
International Journal of Parallel Programming, Vol. 22. No. 1, 1994

What Do Users of Parallel
Systems Really Need?

D a v i d J. Kuck 1

Received date." May 1993

Computer

High performance computers have played key roles in many scientific and
engineering advances over the past 40 years, and many more may be expected
in the future, However, unless practical parallel systems can be produced in this
decade, a performance crisis will arise by 2000 across the spectrum of systems
from workstations to supercomputers. There is widespread confusion today
about how best to proceed with future parallel systems because so many dif-
ferent approaches have been taken and the performance results have been so
spotty. A fundamental flaw in our approach to parallel computing, as a nation,
is the poor understanding we have obtained about delivered performance. This
paper analyzes the situation and suggests fundamental changes that are
necessary to achieve practical parallelism in this decade. A great deal of money
is now being spent and more is planned, to advance the field, but money is not
so much the problem as shortages of qualified people and a sharp focus for their
work. Our national goals for the end of this decade must be the creation of an
infrastructure for understanding performance, and its natural consequence, the
development of practical parallel systems.

KEY WORDS: Computational science and engineering; practical parallelism
tests; parallel performance; parallel software.

1. INTRODUCTION

High performance computing is a key technology in many scientific and
engineering disciplines; this has been true for the past several decades, and
its scope and importance are increasing over time. Parallelism has
developed remarkably in the past decade, but its utility is still lacking in

Center for Supercomputing Research and Development, University of Illinois at Urbana-
Champaign, 465 C & SRL, 1308 West Main St., Urbana, Illinois, 61801. (kuck@kai.com).

99

828/22/I-7 0885-7458/94/0200-0099S07.00 0 ~" 1994 Plenum Publishing Corporation

100 Kuck

many respects, relative to sequential computing. On the other hand as
traditional clock speed increases fade, parallelism is becoming a more
important technology. We have already seen supercomputer clocks
stagnate over the past decade, and the same appears likely to happen for
CMOS microprocessors in the next decade. Thus, parallelism will become
a necessity for building faster computers in the 21st century.

After a decade of fast-track development, we reached the 1990's with
the parallel processing imperative on everyone's mind: use parallel proces-
sing now or fall behind in R & D activities. Dozens of different commercial
systems have been built, sold and then collapsed in the marketplace; but we
still have not converged on architectures that are well regarded or broadly
used.

The U.S. government has launched a national program, the High
Performance Computing and Communications Initiative (HPCCI), and the
European Community seems about to do .the same, to apply massively
parallel processing to various grand challenge computations. While there is
great potential in these efforts, there are also substantial risks. There are
risks in promising usable high-performance, but not delivering it through
several generations of parallel systems. Already, some companies are
turning away from massively parallel systems after trying one or more of
them and then deciding that they are too difficult to use. t~ There are also
risks in announcing the goal of achieving teraflops computing by 1996, but
not having a clear idea of what that goal really means. The risks include
wasting money in following too many paths, and more importantly, not
having enough money to follow the key ones, or even to determine
rationally what they are.

There is more confusion in high performance computing and parallel
processing today than there has been in many years. Computer companies
have lost their way concerning what kind of Systems to build, and com-
puter users do not know what to ask for in new systems. A by-product of
this confusion is the pursuit of short-term goals that have little long-term
benefit. When such pursuits consume much of the time of the few experts
in this field, it is important to question both the current state of high per-
formance computing and the future goals of our field. We believe that the
national effort will be most successful if it focusses on the greatest grand
challenge (GGC) of designing highly effective, practical parallel computing
systems in the coming years. In this way, grand challenge computations
will continue to benefit forevermore.

1.1. T w o Eras

Figure 1 presents a century-long view of computing technology
divided into two eras: the Sequential Computing Era and the Parallel

W h a t Do Users o f Para l le l C o m p u t e r S y s t e m s Rea l l y Need? 101

Sequential
Era

Parallel
Era

194~

Architecture

. . . . Compilers

. Applications

. Problem Solvin,q Environments

Architecture

Compilers

. Applications

P.S.E.s

I I I I I I I I I
50 60 70 80 90 2000 2030

Commercialization
i4esear& 'an Commodity
Development

Fig. 1. Two comput ing eras.

Computing Era. Each era is further divided into four phases that are
oriented toward usability and the user's view of systems. The architecture
phase refers to the hardware systems alone, and to this are added phases
of compilers which translate high level languages and optimize user-written
programs for machine execution; applications software packages that free
users from writing certain standard pieces of code; and problem-solving
environments that integrate compilers, applications packages, and other
software into "Do what I mean" software systems that free users from most
programming chores. Finally, each of these phases in Fig. 1 is broken into
three segments: the first segment is denoted by a dotted line and refers to
a period of research and development efforts (R & D segment); the second
segment, denoted by a solid line, refers to the release of commercial
products as well as continuing R & D (commercialization segment); and

102 Kuck

the third segment, denoted by a broken line, refers to a period when,
although there remain a number of open questions, the topic is no longer
regarded as a "hot research area," products are easy to produce, and prices
and advertising direct the market (commodity segment).

The Sequential Computing Era began in the mid-1940's with the con-
struction of a number of computer systems in research settings, as shown
by the dotted architecture line in Fig. 1. By about 1950, computers were
available commercially as denoted by the solid architecture line. Compiler
research and development began in the early 1950's and commercial
compilers became available by the late 1950's, as the dotted and solid lines
show. By the late 1980's, we show the solid architecture and compiler lines
giving way to broken lines as the merger of uniprocessor architecture and
compiler ideas in RISC systems reached wide commercial acceptance.

In the early 1970's, commercial applications software became available
on uniprocessors and by the early 1980's complete problem-solving envi-
ronments (PSEs) emerged in the form of CAD systems, word-processing,
and spread-sheet software. In fact, the low cost of microprocessor
system hardware and the convenience of PSE software led to the personal
computer and workstation revolutions of the 1980%. Note that we project
the research phases of applications and PSE software to extend beyond the
year 2000 for uniprocessors. 12~

Computing in the 1980's was made tremendously exciting for laymen
and computer professionals alike by the emergence of lowcost personal
uniprocessors as sketched earlier, as well as the introduction of commercial
parallel systems. Figure 1 shows that the Parallel Computing Era began at
just about the same time that uniprocessor PSEs made sequential comput-
ing affordable by the layman. The same four phases are shown unfolding
for the Parallel Computing Era in the 1980's and through the mid-1990's.

The phase shift between the introduction Of each of the four phases of
the Sequential Computing Era is about ten years, and we estimate that the
commercialization segments of this era each lasted about thirty years. This
leads to two key questions for parallel computing: How great a time delay
will there be between each of the four phases in the Parallel Computing
Era, and how long will the commercialization segment of each phase last
before high-quality practical parallel systems become easy to produce as a
commodity segment is reached?

