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The Polaris Program Manipulation System is a production quality tool for 
source-to-source transformations and complex analysis of Fortran code. In this 
paper, we describe the motivations for and the implementation of Polaris' 
internal representation (IR). The IR is composed of a basic abstract syntax tree 
on top of which exist many layers of functionality. This functionality allows 
complex operations on the data structure. Further, the IR is designed to enforce 
the consistency of the internal structure in terms of both the correctness of the 
data structures and the correctness of the Fortran code being manipulated. In 
addition, operations on the IR result in the automatic updating of affected data 
structures such as flow information. We describe how the system's philosophies 
developed from its predecessor, the Delta prototyping system, and how they 
were implemented in Polaris' IR. We also provide a number of examples of 
using the Polaris system. 
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source-to-source transformation. 

1. I N T R O D U C T I O N  

The goal of the Polaris system is to provide a new parallelizing compiler 
that is able to efficiently parallelize Fortran programs for a variety of 
machines, including massively parallel systems and parallel workstations.el) 
Polaris is based on our past experiences with the Cedar Fortran projectJ 2) 
This project showed us that real programs can be parallelized efficiently 
and that the techniques needed to achieve good performance are natural 
extensions of technology available in current parallelizing compilers. There- 
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fore, we decided to use a traditional internal structure for our new compiler, 
enhanced with some features that make it easy to extend and experiment 
with transformation techniques. This allows us to capitalize on our 
previous experiences with the KAP/Cedar parallelizing compiler and the 
Delta program manipulation system. ~3) 

The implementation of Polaris is based on Delta which was created as 
an "open experimental laboratory ''~4) in which to prototype, develop, and 
test new source-to-source transformations for Fortran 77 parallelizing com- 
pilers. While Delta succeeded in providing an excellent research environ- 
ment, it was not practical as a production compiler. 

Our experience with Delta taught us that many of the features found 
in the prototyping paradigm are quite valuable. However, the ideal 
compiler for source-to-source transformations, we believe, would combine 
the strengths of a prototyping system (its "usability") with the strengths of 
a production system (its computational power). Polaris was designed with 
this in mind. 

This paper presents a description of Polaris' internal representation 
(IR). We consider the IR to be more than just the structure of the data 
within the compiler. We also view it as the operations associated with this 
data structure. Intelligent functionality can frequently go a long way 
towards replacing complex data structures and it is usually more extensible. 
Thus, we have chosen to implement the data-side of the IR in the tradi- 
tional, straightforward form of an abstract syntax tree. On top of this 
simple structure, however, we can build layers of functionality which allow 
the IR to emulate more complex forms. Specifically, such forms could 
include the constructs we found most useful in Delta and the language we 
used, SETLJ 5) 

Delta, as an open system, provided the user with complete access to 
the internal representation. This was because the SETL implementation we 
used did not have a good data-abstraction mechanism. Allowing users full 
access to the IR frequently resulted in the failure to properly maintain the 
internal structure, which hindered program development. However, in 
Polaris, access to the internal representation is controlled through a data- 
abstraction mechanism. Operations built into the IR are defined such that 
the programmer is prevented from violating the structure or leaving it in an 
incorrect state at any point in a transformation. We chose to implement 
Polaris in the object-oriented language C + +  as it allowed us both struc- 
tural flexibility and gave us the desired data-abstraction mechanisms. 
(Another object-oriented transformation system is the S a g e + +  system. ~6) 
In some respects there are similarities between Sage++ and Polaris but 
there are also differences in terms of both the overall approach and the 
implementation. ) 
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Another aspect of the functionality of the IR--and  another reason why 
we chose a relatively simple IR structure--is the ability to work with other 
compiler systems. Through an intermediate communication language, 
Polaris can capitalize on the strengths of other systems, such as Delta and 
KAPJ 7) 

Polaris has beefl used, so far, to implement passes for array privatiza- 
tion, ts) induction variable substitution, forward substitution, symbolic 
dependence analysis t9) and inlining. Also, we are close to the completion of 
FORBOL tl~ which is a C + +  extension built on top of our IR which 
allows complex pattern matching within Polaris. 

The rest of this paper is organized as follows: in Section 2 we describe 
our goals for Polaris and the general philosophies we employed in its 
design. In Section 3, we present a description of how these notions were 
actually implemented in the internal representation. In Section 4, we 
discuss the major classes used in our IR. We then, in Section 5, explore 
some simple examples which demonstrate the use of Polaris. 

2. D E V E L O P M E N T  OF POLARIS PHILOSOPHIES 

2.1. Goals and Philosophies of the IR 

We wanted our IR to be a very general structure on top of which more 
complex structures could be emulated. Thus, regardless of what form the 
IR takes, from the user's point of view, the IR could seem to be one of 
nearly any traditional (or nontraditional) representation. This general 
strategy is complemented by a number of additional philosophies. 

The most pervasive philosophy in Polaris is that of consistency. 
Polaris was designed to guarantee the correctness of the program represen- 
tation as much as is efficiently possible. Thus, in general, it should not be 
possible for the internal structure to be compromised by incorrect transfor- 
mation code. In addition, the correctness of the Fortran program being 
manipulated must be .maintained. Transformations are, therefore, never 
allowed to let the code enter a state which is no longer proper Fortran 
syntax. The system also guarantees that the control flow information is 
consistent. We are also working towards the guarantee that all data- 
dependence information is kept correct, but these routines are not yet 
developed to the point where we can determine whether this is actually 
feasible at a reasonable cost. Consistency of the control flow graph is 
realized through automatic incremental updates of this information as a 
transformation proceeds. 

We believe that automatic consistency-maintenance will drastically 
decrease the time required to develop new optimizations within Polaris' 
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production system. Our experience with the Delta system showed us that 
although greater flexibility and some extra efficiency may be obtained by 
allowing the internal structure to temporarily fall out of a consistent state, 
too often the internal structure was not properly restored. This often 
resulted in incorrect code and time-consuming bugs. We believe that since 
less flexibility is required in a production system, this approach is merited 
by the decreased development time. 

In addition to maintaining a consistent state, we also require a very 
robust system. In general, we have tried to detect as many errors as is 
possible at compile time and, when that was not possible, catch and 
explain run-time errors. Some of the features which we have implemented 
in order to realize our goal of robustness--while maintaining consistency-- 
include 

�9 supplying many commonly-needed member functions (functions 
used to access and manipulate objects) so that users would seldom 
feel the need to duplicate code or meddle with the system. 

�9 requiring all structures to be fully defined when they are created to 
avoid the dangers of accidentally "forgetting" needed sub-struc- 
tures. 

�9 hiding internal structure details which are not necessary for the user 
to see or alter. 

�9 the strict control over how the IR can be accessed and modified. 
The Polaris user is only allowed to make incremental changes 
which keep the system state consistent and correct. For  example, 
statements inserted into a Fortran program are required to be well- 
formed with respect to multistatement constructs. For instance, a 
DO statement cannot be inserted separately from its matching 
ENDDO statement, since the statement list would enter an incom- 
plete and inconsistent state. 

�9 the detection of aliased structures (data structure sharing is not 
allowed) and the ?eporting of their existence with a run-time error. 
For  example, it would be an error to create a new expression and 
insert it into two different statements without first making a copy 
of the object. 

�9 freeing the programmer from worrying about tedious memory 
details through the clear indication of ownership of structures and 
reference counting. The programmer should always be able tell 
whether he owns a given structure and is, therefore, responsible for 
its maintenance and deallocation. Further, dangling pointers and 
their associated problems are avoided through reference counting. 
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�9 the detection of the premature destruction (deleting a structure 
which is still being referenced elsewhere in the IR) of any part of 
the IR. Data required by the internal representation is protected 
from accidental deletion. 

