, analysis, and scheduling) can be applied to each strip. 
Even in the case of strip-mining, an optimal schedule can be 
obtained since the scheduling method can be easily modified to 
assign iterations in each strip to a single wavefront structure. 

2. The marking phase is executed. 
3. Using information gathered during the marking phase, the compiler 

decides whether to continue with run-time parallelization. A lower 
bound on the length of the critical path is the maximum level 
(across processors) assigned to any individual array element. If 
this lower bound is too high, then parallelization should be 
abandoned and the source loop should be executed sequentially 
since speedups are unlikely. 
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. 

. 

The analysis phase is executed. Recall that the analysis phase iden- 
tifies all elements that are independent, read-only, privatizable, or 
reduction variables, and that accesses to these elements are 
removed from consideration by the scheduler. If all elements fall 
into one of these categories, then the loop can be executed as a 
d o a l l  and the scheduling step is omitted. 

Execute an appropriate scheduler (overlapping it with ready itera- 
tions of  the source loop). The optimized simple scheduler should 
prove superior to the original version unless the element-wise 
dependence graphs have large average degree (see Section 5). 
Since the optimal parallel schedule may be imbalanced (the num- 
ber of iterations in a wavefront can vary significantly between 
wavefronts), it is desirable to interleave the scheduler and the 
executor, i.e., overlap the scheduler's wavefront computations with 
the actual execution of the ready iterations. This can either be 
achieved with a dynamic partition of the processors among these 
two tasks (see Section 5) or with a dynamic ready queueJ 38,39~ 

Schedule reuse and decoupling the inspector/scheduler and the executor. 
Thus far, we have assumed that our methods must be used each time a 
loop is executed in order to determine a parallel execution schedule for the 
loop. However, if the loop is executed again, with the same data access pat- 
tern, the first schedule can be reused amortizing the overhead of the 
method over all invocations. This is a simple illustration of the schedule 
reuse technique, in which a correct execution schedule is determined once, 
and subsequently reused if all of the defining conditions remain invariant 
(see, e.g., Saltz et al. ~s)) If it can be determined at compile time that the 
data access pattern is invariant across different executions of the same loop, 
then no additional computation is required. Otherwise, some additional 
computation must be included to check this condition, e.g., for subscripted 
subscripts the old and the new subscript arrays can be compared. Although 
a parallel marking loop is always desirable, if schedule reuse can be applied 
then it may still be possible to obtain speedups with a sequential marking 
loop since its one sequential execution will be amortized over all loop 
instantiations. 

Another method to reduce the cost associated with these methods is to 
hide their overheads by executing them as soon as all the necessary data 
are available. If this type of decoupling is possible, then the inspector phase 
could be overlapped with other portions of the program--thereby more 
fully exploiting the processing power of the machine (of course support for 
M I M D  execution is highly desirable in this case). 
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7. A C O M P A R I S O N  W I T H  P R E V I O U S  M E T H O D S  

In  this section we compare the methods  described in this paper  to 
several other techniques that have been proposed for the run- t ime analysis  
and  scheduling of do loops. Most  of the previous work has concent ra ted  
on developing inspectors. Consequent ly ,  a wide variety of inspectors have 
been proposed that differ according to the types of loops on which they can 
be applied, the techniques they use, and  the informat ion  they gather. In  the 
following, we briefly describe some of the previous methods,  placing par-  
t icular  emphasis on the differences from and similarities to our  methods.  
A high level compar ison of the various methods  is given in Table I. 

