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High performance computers have played key roles in many scientific and 
engineering advances over the past 40 years, and many more may be expected 
in the future, However, unless practical parallel systems can be produced in this 
decade, a performance crisis will arise by 2000 across the spectrum of systems 
from workstations to supercomputers. There is widespread confusion today 
about how best to proceed with future parallel systems because so many dif- 
ferent approaches have been taken and the performance results have been so 
spotty. A fundamental flaw in our approach to parallel computing, as a nation, 
is the poor understanding we have obtained about delivered performance. This 
paper analyzes the situation and suggests fundamental changes that are 
necessary to achieve practical parallelism in this decade. A great deal of money 
is now being spent and more is planned, to advance the field, but money is not 
so much the problem as shortages of qualified people and a sharp focus for their 
work. Our national goals for the end of this decade must be the creation of an 
infrastructure for understanding performance, and its natural consequence, the 
development of practical parallel systems. 

KEY WORDS:  Computational science and engineering; practical parallelism 
tests; parallel performance; parallel software. 

1. INTRODUCTION 

High performance computing is a key technology in many scientific and 
engineering disciplines; this has been true for the past several decades, and 
its scope and importance are increasing over time. Parallelism has 
developed remarkably in the past decade, but its utility is still lacking in 
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many respects, relative to sequential computing. On the other hand as 
traditional clock speed increases fade, parallelism is becoming a more 
important technology. We have already seen supercomputer clocks 
stagnate over the past decade, and the same appears likely to happen for 
CMOS microprocessors in the next decade. Thus, parallelism will become 
a necessity for building faster computers in the 21st century. 

After a decade of fast-track development, we reached the 1990's with 
the parallel processing imperative on everyone's mind: use parallel proces- 
sing now or fall behind in R & D activities. Dozens of different commercial 
systems have been built, sold and then collapsed in the marketplace; but we 
still have not converged on architectures that are well regarded or broadly 
used. 

The U.S. government has launched a national program, the High 
Performance Computing and Communications Initiative (HPCCI), and the 
European Community seems about to do .the same, to apply massively 
parallel processing to various grand challenge computations. While there is 
great potential in these efforts, there are also substantial risks. There are 
risks in promising usable high-performance, but not delivering it through 
several generations of parallel systems. Already, some companies are 
turning away from massively parallel systems after trying one or more of 
them and then deciding that they are too difficult to use. t~ There are also 
risks in announcing the goal of achieving teraflops computing by 1996, but 
not having a clear idea of what that goal really means. The risks include 
wasting money in following too many paths, and more importantly, not 
having enough money to follow the key ones, or even to determine 
rationally what they are. 

There is more confusion in high performance computing and parallel 
processing today than there has been in many years. Computer companies 
have lost their way concerning what kind of Systems to build, and com- 
puter users do not know what to ask for in new systems. A by-product of 
this confusion is the pursuit of short-term goals that have little long-term 
benefit. When such pursuits consume much of the time of the few experts 
in this field, it is important to question both the current state of high per- 
formance computing and the future goals of our field. We believe that the 
national effort will be most successful if it focusses on the greatest grand 
challenge (GGC) of designing highly effective, practical parallel computing 
systems in the coming years. In this way, grand challenge computations 
will continue to benefit forevermore. 

1.1. T w o  Eras 

Figure 1 presents a century-long view of computing technology 
divided into two eras: the Sequential Computing Era and the Parallel 
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Fig. 1. Two comput ing  eras. 

Computing Era. Each era is further divided into four phases that are 
oriented toward usability and the user's view of systems. The architecture 
phase refers to the hardware systems alone, and to this are added phases 
of compilers which translate high level languages and optimize user-written 
programs for machine execution; applications software packages that free 
users from writing certain standard pieces of code; and problem-solving 
environments that integrate compilers, applications packages, and other 
software into "Do what I mean" software systems that free users from most 
programming chores. Finally, each of these phases in Fig. 1 is broken into 
three segments: the first segment is denoted by a dotted line and refers to 
a period of research and development efforts (R & D segment); the second 
segment, denoted by a solid line, refers to the release of commercial 
products as well as continuing R & D (commercialization segment); and 
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the third segment, denoted by a broken line, refers to a period when, 
although there remain a number of open questions, the topic is no longer 
regarded as a "hot research area," products are easy to produce, and prices 
and advertising direct the market (commodity segment). 

The Sequential Computing Era began in the mid-1940's with the con- 
struction of a number of computer systems in research settings, as shown 
by the dotted architecture line in Fig. 1. By about 1950, computers were 
available commercially as denoted by the solid architecture line. Compiler 
research and development began in the early 1950's and commercial 
compilers became available by the late 1950's, as the dotted and solid lines 
show. By the late 1980's, we show the solid architecture and compiler lines 
giving way to broken lines as the merger of uniprocessor architecture and 
compiler ideas in RISC systems reached wide commercial acceptance. 

In the early 1970's, commercial applications software became available 
on uniprocessors and by the early 1980's complete problem-solving envi- 
ronments (PSEs) emerged in the form of CAD systems, word-processing, 
and spread-sheet software. In fact, the low cost of microprocessor 
system hardware and the convenience of PSE software led to the personal 
computer and workstation revolutions of the 1980%. Note that we project 
the research phases of applications and PSE software to extend beyond the 
year 2000 for uniprocessors. 12~ 

Computing in the 1980's was made tremendously exciting for laymen 
and computer professionals alike by the emergence of lowcost personal 
uniprocessors as sketched earlier, as well as the introduction of commercial 
parallel systems. Figure 1 shows that the Parallel Computing Era began at 
just about the same time that uniprocessor PSEs made sequential comput- 
ing affordable by the layman. The same four phases are shown unfolding 
for the Parallel Computing Era in the 1980's and through the mid-1990's. 

The phase shift between the introduction Of each of the four phases of 
the Sequential Computing Era is about ten years, and we estimate that the 
commercialization segments of this era each lasted about thirty years. This 
leads to two key questions for parallel computing: How great a time delay 
will there be between each of the four phases in the Parallel Computing 
Era, and how long will the commercialization segment of each phase last 
before high-quality practical parallel systems become easy to produce as a 
commodity segment is reached? 

