
International Journal of Parallel Programming. VoL 22, No. 5, 1994

The Polaris Internal Representation 1

Keith A. Faigin, 2 Stephen A. Weatherford,
Jay P. Hoeflinger, David A. Padua, and Paul M. Petersen

Received November 10, 1993

The Polaris Program Manipulation System is a production quality tool for
source-to-source transformations and complex analysis of Fortran code. In this
paper, we describe the motivations for and the implementation of Polaris'
internal representation (IR). The IR is composed of a basic abstract syntax tree
on top of which exist many layers of functionality. This functionality allows
complex operations on the data structure. Further, the IR is designed to enforce
the consistency of the internal structure in terms of both the correctness of the
data structures and the correctness of the Fortran code being manipulated. In
addition, operations on the IR result in the automatic updating of affected data
structures such as flow information. We describe how the system's philosophies
developed from its predecessor, the Delta prototyping system, and how they
were implemented in Polaris' IR. We also provide a number of examples of
using the Polaris system.

KEY WORDS: Internal representation; object-oriented; parallelizing compiler;
source-to-source transformation.

1. I N T R O D U C T I O N

The goal of the Polaris system is to provide a new parallelizing compiler
that is able to efficiently parallelize Fortran programs for a variety of
machines, including massively parallel systems and parallel workstations.el)
Polaris is based on our past experiences with the Cedar Fortran projectJ 2)
This project showed us that real programs can be parallelized efficiently
and that the techniques needed to achieve good performance are natural
extensions of technology available in current parallelizing compilers. There-

t The research described was supported by Army contract DABT63-92-C-0033. This work is
not necessarily representative of the positions or policies of the Army or the Government.

z Center for Supercomputing Research and Development, University of Illinois at Urbana-
Champaign, Urbana, Illinois, 61801.

553

0885-7458/94/1000-0553507.00/0 ~ 1994 Plenum Publishing Corporation

554 Faigin et al.

fore, we decided to use a traditional internal structure for our new compiler,
enhanced with some features that make it easy to extend and experiment
with transformation techniques. This allows us to capitalize on our
previous experiences with the KAP/Cedar parallelizing compiler and the
Delta program manipulation system. ~3)

The implementation of Polaris is based on Delta which was created as
an "open experimental laboratory ''~4) in which to prototype, develop, and
test new source-to-source transformations for Fortran 77 parallelizing com-
pilers. While Delta succeeded in providing an excellent research environ-
ment, it was not practical as a production compiler.

Our experience with Delta taught us that many of the features found
in the prototyping paradigm are quite valuable. However, the ideal
compiler for source-to-source transformations, we believe, would combine
the strengths of a prototyping system (its "usability") with the strengths of
a production system (its computational power). Polaris was designed with
this in mind.

This paper presents a description of Polaris' internal representation
(IR). We consider the IR to be more than just the structure of the data
within the compiler. We also view it as the operations associated with this
data structure. Intelligent functionality can frequently go a long way
towards replacing complex data structures and it is usually more extensible.
Thus, we have chosen to implement the data-side of the IR in the tradi-
tional, straightforward form of an abstract syntax tree. On top of this
simple structure, however, we can build layers of functionality which allow
the IR to emulate more complex forms. Specifically, such forms could
include the constructs we found most useful in Delta and the language we
used, SETLJ 5)

Delta, as an open system, provided the user with complete access to
the internal representation. This was because the SETL implementation we
used did not have a good data-abstraction mechanism. Allowing users full
access to the IR frequently resulted in the failure to properly maintain the
internal structure, which hindered program development. However, in
Polaris, access to the internal representation is controlled through a data-
abstraction mechanism. Operations built into the IR are defined such that
the programmer is prevented from violating the structure or leaving it in an
incorrect state at any point in a transformation. We chose to implement
Polaris in the object-oriented language C + + as it allowed us both struc-
tural flexibility and gave us the desired data-abstraction mechanisms.
(Another object-oriented transformation system is the S a g e + + system. ~6)
In some respects there are similarities between Sage++ and Polaris but
there are also differences in terms of both the overall approach and the
implementation.)

The Polaris Internal Representation 555

Another aspect of the functionality of the IR--and another reason why
we chose a relatively simple IR structure--is the ability to work with other
compiler systems. Through an intermediate communication language,
Polaris can capitalize on the strengths of other systems, such as Delta and
KAPJ 7)

Polaris has beefl used, so far, to implement passes for array privatiza-
tion, ts) induction variable substitution, forward substitution, symbolic
dependence analysis t9) and inlining. Also, we are close to the completion of
FORBOL tl~ which is a C + + extension built on top of our IR which
allows complex pattern matching within Polaris.

The rest of this paper is organized as follows: in Section 2 we describe
our goals for Polaris and the general philosophies we employed in its
design. In Section 3, we present a description of how these notions were
actually implemented in the internal representation. In Section 4, we
discuss the major classes used in our IR. We then, in Section 5, explore
some simple examples which demonstrate the use of Polaris.

2. D E V E L O P M E N T OF POLARIS PHILOSOPHIES

2.1. Goals and Philosophies of the IR

We wanted our IR to be a very general structure on top of which more
complex structures could be emulated. Thus, regardless of what form the
IR takes, from the user's point of view, the IR could seem to be one of
nearly any traditional (or nontraditional) representation. This general
strategy is complemented by a number of additional philosophies.

The most pervasive philosophy in Polaris is that of consistency.
Polaris was designed to guarantee the correctness of the program represen-
tation as much as is efficiently possible. Thus, in general, it should not be
possible for the internal structure to be compromised by incorrect transfor-
mation code. In addition, the correctness of the Fortran program being
manipulated must be .maintained. Transformations are, therefore, never
allowed to let the code enter a state which is no longer proper Fortran
syntax. The system also guarantees that the control flow information is
consistent. We are also working towards the guarantee that all data-
dependence information is kept correct, but these routines are not yet
developed to the point where we can determine whether this is actually
feasible at a reasonable cost. Consistency of the control flow graph is
realized through automatic incremental updates of this information as a
transformation proceeds.

We believe that automatic consistency-maintenance will drastically
decrease the time required to develop new optimizations within Polaris'

828/22/5-6

556 Faigin e t al.

production system. Our experience with the Delta system showed us that
although greater flexibility and some extra efficiency may be obtained by
allowing the internal structure to temporarily fall out of a consistent state,
too often the internal structure was not properly restored. This often
resulted in incorrect code and time-consuming bugs. We believe that since
less flexibility is required in a production system, this approach is merited
by the decreased development time.

In addition to maintaining a consistent state, we also require a very
robust system. In general, we have tried to detect as many errors as is
possible at compile time and, when that was not possible, catch and
explain run-time errors. Some of the features which we have implemented
in order to realize our goal of robustness--while maintaining consistency--
include

�9 supplying many commonly-needed member functions (functions
used to access and manipulate objects) so that users would seldom
feel the need to duplicate code or meddle with the system.

�9 requiring all structures to be fully defined when they are created to
avoid the dangers of accidentally "forgetting" needed sub-struc-
tures.

�9 hiding internal structure details which are not necessary for the user
to see or alter.

�9 the strict control over how the IR can be accessed and modified.
The Polaris user is only allowed to make incremental changes
which keep the system state consistent and correct. For example,
statements inserted into a Fortran program are required to be well-
formed with respect to multistatement constructs. For instance, a
DO statement cannot be inserted separately from its matching
ENDDO statement, since the statement list would enter an incom-
plete and inconsistent state.

�9 the detection of aliased structures (data structure sharing is not
allowed) and the ?eporting of their existence with a run-time error.
For example, it would be an error to create a new expression and
insert it into two different statements without first making a copy
of the object.

