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This paper presents an intermediate program representation called the 
Hierarchical Task Graph (HTG), and argues that it is not only suitable as the 
basis for program optimization and code generation, but it fully encapsulates 
program parallelism at all levels of granularity. As such, the HTG can be used 
as the basis for a variety of restructuring and optimization techniques, and 
hence as the target for front-end compilers as well as the input to source and 
code generators. Our implementation and testing of the HTG in the Parafrase-2 
compiler has demonstrated its suitability and versatility as a potentially 
universal intermediate representation. In addition to encapsulating semantic 
information, data and control dependences, the HTG provides more informa- 
tion vital to efficient code generation and optimizations related to parallel code 
generation. In particular, we introduce the notion of precedence between nodes 
of the structure whose grain size can range from atomic operations to entire 
subprograms. 
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The intermediate program representation presented and analyzed in this 
paper was motivated by the requirements of Parafrase-2, a multilingual 
parallelizing compiler designed and developed at the University of Illinois. 
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The multilingual aspect of the compiler gave rise to the question of a 
Universal Intermediate Representation (UIR) powerful enough to serve as 
the IR for languages as diverse as Fortran and C. 

In this paper, we present the result of our research on the design and 
analysis of Parafrase-2's intermediate representation, called the Hier- 
archical Task Graph. Up until the late 80~s, the majority of commercial and 
experimental compilers used a combination of program structures--such as 
the abstract syntax tree (AST) and the control flow graph (CFG)--as  the 
intermediate representation of source code, on which code optimization 
and generation could be performed. 

The proliferation of parallel programming introduced new challenges 
for compiler writers regarding optimizations specific to paralMization, and 
parallel code generation. For a number of years these challenges were dealt 
with the introduction of new or derived program representations, such as 
the data dependence graph. Our work aims at the design of a single inter- 
mediate program representation which encapsulates all information 
necessary to carry out traditional optimizations, parallelization, and code 
generation. Thus far, our results suggest that the HTG can serve in this 
capacity as a powerful intermediate representation for languages such as 
Fortran and its many dialects and C. In Ref. 1, preliminary results suggest 
that the HTG can be suitable for functional languages as well. 

In this paper, we give the formal definition of the HTG, discuss its 
properties, present the details of its derivation, and demonstrate i ts  use 
as an intermediate representation which explicitly specifies program 
parallelism at all granularity levels. In the context of Parafrase-2, the HTG 
has already been used as the basis for restructuring (parallel source code 
generation)] 2) for machine code generation, t3) and for studying how 
parallelism at different granularity levels can be exploitedJ 4) We claim that 
the properties of the HTG make it a suitable target for conventional 
languages as well as for languages with explicit parallel syntax. 

The organization of the paper is as follows: In Section 1.1 we review 
related work and juxtapose the HTG to other similar IRs. Section 2 gives 
the formal definition and derivation of the HTG, and discusses control flow 
normalization to facilitate the construction of the hierarchy of operations. 
Section 3 discusses the next step, namely the augmentation of the HTG 
with control and data dependence information. In particular, Section 3.5 
presents the closure graph which is used to introduce the notion of 
precedence constraints among program operations. Section 4 discusses 
briefly implementation of the HTG in Parafrase-2, and Section 5 gives 
some concluding remarks. 
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1.1, Problem Def in i t ion  and Previous W o r k  

The control flow graph ~5) of a program is used as the starting point in 
the process of detecting parallelism in sequential programs. There are four 
main problems encountered in extracting functional parallelism: 

1. Factoring out the loops in the control flow graph so that the body 
of each loop is a directed acyclic graph of tasks; 

2. Extracting parallelism from such an acyclic graph of tasks, 
through the notions of control and data dependence and 
synchronization of the dependences between tasks; 

3. Eliminating redundant synchronizations; 

4. Parallel code generation. 

Many traditional optimizations can be done more efficiently by 
partitioning the flow graph into intervals. This partitioning defines a 
hierarchical structure on the flow graph. ~5) Our interest in a hierarchical 
structure is to identify each node in the hierarchy as a task that consists of 
subtasks. An interval in a flow graph consists of a natural loop plus an 
acyclic structure that hangs from the nodes of that loopJ 51 This makes it 
unsuitable to be identified as a task. Instead, we follow the approach in 
Ref. 6, where the hierarchy was based on strongly connected regions, and 
derive the HTG. A graphical hierarchical representation for SISAL 17) 
programs was proposed in Ref. 8. However, this was not deyeloped to 
detect parallelism in programs (indeed the parallelism was specified in the 
intermediate structure itself); instead it was used to study the partitioning 
and scheduling of parallel programs. As such, the problems that we will 
discuss related to control and data dependences are not studied in Ref. 8. 