The optimistic answer is that because we have learned so much from
the past fifty years of sequential computing, the phase shift will be reduced
to, say, five years and each commercialization segment will drop to ten or
fifteen years. The pessimistic answer, however, is that parallel computing is
so much more difficult to understand and the design problems are so much
more challenging, that these numbers will be much higher, perhaps exceed-

What Do Users of Parallel Computer Systems Really Need? 103

ing the corresponding times for developing the Sequential Computing Era.
There are important policy issues for government, industry and academia
here, which we will discuss throughout the paper.

The true answer will be revealed over time as research and develop-
ment efforts advance parallel computing and as sequential computing
speeds run their course. In the next decade it is likely that the rate of speed
increase of microprocessors will fall off as it has for superprocessors in the
past decade. Thus, users' attention may further be torn between the
potential speed advantages of parallel systems and the existing usability
advantages of sequential systems.

1.2. A Brief H is to ry of Para l le l ism

Figure 2 gives a brief history of parallel computing in terms of
performance and technology levels. For each of three decades we show
that relative to the time period, parallel computing offered the highest
performance levels available.

Furthermore, the hardware technology has changed dramatically over
these three decades. In the 1960's, parallel systems used the highest level of
technology available, so the systems were difficult to manufacture, expen-
sive and hence, rare. In the 1970's, a second generation of parallel systems
arose that used simpler technology (e.g., bit-serial processors) and so were
easier to manufacture, less expensive, and more commonly available. By
the 1980's, with the advent of standard microprocessors and busses, and

1960's U. of III. Illiac 4
Bell Labs PEPE

1970's Goodyear
AerospaceSTARAN

ICL DAP

1980's Hypercubes
SIMDs

Peak

Speed

high

high

high

Relative to era

Hardware
Technology

Level

high

medium

low

Software

Quality

low

low

low

Fig. 2. Brief history of massively parallel machines.

104 Kuck

increasingly larger memory chips, the hardware aspects of parallel proces-
sing had become low tech, and many companies as well as university
research projects were able to build parallel systems. On the other hand, in
each period, it was difficult to exploit the parallelism and achieve the high
potential performance levels because the software remained a very high
technology item; i.e., the software did not perform as well as desired and
was difficult to use.

Thus, the history of parallel computing systems can be viewed as one
in which the building of larger and larger systems has become easier and
easier in practice. But as their size has grown and, to some extent, their
architectures have been weakened by lower-tech hardware approaches, the
software challenges have remained enormous. So the appeals of peak speed
have remained high, the appeals of low cost have grown (relative to fast
scalar supercomputer processors), but the software appeal has remained
low. In this climate entrepreneurial companies have introduced all manner
of new products, but few end users have achieved production-level practical
results from parallel computing to date.

2. S Y S T E M D E S I G N

The problem of designing a good parallel computer system is a con-
strained optimization problem. Each end user measures the system payoff
using some criterion function that is proportional to system performance/
cost. The system components are many, but we will consider five major
ones (excluding OS to simplify the discussion):

�9 Hardware Units

�9 Architecture

�9 Algorithm Library

�9 Compiler

�9 Languages

The constraints provided by the real world include issues arising from:

�9 Hardware Technology

�9 Computational Science and Engineering

�9 System Buyers and Users

Because the cost and performance results for a parallel system have
very complex nonlinear interactions, we cannot attempt a mathematical
formulation of this optimization problem. However, a logical formulation
is presented in Fig. 3. The arrows there show causal relationships in a given

What Do Users of Parallel Computer Systems Really Need? 105

system; much more complex relationships may be found, especially if one
considers a sequence of computer systems over time.

2.1. Faulty Reasoning

Naive observers of Fig. 3 often reach misleading conclusions. The most
common of these are reached by looking along the left-most path
(Hardware Units, Architecture, System Performance) alone and observing
the following:

Hardware
Technology

Speed
Cost

Manufactur-
ability

Computational t Science and System Buyers
Engineering and Users

Usability
Numerical Mathematics Maintainability

Parallel Software Engineering Portability
Languages and Compilers Budgets

Real
World

Constraints

System
Components

Hardware
Units

Architecture ~ Language

Payoff

Algorithm
Ubrary ~ Compiler

\
System

Performance

Fig. 3. The logic of system design.

106 Kuck

�9 Peak speed (proportional to clock speed and number of processors)
is roughly equivalent to delivered system speed.

�9 Higher speeds are just around the corner because of recent basic
technology breakthroughs.

�9 System costs are coming down in proportion to the costs of certain
basic technology.

Faulty reasoning along these lines leads to the erroneous conclusion
that high-speed, low-cost parallel systems will continue or accelerate tradi-
tional performance increases over time. In addition to serious misconcep-
tions about system speed's dependence on hardware and architecture, this
reasoning ignores the very important subject of how performance and cost
depend upon software. But examining the software issues is even more
difficult than the architecture and hardware issues.

Another common set of misleading conclusions is reached by
examining the right-most paths alone, and observing the following:

�9 A language that reflects the architecture will yield good system
performance.

�9 Powerful compilers can exploit any program on any architecture.

�9 At a higher level, the software development process can be helped by
placing more information and responsibility in the users' hands, e.g.,
through interactive compilation or the display of performance
bottlenecks.

Faulty reasoning along these lines leads to the belief that new
programming languages and tools can fill any gaps that may appear in the
software for parallel computing. In fact, direct contributions to system
performance are made by all of the system components shown in Fig. 3
(including language use), and users should not be burdened with much
responsibility for performance in any case. Furthermore, architectures with
serious design flaws cannot be "improved" with any amount of software.

2.2. Design Needs

To achieve good system performance, all of the components must be
designed into the system properly, and they must be matched and balanced
with one another. The designers' problem is to make each component
suff• strong to support overall system performance, and sufficiently
low cost to yield an affordable system. Overdesigning any part of the
system can greatly increase cost, and underdesigning any part of the system
can ruin performance.

What Do Users of Parallel Computer Systems Really Need? 107

In this paper, we focus on the perspective of end users of machines;
what do they want and what do they need. Users know that they want
better software and better system performance, but because they have
embraced such a wide variety of new software and parallel architectures in
the 1980's, it is obvious that they are confused. In the early 1990's, they are
still searching for "the right stuff." This indicates that they do not really
know what they need, and we will attempt here to separate their expressed
wants from their real needs.