�9 freeing the programmer from worrying about tedious memory
details through the clear indication of ownership of structures and
reference counting. The programmer should always be able tell
whether he owns a given structure and is, therefore, responsible for
its maintenance and deallocation. Further, dangling pointers and
their associated problems are avoided through reference counting.

The Polaris Internal Representation 557

�9 the detection of the premature destruction (deleting a structure
which is still being referenced elsewhere in the IR) of any part of
the IR. Data required by the internal representation is protected
from accidental deletion.

�9 extensive error avoidance and checking throughout the system
through the liberal use of assertions. Within Polaris, if any
condition or system state is assumed, that assumption is specified
explicitly in a p_assert () (short for "Polaris assertion") state-
ment which checks the assumed condition and reports an error if
the assumption is incorrect.

The most important aspect of a prototyping system that we wished to
retain in Polaris was its extensibility. In Delta the program was represented
as an abstract syntax tree with labelled arcs. Due to the nature of SETL's
built-in map structures, Delta allowed new information to be easily added
to its internal representation. Additional information was included by
simply inserting arcs with unique labels at the appropriate map nodes in
the tree. Unfortunately, this resulted in many problems in trying to main-
tain the structure's consistency. We felt it was imperative for the production
system to be similarly scalable, but that it be done in a safe manner. As
new needs and requirements are discovered, we must be able to safely add
additional structures to the IRjust as Delta was able to simply add new arcs.

We also required that the IR's environment allow transformations to
be expressed in a simple and straightforward manner. It wot/ld not be
enough to have a complete set of high-level manipulation methods; we
needed them also to have consistent and clear semantics in the form of
specific programming guidelines. This includes ideas as simple as rigorous
naming conventions as well as more complex concepts such as the
indication of structure ownership. Our ultimate goal was to create a system
where the development and implementation of algorithms would not be
hindered by the internal representation.

3. I M P L E M E N T A T I O N

In this section we describe how the philosophies described were
implemented in our IR. The general form of our IR is that of an abstract
syntax tree implemented in an object oriented fashion such that each node
in the tree is an object. This is implemented in the fairly straightforward
manner of using classes for statements, expressions, program units, and all
other program structures. The more interesting aspect of the IR is the form
of these objects and the functionality contained within them.

558 Faigin et al.

We begin by describing our motivations for using the language C + +
as well as describing how we made use of the features the language
provides. This is followed by a discussion of the support structures used.

3.1. C + +

We chose to implement Polaris in the object-oriented language C + + .
The object-oriented paradigm was perfect for supporting the philosophies
of the system and C + + , specifically, was chosen primarily for its pop-
ularity and flexibility.

C + + provides the modularity and efficiency which was lacking in
Delta's SETL implementation and, further, provided a superior environ-
ment for a team-developed project. C + + was also ideal in that it provided
data-hiding mechanisms which allow us to keep tight control over the
interface to each structure. We were able to make the complete structure,
as well as each sub-structure, objects which could only be accessed through
specific member functions. Therefore, we were able to specify all the
member functions for manipulating the statement list such that any affected
structures are updated and we are also able to ensure that the structure has
not been violated.

Further, these member functions allow needed functionality to be
layered on top of the basic structures. Thus, on top of our relatively simple
IR, we can emulate more complex structures. Another important benefit of
using an object-oriented language is that it provides much of the exten-
sibility which we found so important in Delta. New structures can be
added to objects in the IR without affecting the original structures and
adding new structures requires very little reprogramming.

C + + also allows the form of all constructors to be specified. Thus, we
are able to ensure that only well-formed and complete objects are created.
Further, all destructors ensure, through reference counting, that relevant
parts of the data-structure are not being deleted or are marked invalid and
then trapped on reference.. In addition, C + + allows reference variables as
well as pointers. Throughout the system, passing a pointer indicates transfer
of ownership of data, which, in general, means the owner is responsible for
its deallocation. A reference variable indicates that the object is owned by
another structure and, therefore, must not be deleted.

Many naming conventions are used in the system to promote internal
consistency. Of particular importance are those used in conjunction with
ownership indication. In order to comply with our ownership conventions,
most functions which return an object whose ownership is not being trans-
ferred do so by means of a C + + reference. However, in certain instances
it must be possible for the function to indicate that the requested object

The Polaris Internal Representation 559

does not exist. These exceptions are made explicit through naming
conventions. For instance, the postfix " _ g u a r d e d " indicates that a corre-
sponding member function (with the postfix "_va 1 i d") should be queried
first to ensure that the requested object exists. Similarly, the postfix "_ r e f "
indicates that although a pointer is returned, ownership is not being passed
(and a NULL value should be checked for).

In general, C + + provided us with an environment which allowed us
to implement our philosophies witin Polaris.

3.2. Support Structures

The underlying support system for the IR is just as important as the
representation itself. In order to provide full support for the internal
representation as well as user code, we have created an infrastructure of
support classes that are heavily used both internally and externally. These
structures conform to our conventions, such as ownership indication and
naming conventions, and help support many of our philosophies. Further,
these structures also make use of the p_assert () command for assertion
checking as well as perform reference counting.

This infrastructure currently includes a Collection class hierarchy
which includes lists, sets, and a variety of maps. These structures each exist
in two forms: ownership and reference. An ownership structure takes
control of- -and responsibility for--all objects which are inserted into it.
Ownership structures insure, through reference counting, that, for instance,
objects are not prematurely deleted while they are still being referenced and
that memory is properly deallocated when an object is deleted. Once an
object has been placed in an ownership collection, the collection is respon-
sible for its maintenance. An object can only be "owned" by one collection.
If a collection is required to contain elements already owned by other
structures, a reference structure is used. Reference structures do not take
ownership of objects and, in fact, require that inserted objects be already
owned.

An example of the use of these structures can be seen in the represen-
tation of statements. The statements of a program are kept in an ownership
list (List). If this list were deleted, the memory used by each statement
would be freed. Each statement also contains information on the set of
statements which are reachable in the flow-graph. In this case a reference
set (RefSet) is used. Deleting the statement which contains this set--which
would also delete the set--would not affect the statements contained in the
reference set. If, however, a statement was deleted which was referenced in
the RefSet, the statement would be marked invalid and any attempt to
reference it from the RefSet would result in a run-time error

560 Faigin et al.

(a p _ a s s e r t () would be t r ipped) . Since an object can only be owned by
a single Collection, our pol icy of d isa l lowing s t ructure-al ias ing is au toma t i -
cal ly enforced. The comple te set of classes avai lable in the Col lec t ion
h ie rarchy can be found in Table I.

Essential ly all of the classes used in Polar is can be placed in a collection.
(In o rder for a class to be p laced in a collect ion, it must derive from
the class Lis table which cont r ibutes informat ion necessary to indicate
ownersh ip of an object.) However , all of the Collection classes, including
the reference collections, are class templates. We rely heavi ly on templa tes
for compi le - t ime type checking. F o r example , a type-er ror would result
f rom trying to insert an Expression into a R e f L i s t (S y m b o l s) . A s imilar
e r ror would result from trying to traverse a L i s t (S t a t e m e n t) with an
I t a r a t o r (E x p r e s s i o n) . Wi thou t templates , this compi le - t ime er ror
de tec t ion would not be possible.