The optimistic answer is that because we have learned so much from 
the past fifty years of sequential computing, the phase shift will be reduced 
to, say, five years and each commercialization segment will drop to ten or 
fifteen years. The pessimistic answer, however, is that parallel computing is 
so much more difficult to understand and the design problems are so much 
more challenging, that these numbers will be much higher, perhaps exceed- 
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ing the corresponding times for developing the Sequential Computing Era. 
There are important policy issues for government, industry and academia 
here, which we will discuss throughout the paper. 

The true answer will be revealed over time as research and develop- 
ment efforts advance parallel computing and as sequential computing 
speeds run their course. In the next decade it is likely that the rate of speed 
increase of microprocessors will fall off as it has for superprocessors in the 
past decade. Thus, users' attention may further be torn between the 
potential speed advantages of parallel systems and the existing usability 
advantages of sequential systems. 

1.2. A Brief  H is to ry  of Para l le l ism 

Figure 2 gives a brief history of parallel computing in terms of 
performance and technology levels. For each of three decades we show 
that relative to the time period, parallel computing offered the highest 
performance levels available. 

Furthermore, the hardware technology has changed dramatically over 
these three decades. In the 1960's, parallel systems used the highest level of 
technology available, so the systems were difficult to manufacture, expen- 
sive and hence, rare. In the 1970's, a second generation of parallel systems 
arose that used simpler technology (e.g., bit-serial processors) and so were 
easier to manufacture, less expensive, and more commonly available. By 
the 1980's, with the advent of standard microprocessors and busses, and 
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Fig. 2. Brief history of massively parallel machines. 
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increasingly larger memory chips, the hardware aspects of parallel proces- 
sing had become low tech, and many companies as well as university 
research projects were able to build parallel systems. On the other hand, in 
each period, it was difficult to exploit the parallelism and achieve the high 
potential performance levels because the software remained a very high 
technology item; i.e., the software did not perform as well as desired and 
was difficult to use. 

Thus, the history of parallel computing systems can be viewed as one 
in which the building of larger and larger systems has become easier and 
easier in practice. But as their size has grown and, to some extent, their 
architectures have been weakened by lower-tech hardware approaches, the 
software challenges have remained enormous. So the appeals of peak speed 
have remained high, the appeals of low cost have grown (relative to fast 
scalar supercomputer processors), but the software appeal has remained 
low. In this climate entrepreneurial companies have introduced all manner 
of new products, but few end users have achieved production-level practical 
results from parallel computing to date. 

2. S Y S T E M  D E S I G N  

The problem of designing a good parallel computer system is a con- 
strained optimization problem. Each end user measures the system payoff 
using some criterion function that is proportional to system performance/ 
cost. The system components are many, but we will consider five major 
ones (excluding OS to simplify the discussion): 

�9 Hardware Units 

�9 Architecture 

�9 Algorithm Library 

�9 Compiler 

�9 Languages 

The constraints provided by the real world include issues arising from: 

�9 Hardware Technology 

�9 Computational Science and Engineering 

�9 System Buyers and Users 

Because the cost and performance results for a parallel system have 
very complex nonlinear interactions, we cannot attempt a mathematical 
formulation of this optimization problem. However, a logical formulation 
is presented in Fig. 3. The arrows there show causal relationships in a given 
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system; much more complex relationships may be found, especially if one 
considers a sequence of computer systems over time. 

2.1. Faulty Reasoning 

Naive observers of Fig. 3 often reach misleading conclusions. The most 
common of these are reached by looking along the left-most path 
(Hardware Units, Architecture, System Performance) alone and observing 
the following: 
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Fig. 3. The logic of system design. 
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�9 Peak speed (proportional to clock speed and number of processors) 
is roughly equivalent to delivered system speed. 

�9 Higher speeds are just around the corner because of recent basic 
technology breakthroughs. 

�9 System costs are coming down in proportion to the costs of certain 
basic technology. 

Faulty reasoning along these lines leads to the erroneous conclusion 
that high-speed, low-cost parallel systems will continue or accelerate tradi- 
tional performance increases over time. In addition to serious misconcep- 
tions about system speed's dependence on hardware and architecture, this 
reasoning ignores the very important subject of how performance and cost 
depend upon software. But examining the software issues is even more 
difficult than the architecture and hardware issues. 

Another common set of misleading conclusions is reached by 
examining the right-most paths alone, and observing the following: 

�9 A language that reflects the architecture will yield good system 
performance. 

�9 Powerful compilers can exploit any program on any architecture. 

�9 At a higher level, the software development process can be helped by 
placing more information and responsibility in the users' hands, e.g., 
through interactive compilation or the display of performance 
bottlenecks. 

Faulty reasoning along these lines leads to the belief that new 
programming languages and tools can fill any gaps that may appear in the 
software for parallel computing. In fact, direct contributions to system 
performance are made by all of the system components shown in Fig. 3 
(including language use), and users should not be burdened with much 
responsibility for performance in any case. Furthermore, architectures with 
serious design flaws cannot be "improved" with any amount of software. 

2.2. Design Needs 

To achieve good system performance, all of the components must be 
designed into the system properly, and they must be matched and balanced 
with one another. The designers' problem is to make each component 
suff• strong to support overall system performance, and sufficiently 
low cost to yield an affordable system. Overdesigning any part of the 
system can greatly increase cost, and underdesigning any part of the system 
can ruin performance. 
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In this paper, we focus on the perspective of end users of machines; 
what do they want and what do they need. Users know that they want 
better software and better system performance, but because they have 
embraced such a wide variety of new software and parallel architectures in 
the 1980's, it is obvious that they are confused. In the early 1990's, they are 
still searching for "the right stuff." This indicates that they do not really 
know what they need, and we will attempt here to separate their expressed 
wants from their real needs. 