Dependences arising from the flow of control in the program were 
handled earlier by converting them into data dependences through /f  
con versionC9) or through the use of mode functions)~o~ The general notion of 
control dependence was first formalized in Ref. 11. This allowed the separate 
treatment of control and data dependences. Since then control dependences 
have been studied explicitly for various purposes. In Ref. 12, an algorithm 
for loop distribution in the presence of arbitrary control flow was 
presented. The program dependence graph proposed in Ref. 11 was used for 
vectorization in Ref. 13. In Refs. 14 and 15, control dependences were used 
to specify functional parallelism, referred to as DAG parallelism. Control 
dependence was also used to formulate parallel processes on the basis of 
intervals (as opposed to our approach of using strongly connected regions) 
in Ref. 16. Our work differs from Cytron et alJ ~4) primarily in the treatment 
of data dependences. We allow explicit synchronization based on execution 
conditions.~17) 
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Central to the process of eliminating redundant synchronizations is the 
notion of precedence between nodes; precedences define which nodes 
execute before other nodes. Precedence was used in Refs. 18 and 19, in the 
context of static race detection; in Section 3 we point out the important 
differences between our problem and the work done by CaUahan and 
Subhlok. "s) An analogous relation of nodes that may not execute 
simultaneously was studied for static deadlock detection in Ada programs 
by Masticola and Ryder. t2~ We show that in our case, precedence can be 
completely formalized in graph theoretic terms. This is significantly 
different from previous approaches, which have defined precedence in terms 
of execution of the program. Optimizing synchronization across loop itera- 
tions has been studied/2~-26) However, all of these assume an absence of 
control dependences or the prior conversion of control dependences into 
data dependences. 

2. THE HIERARCHICAL TASK GRAPH 

In this section we take the first step toward the creation of the 
hierarchical task graph (HTG) from the control flow graph. The impor- 
tance of a hierarchical structure for traditional compiler optimizations has 
long been recognized, tS) Its importance in'the detection and management 
of parallelism has been recognized more recently/s~ We will build a 
hierarchical structure based on strongly connected regions t6) and even- 
tually identify each node in the hierarchical structure as a task in the HTG. 
The HTG is a layered graph, in which each layer is a control flow graph, 
not unlike the original control flow graph except that it will be acyclic; 
each such graph also has associated control and data dependence graphs. 

The derivation of the control and data dependence graphs is discussed 
later; however, we will continue to refer to the constructed graph here as 
the HTG. 

2.1. Obtaining a Hierarchy 

The classical approach to obtaining a hierarchy from the control flow 
graph as defined in Ref. 5 follows interval analysist27); this was used by 
Cytron etal. ~16) However this technique has two drawbacks for our 
purposes: 

1. Intervals are not strongly connected, which means that if a loop 
were to belong to an interval, the interval could potentially also 
contain other nodes not in the loop. 

2. Irreducible flow graphs require special techniques like node split- 
ting ~28) in order to construct the complete interval-based hierarchy. 
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To alleviate these limitations, an alternative approach of identifying 
the intermediate nodes in the hierarchy as strongly connected regions was 
first suggested by Tarjan, t29) and later developed by Schwartz and Sharir. t6) 
We follow this approach in building the task graph. We first give an 
intuitive understanding of the hierarchical task graph and then a more 
rigorous formulation. For  irreducible graphs, where a loop can have many 
entry nodes, we arbitrarily decide on one such node as the entry node. This 
entry node is defined by the depth first search done on the graph. This also 
means that for irreducible graphs, a different depth first search ordering 
can give rise to a different HTG. Once the hierarchy is built, we ensure that 
graphs (at all levels) have a single entry and exit point by adding addi- 
tional nodes and arcs as necessary. 

The loop hierarchy is different from that in Ref. 16, where the 
hierarchical structure of a program is generated from intervalsJ 51 Figure 1 
illustrates a simple example where the loop and interval hierarchies are 
different. 