Simply put, we will summarize some of today's basic technology gaps
in MPPs, and then translate this into action plans that address user needs.
There are a number of obvious problems with today's parallel systems, and

-the magnitude of the problems may be regarded as proportional to the
number of parallel processors used. We will focus on what we regard as the
most serious of these:

�9 Too much latency in accessing the overall system memory,

�9 Too little compiler power for existing languages, and

�9 Too little performance and functionality in numerical libraries.

As a nation we have conducted a great parallel computing experiment
during the past decade. A very wide range of systems was built and sold
using tremendous amounts of venture capital, large company R & D funds
and government contract funds. Many successful projects were completed
and many projects failed. And yet, as a nation, we have learned very little
from the billions of R & D dollars spent. Little performance data was
collected about individual system's performance, and much less was
collected about comparative systems' performance. Virtually none of this
data is publicly available or is being used to develop better systems.

One of our strongest beliefs is that this situation should be changed
immediately. A network accessible performance database should be
developed that contains codes, broken into algorithms, together with
performance information at various levels. ~'31 This would allow people
including algorithm designers, compiler writers, system architects, c4~ and
potential system buyers or users to gain insight about the state of the field
and to make plans for the future.

2.3. Performance Limitations and Potentials

Parallel system performance is limited by a number of system architec-
ture and software factors, as well as the computations being run. The com-
putations being run involve particular data and code structures as well as
a given data size, each of which has obvious performance implications.

108 Kuck

Together, the data and code structures and the data size help determine 7,
the percentage of a program's sequential running time that can be executed
in parallel. Exactly how these factors determine parallelism is a difficult
subject; for many years the interrelationships affecting delivered parallelism
have been core questions in the study of program restructuring, parallel
programming languages, parallel algorithms, etc.

A very simple relationship between performance and 7was presented
by Amdahl, tS) and is often referred to as Amdahl's Law. Using speedup
(Sp(P)= T(1)/T(P) where T(i)is the best /-processor time) to represent
performance and assuming that a fraction 7 of T(1) can fully exploit P
processors, while the remainder of T(1) runs on just one processor, we
have

T(I) P 1
Sp(P) = ?T(I)/P+ (1 - 7) T(1) - 7 + (1 - 7) P~< 1--~

We plot the relationship between speedup and 7 in Fig. 4. Even though
it is an obvious relationship, this equation (and variations of it) has caused
much discussion and confusion over the years, probably because of its two
ide, alized assumptions. The assumption that the parallel part of a computa-
tion executes fully on P processors is optimistic, while the assumption that
the remainder executes on just one processor is pessimistic. A more com-
plete model was presented in Ref. 6, which assumed that fractions "yp of the
sequential time executed in parallel on p processors, 1 ~< p ~< P. However,
experimentally determining 7p values is very difficult to do before the fact,
and after the fact they are of marginal interest since the performance is
known. Thus, although one can imagine that the optimistic and pessimistic
assumptions approximately balance each other, real parallel system perfor-
mance could be better or worse than the curve of Fig. 4 if more parameters
were used. Nevertheless, the model is inescapably correct, following the
assumptions made in its derivation.

Historically, Fig. 4 has been used to argue that parallel processing is
a difficult, if not impossible alternative to faster sequential systems. In
particular, in the 1960's and 1970's, the slope of the curve presented a
formidable challenge to parallel processing enthusiasts. As Fig. 5 shows,
when 7 was in the neighborhood of 0.5 and the inequality gave Sp <.% 2, a
reasonable change in z/7 made only a negligible improvement ASp, in
speedup. This was the situation when the curve was first presented and it
held for many years. However, over the past twenty years, parallel proces-
sing has made progress on many fronts, and today computations frequently
operate with 7 well above 0.9, as shown in Fig. 4. Now, the same 3 7 that
made a negligible performance difference twenty years ago, can cause a 16-

What Do Users of Parallel Computer Systems Really Need? 109

or 32-processor system to double or quadruple its performance. Still, for
any size of P, the Sp<~ [1 / (1 - ~)] bound of Ref. 5 holds, so even for 1 K
or more processors, 7 = 0.99 with this model upper bounds speedup at 100.

Figure 5 shows that the magnitude of P has increased substantially
over the past three decades, as have 7 values for compiled programs and
for the best hand-tuned parallel programs. The top delivered parallel
speedups have shot ahead in past decades far greater than average
performances would indicate. Indeed, as parallelizing compilers have
improved and good parallel programming style and know-how have been
disseminated, compiled performance has risen dramatically for nonexpert

Sp

2

1

Performance

Limit

I I
0 .5 .9

7
Fig. 4. Amdahl parallel speedup limit.

P

Processors

110 Kuck

Sp

2

1

Performance

.5 1970's ~_
1980's

A
w

Compiler ~
Range

Limit

I
.9

1990's

P
Processors

90's

80's

70's

A
v

Best
Hand-Tuned

Fig. 5. Historical parallel speedup limit.

What Do Users of Parallel Computer Systems Really Need? 111

users with certain classes of codes. Thus, an outside observer of only the
three data points marked on Fig. 5, which correspond to the best code run-
ning on the largest system available at each time, would correctly conclude
that parallel processing has made tremendous progress over the past three
decades, but might misunderstand that this is not across-the-board, general
purpose progress. These experiences have helped fuel the parallel
processing imperative of the 1990's, but they do not imply that practical
parallel processing has arrived for ordinary users.

Taken at its face value, Amdahl's Law has served as a cautionary, even
threatening guidepost to parallel processing system designers from the
1960's through 1980's as they proceeded across the low- ~ portion of the
curve. For the 1990's and beyond, however, this simple model may serve as
a motivating stimulus to the next generation of parallel system designers
whose incentive is to climb the steep, high- ~ portion of the curve and make
practical parallel processing a reality. Overall, this model offers us the
optimistic possibility that when sufficiently many problems have been
solved, progress toward practical parallel processing will accelerate.

3. W H A T REALLY M A T T E R S TO U S E R S IN HPC

To address the question of the paper's title, we will first ask the same
question for users of workstations. In the workstation marketplace over the
past decade, there has been a continuous cycle of performance enhance-
ment and new applications software. Users obviously want to move toward
the ability to do more complex computations in less time. Faster systems
reduce the time for a given computation or accommodate more complex
computations in a given allotment of time. New applications software
expands a machine's functionality but usually requires more hardware
performance for its support. Thus performance and functionality are the
yin and yang that drive computer systems forward.

Superficially, it seems obvious that workstation users and supercom-
puter users are similarly motivated. It can be argued that supercomputer
users have come to expect much less software than workstation users have,
while at the same time reaping the rewards of much higher performance.
On the other hand, the very purpose of HPCC[has come to be regarded
as advancing a number of grand challenge computationsJ v~ By definition,
solving the most challenging computational problems will require the joint
efforts of many people and the joint development of new codes (as outlined
later). Thus, on close analysis it must be agreed that the idea of supercom-
purer users as "super users" who can get by without much software support
is anachronistic, so in the end, workstation users and supercomputers both
want and need more performance and more functionality.