Simply put, we will summarize some of today's basic technology gaps 
in MPPs,  and then translate this into action plans that address user needs. 
There are a number of obvious problems with today's parallel systems, and 

-the magnitude of the problems may be regarded as proportional to the 
number of parallel processors used. We will focus on what we regard as the 
most serious of these: 

�9 Too much latency in accessing the overall system memory, 

�9 Too little compiler power for existing languages, and 

�9 Too little performance and functionality in numerical libraries. 

As a nation we have conducted a great parallel computing experiment 
during the past decade. A very wide range of systems was built and sold 
using tremendous amounts of venture capital, large company R & D funds 
and government contract funds. Many successful projects were completed 
and many projects failed. And yet, as a nation, we have learned very little 
from the billions of R & D dollars spent. Little performance data was 
collected about individual system's performance, and much less was 
collected about comparative systems' performance. Virtually none of this 
data is publicly available or is being used to develop better systems. 

One of our strongest beliefs is that this situation should be changed 
immediately. A network accessible performance database should be 
developed that contains codes, broken into algorithms, together with 
performance information at various levels. ~'31 This would allow people 
including algorithm designers, compiler writers, system architects, c4~ and 
potential system buyers or users to gain insight about the state of the field 
and to make plans for the future. 

2.3. Performance Limitations and Potentials 

Parallel system performance is limited by a number of system architec- 
ture and software factors, as well as the computations being run. The com- 
putations being run involve particular data and code structures as well as 
a given data size, each of which has obvious performance implications. 
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Together, the data and code structures and the data size help determine 7, 
the percentage of a program's sequential running time that can be executed 
in parallel. Exactly how these factors determine parallelism is a difficult 
subject; for many years the interrelationships affecting delivered parallelism 
have been core questions in the study of program restructuring, parallel 
programming languages, parallel algorithms, etc. 

A very simple relationship between performance and 7was  presented 
by Amdahl, tS) and is often referred to as Amdahl's Law. Using speedup 
(Sp(P)= T(1)/T(P) where T(i)is the best /-processor time) to represent 
performance and assuming that a fraction 7 of T(1) can fully exploit P 
processors, while the remainder of T(1) runs on just one processor, we 
have 

T(I) P 1 
Sp(P) = ?T(I )/P+ (1 - 7) T(1 ) -  7 + (1 - 7 )  P~< 1--~ 

We plot the relationship between speedup and 7 in Fig. 4. Even though 
it is an obvious relationship, this equation (and variations of it) has caused 
much discussion and confusion over the years, probably because of its two 
ide, alized assumptions. The assumption that the parallel part of a computa- 
tion executes fully on P processors is optimistic, while the assumption that 
the remainder executes on just one processor is pessimistic. A more com- 
plete model was presented in Ref. 6, which assumed that fractions "yp of the 
sequential time executed in parallel on p processors, 1 ~< p ~< P. However, 
experimentally determining 7p values is very difficult to do before the fact, 
and after the fact they are of marginal interest since the performance is 
known. Thus, although one can imagine that the optimistic and pessimistic 
assumptions approximately balance each other, real parallel system perfor- 
mance could be better or worse than the curve of Fig. 4 if more parameters 
were used. Nevertheless, the model is inescapably correct, following the 
assumptions made in its derivation. 

Historically, Fig. 4 has been used to argue that parallel processing is 
a difficult, if not impossible alternative to faster sequential systems. In 
particular, in the 1960's and 1970's, the slope of the curve presented a 
formidable challenge to parallel processing enthusiasts. As Fig. 5 shows, 
when 7 was in the neighborhood of 0.5 and the inequality gave Sp <.% 2, a 
reasonable change in z/7 made only a negligible improvement ASp, in 
speedup. This was the situation when the curve was first presented and it 
held for many years. However, over the past twenty years, parallel proces- 
sing has made progress on many fronts, and today computations frequently 
operate with 7 well above 0.9, as shown in Fig. 4. Now, the same 3 7 that 
made a negligible performance difference twenty years ago, can cause a 16- 
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or 32-processor system to double or quadruple its performance. Still, for 
any size of P, the Sp<~ [ 1 / ( 1 - ~ ) ]  bound of Ref. 5 holds, so even for 1 K 
or more processors, 7 = 0.99 with this model upper bounds speedup at 100. 

Figure 5 shows that the magnitude of P has increased substantially 
over the past three decades, as have 7 values for compiled programs and 
for the best hand-tuned parallel programs. The top delivered parallel 
speedups have shot ahead in past decades far greater than average 
performances would indicate. Indeed, as parallelizing compilers have 
improved and good parallel programming style and know-how have been 
disseminated, compiled performance has risen dramatically for nonexpert 

Sp 

2 

1 

Performance 

Limit 

I I 
0 .5 .9 

7 
Fig. 4. Amdahl parallel speedup limit. 

P 

Processors 



110 Kuck 

Sp 

2 

1 

Performance 

.5 1970's ~_ 
1980's 

A 
w 

Compiler ~ 
Range 

Limit 

I 
.9 

1990's 

P 
Processors 

90's 

80's 

70's 

A 
v 

Best 
Hand-Tuned 

Fig. 5. Historical parallel speedup limit. 



What Do Users of Parallel Computer Systems Really Need? 111 

users with certain classes of codes. Thus, an outside observer of only the 
three data points marked on Fig. 5, which correspond to the best code run- 
ning on the largest system available at each time, would correctly conclude 
that parallel processing has made tremendous progress over the past three 
decades, but might misunderstand that this is not across-the-board, general 
purpose progress. These experiences have helped fuel the parallel 
processing imperative of the 1990's, but they do not imply that practical 
parallel processing has arrived for ordinary users. 

Taken at its face value, Amdahl's Law has served as a cautionary, even 
threatening guidepost to parallel processing system designers from the 
1960's through 1980's as they proceeded across the low- ~ portion of the 
curve. For the 1990's and beyond, however, this simple model may serve as 
a motivating stimulus to the next generation of parallel system designers 
whose incentive is to climb the steep, high- ~ portion of the curve and make 
practical parallel processing a reality. Overall, this model offers us the 
optimistic possibility that when sufficiently many problems have been 
solved, progress toward practical parallel processing will accelerate. 