�9 extensive error avoidance and checking throughout the system 
through the liberal use of assertions. Within Polaris, if any 
condition or system state is assumed, that assumption is specified 
explicitly in a p_assert () (short for "Polaris assertion") state- 
ment which checks the assumed condition and reports an error if 
the assumption is incorrect. 

The most important aspect of a prototyping system that we wished to 
retain in Polaris was its extensibility. In Delta the program was represented 
as an abstract syntax tree with labelled arcs. Due to the nature of SETL's 
built-in map structures, Delta allowed new information to be easily added 
to its internal representation. Additional information was included by 
simply inserting arcs with unique labels at the appropriate map nodes in 
the tree. Unfortunately, this resulted in many problems in trying to main- 
tain the structure's consistency. We felt it was imperative for the production 
system to be similarly scalable, but that it be done in a safe manner. As 
new needs and requirements are discovered, we must be able to safely add 
additional structures to the IRjust as Delta was able to simply add new arcs. 

We also required that the IR's environment allow transformations to 
be expressed in a simple and straightforward manner. It wot/ld not be 
enough to have a complete set of high-level manipulation methods; we 
needed them also to have consistent and clear semantics in the form of 
specific programming guidelines. This includes ideas as simple as rigorous 
naming conventions as well as more complex concepts such as the 
indication of structure ownership. Our ultimate goal was to create a system 
where the development and implementation of algorithms would not be 
hindered by the internal representation. 

3. I M P L E M E N T A T I O N  

In this section we describe how the philosophies described were 
implemented in our IR. The general form of our IR is that of an abstract 
syntax tree implemented in an object oriented fashion such that each node 
in the tree is an object. This is implemented in the fairly straightforward 
manner of using classes for statements, expressions, program units, and all 
other program structures. The more interesting aspect of the IR is the form 
of these objects and the functionality contained within them. 
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We begin by describing our motivations for using the language C + +  
as well as describing how we made use of the features the language 
provides. This is followed by a discussion of the support structures used. 

3.1. C + +  

We chose to implement Polaris in the object-oriented language C + + .  
The object-oriented paradigm was perfect for supporting the philosophies 
of the system and C + + ,  specifically, was chosen primarily for its pop- 
ularity and flexibility. 

C + +  provides the modularity and efficiency which was lacking in 
Delta's SETL implementation and, further, provided a superior environ- 
ment for a team-developed project. C + +  was also ideal in that it provided 
data-hiding mechanisms which allow us to keep tight control over the 
interface to each structure. We were able to make the complete structure, 
as well as each sub-structure, objects which could only be accessed through 
specific member functions. Therefore, we were able to specify all the 
member functions for manipulating the statement list such that any affected 
structures are updated and we are also able to ensure that the structure has 
not been violated. 

Further, these member functions allow needed functionality to be 
layered on top of the basic structures. Thus, on top of our relatively simple 
IR, we can emulate more complex structures. Another important benefit of 
using an object-oriented language is that it provides much of the exten- 
sibility which we found so important in Delta. New structures can be 
added to objects in the IR without affecting the original structures and 
adding new structures requires very little reprogramming. 

C + +  also allows the form of all constructors to be specified. Thus, we 
are able to ensure that only well-formed and complete objects are created. 
Further, all destructors ensure, through reference counting, that relevant 
parts of the data-structure are not being deleted or are marked invalid and 
then trapped on reference.. In addition, C + +  allows reference variables as 
well as pointers. Throughout the system, passing a pointer indicates transfer 
of ownership of data, which, in general, means the owner is responsible for 
its deallocation. A reference variable indicates that the object is owned by 
another structure and, therefore, must not be deleted. 

Many naming conventions are used in the system to promote internal 
consistency. Of particular importance are those used in conjunction with 
ownership indication. In order to comply with our ownership conventions, 
most functions which return an object whose ownership is not being trans- 
ferred do so by means of a C + +  reference. However, in certain instances 
it must be possible for the function to indicate that the requested object 
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does not exist. These exceptions are made explicit through naming 
conventions. For  instance, the postfix " _ g u a r d e d "  indicates that a corre- 
sponding member function (with the postfix "_va  1 i d") should be queried 
first to ensure that the requested object exists. Similarly, the postfix "_ r e f "  
indicates that although a pointer is returned, ownership is not being passed 
(and a NULL value should be checked for). 

In general, C + +  provided us with an environment which allowed us 
to implement our philosophies witin Polaris. 

3.2. Support Structures 

The underlying support system for the IR is just as important as the 
representation itself. In order to provide full support for the internal 
representation as well as user code, we have created an infrastructure of 
support classes that are heavily used both internally and externally. These 
structures conform to our conventions, such as ownership indication and 
naming conventions, and help support many of our philosophies. Further, 
these structures also make use of the p_assert ( ) command for assertion 
checking as well as perform reference counting. 

This infrastructure currently includes a Collection class hierarchy 
which includes lists, sets, and a variety of maps. These structures each exist 
in two forms: ownership and reference. An ownership structure takes 
control of- -and responsibility for--all objects which are inserted into it. 
Ownership structures insure, through reference counting, that, for instance, 
objects are not prematurely deleted while they are still being referenced and 
that memory is properly deallocated when an object is deleted. Once an 
object has been placed in an ownership collection, the collection is respon- 
sible for its maintenance. An object can only be "owned" by one collection. 
If a collection is required to contain elements already owned by other 
structures, a reference structure is used. Reference structures do not take 
ownership of objects and, in fact, require that inserted objects be already 
owned. 

An example of the use of these structures can be seen in the represen- 
tation of statements. The statements of a program are kept in an ownership 
list (List). If this list were deleted, the memory used by each statement 
would be freed. Each statement also contains information on the set of 
statements which are reachable in the flow-graph. In this case a reference 
set (RefSet) is used. Deleting the statement which contains this set--which 
would also delete the set--would not affect the statements contained in the 
reference set. If, however, a statement was deleted which was referenced in 
the RefSet, the statement would be marked invalid and any attempt to 
reference it from the RefSet would result in a run-time error 
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(a p _ a s s e r t  ( ) would  be t r ipped) .  Since an object  can only be owned by 
a single Collection, our  pol icy  of  d isa l lowing s t ructure-al ias ing is au toma t i -  
cal ly enforced. The comple te  set of  classes avai lable  in the Col lec t ion  
h ie rarchy  can be found in Table  I. 

Essential ly all of  the classes used in Polar is  can be placed in a collection.  
(In o rder  for a class to be p laced  in a collect ion,  it must  derive from 
the class Lis table  which cont r ibutes  informat ion  necessary to indicate  
ownersh ip  of  an object.)  However ,  all of  the Collection classes, including 
the reference collections,  are  class templates.  We rely heavi ly on templa tes  
for compi le - t ime type checking. F o r  example ,  a type-er ror  would  result 
f rom trying to insert an Expression into a R e f L i s t  ( S y m b o l s ) .  A s imilar  
e r ror  would  result from trying to traverse a L i s t ( S t a t e m e n t  ) with an 
I t a r a t o r ( E x p r e s s i o n ) .  Wi thou t  templates ,  this compi le - t ime er ror  
de tec t ion  would  not  be possible.  