Figure 2b illustrates the hierarchical task graph of the program 
fragment in Fig. 2a. At the top level of the hierarchy the graph consists of 
four nodes, of which A and B are loop nodes and D is a compound node 
corresponding to the control flow graphs of higher level structures such as 
loops and subroutines. At the next hierarchy level node B consists of three 
nodes, one of which (C) corresponds to a loop structure. Thus the flow 
graph of Fig. 2b can be identified as a three-level hierarchical task graph; 
at the third and lowest hierarchy it consists of 16 tasks corresponding to 
basic blocks. Each node is a single-entry/single-exit task at its own 
hierarchy level. 

We give a more formal description of the process of constructing the 
HTG in the next two sections, following the treatment developed by 
Schwartz and SharirJ 6) 

2.2 .  L o o p s  

A controlflow graph is a directed graph G --- ( V, E) with unique nodes 
ENTR Y, EXIT ~ V such that there exists a path from ENTRY to every 
node in V and a path from every node to EXIT; ENTRY has no incoming 
arcs, and EXIT has no outgoing arcs. We will allow paths to contain zero 
arcs, specifically mentioning non-null paths when they must have at least 
one arc. An example control flow graph (from Ref. 5) along with the 
ENTRY and EXIT nodes is shown in Fig. 3. 

Loops in a CFG can be detected by a depth first search (DFS) 
traversal as follows. We first do a DFS on the control flow graph with 
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E N T R Y  as the initial node. There are four possibilities for an arc (x, y)  
encountered while doing a depth first search at node x. (2s) 

1. Node  y is unvisited, (x, y)  is a tree arc. 

2. There is a path from y to x consisting of  tree arcs. We will call 
such a path a tree path and say that y is an ancestor o f  x in the 
depth first search tree. If  the path is non-null,  then we also say that  
x is a descendant of  y. In this case (x, y)  is a back arc. 

0 
- - ~ - ~  Interval i 

r 

Interval 2 

Interval 3 

0 

? 

Loop 1 

Loop 2 

(a): Intervals (b): Loops 

Fig. 1. Building hierarchies with intervals and loops. 
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3. N od e  y is a descendant of x in the depth first search tree; (x, y)  
is a forward arc. 

4. N o d e  y has been visited but is neither an ancestor nor a descen- 
dant of  x; (x, y)  is a cross arc. 

A depth first search tree for our example graph of Fig. 3 is shown in Fig. 4. 
The set of  back arcs is {(9, 1), (8, 3), (7 ,4 ) ,  (4. 3), (10, 7)} ,  (1, 3) is a 
forward arc, (6, 7) is a cross arc, and the rest are tree arcs. For an arc 
(x, y),  x is the source and y is the sink of the arc. Let H(G) be the set of 
all nodes  that are sinks for back arcs. 

H(G) = {x: xe  V, 3y such that (y,  x) is a back arc}. 

For our example graph of Fig. 3, H =  { 1, 3, 4, 7}. 
Node  x dominates node y, denoted by XAdy, iff every path from 

ENTRY to y contains x. ~5~ A node always dominates itself. Let B be the set 

Basic block with uncend 

~ Basic block with conditJ 

I @  Doloop 

begin 
BB 1 
if--C1 then 

DO i=l, n 
BB 2 

endo 
else 

do i=l, m 
BB 3 
do--j=1, k 

if C2 then BB 4 

else BB 5 end~f 
BB 6 

endo -- 
endo 

endif 
call Subroutine X 
end 

subroutine X 
if C3 then BB 7 
else BB 8 end[f 
BB 9 

(a): Program fragment (b): The hierarchical task graph of (a) 

Fig. 2. Hierarchical task graph. 
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of arcs whose sinks dominate their sources. A graph G = ( V, E) is reducible 
if the graph G = ( V, E -  B) is acyclic. Lemma 2. 1 states that for reducible 
graphs, B is equal to the set of back arcs. tS~ 

i . e m m a  2.1. For  reducible graphs, e is a back arc iffe~B. 

Let T(x) denote the descendants of x in the depth first search tree. 

T(x) = {y: y e  V, 3 a non-null path made up of tree arcs only from x to y}. 

L e m m a  2.2. Ify~T(x) then T(y)cT(x). 