112 Kuck

3.1. Large Code Development

As one example of the software needs in high performance computing,
consider the problems of combining one code that computes the flow
around an airplane, with another code that computes the airplane's struc-
tural dynamics, and a third that simulates fluid flow through the engines.
By combining these three codes we might get a rather complete simulation
of an airplane in flight. It is obvious that the use of parallel software
engineering techniques would be of great help here, both in structuring the
three original codes and in the process of combining themJ 8)

An example that is even more dependent on careful parallel software
engineering would be the combining of parts of several codes. Suppose that
we want to create the world's best general circulation model of the global
atmosphere. A good strategy should be to start with the best code available
and then enhance it with better parts obtained from other codes, e.g., the
best subroutines for cloud formation, ocean-atmospheric interaction, etc.

These two examples would challenge the state of the art in sequential
software engineering as applied to physical modelling, and are currently
unthinkable for parallel codes. Since the nation is attempting to drive
HPCCI by such grand challenge computations, this work should be based
on the most well-established and best-engineered codes available. Thus,
one must conclude today that the best machines to use for such activities
would be those shared-memory systems with the best established software
systems. A good deal of time and effort seem necessary before distributed-
memory MPPs can provide the necessary software support to become
competitive with sequential systems or even shared-memory parallel
systems. A crucial underlying problem is the effective memory speed of
distributed memory systems (see Section4.1). Nevertheless, the HPCCI
effort has distributed memory MPPs as its cornerstone architectural
component.

3.2. Problem Size vs. Scope

One of the recurring debates about the effectiveness of MPPs vs.
shared-memory systems, concerns data size and memory size, as well as
memory access time. It is argued that MPPs can easily provide massive,
low-cost memory to handle the very large problems that will be necessary
in grand challenge computations. In fact, the scope rather than the mere
size of a computation is what matters in grand challenge computations. By
data size we mean the total amount of data, but by scope we refer to the
total amount of data as well as code, tohgether with the complexity of their
interactions. The previous section gave an example of combining three

What DO Users of Parallel Computer Systems Really Need? 113

codes to get an accurate airplane simulation. While the data size and code
size might increase by about 3X when combined, the scope might increase
by an even greater factor. This would be caused by the fact that each of the
codes would have to be made more complex to accommodate the others by
adding coupling factors, more reality (physics, chemistry, etc.) more mesh
points, etc., and this would cause the running time of each of the three
modified codes to be much longer in the combined case than when run
separately.

The interaction of various parts of a code is a crucial issue in parallel
system performance for several reasons:

1. Parallelizing a code becomes much more difficult as loop structure
complexity and the depth of procedure call nesting increases.
These tend to increase as the scope of a code increases, because of
interactions between the various program components.

2. To manage the memory of a parallel system, locality of computa-
tion is important, since nonlocal memory references are relatively
expensive on any parallel system. As the scope of a computation
increases, locality tends to decrease simply because the probability
of different access patterns increases. For example, with a single
algorithm we may find a highly localized data partitioning, but
this partitioning is not likely to hold for the next algorithm
required by a computation. Thus, it can be expected that as a
code's scope increases, the inherent difficulties of obtaining good
parallel performance increase substantially.

Of course, most individual codes become more complex in scope as
time passes, and new reality and more data points are incorporated. On the
other hand, some problems may actually decrease in size as time passes; oil
reservoir simulation may focus on smaller domains as they are depleted by
pumping, but increase in scope as more chemical and geological code is
added.

3.3. System Software Design Goals

System software is the glue that binds applications codes to hardware
systems, and its design has major performance consequences. At the
bottom level, the operating system causes the hardware to start and s t o p
parallel tasks, it decides which tasks can run with others, and it generally
manages the hardware and software system resources. One level up,
the compiler translates user-language programs into machine-language
programs and can restructure the program and data structures in the

114 Kuck

process. The compiler as well as users depend on libraries which provide
functionality that is common to many programs, but that no user has the
need to write. Each of these system software components can substantially
affect performance. Nevertheless, no amount of software can overcome
architectural flaws, for example, to reach a theoretical peak speed that is
fundamentally unreachable because of architectural bottlenecks.

A fourth software issue is the programming language or environment
through which users express themselves to the computer. Problem solving
environments (PSE) are evolving rapidly in which users do not write
programs but rather specify problems to be solved. (9) Computer-aided
design (CAD) systems which have been in use in various engineering
disciplines since the 1970's, and spreadsheet and word processing software
that swept the world in the 1980's, can be regarded as the prototypes
for future PSEs. A P S E can relieve the user of most programming
burdens, and can also ensure high performance if the system itself is well-
implemented. Thus, such systems are likely to be used in more and more
applications areas in the future (recall Fig. 1).

3.4. Languages and Performance

Today we still must use programming languages for high performance
computing and because of the difficulty of obtaining good performance
from parallel systems, for HPCCI, language design issues currently remain
at center stage. Languages must be sufficiently expressive and easy to use
that users will easily accept them. Furthermore, languages (and other
software tools) must allow old codes to be ported and new codes to be
maintained on various machines, including MPPs, over long periods of
time and from one set of people to the next.

It is obvious that languages can be designed that give users sufficient
flexibility to provide top performance in every case. Unfortunately, such
languages e.g. assembly language, have long since been rejected by most
people as too difficult to. use. Since the 1960's, the generally acceptable
computer language level has risen from the machine level to the point
where PC users now have problem-solving environments that do not
require users to be programmers at all, but instead users may express
themselves in terms of their own disciplines. Parallel processing cannot
succeed by attempting to reverse this historical market force.

Suppose, though, that we attempt to design high-level languages which
are easy to use and still reflect sufficiently much of the architecture that by
using them people can easily obtain good parallel performance. The
tradeoffs that must be considered in such a language design are:

What Do Users of Parallel Computer Systems Really Need? 115

�9 Usability will suffer, at least to some degree, as the language level
must "drop," by definition, to accommodate performance-enhance-
ment features.

�9 Portability will suffer as users "optimize" the code they write for a
given machine.

�9 System design effort is misplaced because more work should be done
on better algorithm libraries, compilers and architectures to provide
what we really need: better performance that is obtained in a
user-transparent manner.

The logical conclusions that we reach from these are:

A. Programming languages are very important in satisfying user-
generated, system-design constraints concerning system usability
(see Fig. 3). They mst provide expressiveness in a good program-
ming model for new programs as well as portability and main-
tainability for existing codes. Software engineering principles must
be used in writing large programs, and languages can be designed
to encourage the use of these principles.