Methods utilizing critical sections. One of the first run- t ime methods  
for scheduling partially parallel loops was proposed by Zhu  and  Yew. (91 It 
computes  the wavefronts one after another  using a method similar to the 
simple scheduler described in Section 5.1. Dur ing  a phase, an i terat ion is 
added to the current  wavefront if none  of the data  accessed in that i terat ion 

Table I. A Comparison of Runtime Parallelization Techniques for do Loops ~ 

Method 

Obtains Contains Requires Restricts Privatizes 
Optimal Sequential Global Type of or Finds 
Schedule Portions Synchron. L o o p  Reductions 

This Paper Yes No No No P,R 
Zhu/Yew 19~ Nob No Yes" No No 
Midkiff/Padua ~ 16) Yes No Yes" No No 
Krothapalli/Sadayappan t 19) No u No Yes c No P 
Chen/Yew/Torrellas 1 is) N o  b'a No Yes No No 
Saltz/Mirchandaney ~2n No u No Yes Yes j No 
Saltz et aL Is~ Yes Yes e Yes Yes f No 
Leung/Zahorjan 171 Yes No Yes Yes f No 
Polychronopoulous ~2~ No No No No No 
Rauchwerger/Paduat23. 24) No g No No No P,R 

~P and R indicates the method identifies privatizable and reduction variable, respectively. 
b The method serializes all read accesses. 
" The performance of the method can degrade significantly in the presence of hotspots. 
UThe scheduler/executor is a doacross loop (iterations are started in a wrapped manner) 

and busy waits are used to enforce certain data dependences. 
The inspector loop sequentially traverses the access pattern. 

rThe method is only applicable to loops without any output dependences (i.e., each memory 
location is written at most once). 
The method only identifies fully parallel loops. 
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is accessed by any lower unassigned iteration; the lowest unassigned iteration 
to access any array element is found using atomic compare-and-swap syn- 
chronization primitives and a shadow version of the array. Midkiff and 
Padua 1~6~ extended this method to allow concurrent reads from a memory 
location in multiple iterations. Due to the compare-and-swap synchroniza- 
tions, this method runs the risk of a severe degradation in performance for 
access pattems containing hot spots (i.e., many accesses to the same memory 
location). However, when there are no hot spots and the critical path length 
is very small, then this method should perform well. An advantage of this 
method is reduced memory requirements: it uses only a shadow version of 
the shared array under scrutiny whereas all other methods (except (Refs. 20, 
23, and 24) unroll the loop and store all the accesses to the shared array. 

Krothapalli and Sadayappan ~9) proposed a run-time scheme for 
removing anti and output dependeces from loops. Their scheme includes a 
parallel inspector that determines the number of accesses to each memory 
location using critical sections as in the method of Zhu and Yew (and is 
thus sensitive to hotspots). Using this information, for each memory loca- 
tion, they place all accesses to it in a dynamically allocated array and then 
sort them according to iteration number. Next, the inspector builds a 
dependence graph for each memory location (similar to our Rx arrays), 
dynamically allocates any additional global storage needed to remove all 
anti and output dependences (using renaming), and explicity constructs the 
mapping between all the memory accesses in the loop and the storage, both 
old and new, thereby inserting an additional level of indirection into all 
memory accesses. The loop is executed in parallel using synchronization 
(full/empty bits) to enforce flow dependences. To our knowledge, this is the 
only other run-time privatization technique except refs. 23 and 24. 

Recently, Chen et aL ~8~ proposed an inspector that has a private 
phase and a merging phase. In the private phase, the loop is chunked and 
each processor builds a list of all the accesses to each memory location for 
its assigned iterations. This is similar to the private marking phase of 
our inspector except that they serialize read accesses (i.e., they have a list 
of the dependence graph). Next, the lists for each memory location are 
linked across processors using a global Zhu/Yew algorithm. ~9) Their 
scheduler/executor uses d o a c r o s s parallelization, I-'~2) i.e., iterations are 
started in a wrapped manner and processors busy wait until their operands 
are ready. Although this scheme potentially has less communication over- 
head than ref. 9, it is still sensitive to hot spots and there are cases (e.g., 
d o a l l s )  in which it proves inferior to ref. 9. 

