
International Journal of Parallel Programming, 1Iol. 22, No. 5, 1994

The Hierarchical Task Graph as a

Universal Intermediate Representation 1

Milind Girkar 2 and Constantine D. Polychronopoulos 3

Received September 23, 1993

This paper presents an intermediate program representation called the
Hierarchical Task Graph (HTG), and argues that it is not only suitable as the
basis for program optimization and code generation, but it fully encapsulates
program parallelism at all levels of granularity. As such, the HTG can be used
as the basis for a variety of restructuring and optimization techniques, and
hence as the target for front-end compilers as well as the input to source and
code generators. Our implementation and testing of the HTG in the Parafrase-2
compiler has demonstrated its suitability and versatility as a potentially
universal intermediate representation. In addition to encapsulating semantic
information, data and control dependences, the HTG provides more informa-
tion vital to efficient code generation and optimizations related to parallel code
generation. In particular, we introduce the notion of precedence between nodes
of the structure whose grain size can range from atomic operations to entire
subprograms.

KEY WORDS: Intermediate program representation; Parafrase-2 compiler;
hierarchial task graph; precedence.

1. I N T R O D U C T I O N

The intermediate program representation presented and analyzed in this
paper was motivated by the requirements of Parafrase-2, a multilingual
parallelizing compiler designed and developed at the University of Illinois.

~This work was supported in part by the National Science Foundation under Grant No.
NSF-CCR-89-57310, the U.S. Department of Energy under Grant No. DOE-DE-FG02-
85ER25001, and a grant from Texas Instruments Inc.

2 Sun Microsystems, Inc. Mountain View, California 94043.
3 Center for Supercomputing Research and Development, University of Illinois at Urbana-

Champaign-Urbana, Illinois 61801.

519

0885-7458/94/1000-0519507.00/0 ~ 1994 Plenum Publishing Corporation

520 Girkar and Polychronopoulos

The multilingual aspect of the compiler gave rise to the question of a
Universal Intermediate Representation (UIR) powerful enough to serve as
the IR for languages as diverse as Fortran and C.

In this paper, we present the result of our research on the design and
analysis of Parafrase-2's intermediate representation, called the Hier-
archical Task Graph. Up until the late 80~s, the majority of commercial and
experimental compilers used a combination of program structures--such as
the abstract syntax tree (AST) and the control flow graph (CFG)--as the
intermediate representation of source code, on which code optimization
and generation could be performed.

The proliferation of parallel programming introduced new challenges
for compiler writers regarding optimizations specific to paralMization, and
parallel code generation. For a number of years these challenges were dealt
with the introduction of new or derived program representations, such as
the data dependence graph. Our work aims at the design of a single inter-
mediate program representation which encapsulates all information
necessary to carry out traditional optimizations, parallelization, and code
generation. Thus far, our results suggest that the HTG can serve in this
capacity as a powerful intermediate representation for languages such as
Fortran and its many dialects and C. In Ref. 1, preliminary results suggest
that the HTG can be suitable for functional languages as well.

In this paper, we give the formal definition of the HTG, discuss its
properties, present the details of its derivation, and demonstrate i ts use
as an intermediate representation which explicitly specifies program
parallelism at all granularity levels. In the context of Parafrase-2, the HTG
has already been used as the basis for restructuring (parallel source code
generation)] 2) for machine code generation, t3) and for studying how
parallelism at different granularity levels can be exploitedJ 4) We claim that
the properties of the HTG make it a suitable target for conventional
languages as well as for languages with explicit parallel syntax.

The organization of the paper is as follows: In Section 1.1 we review
related work and juxtapose the HTG to other similar IRs. Section 2 gives
the formal definition and derivation of the HTG, and discusses control flow
normalization to facilitate the construction of the hierarchy of operations.
Section 3 discusses the next step, namely the augmentation of the HTG
with control and data dependence information. In particular, Section 3.5
presents the closure graph which is used to introduce the notion of
precedence constraints among program operations. Section 4 discusses
briefly implementation of the HTG in Parafrase-2, and Section 5 gives
some concluding remarks.

Hierarchical Task Graph (HTG) 521

1.1, Problem Def in i t ion and Previous W o r k

The control flow graph ~5) of a program is used as the starting point in
the process of detecting parallelism in sequential programs. There are four
main problems encountered in extracting functional parallelism:

1. Factoring out the loops in the control flow graph so that the body
of each loop is a directed acyclic graph of tasks;

2. Extracting parallelism from such an acyclic graph of tasks,
through the notions of control and data dependence and
synchronization of the dependences between tasks;

3. Eliminating redundant synchronizations;

4. Parallel code generation.

Many traditional optimizations can be done more efficiently by
partitioning the flow graph into intervals. This partitioning defines a
hierarchical structure on the flow graph. ~5) Our interest in a hierarchical
structure is to identify each node in the hierarchy as a task that consists of
subtasks. An interval in a flow graph consists of a natural loop plus an
acyclic structure that hangs from the nodes of that loopJ 51 This makes it
unsuitable to be identified as a task. Instead, we follow the approach in
Ref. 6, where the hierarchy was based on strongly connected regions, and
derive the HTG. A graphical hierarchical representation for SISAL 17)
programs was proposed in Ref. 8. However, this was not deyeloped to
detect parallelism in programs (indeed the parallelism was specified in the
intermediate structure itself); instead it was used to study the partitioning
and scheduling of parallel programs. As such, the problems that we will
discuss related to control and data dependences are not studied in Ref. 8.

Dependences arising from the flow of control in the program were
handled earlier by converting them into data dependences through /f
con versionC9) or through the use of mode functions)~o~ The general notion of
control dependence was first formalized in Ref. 11. This allowed the separate
treatment of control and data dependences. Since then control dependences
have been studied explicitly for various purposes. In Ref. 12, an algorithm
for loop distribution in the presence of arbitrary control flow was
presented. The program dependence graph proposed in Ref. 11 was used for
vectorization in Ref. 13. In Refs. 14 and 15, control dependences were used
to specify functional parallelism, referred to as DAG parallelism. Control
dependence was also used to formulate parallel processes on the basis of
intervals (as opposed to our approach of using strongly connected regions)
in Ref. 16. Our work differs from Cytron et alJ ~4) primarily in the treatment
of data dependences. We allow explicit synchronization based on execution
conditions.~17)

522 Girkar and Polychronopou|os

Central to the process of eliminating redundant synchronizations is the
notion of precedence between nodes; precedences define which nodes
execute before other nodes. Precedence was used in Refs. 18 and 19, in the
context of static race detection; in Section 3 we point out the important
differences between our problem and the work done by CaUahan and
Subhlok. "s) An analogous relation of nodes that may not execute
simultaneously was studied for static deadlock detection in Ada programs
by Masticola and Ryder. t2~ We show that in our case, precedence can be
completely formalized in graph theoretic terms. This is significantly
different from previous approaches, which have defined precedence in terms
of execution of the program. Optimizing synchronization across loop itera-
tions has been studied/2~-26) However, all of these assume an absence of
control dependences or the prior conversion of control dependences into
data dependences.