4.  C L A S S E S  O F  T H E  IR  

In this section, we descr ibe each of  the ma jo r  classes used in the IR in 
detail .  We begin with the basic p rog ram class in the first subsection.  In the 

Table I. The Collection Hierarchy ~ 

Collection:: 

Basic Collections: 
List 
RefList 
Set 
RefSet 
Stack 
RefStack 
Element 
RefElement 
Database 

Database 
RefDatabase 
Dictionary 
RefDictionary 
Map 

Map 
RefMap 
Iterator 
Keylterator 

List structure which takes ownership of objects 
List of references to objects 
Set structure which takes ownership of objects 
Set of references to objects 
Stack structure which takes ownership of objects 
Stack of references to objects 
Structure for the ownership of a single object 
Structure to reference a single object 
A database is a mapping from keys to data where the keys are 

distinguished and ordered by some hTherent value 
Implements the mapping from keys to data where the data are owned 
Implements the mapping from keys to data references 
Implements the mapping from strings to data which are owned 
Implements the mapping from strings to data references 
A Map is a mapping from keys to data where the keys are 

distinguished and ordered based on memory address 
Implements the mapping from keys to data which are owned 
Implements the mapping from keys to data references 
Class which iterates over any Collection structure 
Similar to Iterator except it includes methods to access the key 

information of any Map or Database 

"Each of these is implemented as a template class. 
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subsections which follow we describe the classes used for representing 
program units, statements, s tatement lists, expressions, symbols, and 
symbol tables. 

4.1. Program Class 

The Program class is nothing more than a collection of ProgramUnits.  
Member Functions are included for reading complete Fortran codes as well 
as displaying them. There are also member functions for adding additional 
ProgramUnits as well as merging Programs. 

4.2. ProgramUni t  Class 

The ProgramUnit  class is mostly a holder for the various data structure 
elements which make up a Fortran program unit. This form is, essentially, 
an abstract syntax tree. A ProgramUnit  may be a main program, a BLOCK 
DATA program unit, a subroutine, or an external function. 

The ProgramUnit  class contains and allows access to its component  
data structures, which are instances of the following classes: 

�9 S tmtLis t - -a  list of all executable program unit statements, if any 

�9 Symtab - - a  symbol table of all symbols used in the program unit 

�9 Datal i s t - -a  list of the information contained in this program unit's 
DATA statements 

�9 CommonBlockDict - -a  dictionary of all common blocks referenced 
by this program unit 

�9 EquivalenceDiet--a dictionary of this program unit's variable 
equivalence classes 

�9 Fo rma tDic t - - a  dictionary of this program unit's FORMAT statement 
information 

�9 WorkSpaeeStack--a  stack of temporary data structures associated 
with this program unit which the user can define and use for a 
specific transformation pass. These structures will remain with the 
program unit until the pass has completed, unaffected by other 
transformation passes. 

In addition to functions for accessing these data structures inside a 
ProgramUnit  object, there are member functions for general operations 
such as copying and printing ProgramUnit  objects as well as translating 
them to and from the intermediate language format for conversion between 
the Polaris internal representation and other compiler systems, such as 
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Table II. Many of the Methods Defined for the ProgramUnit  Class 

ProgramUnit::  

struts( ) 
clone( ) 
pu_ tag_ ref( ) 
pu_class( ) 
rout ine_name_ref(  ) 
symtab( ) 
data( ) 
common_blocks(  ) 

equivalences( ) 
formats( ) 
overflow_ref( ) 

work_stack( ) 

clean_workspace(pass_tag) 
display(output_stream) 
display_debug(output_stream) 
write( output _ stream ) 

Returns a reference to the statement list 
Returns a copy of this ProgramUnit  
Returns the unique tag identifying the ProgramUnit  
Returns the type of the ProgramUnit  
Returns the name of ProgramUnit  (if applicable) 
Returns the symbol table 
Returns the data from all DATA statements 
Returns the dictionary of common blocks referenced in this 

ProgramUnit  
Returns the dictionary of variable equivalence classes 
Returns the dictionary of all FORMAT statements 
Returns a dictionary of syntax tree labels of unrecognized 

structures found in the intermediate language 
Returns a reference to the stack of transformation pass- 

specific structures associated with this ProgramUnit  
Delete all WorkSpaces designated for the specified pass 
Display ProgramUnit  with moderate debugging information 
Display ProgramUnit  with all debugging information 
Display ProgramUnit  in FORTRAN format 

Delta. The form of many of the member functions can be seen in Table II. 
We discuss some of the more important class structures contained in the 
ProgramUnit class in the following subsections. 

4.3. S t a t e m e n t  Class 

We have chosen to implement statements as simple, nonrecursive 
structures kept in a simple statement list (which is described in more detail 
in the next subsection). Thus, we have not implemented statement blocks 
directly. However, we have made the implementation flexible enough so that 
member  functions which simulate the existence of statement blocks can 
easily be implemented on top of the current Statement class. Furthermore,  
other more complex structures could be emulated on top of this basic 
structure, such as program dependence graphs. ~1~) 

Statements are implemented by an abstract base statement class which 
contains the structures common to all statements. For each specific type of 
Fortran statement, a distinct class is derived from the base class which con- 
tains additional structures specific to that statement. This class hierarchy 
allows modifications of and additions to specific statements to be kept local 
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to the statement. In addition, however, if a new member function is needed 
for all statement types, it needs to be implemented only in the base class. 

All of the fields declared in the base class (and which, therefore, exist 
in all statements) are accessed through public member  functions. Among 
these fields are 

�9 sets of successor and predecessor flow links which are implemented 
in the form of reference sets of statements. 

�9 sets of memory references. These include in_refs, out_refs and 
aet_refs which are respectively memory reads, writes and actual 
parameters which may be accessed by the statement. 

�9 an outer link which points to the innermost enclosing D O  loop or 
is null if there is no enclosing DO loop. 

�9 a WorkSpaceStaek of temporary data associated with the Statement 
which is used for a specific transformation pass. 

Tablel l l .  Many of the Methods Defined for All Statements.  
These Methods are Defined in the Base Statement Class and are Available 

to All Derived Statements 

Statement:: 

clone( ) 
stmt_class( ) 
next_ref( ) 
prev_ref( ) 
succ( ) 
pred( ) 

in_refst ) 
out_ refs( ) 
act_refs( ) 

outer( ) 
line( ) 
overflow_ref( ) 

tag( ) 
assertions( ) 
iterate_expressions( ) 
simplify_expressions( ) 
pre_directives( ) 
post_directives( ) 
relink_ptrs(program_ unit) 

work_stack( ) 

Returns a copy of the statement 
Specifies what kind of statement this is 
Returns a pointer to the lexically next statement 
Returns a pointer to the lexically previous statement 
Returns the set of successor statements in the control-flow graph 
Returns the set of predecessor statements in the control-flow 

graph 
Returns the set of variables possibly read by the statement 
Returns the set of variables possible written by the statement 
Returns the set of actual parameters possibly accessed by the 

statement 
Returns the innermost enclosing DO loop 

. Returns the line number in the source code 
Returns a dictionary of syntax tree labels of unrecognized 

structures found in the intermediate language 
Returns a unique tag identifying this statement 
Returns the list of assertions associated with the statement 
Return an iterator over the statement's expressions 
Simplify all of the expressions in the statement 
Return compiler directives placed before the statement 
Return compiler directives placed after the statement 
Change all identifiers within subexpressions to refer to 

'program_unit 's '  symbol table 
Returns the stack of WorkSpaces associated with the statement 
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W h e n e v e r  p r a c t i c a l ,  we h a v e  i m p l e m e n t e d  t he  m e m b e r  f u n c t i o n s  s u c h  

t h a t  a n y  m o d i f i c a t i o n  to  a s t a t e m e n t  r e su l t s  in  the  u p d a t i n g  o f  a f fec ted  

d a t a ,  in  o r d e r  to  r e t a i n  cons i s t ency �9  T a b l e s  I I I  a n d  V speci fy  m a n y  o f  t he  

m e m b e r  f u n c t i o n s  a v a i l a b l e  to  the  s t a t e m e n t  classes .  