Proof: Follows from the definition. [] 

Fig. 3. A control flow graph. 
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The loop associated with back arc (x, y), L(x, y), is defined as y plus 
the set of nodes n such that there is a path P in G from n to x, and if : 
is any node on P, then ze  T(y). Node y is called the header of the loop. 
In the traditional definition of a loop ~5) (for reducible graphs), TL(x, y), a 
node n belongs to TL(x, y) if it is either y or there is a path P from n to 
x which does not contain y. For irreducible graphs, the traditional defini- 
tion will not work, because it is possible for a node (for example, a) outside 
the loop to have a path into the body of a loop which excludes the header; 
in such a case, according to the traditional definition, a would belong 
(incorrectly) to the loop. For  reducible graphs, as Lemma 2.3 shows, the 
two definitions are identical. 

i< 

/ 

Tree arc 

Back arc 

Forward arc 

Cross arc 

Fig. 4. Depth first search tree for Fig. 3. 
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L e m m a  2.3. If G is reducible, then for any back arc (x, y), 
L(x, y) = TL(x, y). 

Proof." Let n~L(x,  y). If n= y, then n~TL(x,  y) by definition. 
Otherwise, there is a path P from n to x such that all nodes on P belong 
to T(y). By definition, y ~ T(y) and hence y cannot lie on P. This implies 
n ~ TL(x, y) and shows that L(x, y) c_ TL(x, y). 

Let n e TL(x, y). If  n = y, then n eL(x,  y) by definition. Otherwise 
there is a path P from n to x which does not contain y. Let z be any node 
on the path P. If G is reducible, then yZldX. Since there is a path from : to 
x that excludes y and yAdX , yZJdT.. This implies that in the depth first search 
tree, z must be a descendant o f y  and hence ze  T(y). Thus, n~L(x,  y), or 
TL(x, y) ~_ L(x, y). [] 

The loops for our example graph in Fig. 3 are given in Table I. 

Lemma 2.4. Let L(a, b) and L(c, d) be two loops. If b ~ L(c, d) and 
b Pal, then L(a, b) c L(c, d). 

Proof: Since b~L(c ,d)  and b r  there is a path P~=(b=bo ,  bl, 
be ..... bn=c) such that bi t  T(d) for O<~i<~n. In particular, be T(d) and by 
Lemma 2.2, T( b ) ~ T( cl ). 

Let x ~ L(a, b). If x = b, then by hypothesis, b ~ L(x, d). Otherwise, 
there is a path P2=(X=ao ,  al,a2,.. . ,a,,=a) such that aiET(b) for 
O<~i~m. Since T(b)cT(d) ,  aisT(d)  for O<~i~m. Consider the path 
P 3 = ( x = a o ,  al,a2 ..... am=a,b=bo,  bl,b2 ..... bn=c) from x t o  c formed 
by composing Pc, the arc (a, b) and P~. Every node on P~ belongs to T(d) 
and hence xEL(x,  d). Thus, L(a, b)c_L(x, d). Note that there cannot be a 
tree path from b to d (as one exists from d to b) and hence dr L(a, b). This 
proves L(a, b) cL(c ,  d). [] 

Lemma 2.5. Let b # d  and Z = ( L ( a , b ) n L ( c , d ) )  be nonempty. 
Then Z is either L(a, b) or L(c, d). 

Table I. Loops for Figure 3 

Back arc Loop 

L(9, 1) { 1, 2, 3,4. 5, 6, 7, 8.9, 10} 
L(8, 3) {3.4, 5, 6, 7, 8, 10} 
L(7, 4) {4, 5, 6, 7, 8, 10} 
L(10, 7) {7.8,10} 
L(4, 3) {3,4,5,6,7,8,10} 
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Proof: Let x eZ. If x=b, then we can apply Lemma2.4 ( b # d ,  
b ~ L(c, d)), and obtain L(a, b) c L(c, d), and hence Z is L(a, b). Similarly, 
if x = d, Z is L(c, d). Hence, let x :~ b and x ~ d. Since x ~ b and x ~ L(a, b), 
there exists a path, PI,  from x to a such that every node on Pt belongs to 
T(b). In particular, x~ T(b) and let the tree path from b to x be 
P2 = (b  = bo, bl, b2 ..... b, = x ) .  Clearly, bi ~ L(a, b), 1 ~< i ~< n (consider the 
path consisting of the portion of P2 from bi to x augmented with P~). 
Similarly, there is a tree path P3=(d=do,d~,d2 ..... d , ,=x) such that 
dj~ L(c, d), 1 <~ i<<.m. P2 and P3 give us two tree paths from two distinct 
nodes d and b to x. Since each node (except ENTRY) has exactly one 
incoming tree arc, this is possible only when b lies on the path P3 or when 
d lies on the path P2. Without loss of generality, let d lie on path P2- Then 
de L(a, b), and by Lemma 2.4 L(c, d) c L(a, b), implying Z = L(c, d). [] 

Let Sx be the set of sources of back arcs with sink x. 