Methods for loops without output dependences. The problem of 
analyzing and scheduling loops at run-time has been studied extensively by 
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Saltz et al. ~1'8"21"22"26~ Most of their work assumes that there are no 
output dependences in the source loop. In d o a c r o s s parallelization,(2 ~ ~ an 
inspector finds the (at most one) iteration in which each variable is written. 
The scheduler/executor starts iterations in a wrapped manner and pro- 
cessors busy wait until their operands are available. In Ref. 8, the inspector 
constructs wavefronts that respect flow dependences by performing a 
sequential topological sort of the accesses in the loop, and the scheduler/ 
executor enforces any anti dependences using old and new versions of each 
variable (possible since each variable in the source loop is written at most 
once). The topological sort can be parallelized somewhat using d o a c r o s s 
parallelization. Leung and Zahorjan ~7~ proposed methods of parallelizing 
the sequential inspector of ref. 8. In sectioning, the loop is chunked and 
each processor computes an optimal parallel schedule for its chunk, and 
then these schedules are concatenated together, separated by synchroniza- 
tion barriers. In bootstrapping, the inspector is parallelized using sectioning. 
Although bootstrapping might not optimally parallelize the inspector (due 
to the synchronization barriers introduced for each processor), it will 
produce the same optimal schedule as the original sequential inspector. 

Other methods. In contrast to these methods which place iterations 
in the lowest possible wavefront, Polychronopoulos, ~2~ gives a method 
where wavefronts are maximal sets of contiguous iterations with no cross- 
iteration dependences. Dependences are detected using shadow versions of 
the variables, either sequentially, or in parallel with the aid of critical 
sections as in Ref. 9. 

All of the previously mentioned methods attempt to find a valid 
parallel execution schedule for the source do loop. Recently, some of us 
considered a related problem (23' 24~: testing at run-time whether the loop is 
fully parallel, i.e., whether there are any cross-iteration dependences in the 
loop. Our interest in fully parallel loops is motivated by the observation 
that they arise frequently in real programs. The test uses shadow versions 
of the shared variables, is fully parallel, requires no synchronization, and 
can be applied to any loop. If desired, it can be used speculatively (i.e., 
without an inspector), and can also identify privatizable and reduction 
variables. 

8. E X P E R I M E N T A L  R E S U L T S  

In this section we present experimental results obtained on two 
modestly parallel machines with 8 (Alliant FX/80 (4~ and 14 processors 
(Alliant FX/2800~41)). 
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To demonstrate that the new methods can achieve speedups, we 
applied them to three loops contained in the PERFECT Benchmarks ~4-'~ 
that could not be parallelized by any compiler available to us. In addition, 
in order to analyze the overhead incurred by the methods, we applied them 
to different access patterns taken from loops in the PERFECT Benchmarks 
and to synthetic access patterns generated to test their behavior in various 
situations. 

The methods were implemented in Cedar Fortran. ~43~ The inspector 
was essentially as described in Section 4. In particular, we implemented the 
bucket sort version using separate pR and pH data structures for each pro- 
cessor. To avoid checking each row in pR during the analysis phase of the 
inspector and in the scheduler, each processor constructed a linked list of 
the non-empty rows in its pR array during the marking phase. Checks for 
independent, read-only, and privatizable elements were implemented in the 
inspector (we did not yet incorporate the test for reduction variables). In 
the analysis phase, these elements are classified at the same time that the 
predecessors and successors are found for each row. One optimization that 
we did not yet implement was the "pair-wise" merge across processors when 
searching for predecessors or successors in the analysis phase (or when 
classifying elements as independent, read-only, or privatizable). However, 
this is an important optimization since, as previously noted, without it the 
analysis phase of the inspector may fail to scale with the number of pro- 
cessors. Since we implemented the optimized version of the simple 
scheduler described in Section 5, a count of the total number of accesses in 
each iteration was computed in the marking phase (no inter-processor 
communication is needed to determine these counts since each iteration is 
assigned to a single processor). For simplicity, the scheduler and the 
executor were completely decoupled in the implementation. In general, 
however, better speedups should be obtainable by interleaving these two 
tasks (see Section 5). 