B. If A, is satisfied by a language, then system performance cannot
be much of an issue for users as they write programs. Delivered
performance on each intended target machine is important (see
Fig. 3) and usability must suffer if user-invokable performance
enhancement becomes a language design criterion. In practice,
compilers must provide performance on each target machine that
a user chooses.

A simple way of summarizing this is to say that language design is
constrained by all of the arcs touching "language" in Fig. 3 and that
languages should primarily be designed to satisfy system buyers and users.
If some architectural features (e.g., vectors) are a natural part of the users'
discipline, then they should be included in the source language. Perfor-
mance, however, should be designed into the architecture, algorithm
library, and compiler .so that users' concern with it is minimal.

Two prominent Fortran language extension committees have
developed designs in the past five years. For shared memory machines,
Parallel Computing Forum (PCF) Fortran has evolved into ANSI commit-
tee X3H5, ~m't~) and more recently the High Performance Fortran Forum
has been evolving High Performance Fortran (HPF) for distributed
memory workstation networks and MPP systems. "2~ At this point,
however, H P F reflects sufficiently much architecture-oriented detail, e.g.,
about memory management, that it appears to be better thought of as a
target language for compiler output than as a user-oriented language.

828/22/I-8

116 Kuck

As the field evolves, we must compromise to succeed. Furthermore,
items that are given up in early compromises ay be taken black in later
designs. Thus, language extensions by which users can easily obtain large
performance boosts, which are (more or less) machine-independent, and
which can be COMMENTed out as time passes are good early com-
promises. On the other hand, poor ideas for compromise would include
those that do not match these earlier ideas or that seduce users into think-
ing that their use will lead to performance increases but do not because of
compiler weaknesses or architectural flaws.

Thus, in the short run a given approach can satisfy certain users, but
raise a number of questions about the long run. First, even for current
machines, to maximize users' performance tuning possibilities, vendors may
have to provide dialect extensions (e.g. to HPF) that allow exploitation of
unique aspects of their own systems. Second, if parallel processing is to
emerge from its current niche market and become a practical technology,
it is essential that architectures be improved (e.g., in communication
delays--see next section), and at the same time compilers must be
improved substantially. Finally, since current architectures must change,
the code that was written for earlier systems will need modification for new
systems.

The forward thinking users who decide now to drop their old codes
and rewrite them from scratch in HPF, for example, may find that as
architectures and compilers evolve, they will be forced to repeat the rewrit-
ing process a number of times, before practical parallel processing arrives.
Some industrial users have already dropped MPP projects due to their
current lack of cost-effectiveness. This is not being written as a warning to
users so much as a challenge to system designers. New systems must be
designed nd built to deliver advances in the cost-effectiveness of parallel
processing, in contrast to the too-frequent Changes of the past that
provided higher peak speeds with only the promise that "they might deliver
better performance to some users."

4. PRACTICAL PARALLEL PROCESSING

4.1. Fast and S low M e m o r y Computat ions

We shall use the terms "fast-memory parallel computation" and "slow-
memory parallel computation" to divide the world of parallel computation.
We use the terms "fast" and "slow" to express the operational capabilities
of a hardware system to meet the demands of a compiled code. From the
point of view of the code running in each processor, if its demands are met
on time, then the memory system appears "fast" to that processor, so a

What Do Users of Parallel Computer Systems Really Need? 117

fast-memory parallel computation is one for which each processor's memory
demands are met on time throughout an entire computation; if a parallel
computation is not a fast-memory parallel computation then we call it a
slow-memory parallel computation. (An operational definition of "on time"
here can be understood to be that the processor does not notice significant
degradation to its cache's "average" uniprocessor performance.)

In parallel computers data must be communicated between processors,
and the time required to pass this data is a crucial issue. If one processor
is to access data in another processor's memory, it clearly must pay at least
the time that a sequential machine would require for memory access, but
there are substantial added penalties in a parallel machine. See Ref. 13 for

a recent tutorial collection of parallel architectures. An interconnection
network is required and this adds two kinds of penalties. First are the
hardware delays along wires and through the switching devices used to
route the data to its destination. As modern microprocessors are appearing
with clock periods of 10 nanoseconds or less, propagating a signal across
a printed circuit board and through silicon requires a significant fraction of
a clock. Secondly there are operational delays caused by conflicts between
two or more data items that are directed along the same path by a com-
putation. On top of these delays, for actually transmitting the data, there
is the address translation time which can be accomplished through
hardware (as in most shared-memory systems), or can require software
intervention (as has been typical of message-passing systems).

Because they are relatively easy to design and build, distributed-
memory message-passing parallel systems became very popular in the
1980's. Using off-the-shelf components, they appeared to be inexpensive,
and using simple interconnection networks, they appeared to be scalable
up to large numbers of processors. But due to the message-passing
paradigm, their performance was poor whenever there was much network
traffic in a computation. In fact, the generation of MPPs produced in the
early 1990's have system-wide memory access delays on the order of 100/~s
and, using processors whose clock periods are a few tens of nanoseconds,
the processor experiences a thousand-fold delay over a cache access. Thus,
unless a computation largely avoids use of the system-wide memory,
generating mostly local memory addresses, it will run as a slow-memory
parallel computation. Of course, in a P-processor system whose total main
memory size is M words, such computations effectively have a memory size
M/P words.

On the other hand, shared-memory systems have tended to use
custom parts which appeared expensive, and because they tend to use more
complex networks, their scalability has been more questionable than dis-
tributed-memory systems. Today's shared-memory systems with a few tens

118 Kuck

of processors have shared-memory access times that are not substantially
worse than the factor of ten degradation experienced by uniprocessors for
cache misses. Thus they typically can run jobs as fast-memory practical
parallel computations, and each processor has access to the full M words
of system main memory.

Overall, shared-memory systems have system memory access times
that are one or two orders of magnitude smaller than distributed-memory
systems, but the existing systems have one or two orders of magnitude
fewer processors than distributed-memory MPP systems. Whether or not
these shared-memory architectures can be scaled up substantially, without
degrading shared-memory access time is one of today's important architec-
ture questions. If parallel processing prevails in the 21st century, it will
almost certainly be because system designers have been able to achieve
fast-memory practical parallel computation for most users. This can be
expected to happen only through the solution of hardware and software
problems at the system level, while fully accounting for the applications
demands of users.