2. THE HIERARCHICAL TASK GRAPH

In this section we take the first step toward the creation of the
hierarchical task graph (HTG) from the control flow graph. The impor-
tance of a hierarchical structure for traditional compiler optimizations has
long been recognized, tS) Its importance in'the detection and management
of parallelism has been recognized more recently/s~ We will build a
hierarchical structure based on strongly connected regions t6) and even-
tually identify each node in the hierarchical structure as a task in the HTG.
The HTG is a layered graph, in which each layer is a control flow graph,
not unlike the original control flow graph except that it will be acyclic;
each such graph also has associated control and data dependence graphs.

The derivation of the control and data dependence graphs is discussed
later; however, we will continue to refer to the constructed graph here as
the HTG.

2.1. Obtaining a Hierarchy

The classical approach to obtaining a hierarchy from the control flow
graph as defined in Ref. 5 follows interval analysist27); this was used by
Cytron etal. ~16) However this technique has two drawbacks for our
purposes:

1. Intervals are not strongly connected, which means that if a loop
were to belong to an interval, the interval could potentially also
contain other nodes not in the loop.

2. Irreducible flow graphs require special techniques like node split-
ting ~28) in order to construct the complete interval-based hierarchy.

Hierarchical Task Graph (HTG) 523

To alleviate these limitations, an alternative approach of identifying
the intermediate nodes in the hierarchy as strongly connected regions was
first suggested by Tarjan, t29) and later developed by Schwartz and Sharir. t6)
We follow this approach in building the task graph. We first give an
intuitive understanding of the hierarchical task graph and then a more
rigorous formulation. For irreducible graphs, where a loop can have many
entry nodes, we arbitrarily decide on one such node as the entry node. This
entry node is defined by the depth first search done on the graph. This also
means that for irreducible graphs, a different depth first search ordering
can give rise to a different HTG. Once the hierarchy is built, we ensure that
graphs (at all levels) have a single entry and exit point by adding addi-
tional nodes and arcs as necessary.

The loop hierarchy is different from that in Ref. 16, where the
hierarchical structure of a program is generated from intervalsJ 51 Figure 1
illustrates a simple example where the loop and interval hierarchies are
different.

Figure 2b illustrates the hierarchical task graph of the program
fragment in Fig. 2a. At the top level of the hierarchy the graph consists of
four nodes, of which A and B are loop nodes and D is a compound node
corresponding to the control flow graphs of higher level structures such as
loops and subroutines. At the next hierarchy level node B consists of three
nodes, one of which (C) corresponds to a loop structure. Thus the flow
graph of Fig. 2b can be identified as a three-level hierarchical task graph;
at the third and lowest hierarchy it consists of 16 tasks corresponding to
basic blocks. Each node is a single-entry/single-exit task at its own
hierarchy level.

We give a more formal description of the process of constructing the
HTG in the next two sections, following the treatment developed by
Schwartz and SharirJ 6)

2.2 . L o o p s

A controlflow graph is a directed graph G --- (V, E) with unique nodes
ENTR Y, EXIT ~ V such that there exists a path from ENTRY to every
node in V and a path from every node to EXIT; ENTRY has no incoming
arcs, and EXIT has no outgoing arcs. We will allow paths to contain zero
arcs, specifically mentioning non-null paths when they must have at least
one arc. An example control flow graph (from Ref. 5) along with the
ENTRY and EXIT nodes is shown in Fig. 3.

Loops in a CFG can be detected by a depth first search (DFS)
traversal as follows. We first do a DFS on the control flow graph with

524 Girkar and Polychronopoulos

E N T R Y as the initial node. There are four possibilities for an arc (x, y)
encountered while doing a depth first search at node x. (2s)

1. Node y is unvisited, (x, y) is a tree arc.

2. There is a path from y to x consisting of tree arcs. We will call
such a path a tree path and say that y is an ancestor o f x in the
depth first search tree. If the path is non-null, then we also say that
x is a descendant of y. In this case (x, y) is a back arc.

0
- - ~ - ~ Interval i

r

Interval 2

Interval 3

0

?

Loop 1

Loop 2

(a): Intervals (b): Loops

Fig. 1. Building hierarchies with intervals and loops.

Hierarchical Task Graph (HTG) 525

3. N od e y is a descendant of x in the depth first search tree; (x, y)
is a forward arc.

4. N o d e y has been visited but is neither an ancestor nor a descen-
dant of x; (x, y) is a cross arc.

A depth first search tree for our example graph of Fig. 3 is shown in Fig. 4.
The set of back arcs is {(9, 1), (8, 3), (7 ,4) , (4. 3), (10, 7)} , (1, 3) is a
forward arc, (6, 7) is a cross arc, and the rest are tree arcs. For an arc
(x, y), x is the source and y is the sink of the arc. Let H(G) be the set of
all nodes that are sinks for back arcs.

H(G) = {x: xe V, 3y such that (y, x) is a back arc}.

For our example graph of Fig. 3, H = { 1, 3, 4, 7}.
Node x dominates node y, denoted by XAdy, iff every path from

ENTRY to y contains x. ~5~ A node always dominates itself. Let B be the set

Basic block with uncend

~ Basic block with conditJ

I @ Doloop

begin
BB 1
if--C1 then

DO i=l, n
BB 2

endo
else

do i=l, m
BB 3
do--j=1, k

if C2 then BB 4

else BB 5 end~f
BB 6

endo --
endo

endif
call Subroutine X
end

subroutine X
if C3 then BB 7
else BB 8 end[f
BB 9

(a): Program fragment (b): The hierarchical task graph of (a)

Fig. 2. Hierarchical task graph.

526 Girkar and Polychronopoulos

of arcs whose sinks dominate their sources. A graph G = (V, E) is reducible
if the graph G = (V, E - B) is acyclic. Lemma 2. 1 states that for reducible
graphs, B is equal to the set of back arcs. tS~

i . e m m a 2.1. For reducible graphs, e is a back arc iffe~B.

Let T(x) denote the descendants of x in the depth first search tree.

T(x) = {y: y e V, 3 a non-null path made up of tree arcs only from x to y}.

L e m m a 2.2. Ify~T(x) then T(y)cT(x).

Proof: Follows from the definition. []

Fig. 3. A control flow graph.