8.1. Synthet ic  Access Patterns 

Using synthetic loops, we now study the sensitivity of the overhead of 
the methods to two characteristics of the source do loop: its average 
parallelism (the number of iterations divided by the number of wavefronts 
in an optimal parallel execution schedule) and its hotspot degree (the 
maximum number of repeated accesses to any array element). To simplify 
the generation of the synthetic workloads, we did not identify independent, 
read-only, or privatizable elements in the analysis phase. This should not 
affect our conclusions, however, since these computations can be folded 
into the searches for predecessors and successors (with little extra work). 
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Average parallelism. To isolate the affect of the average parallelism in 
the source loop on the overhead of the methods, we generated access pat- 
terns that were as similar as possible in all aspects except for the average 
parallelism. In particular, there were two accesses in every iteration (a read 
followed by a write), and every array element was accessed approximately 
twice (at some boundary conditions some elements are accessed either once 
or three times). 

First, we would not expect the inspector execution time to be depen- 
dent on the average parallelism in the loop. In the marking phase each pro- 
cessor marks nJp accesses in its private shadow array (to isolate the effects 
of the average parallelism, we assume that the marking phase is balanced). 
The overhead of the analysis phase is primarily dependent upon the num- 
ber of distinct array elements marked in its pR array (since it must find 
successors and predecessors for each nonempty row). Thus this overhead 
might vary inversely with the hotspot degree, but it is not necessarily 
dependent on the average parallelism because for the same critical path 
length the hotspot degree can be anywhere between 2 and the number of 
iterations. In Figs. 7 and 8, we display results from a loop with 2048 itera- 
tions run on 10 processors. The plot shows the overhead incurred for a 
loop with a critical path length of "Step" (the average parallelism is the 
number of iterations divided by the critical path length). As expected, the 
overhead of the inspector is invariant with the length of the critical path, 
and that of the schedule grows linearly with this length. 

We now consider how the speedup of the overheads relates to the 
average parallelism. Since the execution time of the inspector is indepen- 
dent of the average parallelism, its speedup should not depend on it either. 
Even though the scheduling time does depend on the average parallelism, 
its speedup is not necessarily similarly correlated. This is because each 
wavefront is calculated in a d o a l l  loop, i.e., each iteration of the scheduler 
as a whole can be expected to obtain good speedups as well. In Figs. 9 and 
10, we show the speedup obtained for the inspector and executor, respec- 
tively, on a loop with 2048 iterations and three different values of average 
parallelism. In both cases similar speedups are obtained for the sequential 
loop (average parallelism 1) and the loop that is almost fully parallel 
(average parallelism 1024). In Figs. 11 and 1.2 we show analogous results 
on a loop with 1024 iterations. Recall that in our implementation we did 
not use a "pair-wise" merge among the processors, i.e., in our implementa- 
tion each processor checks all p - 1 other processors for predecessors and 
successors whereas in the pair-wise merge only O(logp) operations would 
be needed. This fact is most likely the cause of the slightly diminished slope 
of the speedup curve after about 10 processors for the overhead of the 
inspector. 
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Hotspots. To isolate the effect of the hotspot degree in the source 
loop on the overhead of the methods, we generated access patterns that 
were as similar as possible in all aspects except for the hotspot degree. In 
particular, all loops had 2048 iterations, two accesses in each iteration, and 
an average parallelism of 51 (a critical path length of 40). Also, a loop with 
hotspot value h contained h references to each of n/h array elements, where 
n = 2048 is the number of iterations in the loop. In principle, we would not 
expect our methods to be negatively affected by the hot spot degree. In fact, 
a larger hotspot degree implies fewer nonempty rows in the pR array, and 
thus we might see improved results in the analysis and scheduling phase 
since fewer rows would need to be accessed. The results in Fig. 6 show that 
in fact the total overhead (inspector + scheduler) is nearly the same for all 
hotspot degrees. 