Sx=  {y: y~  V, 3 back arc (y, x)}. 

Next we define the set of strongly connected regions, I(x), for all nodes x 
in H( G). 

I(x)= U L(y,x) 
y e S x  

For the example of Fig. 3, we get Table II. 

2.3.  H T G  

Let 2"(G)={I(x):xEH(G)} w{V}. ~e'(G)is the set of strongly 
connected regions of G with an additional element, V. 

T h eorem 2.1. For  any two elements A and B in &~ 

A n B = { !  

Table II. Strongly Connected Regions 
for Figure 3. 

Node x Region l(x) 

I ( 1 )  {1,2,3,4,5,6,7,8,9,10} 
1 ( 3 )  {3,4,5,6,7,8,10} 
I(4) {4, 5.6, 7, 8, 10} 
I(7) {7, 8, 10} 
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Proof: The theorem is obviously true if either A or B is V; hence the 
only nontrivial case is when A = I(x) and B = I(y) for some x, y e H(G). If 
x = y, then I (x)= I(y), so let x ~ y. By definition, 

I(x) = U L(x,, x) 
xi ~ Sx  

and similarly 

I(y) = U L(y,, y) 
yie Sy 

Assume I ( x ) h i ( y )  is nonempty and let z e (I(x)c~I(y)). Then there exist 
xa e S~ and Yb e Sy such that z e L(xa, x) and z e L(yb, y). By Lemma 2.5, 
L(xo, x)r~L(yb, y) is either L(xa, x) or L(yb, y). Without loss of 
generality, let L(xa, x) n L( yb, y) be L(xa, x). This implies that 
xeL(yb ,  y). Hence, by Lemma 2.4, L(xi, x ) c L ( y h ,  y) for all x i eSx  and 
thus I(x) c L(yb, y)~_I(y). [] 

For any element Aes176 we define P(A) to be the set 
{B: B e S t ' ,  A c B } .  For the example of Fig. 3, we get Table III. If C, 
DeP(A) ,  then since C n D  is nonempty (both supersets of A), by 
Theorem 2.1 either C ~  D or D __q C. This defines a total ordering on P(A). 
Hence, if P(A) is nonempty, there exists a unique minimum element 
Pmin(A) in P(A) such that for any element BeP(A) ,B#Pmln(A) ,  
Pmin(A) c B .  We define the function f :  _L,e' ~ ( ~ '  w {NULL} ) by 

( N U L L  if P(A) = ~ 
f(A ) =/Pmin( A ) otherwise 

Since A ~  V for all AE.~' ,  P(A) is  the empty set ( f ( A ) = N U L L )  only 
when A = V. We define s to be 2 "  u V. For the example graph of Fig. 3, 
~'={I(1) , I (3) , I (4) , I (7) ,  V}, and LP={I(1),I(3),I(4),I(7),V, ENTRY,  

Table III. Ancestors of 
Members of r.~a, for Figure 3 

A P(A) 

I(1) 
/(3) 
/(4) 
/(7) 

v 

{ v} 
{111), v} 
{Ii3). 1/J), v} 
{/(1),I(3),I(4), v} 
{} 
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EXIT, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We extend the domain o f f  to s I f x ~  V, 
let P(x) be the set {B: B e  ~ ' ,  x~  B}. Again, the intersection of any two 
elements in P(x) is nonempty as x belongs to all of them and P(x) is 
nonempty as V~ P(x) for all x ~ V. As before, we can prove the existence 
of Pmin(X), and we define f ( x )=Pr ,  in(X). Finally, for notational 
convenience later, we define f~  to be the identity function and f"(x)  to 
be the composition o f f n  times, for any x ~ s 

The function f defines a rooted tree with root V on elements of &o. 
This is illustrated in the tree of Fig. 5. There is an arc from A to B only if 
f (A)  = B. P(A) is the set of proper ancestors of A in the tree. 

We are now in a position to define the nodes and the control flow arcs 
in the HTG.  The hierarchical task graph (at any level) is a directed acyclic 
graph H T G = ( H V ,  HE). Each node, X, in HV can be of one of the 
following types: 

1. start node. The start node has no incoming arcs, and there is a 
path from it to every node in HV. 