E a c h  d e r i v e d  s t a t e m e n t  c lass  m a y  d e c l a r e  a d d i t i o n a l  fields�9 A m o n g  t he  

m o s t  c o m m o n  f ields d e c l a r e d  by  d e r i v e d  s t a t e m e n t  c lasses  a re  t he  fol low 

a n d  lead  fields. S ince  t he  s t a t e m e n t  list is i m p l e m e n t e d  as  a s i n g l y - n e s t e d  

s t r u c t u r e ,  c o m p o u n d  s t a t e m e n t  types ,  s u c h  as  D O - E N D D O s  o r  I F  c o n -  

s t ruc t s ,  a r e  i m p l e m e n t e d  w i t h  m u l t i p l e  s t a t e m e n t  objec ts �9  A D O - E N D D O ,  

Table IV. Some of the Methods Defined for the StmtList Class 

StmtList:: 

first_ref( ) 
last_ ref( ) 
prev_ref(stmt ) 
next_ref(stmt) 
entries( ) 
find_ref(stmt_tag) 
iterate_entry_points( ) 
ins_ before(new_stmt, ref_stmt) a 
ins_ before(strut_list, ref_stmt )a 
ins_ IF_ELSE_after(...) 

ins_IF_after(...) 

ins_ ELSEIF_after(...) 

ins_ELSE_after(...) 

ins_DO_after(...) 
move block_ before(...) ~ 
move_before(...) ~ 
del(stmt) 
del(stmt ~, strut2) 
grab(strut ) 
grab(strut ~, strut2) 
modify(stmt o~a, strut nc~,) 
copy(...) 
stmts_of_ type(...) 
iterate _ loop _ body( do _ strut ) 
iterator( ) 
iterator(stmt ~, stmt2) 

Returns a pointer to the first statement 
Returns a pointer to the last statement 
Returns a pointer to the statement lexically before 'stmt" 
Returns a pointer to the statement lexically after 'stmt' 
Returns the number of statements in the StmtList 
Returns a pointer to the statement with the tag 'stmt_tag' 
Returns an Iterator over all entry points in the StmtList 
Inserts 'new_stmt' before 'ref_stmt' 
Inserts all statements in 'stmt_list" before 'ref_stmt' 
Inserts a (possibly empty) block IF-ELSE-ENDIF around 

existing statements in the StmtList 
Inserts a (possibly empty) block IF-ENDIF around 

existing statements in the StmtList 
Appends an (possibly empty) ELSEIF clause to an existing 

block IF statement 
Appends an (possibly empty) ELSE clause to an existing 

block IF statement 
Inserts a (possible empty) DO statement after 'ref_stmt' 
Moves a block of statements to before a given statement 
Moves a statement to before a given statement 
Delete 'strut" 
Deletes all statements from stmt~ to stmt~ 
Remove 'strut' from StmtList and return it 
Remove and return statements from stmt~ to stmt2 
Replace stmto~ a with stmt.~, 
Returns a copy of a block of statements 
Returns an Iterator over all statements of specified types 
Returns an Iterator over all statements in "do_stmt's' body 
Returns an Iterator over the entire StmtList 
Returns an Iterator over all statements from stmt~ to stmt, 

lexical order 

Indicates that there also exists an "_after" form of the method. 
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fo r  i n s t a n c e ,  c o n s i s t s  o f  a D o S t m t  a n d  a n  E n d D o S t m t  w h i c h  d e l i m i t  t h e  

s t a t e m e n t s  w i t h i n  t h e  l o o p .  ( T h e  r e d u n d a n t  D O - C O N T I N U E  c o n s t r u c t  is 

n o t  s u p p o r t e d  a n d  is a u t o m a t i c a l l y  c o n v e r t e d  t o  D O - E N D D O  f o r m  b y  t h e  

p a r s e r . )  T h e  fo l l ow  a n d  l e a d  f ie lds  c o n n e c t  t h e  s t a t e m e n t s  o f  t h e s e  c o m -  

p o u n d  s t r u c t u r e s .  

T h e  D o S t m t  d e c l a r e s  a n u m b e r  o f  f i e lds  in  a d d i t i o n  t o  t h o s e  d e c l a r e d  

b y  t h e  b a s e  s t a t e m e n t  t y p e .  T h e  fo l low f ie ld  w i t h i n  a D o S t m t  p o i n t s  t o  i t s  

c o r r e s p o n d i n g  E n d D o S t m t  a n d ,  l i kewi se ,  t h e  fo l low f ie ld  o f  a n  E n d D o S t m t  

Table V. Many of the Methods Defined for Derived Statement Classes. 
These Methods are Defined in the Base Statement Class to Call Error Routines 

and are Redefined for the Derived Classes Which Use Them 

... Stmt:: 

lhs( )" 

rhs( )" 

follow_ref( ) 
lead_ ref( ) 

matching_if_ ref( ) 
matching_endif_ ref( ) 
expr( )" 

index( )" 
init( )" 
limit( )~ 
step( )" 
target_ ref( )" 
label_list() 

s_control_guarded( ) 

s_control_valid( ) 
io_list_guarded( )~ 

io_list_valid( ) 
routine_ ref( )~ 

parameters_guarded( )~ 

parameters_valid( ) 

Returns a reference to the expression on the left hand side of an 
AssignmentStmt 

Returns a reference to the expression on the right hand side of an 
AssignmentStmt 

Returns a pointer to the next statement of a compound structure 
Returns a pointer to the previous statement of a compound 

structure 
Returns a pointer to the corresponding IfStmt of an EndlfStmt 
Returns a pointer to the corresponding EndlfStmt of an IfStmt 
Returns a reference to the expression of a statement With one 

expression (i.e. IfStmt, ComputedGotoStmt) 
Returns a reference to the index expression of a DoStmt 
Returns a reference to the init expression of a DoStmt 
Returns a reference to the limit expression of a DoStmt 
Returns a reference to the step expression of a DoStmt 
Returns a pointer to the target statement of a GotoStmt 
Returns a reference to the list of targets of a statement with multiple 

jumps 
Returns a reference to the control information list of an I/O 

statement 
Returns true if there exists control information in an I/O statement 
Returns a reference to the expressions read and written in an I/O 

statement 
Returns true if there are any expressions in an I/O statement 
Returns a pointer to the symbol of a subroutine call statement or 

a subroutine entry statement 
Returns a reference to the parameters of a call statement or an entry 

statement 
Returns true if there exist any parameters in a call statement or an 

entry statement 

Indicates that there exist corresponding methods which insert data into these fields. 
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points to the corresponding DoStmt. The index of the loop as well as the 
initial, limit, and step expression are implemented as Expression trees. 

Another important member function declared in the base class (but 
redefined by each derived class) returns an iterator which traverses the 
expressions contained in that statement. This iterator may traverse 0 
expressions, as in an EndDoStmt statement, or up to 4, as exist in a 
DoStmt. This member function, along with similar ones in the expression 
class, make it quite easy to, for instance, traverse all the expressions in a 
loop body. 

In order to increase the robustness of the structure, all member 
functions which access data fields are declared to be virtual within the base 
statement class and are overriden in the derived classes which use them. 
For  example, the member functions which access the 'step' field are only 
applicable to the DoStmt but are declared in the base class. The base class 
definition of the s t e p  ( ) function, like all other base member function 
definitions, calls an error-routine while the redefinition in DoStmt performs 
the specified operation. With this scheme, if a member function is called for 
a statement to which it is not applicable, a Polaris error will be reported 
and the system can either try to continue or can perform a controlled 
abort. 