4. C L A S S E S O F T H E IR

In this section, we descr ibe each of the ma jo r classes used in the IR in
detail . We begin with the basic p rog ram class in the first subsection. In the

Table I. The Collection Hierarchy ~

Collection::

Basic Collections:
List
RefList
Set
RefSet
Stack
RefStack
Element
RefElement
Database

Database
RefDatabase
Dictionary
RefDictionary
Map

Map
RefMap
Iterator
Keylterator

List structure which takes ownership of objects
List of references to objects
Set structure which takes ownership of objects
Set of references to objects
Stack structure which takes ownership of objects
Stack of references to objects
Structure for the ownership of a single object
Structure to reference a single object
A database is a mapping from keys to data where the keys are

distinguished and ordered by some hTherent value
Implements the mapping from keys to data where the data are owned
Implements the mapping from keys to data references
Implements the mapping from strings to data which are owned
Implements the mapping from strings to data references
A Map is a mapping from keys to data where the keys are

distinguished and ordered based on memory address
Implements the mapping from keys to data which are owned
Implements the mapping from keys to data references
Class which iterates over any Collection structure
Similar to Iterator except it includes methods to access the key

information of any Map or Database

"Each of these is implemented as a template class.

The Polaris Internal Representation 561

subsections which follow we describe the classes used for representing
program units, statements, s tatement lists, expressions, symbols, and
symbol tables.

4.1. Program Class

The Program class is nothing more than a collection of ProgramUnits.
Member Functions are included for reading complete Fortran codes as well
as displaying them. There are also member functions for adding additional
ProgramUnits as well as merging Programs.

4.2. ProgramUni t Class

The ProgramUnit class is mostly a holder for the various data structure
elements which make up a Fortran program unit. This form is, essentially,
an abstract syntax tree. A ProgramUnit may be a main program, a BLOCK
DATA program unit, a subroutine, or an external function.

The ProgramUnit class contains and allows access to its component
data structures, which are instances of the following classes:

�9 S tmtLis t - -a list of all executable program unit statements, if any

�9 Symtab - - a symbol table of all symbols used in the program unit

�9 Datal i s t - -a list of the information contained in this program unit's
DATA statements

�9 CommonBlockDict - -a dictionary of all common blocks referenced
by this program unit

�9 EquivalenceDiet--a dictionary of this program unit's variable
equivalence classes

�9 Fo rma tDic t - - a dictionary of this program unit's FORMAT statement
information

�9 WorkSpaeeStack--a stack of temporary data structures associated
with this program unit which the user can define and use for a
specific transformation pass. These structures will remain with the
program unit until the pass has completed, unaffected by other
transformation passes.

In addition to functions for accessing these data structures inside a
ProgramUnit object, there are member functions for general operations
such as copying and printing ProgramUnit objects as well as translating
them to and from the intermediate language format for conversion between
the Polaris internal representation and other compiler systems, such as

562 Faigin e t al.

Table II. Many of the Methods Defined for the ProgramUnit Class

ProgramUnit::

struts()
clone()
pu_ tag_ ref()
pu_class()
rout ine_name_ref()
symtab()
data()
common_blocks()

equivalences()
formats()
overflow_ref()

work_stack()

clean_workspace(pass_tag)
display(output_stream)
display_debug(output_stream)
write(output _ stream)

Returns a reference to the statement list
Returns a copy of this ProgramUnit
Returns the unique tag identifying the ProgramUnit
Returns the type of the ProgramUnit
Returns the name of ProgramUnit (if applicable)
Returns the symbol table
Returns the data from all DATA statements
Returns the dictionary of common blocks referenced in this

ProgramUnit
Returns the dictionary of variable equivalence classes
Returns the dictionary of all FORMAT statements
Returns a dictionary of syntax tree labels of unrecognized

structures found in the intermediate language
Returns a reference to the stack of transformation pass-

specific structures associated with this ProgramUnit
Delete all WorkSpaces designated for the specified pass
Display ProgramUnit with moderate debugging information
Display ProgramUnit with all debugging information
Display ProgramUnit in FORTRAN format

Delta. The form of many of the member functions can be seen in Table II.
We discuss some of the more important class structures contained in the
ProgramUnit class in the following subsections.

4.3. S t a t e m e n t Class

We have chosen to implement statements as simple, nonrecursive
structures kept in a simple statement list (which is described in more detail
in the next subsection). Thus, we have not implemented statement blocks
directly. However, we have made the implementation flexible enough so that
member functions which simulate the existence of statement blocks can
easily be implemented on top of the current Statement class. Furthermore,
other more complex structures could be emulated on top of this basic
structure, such as program dependence graphs. ~1~)

Statements are implemented by an abstract base statement class which
contains the structures common to all statements. For each specific type of
Fortran statement, a distinct class is derived from the base class which con-
tains additional structures specific to that statement. This class hierarchy
allows modifications of and additions to specific statements to be kept local

The Polaris Internal Representation 563

to the statement. In addition, however, if a new member function is needed
for all statement types, it needs to be implemented only in the base class.

All of the fields declared in the base class (and which, therefore, exist
in all statements) are accessed through public member functions. Among
these fields are

�9 sets of successor and predecessor flow links which are implemented
in the form of reference sets of statements.

�9 sets of memory references. These include in_refs, out_refs and
aet_refs which are respectively memory reads, writes and actual
parameters which may be accessed by the statement.

�9 an outer link which points to the innermost enclosing D O loop or
is null if there is no enclosing DO loop.

�9 a WorkSpaceStaek of temporary data associated with the Statement
which is used for a specific transformation pass.

Tablel l l . Many of the Methods Defined for All Statements.
These Methods are Defined in the Base Statement Class and are Available

to All Derived Statements

Statement::

clone()
stmt_class()
next_ref()
prev_ref()
succ()
pred()

in_refst)
out_ refs()
act_refs()

outer()
line()
overflow_ref()

tag()
assertions()
iterate_expressions()
simplify_expressions()
pre_directives()
post_directives()
relink_ptrs(program_ unit)

work_stack()

Returns a copy of the statement
Specifies what kind of statement this is
Returns a pointer to the lexically next statement
Returns a pointer to the lexically previous statement
Returns the set of successor statements in the control-flow graph
Returns the set of predecessor statements in the control-flow

graph
Returns the set of variables possibly read by the statement
Returns the set of variables possible written by the statement
Returns the set of actual parameters possibly accessed by the

statement
Returns the innermost enclosing DO loop

. Returns the line number in the source code
Returns a dictionary of syntax tree labels of unrecognized

structures found in the intermediate language
Returns a unique tag identifying this statement
Returns the list of assertions associated with the statement
Return an iterator over the statement's expressions
Simplify all of the expressions in the statement
Return compiler directives placed before the statement
Return compiler directives placed after the statement
Change all identifiers within subexpressions to refer to

'program_unit 's ' symbol table
Returns the stack of WorkSpaces associated with the statement

564 Faigin et al.

W h e n e v e r p r a c t i c a l , we h a v e i m p l e m e n t e d t he m e m b e r f u n c t i o n s s u c h

t h a t a n y m o d i f i c a t i o n to a s t a t e m e n t r e su l t s in the u p d a t i n g o f a f fec ted

d a t a , in o r d e r to r e t a i n cons i s t ency �9 T a b l e s I I I a n d V speci fy m a n y o f t he

m e m b e r f u n c t i o n s a v a i l a b l e to the s t a t e m e n t classes .