4.2. (CLEAR) Compiler-Library Engineered ARchitecture

What is needed in parallel processing today is an integration of
existing ideas that leads to more usable practical parallel systems. It took
many years to integrate uniprocessor design and compiler technology and
produce RISC processors, which led to a new set of difficulties but has
delivered short-term performance/price breakthroughs. Although the
analogous parallel processing problem is not yet solved, we offer an
acronym that captures the key requirements for its solution: CLEAR, for
Compiler-Library Engineered ARchitecture. A CLEAR parallel system
would offer users good performance with existing languages (perhaps
modified a bit) and library routines that had sufficient parallel power and
broad functionality. Users would find the language-compiler easy to use
and would find that the library contains familiar functionality that fits their
applications. Note the relationship between architecture and compilers in
Fig. 3. Thr system would have been designed as an integrated whole to
deliver parallel performance to users, not merely to have overwhelming
peak speed.

A CLEAR parallel system would not offer users language extensions or
software tools that were advertised to help their parallel thinking (unless
users wanted that for their applications domain), or to allow them more
control over their data, or to allow them to examine the parallel static
structure or execution characteristics of their code. In short, CLEAR
parallel systems must allow users to think about their problem domains

What Do Users of Parallel Computer Systems Really Need? 119

and not about the parallel system being used, i.e., the systems solve
problems but are not part of the problem to be solved.

The reader may object to this, regarding our desires as well-motivated
but unachievable. Some may say that these have been the objectives of the
field since the beginning and therefore do not need restatement now. Our
point here is that the parallel computing field has developed well in the
past decade, but it has not yet matured. We must not err now toward
believing that it has matured with current M P P architectures and that we
will have parallel systems software that can compete with sequential
systems software by some fixed date in the next 5 years. Nor should we be
drawn into the anachronistic approach that attempts to deliver systems
n o w and lets users add software as they go.

Vector supercomputing developed in that way because the Cray-1 was
the fastest scalar processor available in 1976. People were happy to use it
for its scalar performance, and then tried to do better by vectorizing their
codes. Today 's MPPs require uch software working together correctly to
deliver high performance, otherwise users get workstation performance for
supercomputer prices. Again, we should not deliver weak systems to users
with the notion that we may have gone as far as necessary, and the users
can do the rest.

We believe that our objectives are achievable, at least for certain
classes of computations. The field must evolve practical parallel hardware
and software systems to meet these objectives.

4.3. Paral le l Processing Needs and the
Pract ica l Para l le l ism Tests

The term "practical parallelism" can be used to refer to the eventual
goal that we have been discussing for parallel processing technology. In
this section we shall define five practical parallelism tests that allow us to
discuss the subject's parts. The first three tests should be clear following the
discussion of this paper; before listing the tests we present background
material explaining the last two tests.

The parallel systems that we seek must have a certain performance
robustness to qualify as practical. In particular we must be able to run our
codes on a certain range of processor counts, not just on the whole
machine or some fixed segment of it. This is the case because a user may
want to pay for different performance levels at different times, the O.S. may
face scheduling constraints when the system is heavily loaded, etc. We will
refer to this as code scalability on a given parallel system. Additionally,
it is necessary that the system possess architectural scalability. That is,
systems with various processor counts must be implementable using the

120 Kuck

same architecture but without varying the underlying hardware technology.
This allows a range of system performance levels to be implementable.

A final test that parallel systems face, which sequential ones do not, is
that of technology reimplementability. The issue here is that a successful
architecture cannot depend upon a given technology, so that when a new
technology mix becomes current, the system must be reimplementable. One
way of failing this test is by using very fast hardware in one part of the
system, relative to the remainder of the system, so that if the remainder of
the system is reimplemented in a fast, new low-cost technology the one
part, having no new faster technology base, becomes a bottleneck.

Practical parallelism has not yet been demonstrated; in fact, no
standard definition of it exists. It seems clear that there should be
"laboratory level" and "commercial level" criteria for judging practical
parallelism, and we will now propose five criteria that add up to a Practical
Parallelism Test. ~' 4)

At the laboratory level, we will use as our criterion for the success of
parallelism.

4.3. 1. The Fundamental Principle of Parallel Processing (FPPP)

Clock speed is interchangeable with parallelism while:

A. maintaining delivered performance, that is

B. stable over a certain class of computations.

There are really three statements in the FPPP: first, the well-established
point that high peak speeds are possible through parallelism, and then two
important constraints that we shall use as Practical Parallelism Tests
(PPTs).

Practical Parallelism Test 1." Delivered Performance

The parallel system delivers performance, as measured in speedup or
computational rate, for a'useful set of codes.

Practical Parallelism Test 2: Stable Performance

The performance demonstrated in PPT1 is within a specified stability
range across a useful set of codes as the computations vary with respect to
program structures, data structures, and problem sizes.

Next we discuss two additional tests that must be met if one has
demonstrated the F P P P and wants to use it in a commercially viable
product.

What Do Users of Parallel Computer Systems Really Need? 121

Practical Parallel&m Test 3: Portability and Programmability

The computer system is easy to port codes to and to program, for a
general class of applications.

Practical Parallelism Test 4: Code and Architecture Scalability

The computer system effectively runs each code/data size on a range
of processors, and each code can be scaled up or down with respect to
architecture.

Finally, if the first system is a success and the company is to survive
over time, the system must demonstrate.

�9 Practical Parallelism Test 5: Technology and Scalability Reimplementability

The system architecture must be capable of being reimplemented in
new, faster or less expensive technologies as they emerge.

It is important to realize that, despite the great enthusiasm for parallel
processing today, not even the Fundamental Principle of Parallel Process-
ing has been demonstrated beyond rather narrow classes of computations.
Substantial amounts of work will be required before the remaining three
PTTs are passed. Inasmuch as this may require a number of years to
achieve, it is important to consider the training of new people relative to
these points. The scope of the practical parallelism problem can be reflected
across a wide academic spectrum, as we shall discuss next.

5. T H E F U T U R E ROLE OF A C A D E M I C CSE IN
A D V A N C I N G T H E G G C

5.1. C o m p u t e r Sc ience

The future role of academic computer science and engineering is
currently under increasing debate. 19'~5"~6~ Simply put, the field arose a few
decades ago because computers were being built and used to solve a
growing range of real-world problems. Initially, these problems and the
computer systems thernselves provided a tremendous stimulus for the field.
Subsequently, computer science has slowly turned its back on its roots.
There were probably several reasons for this, including:

�9 The desire of computer scientists to free themselves from the
subservient role of machine builders and programmers for other
well-established academic fields that used computers and wanted
help.

�9 The fact that new, interesting and indeed useful problems were dis-
covered which could occupy the attention of many researchers; these

122 Kuck

included the theory and practice of algorithms, artificial intelligence,
databases, languages and operating systems, etc.