Although this design has the disadvantage of moving the detection of 
some errors from compile-time to run-time, it has two hopefully larger 
advantages. The first is that this method generally decreases the time 
required to compile routines developed using the production system, due to 
the way C + +  compiles large systems. Specifically, the user, in general, 
only needs to include the header file of the base Statement class and not 
those of the classes derived for particular statements, since all of the mem- 
ber functions needed are already defined in the base class; this reduces the 
compile time of user programs, which in turn makes the debugging 
process easier. (The single exception to this rule is that if the user needs to 
create new statements rather than just modifying current ones, that user 
must include the appropriate derived class header files in order to access 
the constructors for that class. Generally only a few such header files, if 
any, need to be included in a particular transformation routine.) 

The second advantage has to do with the fact that the StmtList class 
contains a list of references to the base Statement class. By the C + +  rules 
of typing, it is iegal for a reference or pointer to a base class to actually 
point to a derived class, and this capability is used extensively throughout 
our system. While iterating through a list of Statements, for example, the 
program will receive a reference to the base Statement class. Once it has 
been determined what type of Statement that reference refers to, it would 
normally be necessary to typecast the reference into the correct derived 



The Polaris Internal Representation 567 

class. Only then would it be possible to access the member functions 
appropriate to that statement type. In a system based on an abstract syntax 
tree, the vast majority of references are to a base class since the type of 
each node can vary. The large number and variety of typecasts required by 
such a system creates an unnecessarily large possibility for errors made by 
programmers typecasting to the wrong class type. (These types of errors 
are especially easy to make when changes are made to the system or to a 
transformation pass.) Such errors can neither be detected nor controlled by 
a C + +  compiler or by the run-time system itself, and can be extremely 
difficult to trace. However, by placing all possible member functions 
directly into a base class, we gain complete run-time detection and control 
of errors of this type. The cost of this technique, unfortunately, is an 
abundance of virtual member functions. 

The necessity of type-casting from a base class is not unique to Polaris. 
The S A G E + +  system deals with the situation by providing a global func- 
tion for every S A G E + +  class which accepts a pointer and, if the pointer 
is of the specified class, returns it cast into the correct class. Otherwise 
a null value is returned. For example, to determine if a statement, s, is a 
'for statement', the function i s S g F o r S t r a t ( s )  (for "is S A G E + +  for 
statement") is used. If s is a 'for statemerit', it is returned cast in to 
the 'for statement' class, otherwise null is returned. Consider the following 

examples in S A G E + +  (left) and Polaris (right): 

SgStatement *s = .... 

SgForStmt *loop; 

if (loop = isSgForStmt(s)) { 

i = loop->step(); 

Statement *s = .... 

if (s->stmt_class() == FOR_STMT) { 

i = s->step(); 

Within the SAGE + +  if statement, 1 o op is guaranteed to be of the correct 
type so member functions specific to the 'for statement' class can be 
accessed. If the function s t e p ( )  were replaced with a function not 
appropriate to a 'for statement', S A G E + +  would catch it at compile time 
while Polaris would not catch it until run-time. However, while Polaris has 
a large number of virtual member functions, S A G E + +  requires a large 
number of global "is . . . "  functions (one for every class). 



568 Faigin e t  al.  

4.4. S tmtL is t  Class 

The StmtList class is derived from the collection class template 
List(Statement) .  The StmtList class, however, overrides many of the basic 
list operations to include automatic updating of the flow graph whenever 
any statement or block of statements is deleted, inserted, or moved. 
Currently, the information automatically updated includes the set of 
memory references, control flow information, and loop-nesting information. 
We are also working towards allowing data-dependence information to be 
updated automatically, but the routines are not developed to the point 
where we can determine whether this is efficient. 

In addition to this basic functionality expansion, additional operations 
are available, including: 

�9 returning an iterator over selected parts of the statement list such 
as the body of a DO loop, all statements of a specific type or the 
entire program. 

�9 copying, deleting, unlinking, or moving any well-formed sublist of 
statements 

�9 inserting any single statement or any well-formed list of statements 

�9 inserting specific multi-block statement groups, such as a block-IF 
statement framework or a DO-ENDDO group. 

�9 print all statements in the list to any C + +  stream in either Fortran 
form or in a debugging form. 

These and many of the other available member functions are specified in 
Table IV. 

To maintain complete control of consistency inside the StmtList class, 
the insertion, deletion, unlinking, moving, and copying of statements or 
statement lists are all given a number of restrictions. The first of these is 
that the block to be processed must be entirely well-formed with regard to 
multi-block statements such as DO loops and block-IF statements. This 
restriction is checked at run-time. (At the same time, the follow links, flow 
graph and other internal structures are automatically updated.) In 
addition, some further restrictions are placed. For example, deleting a 
block containing a statement which is referenced by another statement out- 
side of the statement block being deleted is flagged at run-time as an error. 

Because of these retrictions, it is not possible, for instance, to sequen- 
tially insert a DO statement, followed by the statements inside the DO 
loop, followed separately by the ENDDO. statement. Instead, there are two 
options which provide plenty of flexibility to the programmer. The first is 
to call one of the several intrinsic member functions of StmtList to create 
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an empty DO loop (i.e., a header and an ENDDO),  and then to singly 
insert the statements of the body separately in-between these two delimiter 
statements. The second member function is to create a List<Statement> 
statement list (which has no restrictions whatsoever on the order or type 
of insertions), and then to insert the entire List<Statement> into the 
StmtList at once using, for example, the i n s _ b e f o r e ( . . .  ) member 
function. The syntax of the new list of statements is checked as the list is 
inserted. 

We have attempted to make the insertion, deletion, unlinking, copying 
and moving of statements within a StmtList robust against errors and 
dangling pointers. 

As a simple example of the use of a StmtList object, consider the 
following short C + +  code which iterates through all of the assignment 
statements in a StmtList and prints them (by default with debugging infor- 
mation) to the standard output: 

StmtList stmt_list; 

for (Iterator<Statement> stmt_iter = 

stmt_list.stmts_of_type(ASSIGNMENT_STMT); 

stmt iter.valid(); 

++stmt iter) 

{ 

c o u Z  << stmt_iter.current(); 

} 

Notice that the s~mt_iter .valid ( ) expression returns true if the 
s t m t _ i t e r  iterator is valid. That is, if there are still statements over 
which to iterate, and the + + s t m t _ i t e r  statement causes s t m t _ i t e r  to 
update its current pointer to the next applicable statement. 

4.5. Expression Class 

Expressions are represented by a tree structure. They are implemented 
in much the same way as statements, in that an abstract base Expression 
class declares structures common to all expressions and specific expressions 
are derived from the base. However, most expressions inherit from three 
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intermediate derived classes: unary expressions (UnaryExpr class), binary 
expressions (BinaryExpr class) and nonbinary expressions (NonBinaryExpr 
class). These are used to represent expressions with one, two, and possibly 
more than two sub-expressions, respectively. Addition and mu!tiplication 
are represented by non-binary expressions in order to facilitate .symbolic 
analysis. 

Other expression classes are derived which describe specific expression 
types such as identifier expressions (IDExpr class) and integer constant 
expressions (IntConstExpr class). Also, many expressions are derived from 
UnaryExpr, BinaryExpr and NonBinaryExpr for the sole purpose of 
defining member functions with more readable names for accessing the sub- 
expressions. For instance, the FunetionCallExpr class is derived from 
BinaryExpr, from which it inherits the functions l e f t  ( ) and r i g h t  ( ) to 
access its two subexpressions. These are respectively the function being 
called (represented by an IDExpr) and the parameter list. However, instead 
of requiring the user to abide by this somewhat ambiguous notation, two 
new member functions named f u n c t i o n ( )  and p a r a m e t e r s  ()  are 
added to the FunctionCallExpr class to make the accesses to these fields 
clear and self-documenting. 