3. W H A T  REALLY M A T T E R S  TO U S E R S  IN HPC 

To address the question of the paper's title, we will first ask the same 
question for users of workstations. In the workstation marketplace over the 
past decade, there has been a continuous cycle of performance enhance- 
ment and new applications software. Users obviously want to move toward 
the ability to do more complex computations in less time. Faster systems 
reduce the time for a given computation or accommodate more complex 
computations in a given allotment of time. New applications software 
expands a machine's functionality but usually requires more hardware 
performance for its support. Thus performance and functionality are the 
yin and yang that drive computer systems forward. 

Superficially, it seems obvious that workstation users and supercom- 
puter users are similarly motivated. It can be argued that supercomputer 
users have come to expect much less software than workstation users have, 
while at the same time reaping the rewards of much higher performance. 
On the other hand, the very purpose of HPCC[ has come to be regarded 
as advancing a number of grand challenge computationsJ v~ By definition, 
solving the most challenging computational problems will require the joint 
efforts of many people and the joint development of new codes (as outlined 
later). Thus, on close analysis it must be agreed that the idea of supercom- 
purer users as "super users" who can get by without much software support 
is anachronistic, so in the end, workstation users and supercomputers both 
want and need more performance and more functionality. 
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3.1. Large Code Development  

As one example of the software needs in high performance computing, 
consider the problems of combining one code that computes the flow 
around an airplane, with another code that computes the airplane's struc- 
tural dynamics, and a third that simulates fluid flow through the engines. 
By combining these three codes we might get a rather complete simulation 
of an airplane in flight. It is obvious that the use of parallel software 
engineering techniques would be of great help here, both in structuring the 
three original codes and in the process of combining themJ 8) 

An example that is even more dependent on careful parallel software 
engineering would be the combining of parts of several codes. Suppose that 
we want to create the world's best general circulation model of the global 
atmosphere. A good strategy should be to start with the best code available 
and then enhance it with better parts obtained from other codes, e.g., the 
best subroutines for cloud formation, ocean-atmospheric interaction, etc. 

These two examples would challenge the state of the art in sequential 
software engineering as applied to physical modelling, and are currently 
unthinkable for parallel codes. Since the nation is attempting to drive 
HPCCI by such grand challenge computations, this work should be based 
on the most well-established and best-engineered codes available. Thus, 
one must conclude today that the best machines to use for such activities 
would be those shared-memory systems with the best established software 
systems. A good deal of time and effort seem necessary before distributed- 
memory MPPs can provide the necessary software support to become 
competitive with sequential systems or even shared-memory parallel 
systems. A crucial underlying problem is the effective memory speed of 
distributed memory systems (see Section4.1). Nevertheless, the HPCCI 
effort has distributed memory MPPs as its cornerstone architectural 
component. 

3.2. Problem Size vs. Scope 

One of the recurring debates about the effectiveness of MPPs vs. 
shared-memory systems, concerns data size and memory size, as well as 
memory access time. It is argued that MPPs can easily provide massive, 
low-cost memory to handle the very large problems that will be necessary 
in grand challenge computations. In fact, the scope rather than the mere 
size of a computation is what matters in grand challenge computations. By 
data size we mean the total amount of data, but by scope we refer to the 
total amount of data as well as code, tohgether with the complexity of their 
interactions. The previous section gave an example of combining three 
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codes to get an accurate airplane simulation. While the data size and code 
size might increase by about 3X when combined, the scope might increase 
by an even greater factor. This would be caused by the fact that each of the 
codes would have to be made more complex to accommodate the others by 
adding coupling factors, more reality (physics, chemistry, etc.) more mesh 
points, etc., and this would cause the running time of each of the three 
modified codes to be much longer in the combined case than when run 
separately. 

The interaction of various parts of a code is a crucial issue in parallel 
system performance for several reasons: 

1. Parallelizing a code becomes much more difficult as loop structure 
complexity and the depth of procedure call nesting increases. 
These tend to increase as the scope of a code increases, because of 
interactions between the various program components. 

2. To manage the memory of a parallel system, locality of computa- 
tion is important, since nonlocal memory references are relatively 
expensive on any parallel system. As the scope of a computation 
increases, locality tends to decrease simply because the probability 
of different access patterns increases. For example, with a single 
algorithm we may find a highly localized data partitioning, but 
this partitioning is not likely to hold for the next algorithm 
required by a computation. Thus, it can be expected that as a 
code's scope increases, the inherent difficulties of obtaining good 
parallel performance increase substantially. 

Of course, most individual codes become more complex in scope as 
time passes, and new reality and more data points are incorporated. On the 
other hand, some problems may actually decrease in size as time passes; oil 
reservoir simulation may focus on smaller domains as they are depleted by 
pumping, but increase in scope as more chemical and geological code is 
added. 

3.3. System Software Design Goals 

System software is the glue that binds applications codes to hardware 
systems, and its design has major performance consequences. At the 
bottom level, the operating system causes the hardware to start and s t o p  
parallel tasks, it decides which tasks can run with others, and it generally 
manages the hardware and software system resources. One level up, 
the compiler translates user-language programs into machine-language 
programs and can restructure the program and data structures in the 
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process. The compiler as well as users depend on libraries which provide 
functionality that is common to many programs, but that no user has the 
need to write. Each of these system software components can substantially 
affect performance. Nevertheless, no amount of software can overcome 
architectural flaws, for example, to reach a theoretical peak speed that is 
fundamentally unreachable because of architectural bottlenecks. 

A fourth software issue is the programming language or environment 
through which users express themselves to the computer. Problem solving 
environments (PSE) are evolving rapidly in which users do not write 
programs but rather specify problems to be solved. (9) Computer-aided 
design (CAD) systems which have been in use in various engineering 
disciplines since the 1970's, and spreadsheet and word processing software 
that swept the world in the 1980's, can be regarded as the prototypes 
for future PSEs. A P S E  can relieve the user of most programming 
burdens, and can also ensure high performance if the system itself is well- 
implemented. Thus, such systems are likely to be used in more and more 
applications areas in the future (recall Fig. 1). 