E a c h d e r i v e d s t a t e m e n t c lass m a y d e c l a r e a d d i t i o n a l fields�9 A m o n g t he

m o s t c o m m o n f ields d e c l a r e d by d e r i v e d s t a t e m e n t c lasses a re t he fol low

a n d lead fields. S ince t he s t a t e m e n t list is i m p l e m e n t e d as a s i n g l y - n e s t e d

s t r u c t u r e , c o m p o u n d s t a t e m e n t types , s u c h as D O - E N D D O s o r I F c o n -

s t ruc t s , a r e i m p l e m e n t e d w i t h m u l t i p l e s t a t e m e n t objec ts �9 A D O - E N D D O ,

Table IV. Some of the Methods Defined for the StmtList Class

StmtList::

first_ref()
last_ ref()
prev_ref(stmt)
next_ref(stmt)
entries()
find_ref(stmt_tag)
iterate_entry_points()
ins_ before(new_stmt, ref_stmt) a
ins_ before(strut_list, ref_stmt)a
ins_ IF_ELSE_after(...)

ins_IF_after(...)

ins_ ELSEIF_after(...)

ins_ELSE_after(...)

ins_DO_after(...)
move block_ before(...) ~
move_before(...) ~
del(stmt)
del(stmt ~, strut2)
grab(strut)
grab(strut ~, strut2)
modify(stmt o~a, strut nc~,)
copy(...)
stmts_of_ type(...)
iterate _ loop _ body(do _ strut)
iterator()
iterator(stmt ~, stmt2)

Returns a pointer to the first statement
Returns a pointer to the last statement
Returns a pointer to the statement lexically before 'stmt"
Returns a pointer to the statement lexically after 'stmt'
Returns the number of statements in the StmtList
Returns a pointer to the statement with the tag 'stmt_tag'
Returns an Iterator over all entry points in the StmtList
Inserts 'new_stmt' before 'ref_stmt'
Inserts all statements in 'stmt_list" before 'ref_stmt'
Inserts a (possibly empty) block IF-ELSE-ENDIF around

existing statements in the StmtList
Inserts a (possibly empty) block IF-ENDIF around

existing statements in the StmtList
Appends an (possibly empty) ELSEIF clause to an existing

block IF statement
Appends an (possibly empty) ELSE clause to an existing

block IF statement
Inserts a (possible empty) DO statement after 'ref_stmt'
Moves a block of statements to before a given statement
Moves a statement to before a given statement
Delete 'strut"
Deletes all statements from stmt~ to stmt~
Remove 'strut' from StmtList and return it
Remove and return statements from stmt~ to stmt2
Replace stmto~ a with stmt.~,
Returns a copy of a block of statements
Returns an Iterator over all statements of specified types
Returns an Iterator over all statements in "do_stmt's' body
Returns an Iterator over the entire StmtList
Returns an Iterator over all statements from stmt~ to stmt,

lexical order

Indicates that there also exists an "_after" form of the method.

The Polaris Internal Representation 565

fo r i n s t a n c e , c o n s i s t s o f a D o S t m t a n d a n E n d D o S t m t w h i c h d e l i m i t t h e

s t a t e m e n t s w i t h i n t h e l o o p . (T h e r e d u n d a n t D O - C O N T I N U E c o n s t r u c t is

n o t s u p p o r t e d a n d is a u t o m a t i c a l l y c o n v e r t e d t o D O - E N D D O f o r m b y t h e

p a r s e r .) T h e fo l l ow a n d l e a d f ie lds c o n n e c t t h e s t a t e m e n t s o f t h e s e c o m -

p o u n d s t r u c t u r e s .

T h e D o S t m t d e c l a r e s a n u m b e r o f f i e lds in a d d i t i o n t o t h o s e d e c l a r e d

b y t h e b a s e s t a t e m e n t t y p e . T h e fo l low f ie ld w i t h i n a D o S t m t p o i n t s t o i t s

c o r r e s p o n d i n g E n d D o S t m t a n d , l i kewi se , t h e fo l low f ie ld o f a n E n d D o S t m t

Table V. Many of the Methods Defined for Derived Statement Classes.
These Methods are Defined in the Base Statement Class to Call Error Routines

and are Redefined for the Derived Classes Which Use Them

... Stmt::

lhs()"

rhs()"

follow_ref()
lead_ ref()

matching_if_ ref()
matching_endif_ ref()
expr()"

index()"
init()"
limit()~
step()"
target_ ref()"
label_list()

s_control_guarded()

s_control_valid()
io_list_guarded()~

io_list_valid()
routine_ ref()~

parameters_guarded()~

parameters_valid()

Returns a reference to the expression on the left hand side of an
AssignmentStmt

Returns a reference to the expression on the right hand side of an
AssignmentStmt

Returns a pointer to the next statement of a compound structure
Returns a pointer to the previous statement of a compound

structure
Returns a pointer to the corresponding IfStmt of an EndlfStmt
Returns a pointer to the corresponding EndlfStmt of an IfStmt
Returns a reference to the expression of a statement With one

expression (i.e. IfStmt, ComputedGotoStmt)
Returns a reference to the index expression of a DoStmt
Returns a reference to the init expression of a DoStmt
Returns a reference to the limit expression of a DoStmt
Returns a reference to the step expression of a DoStmt
Returns a pointer to the target statement of a GotoStmt
Returns a reference to the list of targets of a statement with multiple

jumps
Returns a reference to the control information list of an I/O

statement
Returns true if there exists control information in an I/O statement
Returns a reference to the expressions read and written in an I/O

statement
Returns true if there are any expressions in an I/O statement
Returns a pointer to the symbol of a subroutine call statement or

a subroutine entry statement
Returns a reference to the parameters of a call statement or an entry

statement
Returns true if there exist any parameters in a call statement or an

entry statement

Indicates that there exist corresponding methods which insert data into these fields.

566 Faigin et al.

points to the corresponding DoStmt. The index of the loop as well as the
initial, limit, and step expression are implemented as Expression trees.

Another important member function declared in the base class (but
redefined by each derived class) returns an iterator which traverses the
expressions contained in that statement. This iterator may traverse 0
expressions, as in an EndDoStmt statement, or up to 4, as exist in a
DoStmt. This member function, along with similar ones in the expression
class, make it quite easy to, for instance, traverse all the expressions in a
loop body.

In order to increase the robustness of the structure, all member
functions which access data fields are declared to be virtual within the base
statement class and are overriden in the derived classes which use them.
For example, the member functions which access the 'step' field are only
applicable to the DoStmt but are declared in the base class. The base class
definition of the s t e p () function, like all other base member function
definitions, calls an error-routine while the redefinition in DoStmt performs
the specified operation. With this scheme, if a member function is called for
a statement to which it is not applicable, a Polaris error will be reported
and the system can either try to continue or can perform a controlled
abort.

Although this design has the disadvantage of moving the detection of
some errors from compile-time to run-time, it has two hopefully larger
advantages. The first is that this method generally decreases the time
required to compile routines developed using the production system, due to
the way C + + compiles large systems. Specifically, the user, in general,
only needs to include the header file of the base Statement class and not
those of the classes derived for particular statements, since all of the mem-
ber functions needed are already defined in the base class; this reduces the
compile time of user programs, which in turn makes the debugging
process easier. (The single exception to this rule is that if the user needs to
create new statements rather than just modifying current ones, that user
must include the appropriate derived class header files in order to access
the constructors for that class. Generally only a few such header files, if
any, need to be included in a particular transformation routine.)