The base Expression class includes fields which specify the expression 
as well as type information. A type includes the Fortran data type (integer, 
real, etc.) and the size, making types such as "INTEGER*8" and 
"INTEGER*4" both possible and distinguishable. In addition, fields are 
declared which are used for expression simplification. Finally, each 
Expression class also has a member function for traversing over all sub- 
expressions, much like we saw in the Statement class. 

All of the safeguards which were implemented within the Statement 
class are also implemented here. This includes the declaration of default 
member functions at the base level which call error routines. However, 
unlike the Statement class, constructors are not available to the programmer. 
In place of the constructors, expressions are created through a complete set 
of functions provided by the Expression class. These functions were 
designed to provide the user with a simpler means of creating expressions. 
Frequently, these functions perform additional tasks in creating the desired 
expression, such as determining the correct type based on the expression's 
sub-expressions. Also, since the functions only create expressions on the 
heap, the programmer is protected from mistakingly allocating expressions, 
which should be dynamic objects, statically. 

Polaris also has very powerful expression structural equality and 
pattern matching routines, as well as pattern-matching and replacement 
routinesJ ~~ These are based on an abstract 'Wildcard' class, which is 
derived from Expression. To perform pattern matching, one simply creates 
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a pattern expression (an expression which may contain wildcards anywhere 
in the tree) and compares this pattern to an expression using the equality 
matching member function. These functions have proven to be both 
powerful and general. 

Many of the member functions available to the Expression classes are 
enumerated in Tables VI and VII. 

4.6. Symbol Class 

The symbol class hierarchy is set up in a very similar manner to that 
of the Expression and Statement class hierarchies. The abstract class 
Symbol defines all possible functions for the derived classes, and the leaves 
of the Symbol class hierarchy correspond to the different types of symbols 
possible in a program unit. Each of these derived symbol objects may be 
inserted into the Symtab class. 

4.7. Symtab Class 

The Symtab class is our implementation of a symbol table. Its major 
component is a dictionary (a Collection class which maps strings to 
another class) of Symbol class objects. It provides member functions for, 
among other things, inserting new symbols (with automatic renaming, if 
desired, in the case of name conflicts), deleting or unlinking, symbols, 

Table VI. Many of the Methods Defined for All Expressions. 
These Methods Are Defined in the Base Expression Class and Are Available 

to All Derived Expressions 

Expression:: 

clone( ) 
op( ) 
type( ) 
arg_ refs( ) 

arg_list( ) 
overflow_ref( ) 

re l ink_ptrs(program_unit )  

is_wildcard( ) 
is_side_effect_free( ) 
o p e r a t o r -  - 

Returns a copy of the expression 
.Returns the operator of the expression 
Returns the Type object of the expression 
Returns a list of references to all of the expression's sub- 

expressions 
Returns the list of the expression's sub-expressions 
Returns a dictionary of syntax tree labels of unrecognized 

structures found in the intermediate language 
Change all identifiers within subexpressions to refer to 

'program_unit 's '  symbo ! table 
Returns true if this is an expression used for pattern matching 
Returns true if this is known to be free of side-effects 
Compare expressions--also used for pattern matching 

828/22/5-7 
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Table VII. Many of the Methods Defined for Derived Expression Classes. 
These Methods Are Defined in the Base Expression Class to Call Error Routines 

and Are Redefined for the Derived Classes Which Use Them 

... Expr:: 

data_ref( )" 

value( )" 

real_ part( )" 
imaginary_part( )" Returns 
array( )a Returns 
subscript( )~ Returns 
string( )" Returns 
bound( )" Returns 
left_guarded( )a Returns 
left_valid( ) Returns 
right_guarded( )a Returns 
right_valid( ) Returns 
function( ) Returns 
parameters_guarded( )" Returns 
parameters_valid( ) Returns 
expr_guarded( )~ Returns 
expr_valid( ) Returns 
iterator symbol( )" Returns 

Returns a pointer to the character data of a string constant 
expression 

Returns the integer of an integer constant or argument number 
expression 

Returns a reference to the real part of a ComplexExpr 
a reference to the imaginary part of a ComplexExpr 
a reference to the array specified in an array reference 
a reference to the subscript specified in an array reference 
a reference to the string specified in a SubStringExpr 
a reference to the bounds specified in a SubStringExpr 
a reference to the leR-hand side of a BinaryExpr 
true if the left-hand side of a BinaryExpr exists 
a reference to the right-hand side of a BinaryExpr 
true if the right-hand side of a BinaryExpr exists 
a reference to the function of a function call 
a reference to the parameters of a function call 
true if there exist parameters in a function call 
a reference to the expression of an UnaryExpr 
true if there exists an expression in an UnaryExpr 
a reference to the symbol of an identifier expression 

"Indicates that there exist corresponding methods which insert data into these fields. 

renaming symbols, finding symbols by name, printing all the Fortran lines 
necessary for specifying all the symbols, and creating an iterator to iterate 
over every symbol in the symbol table. 

5. SAMPLE TRANSFORMATION CODE 

Traditionally, only very brief examples would be given in a paper 
describing an IR. However, since one of Polaris' greatest strengths is its 
"programmability" arising from the expressiveness of the IR, we will 
present a few longer examples of programming transformations in Polaris. 
Although these examples are still fairly simplistic, they should demonstrate 
the "feel" of Polaris programming. 

5.1. Simple Loop Distribution 

We begin with a trivial routine which simply distributes a loop into 
two loops. The procedure accepts the StmtList to be transformed, the loop 
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to be distributed, and a reference to the statement which indicates where 
the loop should be split. 

// Distribute the loop 'do_loop' such that the first loop 

// contains the loop statements up to, but not including 

// loop_bound, and the second loop contains the remaining 

// statements. 

void distribute_loop(StmtList ~ stmts, Statement ~ do_loop, 

Statement & cut_point) 

{ 

p_assert(do_loop.type() == DO_STMT, 

"distribute_loop( ): the statement to be distributed is not" 

"a DO statement."); 

// Pull out statements which belong in the second loop 

List<Statement> *second_block = 

stmts.grab(cut_point, *do_loop.follow_ref()->prev ref()); 

// Insert a second loop after the original 

Statement ~second_do_loop = 

stmts.ins_DO_after(do_loop.index().clone(), 

do_loop.init().clone(), 

do_loop.limit().clone(), 

do_loop.step().clone(), 

*do_loop.follow_ref()); 

// Insert the second block of statements into the second loop 

stmts.ins_after(second_block, second_do_loop); 
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The procedure begins with a p_assert call. A p _ a s s e r t ( ) ,  as 
described earlier, is a Polaris assertion used for catching run-time errors. 
Here, it insures that the statement to be distributed is, in fact, a DoStmt. 
(This check could be removed by changing the type of d o _ l o o p  from 
' S t a t e m e n t  &' to 'DoStmt &', but, as explained earlier, this would lead 
to excessive type-casting which could produce errors.) The grab call 
specifies that all statements beginning with c u t _ p o i n t  and ending with 
the statement preceding the d o _ l o o p ' s  "follow" statement (i.e., the 
matching ENDDO statement) should be removed from the program and 
placed in the list s e c o n d _ b l o c k .  Notice that this routine returns a poin- 
ter to the list of statements, as opposed to a reference. This indicates that 
ownership of the list is being passed so the user function is now responsible 
for deallocating the list. The i n s _ D 0 _ a f t e r  method specifies that an 
empty d o _ l o o p  (both the DO as well as the ENDDO) specified by the 
first four expression parameters (the index, initial value, limit, and step, 
respectively) should be inserted after the f o l l o w  statement of d o _ l o o p ,  
which is the ENDDO statement. Note that the call to f o l l o w _ r e f ( )  
returns a pointer (even though ownership is not being passed) and must be 
dereferenced. This method returns a reference (since ownership is not being 
passed) to the new DO statement. The i n s _ a f t e r  method simply inserts 
the removed statements into the second loop. Notice that s e c o n d _ b l o c k  
is being passed as a pointer. This indicates that control of the list is being 
given to the method. Thus, the method, after inserting the statements into 
the StmtList, is able to delete the empty list. 