3.4. Languages and Performance 

Today we still must use programming languages for high performance 
computing and because of the difficulty of obtaining good performance 
from parallel systems, for HPCCI, language design issues currently remain 
at center stage. Languages must be sufficiently expressive and easy to use 
that users will easily accept them. Furthermore, languages (and other 
software tools) must allow old codes to be ported and new codes to be 
maintained on various machines, including MPPs, over long periods of 
time and from one set of people to the next. 

It is obvious that languages can be designed that give users sufficient 
flexibility to provide top performance in every case. Unfortunately, such 
languages e.g. assembly language, have long since been rejected by most 
people as too difficult to. use. Since the 1960's, the generally acceptable 
computer language level has risen from the machine level to the point 
where PC users now have problem-solving environments that do not 
require users to be programmers at all, but instead users may express 
themselves in terms of their own disciplines. Parallel processing cannot 
succeed by attempting to reverse this historical market force. 

Suppose, though, that we attempt to design high-level languages which 
are easy to use and still reflect sufficiently much of the architecture that by 
using them people can easily obtain good parallel performance. The 
tradeoffs that must be considered in such a language design are: 
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�9 Usability will suffer, at least to some degree, as the language level 
must "drop," by definition, to accommodate performance-enhance- 
ment features. 

�9 Portability will suffer as users "optimize" the code they write for a 
given machine. 

�9 System design effort is misplaced because more work should be done 
on better algorithm libraries, compilers and architectures to provide 
what we really need: better performance that is obtained in a 
user-transparent manner. 

The logical conclusions that we reach from these are: 

A. Programming languages are very important in satisfying user- 
generated, system-design constraints concerning system usability 
(see Fig. 3). They mst provide expressiveness in a good program- 
ming model for new programs as well as portability and main- 
tainability for existing codes. Software engineering principles must 
be used in writing large programs, and languages can be designed 
to encourage the use of these principles. 

B. If A, is satisfied by a language, then system performance cannot 
be much of an issue for users as they write programs. Delivered 
performance on each intended target machine is important (see 
Fig. 3) and usability must suffer if user-invokable performance 
enhancement becomes a language design criterion. In practice, 
compilers must provide performance on each target machine that 
a user chooses. 

A simple way of summarizing this is to say that language design is 
constrained by all of the arcs touching "language" in Fig. 3 and that 
languages should primarily be designed to satisfy system buyers and users. 
If some architectural features (e.g., vectors) are a natural part of the users' 
discipline, then they should be included in the source language. Perfor- 
mance, however, should be designed into the architecture, algorithm 
library, and compiler .so that users' concern with it is minimal. 

Two prominent Fortran language extension committees have 
developed designs in the past five years. For shared memory machines, 
Parallel Computing Forum (PCF) Fortran has evolved into ANSI commit- 
tee X3H5, ~m't~) and more recently the High Performance Fortran Forum 
has been evolving High Performance Fortran (HPF)  for distributed 
memory workstation networks and MPP systems. "2~ At this point, 
however, H P F  reflects sufficiently much architecture-oriented detail, e.g., 
about memory management, that it appears to be better thought of as a 
target language for compiler output than as a user-oriented language. 

828/22/I-8 
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As the field evolves, we must compromise to succeed. Furthermore, 
items that are given up in early compromises ay be taken black in later 
designs. Thus, language extensions by which users can easily obtain large 
performance boosts, which are (more or less) machine-independent, and 
which can be COMMENTed  out as time passes are good early com- 
promises. On the other hand, poor ideas for compromise would include 
those that do not match these earlier ideas or that seduce users into think- 
ing that their use will lead to performance increases but do not because of 
compiler weaknesses or architectural flaws. 

Thus, in the short run a given approach can satisfy certain users, but 
raise a number of questions about the long run. First, even for current 
machines, to maximize users' performance tuning possibilities, vendors may 
have to provide dialect extensions (e.g. to HPF)  that allow exploitation of 
unique aspects of their own systems. Second, if parallel processing is to 
emerge from its current niche market and become a practical technology, 
it is essential that architectures be improved (e.g., in communication 
delays--see next section), and at the same time compilers must be 
improved substantially. Finally, since current architectures must change, 
the code that was written for earlier systems will need modification for new 
systems. 

The forward thinking users who decide now to drop their old codes 
and rewrite them from scratch in HPF, for example, may find that as 
architectures and compilers evolve, they will be forced to repeat the rewrit- 
ing process a number of times, before practical parallel processing arrives. 
Some industrial users have already dropped MPP projects due to their 
current lack of cost-effectiveness. This is not being written as a warning to 
users so much as a challenge to system designers. New systems must be 
designed nd built to deliver advances in the cost-effectiveness of parallel 
processing, in contrast to the too-frequent Changes of the past that 
provided higher peak speeds with only the promise that "they might deliver 
better performance to some users." 

4. PRACTICAL PARALLEL PROCESSING 

4.1. Fast and S low M e m o r y  Computat ions 

We shall use the terms "fast-memory parallel computation" and "slow- 
memory parallel computation" to divide the world of parallel computation. 
We use the terms "fast" and "slow" to express the operational capabilities 
of a hardware system to meet the demands of a compiled code. From the 
point of view of the code running in each processor, if its demands are met 
on time, then the memory system appears "fast" to that processor, so a 
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fast-memory parallel computation is one for which each processor's memory 
demands are met on time throughout an entire computation; if a parallel 
computation is not a fast-memory parallel computation then we call it a 
slow-memory parallel computation. (An operational definition of "on time" 
here can be understood to be that the processor does not notice significant 
degradation to its cache's "average" uniprocessor performance.) 