The second advantage has to do with the fact that the StmtList class
contains a list of references to the base Statement class. By the C + + rules
of typing, it is iegal for a reference or pointer to a base class to actually
point to a derived class, and this capability is used extensively throughout
our system. While iterating through a list of Statements, for example, the
program will receive a reference to the base Statement class. Once it has
been determined what type of Statement that reference refers to, it would
normally be necessary to typecast the reference into the correct derived

The Polaris Internal Representation 567

class. Only then would it be possible to access the member functions
appropriate to that statement type. In a system based on an abstract syntax
tree, the vast majority of references are to a base class since the type of
each node can vary. The large number and variety of typecasts required by
such a system creates an unnecessarily large possibility for errors made by
programmers typecasting to the wrong class type. (These types of errors
are especially easy to make when changes are made to the system or to a
transformation pass.) Such errors can neither be detected nor controlled by
a C + + compiler or by the run-time system itself, and can be extremely
difficult to trace. However, by placing all possible member functions
directly into a base class, we gain complete run-time detection and control
of errors of this type. The cost of this technique, unfortunately, is an
abundance of virtual member functions.

The necessity of type-casting from a base class is not unique to Polaris.
The S A G E + + system deals with the situation by providing a global func-
tion for every S A G E + + class which accepts a pointer and, if the pointer
is of the specified class, returns it cast into the correct class. Otherwise
a null value is returned. For example, to determine if a statement, s, is a
'for statement', the function i s S g F o r S t r a t (s) (for "is S A G E + + for
statement") is used. If s is a 'for statemerit', it is returned cast in to
the 'for statement' class, otherwise null is returned. Consider the following

examples in S A G E + + (left) and Polaris (right):

SgStatement *s =

SgForStmt *loop;

if (loop = isSgForStmt(s)) {

i = loop->step();

Statement *s =

if (s->stmt_class() == FOR_STMT) {

i = s->step();

Within the SAGE + + if statement, 1 o op is guaranteed to be of the correct
type so member functions specific to the 'for statement' class can be
accessed. If the function s t e p () were replaced with a function not
appropriate to a 'for statement', S A G E + + would catch it at compile time
while Polaris would not catch it until run-time. However, while Polaris has
a large number of virtual member functions, S A G E + + requires a large
number of global "is . . . " functions (one for every class).

568 Faigin e t al.

4.4. S tmtL is t Class

The StmtList class is derived from the collection class template
List(Statement) . The StmtList class, however, overrides many of the basic
list operations to include automatic updating of the flow graph whenever
any statement or block of statements is deleted, inserted, or moved.
Currently, the information automatically updated includes the set of
memory references, control flow information, and loop-nesting information.
We are also working towards allowing data-dependence information to be
updated automatically, but the routines are not developed to the point
where we can determine whether this is efficient.

In addition to this basic functionality expansion, additional operations
are available, including:

�9 returning an iterator over selected parts of the statement list such
as the body of a DO loop, all statements of a specific type or the
entire program.

�9 copying, deleting, unlinking, or moving any well-formed sublist of
statements

�9 inserting any single statement or any well-formed list of statements

�9 inserting specific multi-block statement groups, such as a block-IF
statement framework or a DO-ENDDO group.

�9 print all statements in the list to any C + + stream in either Fortran
form or in a debugging form.

These and many of the other available member functions are specified in
Table IV.

To maintain complete control of consistency inside the StmtList class,
the insertion, deletion, unlinking, moving, and copying of statements or
statement lists are all given a number of restrictions. The first of these is
that the block to be processed must be entirely well-formed with regard to
multi-block statements such as DO loops and block-IF statements. This
restriction is checked at run-time. (At the same time, the follow links, flow
graph and other internal structures are automatically updated.) In
addition, some further restrictions are placed. For example, deleting a
block containing a statement which is referenced by another statement out-
side of the statement block being deleted is flagged at run-time as an error.

Because of these retrictions, it is not possible, for instance, to sequen-
tially insert a DO statement, followed by the statements inside the DO
loop, followed separately by the ENDDO. statement. Instead, there are two
options which provide plenty of flexibility to the programmer. The first is
to call one of the several intrinsic member functions of StmtList to create

The Polaris Internal Representation 569

an empty DO loop (i.e., a header and an ENDDO), and then to singly
insert the statements of the body separately in-between these two delimiter
statements. The second member function is to create a List<Statement>
statement list (which has no restrictions whatsoever on the order or type
of insertions), and then to insert the entire List<Statement> into the
StmtList at once using, for example, the i n s _ b e f o r e (. . .) member
function. The syntax of the new list of statements is checked as the list is
inserted.

We have attempted to make the insertion, deletion, unlinking, copying
and moving of statements within a StmtList robust against errors and
dangling pointers.

As a simple example of the use of a StmtList object, consider the
following short C + + code which iterates through all of the assignment
statements in a StmtList and prints them (by default with debugging infor-
mation) to the standard output:

StmtList stmt_list;

for (Iterator<Statement> stmt_iter =

stmt_list.stmts_of_type(ASSIGNMENT_STMT);

stmt iter.valid();

++stmt iter)

{

c o u Z << stmt_iter.current();

}

Notice that the s~mt_iter .valid () expression returns true if the
s t m t _ i t e r iterator is valid. That is, if there are still statements over
which to iterate, and the + + s t m t _ i t e r statement causes s t m t _ i t e r to
update its current pointer to the next applicable statement.

4.5. Expression Class

Expressions are represented by a tree structure. They are implemented
in much the same way as statements, in that an abstract base Expression
class declares structures common to all expressions and specific expressions
are derived from the base. However, most expressions inherit from three

570 Faigin et al.

intermediate derived classes: unary expressions (UnaryExpr class), binary
expressions (BinaryExpr class) and nonbinary expressions (NonBinaryExpr
class). These are used to represent expressions with one, two, and possibly
more than two sub-expressions, respectively. Addition and mu!tiplication
are represented by non-binary expressions in order to facilitate .symbolic
analysis.

Other expression classes are derived which describe specific expression
types such as identifier expressions (IDExpr class) and integer constant
expressions (IntConstExpr class). Also, many expressions are derived from
UnaryExpr, BinaryExpr and NonBinaryExpr for the sole purpose of
defining member functions with more readable names for accessing the sub-
expressions. For instance, the FunetionCallExpr class is derived from
BinaryExpr, from which it inherits the functions l e f t () and r i g h t () to
access its two subexpressions. These are respectively the function being
called (represented by an IDExpr) and the parameter list. However, instead
of requiring the user to abide by this somewhat ambiguous notation, two
new member functions named f u n c t i o n () and p a r a m e t e r s () are
added to the FunctionCallExpr class to make the accesses to these fields
clear and self-documenting.

The base Expression class includes fields which specify the expression
as well as type information. A type includes the Fortran data type (integer,
real, etc.) and the size, making types such as "INTEGER*8" and
"INTEGER*4" both possible and distinguishable. In addition, fields are
declared which are used for expression simplification. Finally, each
Expression class also has a member function for traversing over all sub-
expressions, much like we saw in the Statement class.

All of the safeguards which were implemented within the Statement
class are also implemented here. This includes the declaration of default
member functions at the base level which call error routines. However,
unlike the Statement class, constructors are not available to the programmer.
In place of the constructors, expressions are created through a complete set
of functions provided by the Expression class. These functions were
designed to provide the user with a simpler means of creating expressions.
Frequently, these functions perform additional tasks in creating the desired
expression, such as determining the correct type based on the expression's
sub-expressions. Also, since the functions only create expressions on the
heap, the programmer is protected from mistakingly allocating expressions,
which should be dynamic objects, statically.

Polaris also has very powerful expression structural equality and
pattern matching routines, as well as pattern-matching and replacement
routinesJ ~~ These are based on an abstract 'Wildcard' class, which is
derived from Expression. To perform pattern matching, one simply creates

The Polaris Internal Representation 571

a pattern expression (an expression which may contain wildcards anywhere
in the tree) and compares this pattern to an expression using the equality
matching member function. These functions have proven to be both
powerful and general.

Many of the member functions available to the Expression classes are
enumerated in Tables VI and VII.