NULL 

Fig. 5. Hierarchical loop structure for Fig. 3. 

828/22/5-4 
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2. stop node. The stop node has no outgoing arcs, and there is a path 
from every node in H V  to it. 

3. simple node representing a task that has no subtasks. 

4. compound node representing a task that consists of other taks in 
an HTG. Each such compound node has an underlying subgraph 
H T G ( X ) = ( H V ( X ) , H E ( X ) ) .  We use START(X) ,  S T O P ( X ) E  
HV(X)  to denote the start and stop nodes in HTG(X).  

5. loop node representing a task that is a loop whose iteration body 
is an HTG similar to the body for the compound node. 

We first construct all the H T G  nodes; all elements of ~ correspond to 
an H T G  node. We will denote this correspondence by the function g 
from .~ to the set of H T G  nodes; i.e., if x ~  .L~ a, then g(x) is the corre- 
sponding H T G  node. In addition to this, there are start and stop nodes 
corresponding to x if x ~ ~ ' .  Thus the set of H T G  nodes at all levels is 
given by 

Zt+ra =- { g ( x ) l x  ~ ZP} u { S T A R T ( g ( x ) ) I x  ~ C~ '} u { S T O P ( g ( x ) ) l x  ~ ~ ' } .  

Next we define the type of all nodes, X, in VHTG. 

1. X =  START(g(x)) .  X is of type start. 

2. X =  STOP(g(x)) .  X is of type stop. 

3. X = g ( x ) , x ~ .  

(a) x ~ V. X is of type simple. 

(b) x = V. X is of type compound. 

(c) x =  I(y)  for some y ~ H ( G ) .  X is of type loop. 

The only H T G  nodes which are not ta/'gets of g are the various start and 
VHT C U {NULL} stop nodes. We define the function F from VHTC to 

corresponding to the function f 

1. 

2. 

3. 

X =  START(g(x}). F(X) = g(x). 

X =  STOP(g(x)) .  F(X) = g(x). 

32 = g(x), x ~ ,~. 

(a) x ~ V. F(X) = g( f (x) ) .  

(b) x = V. F ( X ) =  NULL.  

(c) x = I ( y )  for some y ~ H ( G ) .  F ( X ) = g ( f ( x ) ) .  

Note that if we make the trivial assumption that g ( N U L L ) =  NULL,  then 

F(g(x))  = g ( f ( x ) )  (2.1) 
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Next we define the H V  set for every constructed compound and loop HTG 
node, X, HV(X)~_ V ' H T  G . 

HV(X) = { Y: F(Y) = X} 

We now construct the arcs in the HTG. Each arc (a, b) in the flow 
graph G will result in new arcs being added to the HTG. For every arc 
(a, b) in the G, we do the following (see Fig. 6): 

I. Find z, the least common ancestor o f f ( a )  and f(b) in the f tree 
( i f f (a)  = f (b ) ,  then z =f (a ) ) .  Let z = i f ( a ) =  f " (b ) ,  n, m i> I. 

2. Add arcs (g(fi(a)), STOP(g(fi+~(a)))) to HE(g(fi+l(a))) for 
O <~ i <~ n - 2. 

3. Add arcs (START(g(f~(b)),g(f~-~(b)))) to HE(g(f~(a))) for 
l <~i<~n-1. 

4. If (a,b) is not a back arc, add the arc (g(f"- l(a)) ,  g ( f " - l (b ) ) )  
to HE(g(:)). 

5. If (a,b) is a back arc, the arcs (g(f"- l(a)) ,  STOP(g(:))) and 
(START(g(:)), g(f"-~(b)))  are added to HE(g(:)). 

//•k z = P(a) =/"(b) 

f f 

J~s i \ f \ 

~ ~ o w g r a p h  arc (a,b f 

f 

Fig. 6. Considering flowgraph arcs. 
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Two additional arcs, ( START( g( V) ), g(ENTER)) and (g(EXIT), 
STOP(g(V))), corresponding to the E N T R Y  and EXIT nodes of the flow 
graph, are also added to HE(g(V)). We note from the construction and 
Eq. (2.1) that if an arc is added between H TG  nodes X and Y, then 
F(X) = F(Y) and further that by the process of factoring out the back arcs 
in the original flow graph, the graph HTG(X) = (HV(X),HE(X))  is acyclic 
for any compound or loop node X. 