In parallel computers data must be communicated between processors, 
and the time required to pass this data is a crucial issue. If one processor 
is to access data in another processor's memory, it clearly must pay at least 
the time that a sequential machine would require for memory access, but 
there are substantial added penalties in a parallel machine. See Ref. 13 for 

a recent tutorial collection of parallel architectures. An interconnection 
network is required and this adds two kinds of penalties. First are the 
hardware delays along wires and through the switching devices used to 
route the data to its destination. As modern microprocessors are appearing 
with clock periods of 10 nanoseconds or less, propagating a signal across 
a printed circuit board and through silicon requires a significant fraction of 
a clock. Secondly there are operational delays caused by conflicts between 
two or more data items that are directed along the same path by a com- 
putation. On top of these delays, for actually transmitting the data, there 
is the address translation time which can be accomplished through 
hardware (as in most shared-memory systems), or can require software 
intervention (as has been typical of message-passing systems). 

Because they are relatively easy to design and build, distributed- 
memory message-passing parallel systems became very popular in the 
1980's. Using off-the-shelf components, they appeared to be inexpensive, 
and using simple interconnection networks, they appeared to be scalable 
up to large numbers of processors. But due to the message-passing 
paradigm, their performance was poor whenever there was much network 
traffic in a computation. In fact, the generation of MPPs produced in the 
early 1990's have system-wide memory access delays on the order of 100/~s 
and, using processors whose clock periods are a few tens of nanoseconds, 
the processor experiences a thousand-fold delay over a cache access. Thus, 
unless a computation largely avoids use of the system-wide memory, 
generating mostly local memory addresses, it will run as a slow-memory 
parallel computation. Of course, in a P-processor system whose total main 
memory size is M words, such computations effectively have a memory size 
M/P words. 

On the other hand, shared-memory systems have tended to use 
custom parts which appeared expensive, and because they tend to use more 
complex networks, their scalability has been more questionable than dis- 
tributed-memory systems. Today's shared-memory systems with a few tens 
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of processors have shared-memory access times that are not substantially 
worse than the factor of ten degradation experienced by uniprocessors for 
cache misses. Thus they typically can run jobs as fast-memory practical 
parallel computations, and each processor has access to the full M words 
of system main memory. 

Overall, shared-memory systems have system memory access times 
that are one or two orders of magnitude smaller than distributed-memory 
systems, but the existing systems have one or two orders of magnitude 
fewer processors than distributed-memory MPP systems. Whether or not 
these shared-memory architectures can be scaled up substantially, without 
degrading shared-memory access time is one of today's important architec- 
ture questions. If parallel processing prevails in the 21st century, it will 
almost certainly be because system designers have been able to achieve 
fast-memory practical parallel computation for most users. This can be 
expected to happen only through the solution of hardware and software 
problems at the system level, while fully accounting for the applications 
demands of users. 

4.2. (CLEAR) Compiler-Library Engineered ARchitecture 

What is needed in parallel processing today is an integration of 
existing ideas that leads to more usable practical parallel systems. It took 
many years to integrate uniprocessor design and compiler technology and 
produce RISC processors, which led to a new set of difficulties but has 
delivered short-term performance/price breakthroughs. Although the 
analogous parallel processing problem is not yet solved, we offer an 
acronym that captures the key requirements for its solution: CLEAR, for 
Compiler-Library Engineered ARchitecture. A CLEAR parallel system 
would offer users good performance with existing languages (perhaps 
modified a bit) and library routines that had sufficient parallel power and 
broad functionality. Users would find the language-compiler easy to use 
and would find that the library contains familiar functionality that fits their 
applications. Note the relationship between architecture and compilers in 
Fig. 3. Thr system would have been designed as an integrated whole to 
deliver parallel performance to users, not merely to have overwhelming 
peak speed. 

A CLEAR parallel system would not offer users language extensions or 
software tools that were advertised to help their parallel thinking (unless 
users wanted that for their applications domain), or to allow them more 
control over their data, or to allow them to examine the parallel static 
structure or execution characteristics of their code. In short, CLEAR 
parallel systems must allow users to think about their problem domains 
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and not about the parallel system being used, i.e., the systems solve 
problems but are not part  of the problem to be solved. 

The reader may object to this, regarding our desires as well-motivated 
but unachievable. Some may say that these have been the objectives of the 
field since the beginning and therefore do not need restatement now. Our  
point here is that the parallel computing field has developed well in the 
past decade, but it has not yet matured. We must not err now toward 
believing that it has matured with current M P P  architectures and that we 
will have parallel systems software that can compete with sequential 
systems software by some fixed date in the next 5 years. Nor  should we be 
drawn into the anachronistic approach that attempts to deliver systems 
n o w  and lets users add software as they go. 

Vector supercomputing developed in that way because the Cray-1 was 
the fastest scalar processor available in 1976. People were happy to use it 
for its scalar performance, and then tried to do better by vectorizing their 
codes. Today 's  MPPs  require uch software working together correctly to 
deliver high performance, otherwise users get workstation performance for 
supercomputer prices. Again, we should not deliver weak systems to users 
with the notion that we may have gone as far as necessary, and the users 
can do the rest. 

We believe that our objectives are achievable, at least for certain 
classes of computations. The field must evolve practical parallel hardware 
and software systems to meet these objectives. 

4.3. Paral le l  Processing Needs and the  
Pract ica l  Para l le l ism Tests 

The term "practical parallelism" can be used to refer to the eventual 
goal that we have been discussing for parallel processing technology. In 
this section we shall define five practical parallelism tests that allow us to 
discuss the subject's parts. The first three tests should be clear following the 
discussion of this paper; before listing the tests we present background 
material explaining the last two tests. 

The parallel systems that we seek must have a certain performance 
robustness to qualify as practical. In particular we must be able to run our 
codes on a certain range of processor counts, not just on the whole 
machine or some fixed segment of it. This is the case because a user may 
want to pay for different performance levels at different times, the O.S. may 
face scheduling constraints when the system is heavily loaded, etc. We will 
refer to this as code scalability on a given parallel system. Additionally, 
it is necessary that the system possess architectural scalability. That  is, 
systems with various processor counts must be implementable using the 
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same architecture but without varying the underlying hardware technology. 
This allows a range of system performance levels to be implementable. 