4.6. Symbol Class

The symbol class hierarchy is set up in a very similar manner to that
of the Expression and Statement class hierarchies. The abstract class
Symbol defines all possible functions for the derived classes, and the leaves
of the Symbol class hierarchy correspond to the different types of symbols
possible in a program unit. Each of these derived symbol objects may be
inserted into the Symtab class.

4.7. Symtab Class

The Symtab class is our implementation of a symbol table. Its major
component is a dictionary (a Collection class which maps strings to
another class) of Symbol class objects. It provides member functions for,
among other things, inserting new symbols (with automatic renaming, if
desired, in the case of name conflicts), deleting or unlinking, symbols,

Table VI. Many of the Methods Defined for All Expressions.
These Methods Are Defined in the Base Expression Class and Are Available

to All Derived Expressions

Expression::

clone()
op()
type()
arg_ refs()

arg_list()
overflow_ref()

re l ink_ptrs(program_unit)

is_wildcard()
is_side_effect_free()
o p e r a t o r - -

Returns a copy of the expression
.Returns the operator of the expression
Returns the Type object of the expression
Returns a list of references to all of the expression's sub-

expressions
Returns the list of the expression's sub-expressions
Returns a dictionary of syntax tree labels of unrecognized

structures found in the intermediate language
Change all identifiers within subexpressions to refer to

'program_unit 's ' symbo ! table
Returns true if this is an expression used for pattern matching
Returns true if this is known to be free of side-effects
Compare expressions--also used for pattern matching

828/22/5-7

572 Faigin et al.

Table VII. Many of the Methods Defined for Derived Expression Classes.
These Methods Are Defined in the Base Expression Class to Call Error Routines

and Are Redefined for the Derived Classes Which Use Them

... Expr::

data_ref()"

value()"

real_ part()"
imaginary_part()" Returns
array()a Returns
subscript()~ Returns
string()" Returns
bound()" Returns
left_guarded()a Returns
left_valid() Returns
right_guarded()a Returns
right_valid() Returns
function() Returns
parameters_guarded()" Returns
parameters_valid() Returns
expr_guarded()~ Returns
expr_valid() Returns
iterator symbol()" Returns

Returns a pointer to the character data of a string constant
expression

Returns the integer of an integer constant or argument number
expression

Returns a reference to the real part of a ComplexExpr
a reference to the imaginary part of a ComplexExpr
a reference to the array specified in an array reference
a reference to the subscript specified in an array reference
a reference to the string specified in a SubStringExpr
a reference to the bounds specified in a SubStringExpr
a reference to the leR-hand side of a BinaryExpr
true if the left-hand side of a BinaryExpr exists
a reference to the right-hand side of a BinaryExpr
true if the right-hand side of a BinaryExpr exists
a reference to the function of a function call
a reference to the parameters of a function call
true if there exist parameters in a function call
a reference to the expression of an UnaryExpr
true if there exists an expression in an UnaryExpr
a reference to the symbol of an identifier expression

"Indicates that there exist corresponding methods which insert data into these fields.

renaming symbols, finding symbols by name, printing all the Fortran lines
necessary for specifying all the symbols, and creating an iterator to iterate
over every symbol in the symbol table.

5. SAMPLE TRANSFORMATION CODE

Traditionally, only very brief examples would be given in a paper
describing an IR. However, since one of Polaris' greatest strengths is its
"programmability" arising from the expressiveness of the IR, we will
present a few longer examples of programming transformations in Polaris.
Although these examples are still fairly simplistic, they should demonstrate
the "feel" of Polaris programming.

5.1. Simple Loop Distribution

We begin with a trivial routine which simply distributes a loop into
two loops. The procedure accepts the StmtList to be transformed, the loop

The Polaris Internal Representation 573

to be distributed, and a reference to the statement which indicates where
the loop should be split.

// Distribute the loop 'do_loop' such that the first loop

// contains the loop statements up to, but not including

// loop_bound, and the second loop contains the remaining

// statements.

void distribute_loop(StmtList ~ stmts, Statement ~ do_loop,

Statement & cut_point)

{

p_assert(do_loop.type() == DO_STMT,

"distribute_loop(): the statement to be distributed is not"

"a DO statement.");

// Pull out statements which belong in the second loop

List<Statement> *second_block =

stmts.grab(cut_point, *do_loop.follow_ref()->prev ref());

// Insert a second loop after the original

Statement ~second_do_loop =

stmts.ins_DO_after(do_loop.index().clone(),

do_loop.init().clone(),

do_loop.limit().clone(),

do_loop.step().clone(),

*do_loop.follow_ref());

// Insert the second block of statements into the second loop

stmts.ins_after(second_block, second_do_loop);

574 Faigin et al.

The procedure begins with a p_assert call. A p _ a s s e r t () , as
described earlier, is a Polaris assertion used for catching run-time errors.
Here, it insures that the statement to be distributed is, in fact, a DoStmt.
(This check could be removed by changing the type of d o _ l o o p from
' S t a t e m e n t &' to 'DoStmt &', but, as explained earlier, this would lead
to excessive type-casting which could produce errors.) The grab call
specifies that all statements beginning with c u t _ p o i n t and ending with
the statement preceding the d o _ l o o p ' s "follow" statement (i.e., the
matching ENDDO statement) should be removed from the program and
placed in the list s e c o n d _ b l o c k . Notice that this routine returns a poin-
ter to the list of statements, as opposed to a reference. This indicates that
ownership of the list is being passed so the user function is now responsible
for deallocating the list. The i n s _ D 0 _ a f t e r method specifies that an
empty d o _ l o o p (both the DO as well as the ENDDO) specified by the
first four expression parameters (the index, initial value, limit, and step,
respectively) should be inserted after the f o l l o w statement of d o _ l o o p ,
which is the ENDDO statement. Note that the call to f o l l o w _ r e f ()
returns a pointer (even though ownership is not being passed) and must be
dereferenced. This method returns a reference (since ownership is not being
passed) to the new DO statement. The i n s _ a f t e r method simply inserts
the removed statements into the second loop. Notice that s e c o n d _ b l o c k
is being passed as a pointer. This indicates that control of the list is being
given to the method. Thus, the method, after inserting the statements into
the StmtList, is able to delete the empty list.

Consider, for example, the following Fortran code.

($ 1) DO 10 I = 1 , 1 0 , 2

($ 2) A (I) = B (I) - C (I)

(S3) B(I) = I

(S4) ENDDO

If the distribute_loop procedure was called with the loop Sl and a
c u t _ p o i n t of S3, the result would be:

($ I) DO 10 I = 1 , 1 0 , 2

($2) A(I) = B(I) - C(I)

($ 4) ENDDO

(STS) DO 10 I = 1,10,2

The Polaris Internal Representation

($3) B(I) = I

(ST6) ENDDO

575

It is important to note that each method called in the dis-

t r i b u t e - l o o p procedure guarantees that, upon completion, the"
program is in a consistent state. Thus, structural information, such as flow
information, as well as Fortran syntax, is checked and updated. If an
inconsistent state is encountered, an error is raised. For instance, if the
same call to distribute_loop--also with a cut_point of S3- -was
made on the following code

(Sl) DO 10 I = 1,10,2

($2) IF (I.LT.5) THEN

(s3) A(I) = B(I) - C(I)

(S4) ENDIF

($5) ENDDO

a n error would be raised by the call to g r a b since removing the statements
$3 and $4 results in incorrect Fortran syntax.

5.2. C o d e I n s t r u m e n t a t i o n

The following is a slightly more complex example of Polaris program-
ming.

/ / .