Hierarchical Task Graph (HTG) 527

The loop associated with back arc (x, y), L(x, y), is defined as y plus
the set of nodes n such that there is a path P in G from n to x, and if :
is any node on P, then ze T(y). Node y is called the header of the loop.
In the traditional definition of a loop ~5) (for reducible graphs), TL(x, y), a
node n belongs to TL(x, y) if it is either y or there is a path P from n to
x which does not contain y. For irreducible graphs, the traditional defini-
tion will not work, because it is possible for a node (for example, a) outside
the loop to have a path into the body of a loop which excludes the header;
in such a case, according to the traditional definition, a would belong
(incorrectly) to the loop. For reducible graphs, as Lemma 2.3 shows, the
two definitions are identical.

i<

/

Tree arc

Back arc

Forward arc

Cross arc

Fig. 4. Depth first search tree for Fig. 3.

528 Girkar and Polychronopoulos

L e m m a 2.3. If G is reducible, then for any back arc (x, y),
L(x, y) = TL(x, y).

Proof." Let n~L(x, y). If n= y, then n~TL(x, y) by definition.
Otherwise, there is a path P from n to x such that all nodes on P belong
to T(y). By definition, y ~ T(y) and hence y cannot lie on P. This implies
n ~ TL(x, y) and shows that L(x, y) c_ TL(x, y).

Let n e TL(x, y). If n = y, then n eL(x, y) by definition. Otherwise
there is a path P from n to x which does not contain y. Let z be any node
on the path P. If G is reducible, then yZldX. Since there is a path from : to
x that excludes y and yAdX , yZJdT.. This implies that in the depth first search
tree, z must be a descendant o f y and hence ze T(y). Thus, n~L(x, y), or
TL(x, y) ~_ L(x, y). []

The loops for our example graph in Fig. 3 are given in Table I.

Lemma 2.4. Let L(a, b) and L(c, d) be two loops. If b ~ L(c, d) and
b Pal, then L(a, b) c L(c, d).

Proof: Since b~L(c ,d) and b r there is a path P~=(b=bo , bl,
be bn=c) such that bi t T(d) for O<~i<~n. In particular, be T(d) and by
Lemma 2.2, T(b) ~ T(cl).

Let x ~ L(a, b). If x = b, then by hypothesis, b ~ L(x, d). Otherwise,
there is a path P2=(X=ao , al,a2,.. . ,a,,=a) such that aiET(b) for
O<~i~m. Since T(b)cT(d) , aisT(d) for O<~i~m. Consider the path
P 3 = (x = a o , al,a2 am=a,b=bo, bl,b2 bn=c) from x t o c formed
by composing Pc, the arc (a, b) and P~. Every node on P~ belongs to T(d)
and hence xEL(x, d). Thus, L(a, b)c_L(x, d). Note that there cannot be a
tree path from b to d (as one exists from d to b) and hence dr L(a, b). This
proves L(a, b) cL(c , d). []

Lemma 2.5. Let b # d and Z = (L (a , b) n L (c , d)) be nonempty.
Then Z is either L(a, b) or L(c, d).

Table I. Loops for Figure 3

Back arc Loop

L(9, 1) { 1, 2, 3,4. 5, 6, 7, 8.9, 10}
L(8, 3) {3.4, 5, 6, 7, 8, 10}
L(7, 4) {4, 5, 6, 7, 8, 10}
L(10, 7) {7.8,10}
L(4, 3) {3,4,5,6,7,8,10}

Hierarchical Task Graph (HTG) 529

Proof: Let x eZ. If x=b, then we can apply Lemma2.4 (b # d ,
b ~ L(c, d)), and obtain L(a, b) c L(c, d), and hence Z is L(a, b). Similarly,
if x = d, Z is L(c, d). Hence, let x :~ b and x ~ d. Since x ~ b and x ~ L(a, b),
there exists a path, PI, from x to a such that every node on Pt belongs to
T(b). In particular, x~ T(b) and let the tree path from b to x be
P2 = (b = bo, bl, b2 b, = x) . Clearly, bi ~ L(a, b), 1 ~< i ~< n (consider the
path consisting of the portion of P2 from bi to x augmented with P~).
Similarly, there is a tree path P3=(d=do,d~,d2 d , ,=x) such that
dj~ L(c, d), 1 <~ i<<.m. P2 and P3 give us two tree paths from two distinct
nodes d and b to x. Since each node (except ENTRY) has exactly one
incoming tree arc, this is possible only when b lies on the path P3 or when
d lies on the path P2. Without loss of generality, let d lie on path P2- Then
de L(a, b), and by Lemma 2.4 L(c, d) c L(a, b), implying Z = L(c, d). []

Let Sx be the set of sources of back arcs with sink x.

Sx= {y: y~ V, 3 back arc (y, x)}.

Next we define the set of strongly connected regions, I(x), for all nodes x
in H(G).

I(x)= U L(y,x)
y e S x

For the example of Fig. 3, we get Table II.

2.3. H T G

Let 2"(G)={I(x):xEH(G)} w{V}. ~e'(G)is the set of strongly
connected regions of G with an additional element, V.

T h eorem 2.1. For any two elements A and B in &~

A n B = { !

Table II. Strongly Connected Regions
for Figure 3.

Node x Region l(x)

I (1) {1,2,3,4,5,6,7,8,9,10}
1 (3) {3,4,5,6,7,8,10}
I(4) {4, 5.6, 7, 8, 10}
I(7) {7, 8, 10}

530 Girkar and Polychronopoulos

Proof: The theorem is obviously true if either A or B is V; hence the
only nontrivial case is when A = I(x) and B = I(y) for some x, y e H(G). If
x = y, then I (x)= I(y), so let x ~ y. By definition,

I(x) = U L(x,, x)
xi ~ Sx

and similarly

I(y) = U L(y,, y)
yie Sy

Assume I (x) h i (y) is nonempty and let z e (I(x)c~I(y)). Then there exist
xa e S~ and Yb e Sy such that z e L(xa, x) and z e L(yb, y). By Lemma 2.5,
L(xo, x)r~L(yb, y) is either L(xa, x) or L(yb, y). Without loss of
generality, let L(xa, x) n L(yb, y) be L(xa, x). This implies that
xeL(yb , y). Hence, by Lemma 2.4, L(xi, x) c L (y h , y) for all x i eSx and
thus I(x) c L(yb, y)~_I(y). []

For any element Aes176 we define P(A) to be the set
{B: B e S t ' , A c B } . For the example of Fig. 3, we get Table III. If C,
DeP(A) , then since C n D is nonempty (both supersets of A), by
Theorem 2.1 either C ~ D or D __q C. This defines a total ordering on P(A).
Hence, if P(A) is nonempty, there exists a unique minimum element
Pmin(A) in P(A) such that for any element BeP(A) ,B#Pmln(A) ,
Pmin(A) c B . We define the function f : _L,e' ~ (~ ' w {NULL}) by