A final test that parallel systems face, which sequential ones do not, is 
that of technology reimplementability. The issue here is that a successful 
architecture cannot depend upon a given technology, so that when a new 
technology mix becomes current, the system must be reimplementable. One 
way of failing this test is by using very fast hardware in one part of the 
system, relative to the remainder of the system, so that if the remainder of 
the system is reimplemented in a fast, new low-cost technology the one 
part, having no new faster technology base, becomes a bottleneck. 

Practical parallelism has not yet been demonstrated; in fact, no 
standard definition of it exists. It seems clear that there should be 
"laboratory level" and "commercial level" criteria for judging practical 
parallelism, and we will now propose five criteria that add up to a Practical 
Parallelism Test. ~' 4) 

At the laboratory level, we will use as our criterion for the success of 
parallelism. 

4.3. 1. The Fundamental Principle of Parallel Processing (FPPP) 

Clock speed is interchangeable with parallelism while: 

A. maintaining delivered performance, that is 

B. stable over a certain class of computations. 

There are really three statements in the FPPP: first, the well-established 
point that high peak speeds are possible through parallelism, and then two 
important constraints that we shall use as Practical Parallelism Tests 
(PPTs). 

Practical Parallelism Test 1." Delivered Performance 

The parallel system delivers performance, as measured in speedup or 
computational rate, for a'useful set of codes. 

Practical Parallelism Test 2: Stable Performance 

The performance demonstrated in PPT1 is within a specified stability 
range across a useful set of codes as the computations vary with respect to 
program structures, data structures, and problem sizes. 

Next we discuss two additional tests that must be met if one has 
demonstrated the F P P P  and wants to use it in a commercially viable 
product. 
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Practical Parallel&m Test 3: Portability and Programmability 

The computer system is easy to port codes to and to program, for a 
general class of applications. 

Practical Parallelism Test 4: Code and Architecture Scalability 

The computer system effectively runs each code/data size on a range 
of processors, and each code can be scaled up or down with respect to 
architecture. 

Finally, if the first system is a success and the company is to survive 
over time, the system must demonstrate. 

�9 Practical Parallelism Test 5: Technology and Scalability Reimplementability 

The system architecture must be capable of being reimplemented in 
new, faster or less expensive technologies as they emerge. 

It is important to realize that, despite the great enthusiasm for parallel 
processing today, not even the Fundamental Principle of Parallel Process- 
ing has been demonstrated beyond rather narrow classes of computations. 
Substantial amounts of work will be required before the remaining three 
PTTs are passed. Inasmuch as this may require a number of years to 
achieve, it is important to consider the training of new people relative to 
these points. The scope of the practical parallelism problem can be reflected 
across a wide academic spectrum, as we shall discuss next. 

5. T H E  F U T U R E  ROLE OF A C A D E M I C  CSE IN 
A D V A N C I N G  T H E  G G C  

5.1. C o m p u t e r  Sc ience  

The future role of academic computer science and engineering is 
currently under increasing debate. 19'~5"~6~ Simply put, the field arose a few 
decades ago because computers were being built and used to solve a 
growing range of real-world problems. Initially, these problems and the 
computer systems thernselves provided a tremendous stimulus for the field. 
Subsequently, computer science has slowly turned its back on its roots. 
There were probably several reasons for this, including: 

�9 The desire of computer scientists to free themselves from the 
subservient role of machine builders and programmers for other 
well-established academic fields that used computers and wanted 
help. 

�9 The fact that new, interesting and indeed useful problems were dis- 
covered which could occupy the attention of many researchers; these 
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included the theory and practice of algorithms, artificial intelligence, 
databases, languages and operating systems, etc. 

�9 The crush of new students in the 1980's whose curiosity was 
probably stimulated by home PC's and was fueled by the excitement 
of these new fields of research. 

�9 The growing importance of computers in the world, adding to the 
budgets, publicity, and importance of the field. This led computer 
scientists to feel confident that they could chart their own courses. 

In the 1990's, we face a crisis in computer science education. 

A. Enrollments are down, probably partly because of demographics 
and partly because of a cooling of student interest in the field. 

B. Funding is in question as the economy, peace, and the interplay 
between academic disciplines ebb and flow. 

C. Future research directions are debated as the field matures on the 
one hand and new technical problems arise on the other. 

Our purpose here is not to deal broadly with these issues, but rather 
to focus on one important piece of the whole puzzle. 

5.2. Computa t iona l  Science and Engineering 

Computational science and engineering (CSE), along with theory and 
experimentation, is now being called the third branch of science and 
engineering) ~7~ We view CSE as the direct extension of those subjects 
that started the academic computing field in the 1940's and 1950's and, 
beginning in the 1960's, led to the formation of academic computer science 
departments and caused many electrical engineering departments to 
become electrical and computer engineering departments. 

We define computational science and engineering as the study of the 
whole computational process of solving problems in science and engineer- 
ing. On the one hand the name is a generalization of "computational 
chemistry," "computational electronics," "computational physics," "com- 
puter aided design," etc. On the other hand it is a variation on "computer 
science" and "computer engineering" that refers to the application of scien- 
tific and engineering principles (rather than the current, often-used intuitive 
approach) to the whole computational process of solving problems. It does 
not include the theoretical and experimental aspects of the discipline to 
which computing is being applied. Nor does it include those parts of 
modern theoretical or experimental computer science that are completely 
divorced from the principles of designing computer systems to solve 
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problems, (e.g. artificial intelligence as a theory of human thought 
processes, or abstract complexity theory). 

There are several subjects that have not been of the greatest interest in 
computer science and computer engineering in the recent past, which we 
now see as essential to the future of high-speed computing. The advent of 
commercially available parallel computer systems in the 1980's must be 
regarded as a major milestone in the history of computing. Parallel systems 
are being built of necessity, to achieve high performance; the fastest clock 
speeds have improved very little in the past decade, so parallelism is the 
architect's only hope. This means that for the first time in history, com- 
puter architecture is not just an interesting academic subject, but rather the 

�9 future of high speed computing seems to depend on it. Architecture of the 
future must become a discipline that is deeply rooted in the performance 
analysis of earlier systems. (See Section2.2.) Furtherore, compiling for 
parallel machines is a major challenge. Whereas compiler research for 
sequential machines was pretty much a closed subject by the early 1980's, 
parallel compilation has blossomed in the past decade, and is currently a 
very important subject. 