II Insert instrumentatfon into a program uni%:

/ /

// Around each outermost DO loop in the program unit, insert:

// CALL START_INTERVAL(#)

II and

// CALL END_INTERVAL(#)

// where # is a unique integer for each loop in the

576

II program unit

II

/I Assume for simplicity's sake that there are no jumps out

// of DO loops

// ..

instrument(ProgramUnit & pgm)

{

// Capture any p_assertO errors here

P_ASSERT_HANDLER(0);

// Create and insert the necessary symbols into the

// symbol table.

Symbol &start_interval = pgm.symtab().ins(

new SubroutineSymboI("START_INTERVAL", IS_EXTERNAL,

NOT_INTRINSIC, NOT_FORMAL));

Symbol &end_interval = pgm.symtab().ins(

ne~ SubroutineSymbol("END_INTERVAL", ISEXTERNAL,

NOT_INTRINSIC, N0T FORMAL));

// Iterate over all of the DO statements.

int interval_number = O;

for (Iterator<Statement> do_stmts =

pgm.stmts().stmts_of_type(DO_STMT);

Faigin e t al.

The Polaris Internal Representation

do stmts.valid();

++do_stmts) {

577

if (do_stmts.current().outer_refO == NULL) { // If an outermost loop...

interval_number++; // Get the next intvl #

// Insert 'CALL START_INTERVAL(interval_number)'

// before the current DO statement.

pgm.stmts().ins_before(

new CallStmt(pgm.stmts().new tag(),

start_interval,

comma(

constant(interval_number))),

do_stmts.current());

// Unique stmt tag

// Subr, symbol being called

// Actual parameter list

// Find the matching ENDDO statement

Statement &end_do = *do_stmts.current().follow_ref();

// Insert 'CALL END_INTERVAL(interval_number)

// after the current ENDD0 statement.

pgm.stmts().ins_after(

new CallStmt(pgm.stmts().new_tag(),

end_interval,

// Unique stmt tag

// Subr. symbol being called

578

end_do);

Faigin et al.

comma(// Actual parameter list

constant(interval_number))),

// Print the resulting program unit to standard output

// with debugging information.

tout << pgm << endl << endl;

// Print to standard output as Fortran code

pgm.write(cout);

}

This example is fairly straightforward and should be easily understood
from its comments. One feature, however, which merits some discussion is
the call to P_ASSERT_HANDLER in the first line of the routine. If a
p _ a s s e r t () fails, Polaris performs some appropriate action, usually
resulting in the program being aborted. The P_ASSERT_HANDLER call
specifies the action which should be taken if a p _ a s s e r t fails. If a failure
is encountered, control is returned to the point of the P _ A S S E R T _ H A N -

DLER and the action specified by the handler is carrier out. The 0 argument
specifies that Polaris should abort with a description of the failed assertion.
It is also possible to specify the name of a routine to be called to act as a
trap-handler. Multiple P_AS SERT_HANDLER calls can exist within a single
program specifying how errors should be handled at different stages of the
program's execution.

5.3. Loop Normalization

Finally, we present an example of simple loop normalization. That is,
we wilt normalize a DO loop to have its lower bound be zero (0) and its
step be one

(1). This could be represented as transforming the loop

The Polaris Internal Representation

D O i = el , e2, e3

ENDDO

into the forrn

D O i = O, (e 2 - e l) / e 3 , 1

. . . (i * e g + e l) . . .

ENDD0

579

if the bound expressions el, e2, and e3 have no side effects, or else into a
form with as much precalculation of the loop bounds as necessary. For
instance, if el, e2, and e3 are function calls which may have side effects, the
output would be in the form

INIT = e l

LIMIT = e2

STEP = e3

DO i = 0, (LIMIT - INIT)/STEP, I

. . . (/*STEP + I N I T) . . .

ENDDO

In either case we must also make sure to coerce the loop bound
expressions el, e2, and e3 into the same Fortran type as that of the loop
index variable before using them in other expressions. For simplicity, we
assume that loop index variables are never used outside of the loop which
they control.

The code to perform this transformation requires the ability to iterate
over statements, as we saw in the previous example, as well as over all
expressions contained in a statement. It also requires being able to replace
all occurrences of a particular symbol inside of an expression. The sub-
routine for this transformation follows.

void normalize(ProgramUnit Rpgm, Statement &do_stmt) {

// Normalize loop do_stmt to have a lower bound of 0 and a step of 1

580 Faigin eta/.

// Get new copies of the DO's init, limit and step expressions,

// and call them respectively el, e2, e3

Expression .el = do_stmt.initO.clone();

Expression ~e2 = do_stmt.limit().clone();

Expression ~e3 = do_stmt.step().clone();

// Get a reference to the index variable

Symbol ~index_var = do_stmt.index().symbol();

// Coerce el, e2 and e3 to the type of the loop index

// by applying intrinsic functions to the expressions

// (only if necessary)

el = coerce(el, index var.type(), pgm);

e2 = coerce(e2, index var.type(), pgm);

e3 = coerce(e3, index_vat.type(), pgm);

// If the bound expressions could have side effects, they must

// be precalculated.

el = get_precalc(el, pgm, do_stmt, PRECALC_IF_SIDE_EFFECTS, "INIT");

e2 = get_precalc(e2, pgm, do_stmt, PRECALC_IF SIDE_EFFECTS, "LIMIT");

e3 = get_precalc(e3, pgm; do stmt, PRECALC_IF SIDE_EFFECTS, "STEP");

// Replace the init expression with the constant 0

do_stmt.init(constant(O));

// Replace limit expression with (e2 - el) / e3

do_stmt.limit(div(sub(eR, el), e3));

The Polaris Internal Representation

/ / Replace the step expression with the constant 1

do_stmt.step(constant(1));

// Now find all occurrences of the use of the index variable

// inside the loop and replace them with the expression

// ((index_variable*e3) + el)

581

// First we need to specify the replacement expression

Expression *replacement =

add(mul(id(index_var), e3~>clone()), e1->clone());

// Loop through all statements within the loop body

for (Iterator<Statement> stmts =

pgm.stmts().iterate_loop(~do_stmt);

stm~s.valid();

++stmts) {

// For all expressions to be iterated over, substitute

// all references to the index variable

// with a copy of the expression 'reference'

substitute_var(stmts.current().iterate_expressions(),

index var, *replacement);

// We don't need this expression anymore--garbage collect it

delete replacement;

582 Faigin e t at.

A number of support routines used in this program example need
additional explanations.

�9 v o i d subs t i t u t e_var (i t e ra to r , symbol, replacement-expr)
searches through all the expressions specified by iterator for references
to symbol. Wherever it finds such a reference, it is replaced by a
newly-created copy of replaeement-expr. Currently in development
for the Polaris system are additional expression pattern-matching
and replacement routines.

�9 Expression *coerce(expr, type, program-unit)
Returns a new expression which has been created by coercing the
expression expr into the type given by type. (Of course, if expr is
already of the same type as type, expr is returned unchanged.) The
type coercion is achieved by adding a call to an appropriate
intrinsic function (for instance, INT () or DBLE ()) with expr as its
argument. If this intrinsic function does not already exist inside
program-unit's symbol table, it is added automatically.