(N U L L if P(A) = ~
f(A) =/Pmin(A) otherwise

Since A ~ V for all AE.~' , P(A) is the empty set (f (A) = N U L L) only
when A = V. We define s to be 2 " u V. For the example graph of Fig. 3,
~'={I(1) , I (3) , I (4) , I (7) , V}, and LP={I(1),I(3),I(4),I(7),V, ENTRY,

Table III. Ancestors of
Members of r.~a, for Figure 3

A P(A)

I(1)
/(3)
/(4)
/(7)

v

{ v}
{111), v}
{Ii3). 1/J), v}
{/(1),I(3),I(4), v}
{}

Hierarchical Task Graph (HTG) 531

EXIT, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We extend the domain o f f to s I f x ~ V,
let P(x) be the set {B: B e ~ ' , x~ B}. Again, the intersection of any two
elements in P(x) is nonempty as x belongs to all of them and P(x) is
nonempty as V~ P(x) for all x ~ V. As before, we can prove the existence
of Pmin(X), and we define f (x)=Pr , in(X). Finally, for notational
convenience later, we define f~ to be the identity function and f"(x) to
be the composition o f f n times, for any x ~ s

The function f defines a rooted tree with root V on elements of &o.
This is illustrated in the tree of Fig. 5. There is an arc from A to B only if
f (A) = B. P(A) is the set of proper ancestors of A in the tree.

We are now in a position to define the nodes and the control flow arcs
in the HTG. The hierarchical task graph (at any level) is a directed acyclic
graph H T G = (H V , HE). Each node, X, in HV can be of one of the
following types:

1. start node. The start node has no incoming arcs, and there is a
path from it to every node in HV.

NULL

Fig. 5. Hierarchical loop structure for Fig. 3.

828/22/5-4

532 Girkar and Polychronopoulos

2. stop node. The stop node has no outgoing arcs, and there is a path
from every node in H V to it.

3. simple node representing a task that has no subtasks.

4. compound node representing a task that consists of other taks in
an HTG. Each such compound node has an underlying subgraph
H T G (X) = (H V (X) , H E (X)) . We use START(X) , S T O P (X) E
HV(X) to denote the start and stop nodes in HTG(X).

5. loop node representing a task that is a loop whose iteration body
is an HTG similar to the body for the compound node.

We first construct all the H T G nodes; all elements of ~ correspond to
an H T G node. We will denote this correspondence by the function g
from .~ to the set of H T G nodes; i.e., if x ~ .L~ a, then g(x) is the corre-
sponding H T G node. In addition to this, there are start and stop nodes
corresponding to x if x ~ ~ ' . Thus the set of H T G nodes at all levels is
given by

Zt+ra =- { g (x) l x ~ ZP} u { S T A R T (g (x)) I x ~ C~ '} u { S T O P (g (x)) l x ~ ~ ' } .

Next we define the type of all nodes, X, in VHTG.

1. X = START(g(x)) . X is of type start.

2. X = STOP(g(x)) . X is of type stop.

3. X = g (x) , x ~ .

(a) x ~ V. X is of type simple.

(b) x = V. X is of type compound.

(c) x = I(y) for some y ~ H (G) . X is of type loop.

The only H T G nodes which are not ta/'gets of g are the various start and
VHT C U {NULL} stop nodes. We define the function F from VHTC to

corresponding to the function f

1.

2.

3.

X = START(g(x}). F(X) = g(x).

X = STOP(g(x)) . F(X) = g(x).

32 = g(x), x ~ ,~.

(a) x ~ V. F(X) = g(f (x)) .

(b) x = V. F (X) = NULL.

(c) x = I (y) for some y ~ H (G) . F (X) = g (f (x)) .

Note that if we make the trivial assumption that g (N U L L) = NULL, then

F(g(x)) = g (f (x)) (2.1)

Hierarchical Task Graph (HTG) 533

Next we define the H V set for every constructed compound and loop HTG
node, X, HV(X)~_ V ' H T G .

HV(X) = { Y: F(Y) = X}

We now construct the arcs in the HTG. Each arc (a, b) in the flow
graph G will result in new arcs being added to the HTG. For every arc
(a, b) in the G, we do the following (see Fig. 6):

I. Find z, the least common ancestor o f f (a) and f(b) in the f tree
(i f f (a) = f (b) , then z =f (a)) . Let z = i f (a) = f " (b) , n, m i> I.

2. Add arcs (g(fi(a)), STOP(g(fi+~(a)))) to HE(g(fi+l(a))) for
O <~ i <~ n - 2.

3. Add arcs (START(g(f~(b)),g(f~-~(b)))) to HE(g(f~(a))) for
l <~i<~n-1.

4. If (a,b) is not a back arc, add the arc (g(f"- l(a)) , g (f " - l (b)))
to HE(g(:)).

5. If (a,b) is a back arc, the arcs (g(f"- l(a)) , STOP(g(:))) and
(START(g(:)), g(f"-~(b))) are added to HE(g(:)).

//•k z = P(a) =/"(b)

f f

J~s i \ f \

~ ~ o w g r a p h arc (a,b f

f

Fig. 6. Considering flowgraph arcs.

534 Girkar and Polychronopoulos

Two additional arcs, (START(g(V)), g(ENTER)) and (g(EXIT),
STOP(g(V))), corresponding to the E N T R Y and EXIT nodes of the flow
graph, are also added to HE(g(V)). We note from the construction and
Eq. (2.1) that if an arc is added between H TG nodes X and Y, then
F(X) = F(Y) and further that by the process of factoring out the back arcs
in the original flow graph, the graph HTG(X) = (HV(X),HE(X)) is acyclic
for any compound or loop node X.

The H T G graph of node g(I(1)) in our example is shown in
Fig. 7. The nodes in the flow graph for g(I(1)) are START(g(I(I))),
STOP(g(I(1))), g(1), g(2), g(9), g(I(3)), as f (1) = f (Z) = f (9) = f (I (3)) =
I(1). We have shown how to construct the control flow graphs of the H TG
at each level in this section. In the next section we will define the control
and data dependence graphs on the H TG at each level, making the
construction of the HTG complete.

3. A U G M E N T I N G THE HTG WITH CONTROL A N D
DATA DEPENDENCES

In Section 2 we showed how the HTG can be built from the control
flow graph of the program. In this section we concentrate on the acyclic

? g)

Fig. 7. Flowgraph for g(l(1)).

Hierarchical Task Graph (HTG) 535

control flow graph corresponding to an HTG loop or compound node. We
augment it with control and data dependence graphs and show parallelism
can be extracted from such a graph and study the problems encountered in
the process.