Finally, parallel algorithms need substantial development and 
implementation in useful libraries. As architectures become more complex, 
algorithms to exploit them become more difficult to understand. Unfor- 
tunately, numerical library research and development has not kept pace. 
Much attention has been placed on reimplementing and repackaging 
algorithms for traditional problems (e.g., LAPACK from EISPACK, and 
LINPACK), but little effort has gone into sparse algorithm libraries, or 
any libraries for parallel machines. 

These basic subjects together with material that integrates various 
aspects of large parallel codes should form the core of CSE. Integrating 
material might include: 

1. The structure of large programs with performance implications, 
e.g., program structures, data structures, data generation and 
analysis, visualization. ~18~ 

2. Great Equations and Their Solution Techniques, e.g., Maxwell's, 
Navier-Stoke's, Boltzmann's, etc.; Monte Carlo, Linear Algebra, 
Table-Lookup, etc. 

3. Parallel Software Engineering, e.g., structure of codes for high 
performance parallel computation, and data for parallel memory; 
good programming style. 

4. Performance Evaluation and Improvement, e.g., comparative 
system performance analys!s; system component performance 
improvement techniques/3) 
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. Problem Solving Environments, which form a direct software link 
between traditional computer science and many other 
departments, as outlined next. 

5.3. PSEs" in CSE 

An excellent starting point for cooperative research and development 
between CS, CE and other engineering and science departments would 
center on existing CAD systems. Consider the benefits and problems of 
adapting an existing CAD system to automate the figures and expand the 
homework in an engineering textbook. There would be manifold benefits in 
allowing students to see dynamic, 3D, color graphics rather than static, 
2D, black and white textbook figures. Furthermore, the students could 
manipulate the "figures" by changing the load on a beam or the input 
voltage to a circuit. Similarly, all homework could consist of "machine 
problems" that were based on the figures and text as built into a CAD 
system. 

The first challenging problem here would be to use the CAD systems 
to build up simple designs (discipline-oriented work) and then to develop 
new user interfaces for interacting with the figures and for solving the 
homework exercises (computer science-oriented work). This use of CAD 
systems makes them effectively Computer-Aided Simulation (CAS) systems. 
The potential payoff of this should be enough to entice the CAD system 
companies to cooperate by releasing (parts of) their source code for 
academic enhanceent. This would allow academics to build software on top 
of the existing CAD systems for user interfaces, to interface two CAD 
systems, and to study their structures for adaptive use. The real goal of 
computer science research would be in developing tools, software engineer- 
ing methods and frameworks to allow this kind of activity to proceed 
easily. It could also open the CAD companies to academic cooperation in 
developing parallel versions of their systems for higher performance. 

This scenario could also open the door to building Computer-Aided 
Research (CAR) systems which differ from CAD systems as follows. Given 
an input specification, a CAD system produces answers that users desire 
and can generally believe. On the other hand, a CAR system produces 
answers for which, if they appear plausible, the user seeks to study their 
derivation. In other words, a CAD system is treated like a black box, 
whereas a CAR system is a transparent box full of smaller transparent 
boxes, each of which bears examination and enhancement in building 
better models. Examples here include modeling a weather system, the 
folding of a protein, or the heart pumping blood. Notice that a CAR 
system will spin off CAS systems to be used in accurate simulators of 
engineering design or of the physical world. 
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5.4. CSE Summary 

Much work is needed in curriculum development for CSE, and it is 
necessary that computer engineers, computer scientists, and a wide range of 
applications people be involved in the effort. The subject is controversial 
today as it seems to attack and compete with current academic computer 
science and computer engineering activities in terms of A, B and C. ~9~ It 
must be realized that CS and CE will be revitalized by a cooperation with 
CSE. Developing CSE will have immediate payoff in helping to solve a 
number of the problems discussed earlier. It will also have long-term 
benefits in educating a new generation of people to think in new ways that 
will, in the end, solve the greatest grand challenge. 

6. C O N C L U S I O N  

We conclude with some overall recommendations which seem most 
important for the future of high performance parallel computing. 

�9 In order to succeed, parallel computing must deliver the basics: 
good architectures with low communication delay and high 
bandwidth, high performance algorithm libraries with broad func- 
tionality, and powerful paralielizing compilers. 

�9 The greatest grand challenge (GGC) is to develop a methodology 
for improving parallel systems generally. Progress on the GGC will 
have wide benefits in the future and will aid all of the applications 
grand challenges. For this reason, the GGC should be our central 
fOCUS. 

�9 A national performance metacenter in the form of a network 
accessible database is an urgent need to allow people to attack the 
grand challenge. It would contain grand challenge codes together 
with global per.formance data and detailed performance information 
about the basic algorithms used. With it, comparisons could be 
made between all machines. 

�9 Short-term software bandaids are misplaced efforts that cannot over- 
come architectural defects, misdirect highly talented software people, 
and confuse users. These include reimplementing sequential libraries 
and developing software that forces users to struggle (more or less) 
with performance. 

�9 Computational Science and Engineering must be seen as a means of 
revitalizing and enriching Computer Science and Computer 
Engineering, not as competing with them. Many of the ideas being 
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developed in these academic disciplines are useful in pushing parallel 
processing toward its maturity and advancing the GGC. A CSE 
curriculum enhancement in the short-term is an absolute necessity. 

These five points contain the essence of what we feel is necessary to 
minimize the time to success for parallel computing. They are evolutionary 
steps that do not force radical changes on computer researchers, designers, 
or users. We feel that high performance computing would significantly 
benefit from each point in the short run. 

A C K N O W L E D G M E N T S  

I am greatly indebted to many colleagues at CSRD for help in 
developing these ideas over the years, especially George Cybenko, David 
Padua, and Ahmed Sameh. The strong opinions stated here, of course, are 
mine and not theirs. 
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