�9 The crush of new students in the 1980's whose curiosity was
probably stimulated by home PC's and was fueled by the excitement
of these new fields of research.

�9 The growing importance of computers in the world, adding to the
budgets, publicity, and importance of the field. This led computer
scientists to feel confident that they could chart their own courses.

In the 1990's, we face a crisis in computer science education.

A. Enrollments are down, probably partly because of demographics
and partly because of a cooling of student interest in the field.

B. Funding is in question as the economy, peace, and the interplay
between academic disciplines ebb and flow.

C. Future research directions are debated as the field matures on the
one hand and new technical problems arise on the other.

Our purpose here is not to deal broadly with these issues, but rather
to focus on one important piece of the whole puzzle.

5.2. Computa t iona l Science and Engineering

Computational science and engineering (CSE), along with theory and
experimentation, is now being called the third branch of science and
engineering) ~7~ We view CSE as the direct extension of those subjects
that started the academic computing field in the 1940's and 1950's and,
beginning in the 1960's, led to the formation of academic computer science
departments and caused many electrical engineering departments to
become electrical and computer engineering departments.

We define computational science and engineering as the study of the
whole computational process of solving problems in science and engineer-
ing. On the one hand the name is a generalization of "computational
chemistry," "computational electronics," "computational physics," "com-
puter aided design," etc. On the other hand it is a variation on "computer
science" and "computer engineering" that refers to the application of scien-
tific and engineering principles (rather than the current, often-used intuitive
approach) to the whole computational process of solving problems. It does
not include the theoretical and experimental aspects of the discipline to
which computing is being applied. Nor does it include those parts of
modern theoretical or experimental computer science that are completely
divorced from the principles of designing computer systems to solve

What Do Users of Parallel Computer Systems Really Need? 123

problems, (e.g. artificial intelligence as a theory of human thought
processes, or abstract complexity theory).

There are several subjects that have not been of the greatest interest in
computer science and computer engineering in the recent past, which we
now see as essential to the future of high-speed computing. The advent of
commercially available parallel computer systems in the 1980's must be
regarded as a major milestone in the history of computing. Parallel systems
are being built of necessity, to achieve high performance; the fastest clock
speeds have improved very little in the past decade, so parallelism is the
architect's only hope. This means that for the first time in history, com-
puter architecture is not just an interesting academic subject, but rather the

�9 future of high speed computing seems to depend on it. Architecture of the
future must become a discipline that is deeply rooted in the performance
analysis of earlier systems. (See Section2.2.) Furtherore, compiling for
parallel machines is a major challenge. Whereas compiler research for
sequential machines was pretty much a closed subject by the early 1980's,
parallel compilation has blossomed in the past decade, and is currently a
very important subject.

Finally, parallel algorithms need substantial development and
implementation in useful libraries. As architectures become more complex,
algorithms to exploit them become more difficult to understand. Unfor-
tunately, numerical library research and development has not kept pace.
Much attention has been placed on reimplementing and repackaging
algorithms for traditional problems (e.g., LAPACK from EISPACK, and
LINPACK), but little effort has gone into sparse algorithm libraries, or
any libraries for parallel machines.

These basic subjects together with material that integrates various
aspects of large parallel codes should form the core of CSE. Integrating
material might include:

1. The structure of large programs with performance implications,
e.g., program structures, data structures, data generation and
analysis, visualization. ~18~

2. Great Equations and Their Solution Techniques, e.g., Maxwell's,
Navier-Stoke's, Boltzmann's, etc.; Monte Carlo, Linear Algebra,
Table-Lookup, etc.

3. Parallel Software Engineering, e.g., structure of codes for high
performance parallel computation, and data for parallel memory;
good programming style.

4. Performance Evaluation and Improvement, e.g., comparative
system performance analys!s; system component performance
improvement techniques/3)

124 Kuck

. Problem Solving Environments, which form a direct software link
between traditional computer science and many other
departments, as outlined next.

5.3. PSEs" in CSE

An excellent starting point for cooperative research and development
between CS, CE and other engineering and science departments would
center on existing CAD systems. Consider the benefits and problems of
adapting an existing CAD system to automate the figures and expand the
homework in an engineering textbook. There would be manifold benefits in
allowing students to see dynamic, 3D, color graphics rather than static,
2D, black and white textbook figures. Furthermore, the students could
manipulate the "figures" by changing the load on a beam or the input
voltage to a circuit. Similarly, all homework could consist of "machine
problems" that were based on the figures and text as built into a CAD
system.

The first challenging problem here would be to use the CAD systems
to build up simple designs (discipline-oriented work) and then to develop
new user interfaces for interacting with the figures and for solving the
homework exercises (computer science-oriented work). This use of CAD
systems makes them effectively Computer-Aided Simulation (CAS) systems.
The potential payoff of this should be enough to entice the CAD system
companies to cooperate by releasing (parts of) their source code for
academic enhanceent. This would allow academics to build software on top
of the existing CAD systems for user interfaces, to interface two CAD
systems, and to study their structures for adaptive use. The real goal of
computer science research would be in developing tools, software engineer-
ing methods and frameworks to allow this kind of activity to proceed
easily. It could also open the CAD companies to academic cooperation in
developing parallel versions of their systems for higher performance.

This scenario could also open the door to building Computer-Aided
Research (CAR) systems which differ from CAD systems as follows. Given
an input specification, a CAD system produces answers that users desire
and can generally believe. On the other hand, a CAR system produces
answers for which, if they appear plausible, the user seeks to study their
derivation. In other words, a CAD system is treated like a black box,
whereas a CAR system is a transparent box full of smaller transparent
boxes, each of which bears examination and enhancement in building
better models. Examples here include modeling a weather system, the
folding of a protein, or the heart pumping blood. Notice that a CAR
system will spin off CAS systems to be used in accurate simulators of
engineering design or of the physical world.

What Do Users of Parallel Computer Systems Really Need? 125

5.4. CSE Summary

Much work is needed in curriculum development for CSE, and it is
necessary that computer engineers, computer scientists, and a wide range of
applications people be involved in the effort. The subject is controversial
today as it seems to attack and compete with current academic computer
science and computer engineering activities in terms of A, B and C. ~9~ It
must be realized that CS and CE will be revitalized by a cooperation with
CSE. Developing CSE will have immediate payoff in helping to solve a
number of the problems discussed earlier. It will also have long-term
benefits in educating a new generation of people to think in new ways that
will, in the end, solve the greatest grand challenge.

6. C O N C L U S I O N

We conclude with some overall recommendations which seem most
important for the future of high performance parallel computing.

�9 In order to succeed, parallel computing must deliver the basics:
good architectures with low communication delay and high
bandwidth, high performance algorithm libraries with broad func-
tionality, and powerful paralielizing compilers.