3.1. Pre l iminar ies

Our starting point will be the control flow graph of any compound or
loop HTG node. We will denote this graph by CFG = (V, E) with unique
nodes START , S T O P ~ V such that there exists a path from S T A R T to
every node in V and a path from every node to STOP; S T A R T has no
incoming arcs, and S T O P has no outgoing arcs. Figure 8 shows an
example acyclic control flow graph with 11 nodes and 13 arcs.

Fig. 8. Example control flow
graph.

536 Girkar and Polychronopoulos

Node y post-dominates node x, denoted by yApx, iff every path from
x to STOP (not including x) contains y/iX) A node never post-dominates
itself. We use y41px to denote y does not post-dominate x. The reflexive
closure of the post-dominance relation will be denoted by Jp , yApx iff
yApx or y=x. The following is well known, tl~)

Lemma 3.1. Let y and z be distinct nodes. For any x, ifyApx and
zApx, then either yApz or zApy.

Lemma 3.1 suffices to show that the set of post-dominators of a node
x form a chain. The least element in the chain is called the immediate post-
dominator ofx . The set of post-dominators of a node x is nonempty (except
when x is the STOP node) as STOP ApX. Hence, all nodes except STOP
have a unique immediate post-dominator. If we draw an arc from x to y
whenever x is an immediate post-dominator of y, the resulting graph is a
tree rooted at STOP and called the post-dominator tree. Figure 9 shows the
post-dominator tree for our example control flow graph of Fig. 8.

Fig. 9. Post-dominator tree for Fig. 8.

Hierarchical Task Graph (HTG) 537

3.2. The Control Dependence Graph (CDG)

Node y is control dependent on node x with label x - a ((x, a) is an arc
in CFG) , denoted by x6c y, iff

1. y41px, and

2. 3 a non-null path P = (x , a y) , such that for any z ~ P
(excluding x and y), yApZ.

Our definition of control dependence differs only slightly from Ref. l l,
where nodes were restricted to have at most two outgoing arcs; we relax
this restriction. An immediate consequence of the definition is that if x6c y
with label x - a, then yZpa. We will say that an arc (x, a) is a branch if x
has more than one outgoing arc. Note that the labels in the control
dependence relation can only be branches.

The control dependence graph CDG, of a control flow graph CFG, is
defined as the directed graph with labeled arcs, C D G = (CV, CE) such that

1. CV= V and

2. (x, y) ~ CE with label x - a iff x6c y with label x - a.

C D G can be built from C F G using the post-dominance tree I~) as follows.
If (x, y) is any branch in CFG, then the following can be shown.

1. Let z be the immediate ancestor of x in the post-dominator tree.
Then the least common ancestor of x and y in the post-dominator
tree, LCA(x, y), is either x or z.

2, All nodes on the path from y to z (not including z) in the post-
dominator tree are control dependent on x with label x - y.

Figure l0 shows the control dependence graph for our example
control flow graph.

The transitive closure of 6c will be denoted by 6*, x6*y iff there exists
a non-null path from x to y in CDG. This corresponds to the notion of the
range of a branch given in Ref. 30. The reflexive closure of 6" will be

6c, xJ*y iff x~*y or x = y. denoted by -*
We state the following important theorem; a proof can be found in

Ref. 2. A related result for forward control dependence graphs is proved in
Ref. 14.

Theorem 3.1. C D G is cyclic iff C F G is cyclic.

We will be dealing exclusively with acyclic control flow graphs from
now on. In an acyclic C F G it is possible to assign a unique number to each
node in such a way that if there is a path from a node numbered x to a

538 Girkar and Polychronopoulos

node numbered y, then x < y. F r o m now on, we will assume tha t such a
number ing has been done in our C F G , and we will refer to a node
numbered x as s imply node x.

3.3. The Data Dependence Graph (DDG)

N o d e y conflicts with node x if ei ther x or y share access to a c o m m o n
m e m o r y locat ion, a t least one of which is a "write" opera t ion . Conflicts
induce a da t a dependence t9'31-34) relat ion a m o n g nodes. Exact ly one of the
fol lowing can occur between two dist inct nodes x and y.

1. y is reachable f rom x in C F G .

2. x is reachable from y in C F G .

3. x is not reachable from y, and y is not reachable f rom x in C F G .

If x and y conflict with each other, then we say that y is data dependent on
x in Case 1 (denoted by x3ay), and x is da t a dependent on y in Case 2
(yCSdX). In Case 3 the conflict does not ma t t e r and can be ignored; we will
assume that Case 3 does not occur.

The data dependence graph D D G = (D V , DE) is defined as the
d i rec ted g raph such that

1. D V = V and

2. (x, y) 6DE if x6ay.

Fig. 10. Control dependence graph for Fig. 8.

Hierarchical Task Graph (HTG) 539

Figure 11 shows a possible data dependence graph for our example
control flow graph.

Note that since X~dy implies a path from x to y in CFG, the graph
containing the arcs of both CFG and D D G is also acyclic owing to the
acyclicity of CFG. Similarly, the graph containing the arcs of both CDG
and D D G is also acyclic. In the terminology of Ref. 34, we are restricting
ourselves to dependences whose direction vectors consist of only " = "
components.

3.4. Parallel Execution

In the absence of data dependences, the parallel execution of CFG is
based on CDG 114} where identically control dependent nodes are executed
in parallel:

1. Initially, only nodes that do not have any incoming arcs in the
CDG begin execution in parallel.

2. After executing a node, for example, x, if label x - a is true (i.e.,
the branch x - a would have been taken in the sequential execu-
tion of CFG), then all nodes y such that xcScy with label x - a
start execution in parallel.

The execution terminates when all nodes finish execution. By Theorem 2.2,
CDG is acyclic and hence it is obvious that the parallel execution will
terminate.

Let ~9 ~ and ~ denote the sequential and parallel execution of CFG
respectively. Sa specifies a single path, P, in CFG from START to STOP.
The parallel execution of CFG specifies a set of trees in the control
dependence graph; in the forward control dependence graph, which is
connected, it specifies a single tree. tt41

(D

/\ /
/ \ "'--.. \ i f \ "---. \ ;

Fig. 11. Possible data dependence graph for Fig. 8.

828/22/5-5

540 Girkar and Polychronopoulos

A node is executed in 6~ if it lies on P. A label x - y will be true in
~' if the arc x - y lies on P. According to this model, a node x is executed
in ~ when there is a path in the CDG, (ao, a~ an = x) such that ao is
a node with no incoming arcs and aj~caj+ ~ (0 <~j<n) with some true label
aj-bj.

The following theorem states the correctness of the parallel execution.
A proof is given in Ref. 2.