�9 g e t _ p r e c a l c (expr, program-unit, reference-strut, precalc-condi-
tion, precalc-variable-name)
Does a precalculation (if necessary) of an expression and returns a
new expression which references this precalculated value. With pre-
calc-condition set to PRECALC_IF_SIDE_EFFECTS, if expr could
have side effects (that is, if it contains a call to an external
function), this function automatically creates a new variable and
assigns this variable the value of the expression expr. This
assignment takes place in a newly-created assignment statement
which is placed in program-unit just before the statement reference-
stmt. Of course, to retain consistency, all flow-information is
automatically updated.
The function returns an expression referring to the (possibly pre-
calculated) value of expr. This expression will be either the original
expr expression (if-no precalculation was necessary) or a reference
to the newly-created variable. The name of the new variable is
specified by precalc-variable-name, which defaults to PC (for "pre-
calc") if not specified. If a symbol with the specified name already
exists, it is automatically renamed to avoid any conflicts. Although
this function seems fairly specific for a built-in utility, we have
found it to be useful for many transformations.

Also notice that, in the creation of the replacement expression, the
expressions e l and e3 are cloned. This is required because these two
expressions have already been inserted into the d o _ s t m t . l i m i t field.

The Polaris Internal Representation 583

Trying to insert these expressions directly in the replacement expression
(instead of inserting clones) would be caught by the Collection hierarchy as
an attempt to alias the expressions.

As an example of the output of n o r m a l i z e () , consider the following
Fortran subroutine

SUBROUTINE SUB(INIT, ILIMIT, B)

EXTERNAL FUNCI, FUNC2

REAL*4 FUNCI, FUNC2, B

INTEGER*4 INIT, ILIMIT

DO I = FUNCI(INIT), ILIMIT, FUNC2(B)

PRINT *, I

ENDDO

RETURN

END

ARer normalize() has been applied to the single loop in this
Fortran subroutine the following output is obtained:

SUBROUTINE SUB(INIT, ILIMIT, B)

INTRINSIC INT

EXTERNAL FUNCI, FUNC2

REAL*4 FUNCI, FUNC2, B

INTEGER*4 INIT, ILIMIT, I, STEP, INT, INITO

INITO = INT(FUNCI(INIT))

STEP = INT(FUNC2(B))

DO I = O, (ILIMIT-INITO)/STEP, 1

PRINT *, I * STEP + INITO

ENDDO

RETURN

END

584 Faigin et al.

Notice that this Fortran subroutine already contained a variable
named INIT, so the new variable created by n o r m a l i z e () was
automatically renamed from INIT to INIT0 when it was inserted into the
symbol table.

6. INTER-COMPILER C O M M U N I C A T I O N

We have been describing the Polaris IR as consisting of many layers
of functionality on top of a simple data-structure. One aspect of this func-
tionality which we have not yet described is the ability to communicate
with other compiler systems. The data in the IR can be translated to and
from an intermediate language representation. Using this intermediate
form, Polaris can work in conjunction with other systems. Currently,
Polaris is able to communicate fully with the Delta prototyping system,
and we are working towards allowing Polaris to work with KAP as well.
Eventually, we hope to be able to perform transformations using other
compilers--communicating through the intermediate language--thereby
taking advantage of the strengths of other systems as well as avoiding the
cost of the needless duplication of transformation code.

7. CONCLUSIONS

The Polaris system's internal representation was designed with the
belief that a source-to-source transformation system, even a production
quality system, should create an environment that is practical but that
still stimulates good programming practices. We have tried to create a
system that is robust, is rigorous in its maintenance of a correct structure,
and that still allows transformations to be expressed clearly and easily.

The IR's structure, however, is a relatively simple one. We have only
just begun to build different layers of functionality on top of the basic IR
to provide more complex .operations. It was designed so that it can adapt
and expand, incorporating new methods of analysis and new forms of
information, and emulating new representations of traditional information.

Although we have only just begun to really use Polaris for serious
experimentation, we already believe that, in general, our approach was a
successful one. As we expected, development time has been greatly reduced.
Polaris programmers report that the usually tedious process of converting
a high-level algorithm into code has been greatly simplified to the point
where a line of the algorithm is easily represented by a single line of Polaris
code. Further, it is very unusual for an operation to be desired which is not
already in a predefined method.

The Polaris Internal Representation 585

One drawback to having such a comprehensive internal representation
is that learning to program effectively in Polaris is a lengthy process. Users
report, however, that Polaris' advantages are worth the price of a steep
learning curve. Another drawback of Polaris is that it is quite memory
intensive which is to be expected of such a complex system. In terms of
execution time, however, users report that they are very satisfied with the
system's efficiency. This can be attributed at least partially to the fact that
flags exist which allow the extensive runtime checks to be disabled once the
code is believed to be in a stable form.

While Polaris' internal representation is far from revolutionary, in and
of itself, we believe that the concepts incorporated in its design are useful
and important in the creation of a transformation system. An IR cannot be
simply described as the layout of data within a computer's memory. It is
inseparable from the functions and philosophies which maintain it. We have
endeavored to take one of the most basic of the traditional IR forms and
add concepts such as consistency maintenance and layered functionality to
create the heart of a complete and powerful system, which allows complex
analysis techniques and transformations to be developed quickly and easily.

REFERENCES

�9 I. W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,
W. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford, Polaris, A New" Generation
Parallelizing Compiler for MPPs. Seventh Annual Workshop on Languages and Compilers
for Parallel Computing, Ithaca, NY 1994. CSRD Report No. 1306, University of Illinois,
Urbana-Champaign, Center for Supercomputing Research and Development (June 1993).

2. Rudolf Eigenmann, Jay Hoeflinger, Greg Jaxon, Zhiyuan Li, and David Padua, Restruc-
turing Fortran Programs for Cedar. Proc. of the 1991 Int'l. Conf. on Parallel Processing
(August 1991).

3. David A. Padua, The Delta Program Manipulation system--Preliminary design. CSRD
Report No. 808, University of Illinois, Urbana-Champaign, Center for Supercomputing
Research and Development (June 1989).

4. Paul M. Petersen, Greg .P. Jaxon, and David A. Padua, A Gentle Introduction to Delta,
University of Illinois, Urbana-Champaign, Center for Supercomputing Research and
Development (June 1992).

5. J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg, Programming with Sets:
An Introduction to Setl, Springer-Verlag (1986).

6. F. Bodin, P. Beckman, D. Gannon, S. Narayana, and S. Srinivas, SAGE++: A Class
Library for Building Fortran 90 and C + + Restructuring Tools--DRAFT 0.1.1993.

7. Kuck and Associates, KAP for SPARC Fortran User's Guide. Beta Version 1.0, Docu-
ment #9308006 (1993).

8. Peng Tu and David Padua, Automatic Array Privatization. In Utpal Banerjee, David
Gelernter, Alex Nicolau, and David Padua, (eds.), Proc. Sixth Workshop on Languages
and Compilers for Parallel Computing, Lectures Notes in Computer Science, Portland,
Oregon, Springer-Verlag 768:500-521 (August 1993).

586 Faigin et al.

9. W. Blume and R. Eigenmann, An overview of symbolic analysis techniques needed for the
effective parallelization of the PERFECT benchmarks. Proc. o f the 1995 lnt'l. Conf. on
Parallel Processing. CSRD Report No. 1332, University of Illinois, Urbana-Champaignn,
Center for Supercomputing, Research and Development (January 1994).

10. Stephen A. Weatherford, High-Level Pattern-matching Extensions to C + + for Fortran
Program Manipulation in Polaris. CSRD Report No. 1350, University of Illinois, Urbana-
Champaign, Center for Supercomputing Research and Development (May 1994).

I 1. J. Ferrante, K. Ottenstein and J. Warren, The Program Dependence Graph and Its Use
in Optimization. ACM Trans. on Programming Languages and Systems 9(1):319-349
(1987).

Printed in Belgium

I,'erantwoordelijke uitgever:
Hubert Van Maele
Altenastraat 20 - B-8310 St.-Kruis