8.2. Real Access Patterns 

Now we would like to look at access patterns arising in real applica- 
tions to demonstrate the diversity of partially parallel access patterns and 
their associated parallelism profiles. By applying the new methods to such 
access patterns, we can reconfirm the conclusions reached above using 
synthetic reference patterns. For this purpose we have chosen a loop 
out of MA28, a blocked sparse unsymmetric linear solver. 144~ Loop 
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MA30cd/DO_ 120 performs the forward-backward substitution in the final 
phase of the blocked sparse linear system solver (MA28). We selected this 
loop because it can generate many diverse access patterns when using the 
Harwell-Boeing matrices as input. Unfortunately, however, the loop itself is 
not a good candidate for parallelization since it performs very little work 
and is highly imbalanced due to the blocked nature of the algorithm 
employed by MA28. 

We will limit our discussion to two input sets: gematl2, which 
generates 4929 iterations, and bp_1600, which generates 822 iterations. 
After extracting and precomputing the linear recurrences from the source 
loop (based on the methods described in ref. 45) we generated a fully 
parallel inspector and applied our methods to compute an optimal parallel 
execution schedule for the loop. 

From the data obtained we constructed the parallelism profiles 
depicted in Figs. 13 and 14. These profiles show the size of the wavefronts 
of the optimal parallel execution schedule. As we can see from the figures, 
the same loop can have vastly different dependence relations between its 
iterations. These figures clearly point out both the need for run-time 
analysis techniques and for dynamic and adaptive scheduling schemes 
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capable of overlapping scheduling and execution. Figure 13 shows that 
most of the iterations of the loop can be executed in the initial wavefronts 
(the critical path length is 114). This suggests that in this case it would be 
more beneficial to interleave the parallel wavefront computation with the 
execution of previous wavefronts than it would be to overlap them, so that 
parallelization (and its associated overhead) can be abandoned when the 
sequential tail of the profile is reached. Although in Fig. 14 most of the 
iterations are also executed in the initial wavefronts, in this case it appears 
that some benefit could be gained by overlapping, i.e., we can take advan- 
tage of the "pauses" in parallelism to compute future (hopefully larger) 
wavefronts. The histograms in Figs. 15 and 16 underscore the need for 
scheduling and execution strategies that can be dynamically adapted 
depending upon the type of parallelism encountered to more fully utilize 
the machine. 

Despite the differences in the parallelism profiles Figs. 17 and 18 show 
that the overhead of the run-time methods described in this paper achieve 
similar performance. The reason that larger speedups were not obtained is 
that the loop is heavily imbalanced due to the blocked nature of the 
algorithm used in MA28. 
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8.2. 1. Parallelizing Benchmark Loops 

We applied the methods to three loops contained in the P E R F E C T  
Benchmarks ~441 that could not be parallelized by any compiler available to 
us. In the analysis phase of the inspector it was found that one of the loops 
was fully parallel, and that the other two could be transformed into 
d o a 1 1 s by privatizing the shared array under test. We show in Figs. 19-21 
the speedup measured for each loop as a function of the number of pro- 
cessors used. As a reference, we give the ideal speedup, which was 
measured using an optimally parallelized (by hand) version of the loop. 
These graphs show that the speedup scales with the number of processors 
and is a significant percentage of the ideal speedup. Next, we discuss each 
loop in more detail. 

We remark here that these loops could also be identified by the LRPD 
test,(23. 24) a run-time test for identifying fully parallel loops, or loops that 
can be transformed into d o a l l s  using privatization and reduction 
parallelization. An advantage of the LRPD test is that it has a smaller 
overhead than the methods we present here. The disadvantage of the 
LR P D test is that if the loop cannot be transformed into a doa11 ,  then 
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the overhead of applying the method is added to cost of the sequential 
execution, i.e., a slight "slowdown" may be incurred. Ideally, in order to 
exploit the relative advantages of the two methods, one would like to apply 
them both simultaneously. 

BDNA-ACTFOR-Loop 240. This loop selects certain elements from 
a large array, and processes the selected elements later in the loop. The 
shared array is accessed through a subscript array that is computed inside 
the loop (and thus cannot be analyzed at compile-time). Although there 
are repeated accesses in this loop, it is determined in the analysis phase of 
the inspector that the entire shared array is privatizable, i.e., that the loop 
can be transformed into a doall by privatizing the array. As shown in 
Fig. 19, the obtained speedup scales with the number of processors and is 
a significant percentage of the ideal speedup. 