Theorem 3.2. Let CFG be acyclic. The parallel execution of CFG
executes the same nodes as the sequential execution.

3.5. Precedence and the Closure Graph (C D D G)

Based on this execution model, we try to define the idea of one node
executing before another. Intuitively, node y can execute before node x if
there is a parallel execution such that y can begin execution before x. We
aim to formalize this definition purely in graph theoretic terms. Again, in
the absence of data dependences, the following definition works. Node y
can execute before node x if there is a path in the CFG from S T A R T to
STOP which contains x and y (this must be true for y and x to be executed
in the same execution) and there is no path in the CDG from x to y. In
our example graph, clearly there is a path in CFG from S T A R T to S T O P
containing 3 and 4. Node 3 can execute before 4 because there is .no path
from 4 to 3 in the CDG; however 4 cannot execute before 3 as 3fic4. A
more interesting case is of the nodes 2 and 3, where we find that 2 can
execute before 3 and 3 can execute before 2 as 2 and 3 are disconnected in
the CDG. Note that we cannot say 6 can execute before 7 because even
though there is no path from 7 to 6 in the CDG, there is no path in the
CFG from S T A R T to S T O P containing both 6 and 7.

With the addition of data dependences, our execution model under-
goes some changes. Now, before a node y can start execution, it should
also be checked to determine if the necessary data dependence conditions
are also satisfied. Thus, if there is a data dependence arc x~a y, before y can
start execution, we have to make sure that x has finished execution or that
x will not be executed at all. Our initial impulse would be to try to
formalize this definition in terms of paths in the CDG + DDG. However,
this is rather hard as the following two incorrect definitions illustrate.

Node y can execute before node x if there is a path in the CFG from
S T A R T to STOP which contains x and y and there is no path in the
CDG § DDG from x to y. This is a reasonable first attempt, but we show
that this definition is too restrictive. It is possible for node y to execute
before node x even though there is a path from x to y in the CDG § D D G

Hierarchical Task Graph (HTG) 541

Fig. 12. Another example
flow graph.

as the following example shows. Consider the control flow graph shown in
Fig. 12 with its C D G + D D G graph as shown in Fig. 13. Clearly, there is
a path from 1 to 4 in the C D G + D D G as l~j3 and 3ga4. However, 4 can
conceivably execute before 1 in the following execution sequence.

1. Node 2 starts and finishes execution.

2. The branch 2-4 is taken.

3. Node 4 can now begin execution as it is now clear that 3 will not
execute and hence the dependence 3-k4 can be ignored.

4. Node 1 begins execution.

The problem with this definition was that the original path in
C D G + D D G was through node 3, and node 3 is not executed in the

Fig. 13. CDG + DDG for Fig. 12.

542 Girkar and Polychronopoulos

counter-example. We can solve this problem by requiring that the path in
C D G + D D G be restricted on only those nodes that are executed in the
CFG. We first formally define a restriction on a graph.

If P is a path in a graph, let N(P) be the set of nodes in P. If G(V, E)
is a graph and A ___ V, let GA be the subgraph GA(V', E ') of G restricted on
A where

1. V ' = A and

2. (x, y)~E ' if x, y ~ A and (x, y)~E.

Now we can try to fix our previous definition and use the following
instead. Node y can execute before node x if there exists a path P in C F G
from S T A R T to STOP containing x and y such that there is no path from
x to y in (CDG + DDG)N(ej. This gets rid of the preceding problem in
the counter example, because once the branch 2--4 is taken, we will be
restricted in the C D G + D D G on the nodes {START, 1, 2, 4, STOP} and
there is no path from 1 to 4 in the C D G + D D G when restricted on
this set.

This definition is still in error; it is possible according to the definition
for us to say that node y can execute before x even when such a thing will
not occur. Consider the example control flow graph shown in Fig. 14 with
its control and data dependence graph shown in Fig. 15. If we consider the
path P = (START, 1, 3, STOP), we see that there is no path from 1 to

r

)

Fig. 14. Example control flow
graph.

Hierarchical Task Graph (HTG) 543

3 in the (CDG + DDG)Nle> as 2 ~N(P); hence according to the definition
node, 3 should be able to execute before node 1. However, we see that this
can never happen, because for node 3 to start execution it has to know
whether 2 has finished execution or 2 will not execute at all. In either case,
node 1 will have finished execution, and hence node 3 will always start
after node 1 has finished. To correct this problem we need to define a new
graph from the CDG + DDG, which we call the closure graph.

The closure of the data and control d e p e n d e n c e g r a p h
C D D G --- (CDV, CDE) is defined as the directed graph with arcs such that

1. CD V = V and

2. (x, y)~ CDE if x f * y or 3z such that x~*z and Zfiay.

Note that an arc from x to y in C D D G implies a path from x to y in
CDG + DDG, and thus CDDG is also acyclic. Figure 16 shows the closure
graph for our data and control dependence graphs in Figs. 10 and 11. The
thick arcs in Fig. 16 represent additional arcs which were not present in the
CDG + DDG.

We can now give the precise definition of when a node can execute
before another. We say that node y can execute before node x if there exists
a path P in CFG from S T A R T to S T O P containing x and y such that
there is no path from x to y in CDDGNle>.

We say that node x precedes node y (written x-< y) if for any path P
in CFG from S T A R T to STOP containing x and y there is a path from x
to y in CDDGN<e>. Note that for any such path P, the path in CDDGN~p>
will consist only of nodes on P between x and y. If we use x -K y to denote
x does not precede y, then y can execute before x is equivalent to x -~ y.

We point out some special cases.

1. Since the trivial null path from x to x exists in the CDDG, x ~ x.

2. If there is no path in CFG from S T A R T to S T O P containing x
and y, then trivially, x < y and y < x.

3. x -K y does not necessarily imply y < x.

Fig. 15. The CDG + DDG for Fig. 14.

544 Girkar and Polychronopoulos

The notion of precedence was also defined in Ref. 18 in a different
context. In Ref. 18, the definition is in terms of parallel executions and time
as opposed to the graph theoretic one given earlier. We summarize some
of the important aspects by which this work differs from Ref. 18.

1. The problem of proving a given parallel program correct with
respect to a sequential interpretation is considered in Ref. 18. As
such, the parallelism is given by the constructs used in the
program rather than detected from a sequential program.

2. Although conditional statements are used in some of the proofs in
Ref. 18, explicit control dependences are not used.

3. In Ref. 18, the synchronization arcs arise due to post and wait
statements in the program. Hence, a node can begin execution
when any of its predecessors finish execution. In our description of
the problem, the analog to synchronization arcs in Ref. 18 are the
data dependence arcs. However, a node can begin execution only
when all data dependences incident to it are satisfied. The satisfac-
tion of data dependences is also not equivalent to the completion

@ | @

Control dependence

Data dependence

Arcs not present in CDG + DDG

Fig. 16. The closure graph four Fig. 8.