�9 The greatest grand challenge (GGC) is to develop a methodology
for improving parallel systems generally. Progress on the GGC will
have wide benefits in the future and will aid all of the applications
grand challenges. For this reason, the GGC should be our central
fOCUS.

�9 A national performance metacenter in the form of a network
accessible database is an urgent need to allow people to attack the
grand challenge. It would contain grand challenge codes together
with global per.formance data and detailed performance information
about the basic algorithms used. With it, comparisons could be
made between all machines.

�9 Short-term software bandaids are misplaced efforts that cannot over-
come architectural defects, misdirect highly talented software people,
and confuse users. These include reimplementing sequential libraries
and developing software that forces users to struggle (more or less)
with performance.

�9 Computational Science and Engineering must be seen as a means of
revitalizing and enriching Computer Science and Computer
Engineering, not as competing with them. Many of the ideas being

126 Kuck

developed in these academic disciplines are useful in pushing parallel
processing toward its maturity and advancing the GGC. A CSE
curriculum enhancement in the short-term is an absolute necessity.

These five points contain the essence of what we feel is necessary to
minimize the time to success for parallel computing. They are evolutionary
steps that do not force radical changes on computer researchers, designers,
or users. We feel that high performance computing would significantly
benefit from each point in the short run.

A C K N O W L E D G M E N T S

I am greatly indebted to many colleagues at CSRD for help in
developing these ideas over the years, especially George Cybenko, David
Padua, and Ahmed Sameh. The strong opinions stated here, of course, are
mine and not theirs.

REFERENCES

I. George Cybenko and David J. Kuck, Revolution or Evolution? IEEE Speetrum Special
Issue: Supercomputers, 29(9):39-41 (September 1992).

2. E. Gallopoulos, E. Houstis, and J. R. Rice, Future Research Directions in Problem Solv-
ing Environments for Computational Science, Report qf a Workshop on Research Direc-
tions in Integrating Numerical Analysis, Symbolic Computh~g, Computational Geometry,
and Artificial lntelligence./br Computational Science, NSF, Washington, DC, April 11-12,
1991. CSRD Report Number 1259, Center for Supercomputing Research and Develop-
ment, University of Illinois, Urbana, Illinois (October 1992).

3. David Kuck and Ahmed Sameh, A supercomputing Performance Evaluation Plan, Proc.
o]" First htt 7. CanJ~ on Supercomputing, Athens, Greece, Lecture Notes hi Computer Science,
T.S. Papatheodorou, E.N. Houstis, C.D. Polychronopoulos (eds.), Springer-Verlag,
New York, 297:1-17 (1987),

4. Lyle D. Kipp and David J. Kuck, Newton: Performance Improvement through Com-
parative Analysis. CSRD Report Number 1286, Center for Supercomputing Research and
Development, University of Illinois, Urbana, Illinois (February 1993).

5. G. Amdahl, The Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities, AFIPS Proc. SJCC, Vol. 30 (1967).

6. Utpal Banerjee, Speedup of Ordinary Programs. CSRD Report No. 222, UIUCDCS-R-
79-989, Center for Supercomputing Research and Development, University of Illinois,
Urbana, Illinois (October 1979).

7, Committee on Physical, Mathematical, and Engineering Sciences; Federal Coordinating
Council for Science, Engineering, and Technology (FCCSET); White House Office of
Science and Technology Policy, Grand Challenges 1992: High Performance Computing and
Communications. The FY 1992 U.S. Research and Development Program. Supplement to the
President's Fiscal Year 1993 Budget, Washington, DC, Chapter 3, pp. 25-39 (1993).

8. David Kuck, A User's View of High-Performance Scientific and Engineering Software
Systems in the Mid-21st Century, Expert Systems for Scientific Computing, E. N. Houstis,
J. R. Rice, and R. Vichnevetsky (eds.), North-Holland, Amsterdam, pp. 69-87 (1992).

What Do Users of Parallel Computer Systems Really Need? 127

9. John R. Rice, Academic Programs in Computational Engineering and Sciences, Comput-
ing Research News, 3(1):11-12 (March 1991).

10. Mark D. Guzzi, David A. Padua, Jay Hoeflinger, and Duncan H. Lawrie, Cedar Fortran
and Other Vector and Parallel Fortran Dialects, The Journal of Supercomputing, 3:37-62
(1990).

11. Bruce Leasure, Walt Rudd, Ross Knippel, Andrew Ingalls, and Cherri Pancake, Parallel
Processing Model for High Level Programming Languages, Document No. X.3H5/91-
0023-G, X3H5 Technical Committee on Parallel Processing Constructs for High Level
Programming Languages, American National Standards Committee on Computers and
Information Processing (X3), p. 19 (March 1992).

12. High Performance Fortran Forum, High Performance Fortran Language Specification,
David Loveman (ed.), Rice University, Houston, Texas, p. 150 (January 1993).

13. Dharma P. Agrawal, Advanced Computer Architecture, IEEE Computer Society Press,
Washington, DC, p. 383 (1986).

14. D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C.-Q. Zhu, A. Veidenbaum, J. Konicek,
P. Yew, K. Gallivan, W. Jalby, H. Wijshoff, R. Bramley, U.M. Yang, P. Emrath,
D. Padua, R. Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li, T. Murphy, J. Andrews, and
S. Turner, The Cedar System and an Initial Performance Study. To be presented at the
Int'l. Syrup. on Computer Architecture, San Diego, California (May 1993).

15. David L. Parnas, Education for Computing Professionals, Computer, 23(1):17-22
(January 1990).

16. Nathaniel S. Borenstein, Colleges Need to Fix the Bugs in Computer Science Courses,
The Chronicle o/" Higher Education, pp. B3-B4 (July 1992).

17. Robert Pool, The Third Branch of Science Debuts. Computing in Science. A special section
of Science, 256:44-47 (April 1992).

18. Cybenko, George, Lecture Notes for ECE371, Topics in Electrical and Computer
Engineering, Section GC: Large Scale Scientific and Engineering Computations
(unpublished), University of Illinois, Urbana, Illinois (January 1992).

19. Juris Hartmanis and Herbert Lin, (eds.), Computing the Future: A Broader Agenda for
Computer Science and Engineering, Committee to Assess the Scope and Direction of
Computer Science and Technology; Computer Science and Telecommunications Board;
Commission on Physical Sciences, Mathematics, and Applications; National Research
Council, National Academy Press, Washington, DC, p. 272 (1992).

Printed in Belgium
Verantwoordelijke uitgever:

Hubert Van Maele
Altenastraat 20- B-8310 St.-Kruis