MDG-INTERF-Loop 1000. This loop calculates inter-molecular 
interaction forces. In the marking loop, to avoid introducing false 
dependences we computed the branch predicates that guard accesses to the 
shared array under scrutiny. As with the array in the loop from BDNA, it 
is found in the analysis phase of the inspector that the entire shared array 
is privatizable. The speedup obtained scales with the number of processors 
and is a significant fraction of the ideal (see Fig. 20). 

OCEAN-FTRVMT-Loop 109. This kernel-like loop is utilized in the 
computation of a 2-dimensional FFT and accesses a vector with run-time 
determined strides. During the analysis phase of the inspector it is found 
that all accesses in the loop are unique, i.e., it is a fully parallel loop. Since 
this loop is invoked 26,000 times, and accounts for 40% of the sequential 
execution time of the program, it is an excellent candidate for schedule  

reuse (see Section 6). The access pattern for each instantiation of the loop 
is determined by a set of five scalars. In order to apply schedule reuse, we 
checked whether the current set of scalars matched a previously analyzed 
set. If not, then we applied the parallelization techniques, and if they did 
match then we simply executed the loop as a d o a l l .  As can be seen in 
Fig. 21, with schedule reuse we obtain scalable speedups that are com- 
parable to the ideal speedup. 

9. CONCLUSION 

Parallelizing statically intractable loops at run-time is an important 
task since automatic, compile-time parallelization had stopped with 
regular, well-behaved, statically defined programs--which represent only a 
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fraction of all applications. We believe that aggressive, dynamic techniques 
can break this barrier and extract much of the available parallelism from 
even the most complex programs. Motivated by these concerns, we 
proposed new run-time inspector and scheduler methods for parallelizing 
partially parallel loops. The inspector is fully parallel, uses no synchroniza- 
tion, and can be applied to any loop (from which an inspector can be 
extracted). In addition, it can implement at run-time the two most effective 
transformations for increasing the amount of parallelism in a loop: 
array privatization (element-wise) and reduction parallelization. The 
scheduler/executor constructs an optimal parallel execution schedule for 
the iterations of the loop. Although the wavefronts of the schedule are con- 
structed in sequence, the computation of each wavefront is fully parallel 
and requires no synchronization. These new methods improve on all pre- 
viously proposed techniques since none of them simultaneously has all 
these features (Section 7). The experimental results show that the proposed 
methods are capable of obtaining speedups. In particular, since their over- 
head scales with the number of processors, given sufficient processors it will 
become a very small fraction of the sequential execution time of the loop. 
Therefore, we believe that the significance of these methods will increase 
with the advent of massively parallel processors (MPPs) in which the 
penalty of not extracting the available parallelism in a loop could cause a 
massive performance degradation. 

Although these new methods illustrate the potential benefits of run- 
time parallelization, there is still much work left to be done. For example, 
there are many potential scheduling strategies that need to be studied such 
as decoupling the inspector/scheduler and the executor in order to hide the 
overheads, dynamically overlapping scheduling and execution, or con- 
structing parallel threads of execution (as opposed to wavefronts). In any 
case, further investigation is needed to determine the relative performance 
of the various strategies in different circumstances. Another important task 
is to devise effective, automatable strategies for determining when and how 
to use run-time parallelization. Since speedups obtainable from run-time 
parallelization are limited by the inherent parallelism of the loop, the 
compiler needs to estimate obtainable parallelism. Such estimates can be 
produced only through collection and interpretation of valid statistics from 
programs in different application domains. The new methods provide a 
useful tool for such studies since they determine the dependence graph and 
parallelism profile of the loop. It should be noted that run-time overhead 
could be significantly reduced through architectural support. 

We view the methods described in this paper as a building block in 
an evolving framework of run-time parallelization as a complement to the 
existing techniques. ~23-25) 
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