Hierarchical Task Graph (HTG) 545

of the execution of the source node; data dependences can also be
satisfied when it can be determined that the source node will not
be executed. This changes the nature of the proofs and also may
be the reason that it does not seem possible to define the notion
of precedence on the basis of the graph terms alone in Ref. 18.

3.6. Example to I l lustrate Precedence

Consider the example flow graph and its CDG + D D G shown in
Figs. 12 and 13 respectively. The closure graph is shown in Fig. 17. The
additional arc (2, 4) is present because 2fic3 and 3rid4. Consider the
problem of determining whether 1 ~ 4 (this is the same as determining 4
can execute before 1). There are two paths in the CFG from S T A R T to
STOP containing both 1 and 4; P1 = (S T A R T , 1, 2, 4, STOP) and
P 2 = (S T A R T , 1, 2, 3, 4, STOP). There is no path from 1 to 4 in
CDDGNle~), but there is a path from 1 to 4 in CDDGN(e2), namely,
(I, 3, 4) . Due to the existence of path Pl , 4 can execute before 1, or in
other words, 1 ~ 4.

4. I M P L E M E N T A T I O N

The HTG has been implemented as part of the Parafrase-2
compiler. ~35) Details of this implementation are given in this section. The
HTG was built according to the procedures outlined in previous sections
and some static analysis of programs was done to measure the "amount"
of functional parallelism.

4.1. Parafrase-2

Parafrase-2 is a multilingual restructuring compiler. A block diagram
of Parafrase-2 is shown in Fig. 18. The core of Parafrase-2 works on inter-
mediate data structures used to represent the source program. Optimiza-

Fig. 17. The closure graph for Figs. 12 and 13.

546 Girkar and Pelychronopoulos

tions on the code are done through passes which operate on these data
structures. The HTG is used as the main data structure in the auto-
scheduling part of the compiler. The HTG is built from the loops detected
in the flow graph of the program (generated by the flow and induction
passes t36~) and is only slightly different from the construction described in
Section 2. It' has the following type of nodes.

1. start nodes.
2, stop nodes.

(Fortran) (C

Intermediate
Common

Representation

Parallelizer
Inter & Introprocedural Depend.
Control Dependence Anolysis
Vectorization - Parallelization ~ -

~ Para l le l ; For t ran (Paral le l ~ C

Fig. 18. The Parafrase-2 restructuring compiler.

Hierarchical Task Graph (HTG) 547

3. basic nodes. These correspond to simple statements in the
program.

4. call nodes. These correspond to statements having a subroutine
call.

5. loop nodes. These correspond to the loops in the program.

6. compound nodes. These correspond to the basic blocks in the flow
graph. The top level of the HT G is also a compound node.

4.2. Experiment

An experiment was done to analyze statically the effect of functional
parallelism in a program. It was designed to measure the nature of the
parallelism obtained. In the absence of proper timing measurements, the
following two approximate measures were used.

1. The ratio of the length of the longest path (in terms of the number
of nodes on the path) in the derived CDDG to the length of the
longest path in the original CFG of HTG loop and compound
nodes. We denote this ratio by r.

2. The fraction of instances when two identically control dependent
HTG nodes can be executed in parallel,

The HTG of program MDG, a molecular dynamic simulation
program which is a part of the Perfect BenchmarksXM, ~37~ was built and
analyzed. Results of the experiment are given in Tables IV and V. We
explain the entries in the tables. The entry of 15 (.50 ~< r~<.75, Loop) in
Table IV indicates that 15 loop nodes in the HTG had their iteration body
(measured in number of nodes) shortened to between 50 and 75 percent of
the original. The entry of 29.73 (Loop, Compound) in Table V indicates

Table IV. Ratio of Longest Paths in CDDG
and CFG for Program MDG

N u m b e r of nodes

Ra t io r L o o p C o m p o u n d

0 ~< r ~< .25 0 29

.25 < r ~< .50 1 54

.50 < r ~< .75 15 27

.75 < r ~< 1.0 38 180

548

Table V.

Girkar and Polychronopoulos

Parallelism in Identically Control Dependent
Nodes for Program MDG

Basic Call Loop Compound

Basic 76.18 21.94 - - - -
Call 21.94 17.65 - - - -
Loop - - - - 4.55 29.73
Compound - - - - 29.73 44.92

that whenever a loop and a compound node have been found to be identi-
cally control dependent they can be executed in parallel in 29.73 percent of
those instances. Note that Table V is symmetric.

4.3. D i s c u s s i o n of t h e R e s u l t s

The following observations can be made from the data obtained.

1. From Table IV, it is clear that the iteration bodies of loops or the
bodies of basic blocks can be considerably shortened (r ~<.50 for
52 + 26- -78 compound nodes) by finding functional parallelism.

2. Table V indicates that when two H T G nodes are identically
control dependent, they are independent of data dependences and
hence can be executed in parallel a significant proport ion of the
time. Some of the entries in Table V are blank, because that
particular combination of nodes will not occur because of the way
the H T G is constructed. For example, a basic H T G node which
corresponds to a simple statement is always nested inside a
flowgraph node which corresponds to a compound H T G node.
Thus it is always the compound H T G node which is at the level
of other loop or compound nodes in the H T G and never the basic
H T G node. From Table V it can be seen that the largest amount
of parallelism is available among simple statements. The
parallelism among simple statements will lead to significant
decreases in execution time if this parallelism is nested inside
loops; otherwise it may not have much of an effect, as normally
the execution time of statements without subroutine calls will be
small. Another encouraging item of interest is that about 17.65
percent of the time a pair of subroutine calls can be done in
parallel with each other.

Hierarchical Task Graph (HTG) 549

5. CONCLUSION

As presented in this paper, the HTG can serve as an intermediate
program representation for a variety of high-level languages. In addition to
consolidating the control flow, data dependence, control dependence, and
syntax tree structures into a single representation, the HTG exposes the
notion of precedence relations between program statements of different
granularity. Precedence information is vital for efficient and correct parallel
code generation. The HTG has been implemented in Parafrase-2 as the IR
target for Fortran and C, as well as the source for program optimizations
and parallel code generation.

REFERENCES

1. M, Furnari, Compiling scheme into the HTG, In Proc. of the 1992 Workshop on Parallel
Languages and Compilers (August 1991).

2. M, Girkar, Functional Parallelism: Theoretical Foundations and Implementation, PhD.
Thesis, Center for Supercomputing Research and Development, University of Illinois,
Urbana-Champaign (January 1992).