Consider, for example, the following Fortran code. 

( $ 1 )  DO 10 I = 1 , 1 0 , 2  

( $ 2 )  A ( I )  = B ( I )  - C ( I )  

(S3) B(I) = I 

(S4) ENDDO 

If the distribute_loop procedure was called with the loop Sl and a 
c u t _ p o i n t  of S3, the result would be: 

( $ I )  DO 10 I = 1 , 1 0 , 2  

($2) A(I) = B(I) - C(I) 

( $ 4 )  ENDDO 

(STS) DO 10 I = 1,10,2 
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($3) B(I) = I 

(ST6) ENDDO 

575 

It is important to note that each method called in the dis- 

t r i b u t e - l o o p  procedure guarantees that, upon completion, the" 
program is in a consistent state. Thus, structural information, such as flow 
information, as well as Fortran syntax, is checked and updated. If  an 
inconsistent state is encountered, an error is raised. For  instance, if the 
same call to distribute_loop--also with a cut_point of S3- -was  
made on the following code 

(Sl) DO 10 I = 1,10,2 

($2) IF (I.LT.5) THEN 

(s3) A(I) = B(I) - C(I) 

(S4) ENDIF 

($5) ENDDO 

a n  error would be raised by the call to g r a b  since removing the statements 
$3 and $4 results in incorrect Fortran syntax. 

5.2.  C o d e  I n s t r u m e n t a t i o n  

The following is a slightly more complex example of Polaris program- 
ming. 

/ /  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

II Insert instrumentatfon into a program uni%: 

/ /  

// Around each outermost DO loop in the program unit, insert: 

// CALL START_INTERVAL(#) 

II and 

// CALL END_INTERVAL(#) 

// where # is a unique integer for each loop in the 
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II program unit 

II 

/I Assume for simplicity's sake that there are no jumps out 

// of DO loops 

// .................................................... 

instrument(ProgramUnit & pgm) 

{ 

// Capture any p_assertO errors here 

P_ASSERT_HANDLER(0); 

// Create and insert the necessary symbols into the 

// symbol table. 

Symbol &start_interval = pgm.symtab().ins( 

new SubroutineSymboI("START_INTERVAL", IS_EXTERNAL, 

NOT_INTRINSIC, NOT_FORMAL)); 

Symbol &end_interval = pgm.symtab().ins( 

ne~ SubroutineSymbol("END_INTERVAL", ISEXTERNAL, 

NOT_INTRINSIC, N0T FORMAL)); 

// Iterate over all of the DO statements. 

int interval_number = O; 

for (Iterator<Statement> do_stmts = 

pgm.stmts().stmts_of_type(DO_STMT); 

Faigin e t  al. 
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do stmts.valid(); 

++do_stmts) { 

577 

if (do_stmts.current().outer_refO == NULL) { // If an outermost loop... 

interval_number++; // Get the next intvl # 

// Insert 'CALL START_INTERVAL( interval_number )' 

// before the current DO statement. 

pgm.stmts().ins_before( 

new CallStmt(pgm.stmts().new tag(), 

start_interval, 

comma( 

constant(interval_number))), 

do_stmts.current()); 

// Unique stmt tag 

// Subr, symbol being called 

// Actual parameter list 

// Find the matching ENDDO statement 

Statement &end_do = *do_stmts.current().follow_ref(); 

// Insert 'CALL END_INTERVAL( interval_number ) 

// after the current ENDD0 statement. 

pgm.stmts().ins_after( 

new CallStmt(pgm.stmts().new_tag(), 

end_interval, 

// Unique stmt tag 

// Subr. symbol being called 
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end_do); 

Faigin et al. 

comma( // Actual parameter list 

constant(interval_number))), 

// Print the resulting program unit to standard output 

// with debugging information. 

tout << pgm << endl << endl; 

// Print to standard output as Fortran code 

pgm.write(cout); 

} 

This example is fairly straightforward and should be easily understood 
from its comments. One feature, however, which merits some discussion is 
the call to P_ASSERT_HANDLER in the first line of the routine. If a 
p _ a s s e r t  ( )  fails, Polaris performs some appropriate action, usually 
resulting in the program being aborted. The P_ASSERT_HANDLER call 
specifies the action which should be taken if a p _ a s s e r t  fails. If a failure 
is encountered, control is returned to the point of the P _ A S S E R T _ H A N -  

DLER and the action specified by the handler is carrier out. The 0 argument 
specifies that Polaris should abort with a description of the failed assertion. 
It is also possible to specify the name of a routine to be called to act as a 
trap-handler. Multiple P_AS SERT_HANDLER calls can exist within a single 
program specifying how errors should be handled at different stages of the 
program's execution. 

5.3. Loop Normalization 

Finally, we present an example of simple loop normalization. That  is, 
we wilt normalize a DO loop to have its lower bound be zero (0) and its 
step be one 

(1). This could be represented as transforming the loop 
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D O  i = el ,  e2, e3 

ENDDO 

into the forrn 

D O  i = O, ( e 2  - e l ) / e 3 ,  1 

. . .  ( i * e g  + e l )  . . .  

ENDD0 
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if the bound expressions el, e2, and e3 have no side effects, or else into a 
form with as much precalculation of the loop bounds as necessary. For 
instance, if el, e2, and e3 are function calls which may have side effects, the 
output would be in the form 

INIT = e l  

LIMIT = e2 

STEP = e3 

DO i = 0, (LIMIT - INIT)/STEP, I 

. . .  ( /*STEP + I N I T )  . . .  

ENDDO 

In either case we must also make sure to coerce the loop bound 
expressions el, e2, and e3 into the same Fortran type as that of the loop 
index variable before using them in other expressions. For  simplicity, we 
assume that loop index variables are never used outside of the loop which 
they control. 

The code to perform this transformation requires the ability to iterate 
over statements, as we saw in the previous example, as well as over all 
expressions contained in a statement. It also requires being able to replace 
all occurrences of a particular symbol inside of an expression. The sub- 
routine for this transformation follows. 

void normalize(ProgramUnit Rpgm, Statement &do_stmt) { 

// Normalize loop do_stmt to have a lower bound of 0 and a step of 1 



580 Faigin eta/. 

// Get new copies of the DO's init, limit and step expressions, 

// and call them respectively el, e2, e3 

Expression .el = do_stmt.initO.clone(); 

Expression ~e2 = do_stmt.limit().clone(); 

Expression ~e3 = do_stmt.step().clone(); 

// Get a reference to the index variable 

Symbol ~index_var = do_stmt.index().symbol(); 

// Coerce el, e2 and e3 to the type of the loop index 

// by applying intrinsic functions to the expressions 

// (only if necessary) 

el = coerce(el, index var.type(), pgm); 

e2 = coerce(e2, index var.type(), pgm); 

e3 = coerce(e3, index_vat.type(), pgm); 

// If the bound expressions could have side effects, they must 

// be precalculated. 