3. J. Moreira, The Design and Performance of an Auto-scheduling Environment, PhD.
Thesis, Center for Supercomputing Research and Development, University of Illinois,
Urbana-Champaign, In preparation, (September 1993).

4. C. Beckmann, Hardware and Software for Functional and Fine Grain Parallelism, PhD.
Thesis, Center for Supercomputing Research and Development, University of Illinois,
Urbana-Champaign (1993).

5. A. V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques and Tools,
Addison-Wesley, Reading, Massachusetts (March 1986).

6. J. T. Schwartz and M. Sharir, A design for optimizations of the bitvectoring class,
Technical Report, Courant Computer Science Report No. 538, Courant Institute of
Mathematical Sciences, New York University (September 1979).

7. J. McGraw et al. SISAL: Streams and iteration in a single assignment language, language
reference manual, Version 1.2. Technical Report M-146, LLNL (March 1985).

8. V. Sarkar, Partitioning and Scheduling Parallel Programs for Execution on Multi-
processors, PhD. Thesis, Computer Systems Laboratory, Department of Electrical
Engineering and Computer Science, Stanford University (April 1987).

9. J. R. Allen, Dependence analysis for subscripted variables and its application to program
transformations, PhD. Thesis, Department of Mathematical Sciences, Rice University,
Houston, Texas (April 1983).

10. U. Banerjee, Speedup of Ordinary Programs, PhD. Thesis, Department of Computer
Science, University of Illinois, Urbana-Champaign (October 1979).

11. J. Ferrante, K. J. Ottenstein, and J. D. Warren, The program dependence graph and its
use in optimization, ACM Trans. on Programming Languages and Systems, 9(3):319-349
(July 1987).

12. K. Kennedy and K. McKinley, Loop distribution with arbitrary control flow, In Proe.
Supercomputing "90, Los Alamitos, California pp. 407-416, IEEE Computer Society Press.
(November 1990).

550 Girkar and Polychronopoulos

13. H. Baxter and H. Bauer, III, The program dependence graph and vectorization, In
Conference Record of the 16th ACM Symp. on the Principles of Programming Languages,
pp. 1-10 (January 1989).

14. R. Cytron, M. Hind, and W. Hsieh, Automatic generation of DAG parallelism, In Proc.
of the 1989 SIGPLAN Conf. on Programming Language Design and Implementation,
pp. 54--68 (July 1989).

15. W. Hsieh, Extracting parallelism from sequential programs, Master's Thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
(May 1988).

16. R. Cytron, J. Ferrante, and V. Sarkar, Experiences using control dependence in PTRAN,
In D. Gelernter, A. Nicolau, and D.A. Padua, (edits.), Languages and Compilers for
Parallel Computing, M IT Press, pp. 186-212 (1990).

17. H. Kasahara, H. Honda, M. Iwata, and M. Hirota, A compilation scheme for macro-
dataflow computation on hierarchical multiprocessor systems, unpublished manuscript
(1989).

18. D. Callahan and J. Subhlok, Static analysis of low-level synchronization, In Proc. of the
ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging,
pp. 100-111 (May 1988).

19. E. Duesterwald, Static concurrency analysis in the presence of procedures, Technical
Report 91-6, Department of Computer Science, University of Pittsburgh (March 1991).

20. S. Masticola and B. Ryder, A model of Ada programs for static deadlock detection in
polynomial time, In Proc. of the 1991 ACM Workshop on Parallel and Distributed
Debugging, (1991).

21. D. Jayasimha, Communication and Synchronization in Parallel Computation, PhD.
Thesis, Center for Supercomputing Research and Development, University of Illinois,
Urbana-Champaign (1988).

22. V. Krothapalli and P. Sadayappan, Removal of redundant dependences in doacross loop
with constant dependences, In Proc. of the Third SIGPLAN Syrup. on Principles and
Practice of Parallel Programming, pp. 51-60 (April 1991).

23. Z. Li and W. Abu-Sufah, On reducing data synchronization in multiprocessed loops,
IEEE Trans. on Computers, C-36(1):105-109 (January 1987).

24. S. P. Midkiff and D. A. Padua, Compiler algorithms for synchronization, IEEE Trans. on
Computers, C-36(12):1485-1495 (December 1987).

25. S. P. Midkiff and D. A. Padua, A comparison of four synchronization optimization techni-
ques, Technical Report No. 1135, Center for Supercomputing Research and Development,
University of Illinois, Urbana-Champaign (June 1991).

26. P. Shaffer, Minimization of interprocessor synchronization in multiprocessors with shared
and private memory, In Proc. of the 1989 Int. Conf. on Parallel Processing, Volume III,
pp. 138-141, St. Charles, Illinois (August 1989).

27. F. E. Allen and J. Cocke, A program data flow analysis procedure, Commun. of the A CM,
19(3):137-147 (March 1976).

28~ M. Hecht, Flow Analysis of Computer Programs, Elsevier North-Holland, Inc., New York,
(1977).

29. R. E. Tarjan, Testing flow graph reducibility, J. of Computer and Syst. Sci., 9(3):355-365
(December 1974).

30. M. Weiser, Programmers use slices when debugging, Comm. of the ACM, 25(7):446--452
(July 1982).

31. R. Allen and K. Kennedy, Automatic translation of FORTRAN programs to vector form,
A CM Trans. on Programming Languages and Systems, Vol. 9 No. 4 (October 1987).

32. U. Banerjee, Dependence Analysis for Supercomputing, Kluwer Academic Publishers
(1988).

Hierarchical Task Graph (HTG) 551

33. D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M.J. Wolfe, Dependence graphs
and compiler optimizations, In Proc. of the 8th Annual A CM Symp. on Principles of
Programming Languages, pp. 207-218 (January 1981).

34. M. J. Wolfe, Optimizing Supercompilers for Supercomputers, The MIT Press, Cambridge,
Massachusetts (1989).

35. C. D. Polychronopoulos, M. Girkar, M.R. Haghighat, C.L. Lee, B. Leung, and D.
Schouten, Parafrase-2: An environment for parallelizing, partitioning, synchronizing, and
scheduling programs on multiprocessors, In Proc. of the 1989 Int. Conf. on Parallel
Processing, St. Charles, Illinois (August 1989).

36. C. D. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B. Leung, and D. Schouten,
Parafrase-2 programmer's manual, CSRD Internal document.

37. G. Cybenko, L. Kipp, L. Pointer, and D. Kuck, Supercomputer performance evaluation
and the Perfect Benchmarks, In Proc. of the Int. Conf. on Supercomputing, Amsterdam,
Netherlands (March 1990).nce graph and its use in optimization, ACM Trans. on
Programming Languages and Systems, 9(3):319-349 (July 1987).