el = get_precalc(el, pgm, do_stmt, PRECALC_IF_SIDE_EFFECTS, "INIT"); 

e2 = get_precalc(e2, pgm, do_stmt, PRECALC_IF SIDE_EFFECTS, "LIMIT"); 

e3 = get_precalc(e3, pgm; do stmt, PRECALC_IF SIDE_EFFECTS, "STEP"); 

// Replace the init expression with the constant 0 

do_stmt.init(constant(O)); 

// Replace limit expression with (e2 - el) / e3 

do_stmt.limit(div(sub(eR, el), e3)); 
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/ /  Replace the step expression with the constant 1 

do_stmt.step(constant(1)); 

// Now find all occurrences of the use of the index variable 

// inside the loop and replace them with the expression 

// ((index_variable*e3) + el) 
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// First we need to specify the replacement expression 

Expression *replacement = 

add(mul(id(index_var), e3~>clone()), e1->clone()); 

// Loop through all statements within the loop body 

for (Iterator<Statement> stmts = 

pgm.stmts().iterate_loop(~do_stmt); 

stm~s.valid(); 

++stmts) { 

// For all expressions to be iterated over, substitute 

// all references to the index variable 

// with a copy of the expression 'reference' 

substitute_var(stmts.current().iterate_expressions(), 

index var, *replacement); 

// We don't need this expression anymore--garbage collect it 

delete replacement; 
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A number of support routines used in this program example need 
additional explanations. 

�9 v o i d  subs t i t u t e_var ( i t e ra to r ,  symbol, replacement-expr) 
searches through all the expressions specified by iterator for references 
to symbol. Wherever it finds such a reference, it is replaced by a 
newly-created copy of replaeement-expr. Currently in development 
for the Polaris system are additional expression pattern-matching 
and replacement routines. 

�9 Expression *coerce(expr, type, program-unit) 
Returns a new expression which has been created by coercing the 
expression expr into the type given by type. (Of course, if expr is 
already of the same type as type, expr is returned unchanged.) The 
type coercion is achieved by adding a call to an appropriate 
intrinsic function (for instance, INT ( ) or DBLE ( ) ) with expr as its 
argument. If this intrinsic function does not already exist inside 
program-unit's symbol table, it is added automatically. 

�9 g e t _ p r e c a l c  (expr, program-unit, reference-strut, precalc-condi- 
tion, precalc-variable-name ) 
Does a precalculation (if necessary) of an expression and returns a 
new expression which references this precalculated value. With pre- 
calc-condition set to PRECALC_IF_SIDE_EFFECTS, if expr could 
have side effects (that is, if it contains a call to an external 
function), this function automatically creates a new variable and 
assigns this variable the value of the expression expr. This 
assignment takes place in a newly-created assignment statement 
which is placed in program-unit just before the statement reference- 
stmt. Of course, to retain consistency, all flow-information is 
automatically updated. 
The function returns an expression referring to the (possibly pre- 
calculated) value of expr. This expression will be either the original 
expr expression (if-no precalculation was necessary) or a reference 
to the newly-created variable. The name of the new variable is 
specified by precalc-variable-name, which defaults to PC (for "pre- 
calc") if not specified. If a symbol with the specified name already 
exists, it is automatically renamed to avoid any conflicts. Although 
this function seems fairly specific for a built-in utility, we have 
found it to be useful for many transformations. 

Also notice that, in the creation of the replacement expression, the 
expressions e l  and e3 are cloned. This is required because these two 
expressions have already been inserted into the d o _ s t m t . l i m i t  field. 
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Trying to insert these expressions directly in the replacement expression 
(instead of inserting clones) would be caught by the Collection hierarchy as 
an attempt to alias the expressions. 

As an example of the output of n o r m a l i z e  ( ) ,  consider the following 
Fortran subroutine 

SUBROUTINE SUB(INIT, ILIMIT, B) 

EXTERNAL FUNCI, FUNC2 

REAL*4 FUNCI, FUNC2, B 

INTEGER*4 INIT, ILIMIT 

DO I = FUNCI(INIT), ILIMIT, FUNC2(B) 

PRINT *, I 

ENDDO 

RETURN 

END 

ARer normalize() has been applied to the single loop in this 
Fortran subroutine the following output is obtained: 

SUBROUTINE SUB(INIT, ILIMIT, B) 

INTRINSIC INT 

EXTERNAL FUNCI, FUNC2 

REAL*4 FUNCI, FUNC2, B 

INTEGER*4 INIT, ILIMIT, I, STEP, INT, INITO 

INITO = INT(FUNCI(INIT)) 

STEP = INT(FUNC2(B)) 

DO I = O, (ILIMIT-INITO)/STEP, 1 

PRINT *, I * STEP + INITO 

ENDDO 

RETURN 

END 
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Notice that this Fortran subroutine already contained a variable 
named INIT, so the new variable created by n o r m a l i z e ( )  was 
automatically renamed from INIT to INIT0 when it was inserted into the 
symbol table. 

6. INTER-COMPILER C O M M U N I C A T I O N  

We have been describing the Polaris IR as consisting of many layers 
of functionality on top of a simple data-structure. One aspect of this func- 
tionality which we have not yet described is the ability to communicate 
with other compiler systems. The data in the IR can be translated to and 
from an intermediate language representation. Using this intermediate 
form, Polaris can work in conjunction with other systems. Currently, 
Polaris is able to communicate fully with the Delta prototyping system, 
and we are working towards allowing Polaris to work with KAP as well. 
Eventually, we hope to be able to perform transformations using other 
compilers--communicating through the intermediate language--thereby 
taking advantage of the strengths of other systems as well as avoiding the 
cost of the needless duplication of transformation code. 

7. CONCLUSIONS 

The Polaris system's internal representation was designed with the 
belief that a source-to-source transformation system, even a production 
quality system, should create an environment that is practical but that 
still stimulates good programming practices. We have tried to create a 
system that is robust, is rigorous in its maintenance of a correct structure, 
and that still allows transformations to be expressed clearly and easily. 

The IR's structure, however, is a relatively simple one. We have only 
just begun to build different layers of functionality on top of the basic IR 
to provide more complex .operations. It was designed so that it can adapt 
and expand, incorporating new methods of analysis and new forms of 
information, and emulating new representations of traditional information. 

Although we have only just begun to really use Polaris for serious 
experimentation, we already believe that, in general, our approach was a 
successful one. As we expected, development time has been greatly reduced. 
Polaris programmers report that the usually tedious process of converting 
a high-level algorithm into code has been greatly simplified to the point 
where a line of the algorithm is easily represented by a single line of Polaris 
code. Further, it is very unusual for an operation to be desired which is not 
already in a predefined method. 
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One drawback to having such a comprehensive internal representation 
is that learning to program effectively in Polaris is a lengthy process. Users 
report, however, that Polaris' advantages are worth the price of a steep 
learning curve. Another drawback of Polaris is that it is quite memory 
intensive which is to be expected of such a complex system. In terms of 
execution time, however, users report that they are very satisfied with the 
system's efficiency. This can be attributed at least partially to the fact that 
flags exist which allow the extensive runtime checks to be disabled once the 
code is believed to be in a stable form. 

While Polaris' internal representation is far from revolutionary, in and 
of itself, we believe that the concepts incorporated in its design are useful 
and important in the creation of a transformation system. An IR cannot be 
simply described as the layout of data within a computer's memory. It is 
inseparable from the functions and philosophies which maintain it. We have 
endeavored to take one of the most basic of the traditional IR forms and 
add concepts such as consistency maintenance and layered functionality to 
create the heart of a complete and powerful system, which allows complex 
analysis techniques and transformations to be developed quickly and easily. 
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