The H T G  graph of node g(I(1)) in our example is shown in 
Fig. 7. The nodes in the flow graph for g(I(1)) are START( g( I( I ) ) ), 
STOP( g( I(1) ) ), g(1), g(2), g(9), g(I(3)), as f ( 1 ) = f ( Z ) = f ( 9 ) = f ( I ( 3 ) )  = 
I( 1 ). We have shown how to construct the control flow graphs of the H TG  
at each level in this section. In the next section we will define the control 
and data dependence graphs on the H TG  at each level, making the 
construction of the HTG complete. 

3. A U G M E N T I N G  THE HTG WITH CONTROL A N D  
DATA DEPENDENCES 

In Section 2 we showed how the HTG can be built from the control 
flow graph of the program. In this section we concentrate on the acyclic 

? g) 

Fig. 7. Flowgraph for g(l( 1 )). 
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control flow graph corresponding to an HTG loop or compound node. We 
augment it with control and data dependence graphs and show parallelism 
can be extracted from such a graph and study the problems encountered in 
the process. 

3.1. Pre l iminar ies  

Our starting point will be the control flow graph of any compound or 
loop HTG node. We will denote this graph by CFG = (V, E) with unique 
nodes START ,  S T O P  ~ V such that there exists a path from S T A R T  to 
every node in V and a path from every node to STOP; S T A R T  has no 
incoming arcs, and S T O P  has no outgoing arcs. Figure 8 shows an 
example acyclic control flow graph with 11 nodes and 13 arcs. 

Fig. 8. Example control flow 
graph. 
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Node y post-dominates node x, denoted by yApx, iff every path from 
x to STOP (not including x) contains y/iX) A node never post-dominates 
itself. We use y41px to denote y does not post-dominate x. The reflexive 
closure of the post-dominance relation will be denoted by Jp ,  yApx iff 
yApx or y=x. The following is well known, tl~) 

Lemma 3.1. Let y and z be distinct nodes. For any x, ifyApx and 
zApx, then either yApz or zApy. 

Lemma 3.1 suffices to show that the set of post-dominators of  a node 
x form a chain. The least element in the chain is called the immediate post- 
dominator ofx .  The set of post-dominators of a node x is nonempty (except 
when x is the STOP node) as STOP ApX. Hence, all nodes except STOP 
have a unique immediate post-dominator. If we draw an arc from x to y 
whenever x is an immediate post-dominator of y, the resulting graph is a 
tree rooted at STOP and called the post-dominator tree. Figure 9 shows the 
post-dominator  tree for our example control flow graph of Fig. 8. 

Fig. 9. Post-dominator tree for Fig. 8. 
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3.2. The Control Dependence Graph (CDG) 

Node y is control dependent on node x with label x - a  ((x, a) is an arc 
in CFG) ,  denoted by x6c y, iff 

1. y41px, and 

2. 3 a non-null path P = ( x , a  ..... y ) ,  such that for any z ~ P  
(excluding x and y), yApZ. 

Our definition of control dependence differs only slightly from Ref. l l, 
where nodes were restricted to have at most two outgoing arcs; we relax 
this restriction. An immediate consequence of the definition is that if x6c y 
with label x - a, then yZpa. We will say that an arc (x, a) is a branch if x 
has more than one outgoing arc. Note that the labels in the control 
dependence relation can only be branches. 

The control dependence graph CDG, of a control flow graph CFG,  is 
defined as the directed graph with labeled arcs, C D G  = (CV, CE) such that 

1. CV= V and 

2. (x, y) ~ CE with label x - a iff x6c y with label x -  a. 

C D G  can be built from C F G  using the post-dominance tree I~) as follows. 
If (x, y) is any branch in CFG, then the following can be shown. 

1. Let z be the immediate ancestor of x in the post-dominator  tree. 
Then the least common ancestor of x and y in the post-dominator  
tree, LCA(x, y), is either x or z. 

2, All nodes on the path from y to z (not including z) in the post- 
dominator  tree are control dependent on x with label x -  y. 

Figure l0 shows the control dependence graph for our example 
control flow graph. 

The transitive closure of 6c will be denoted by 6*, x6*y iff there exists 
a non-null path from x to y in CDG. This corresponds to the notion of the 
range of a branch given in Ref. 30. The reflexive closure of 6"  will be 

6c, xJ*y  iff x~*y or x =  y. denoted by -* 
We state the following important theorem; a proof  can be found in 

Ref. 2. A related result for forward control dependence graphs is proved in 
Ref. 14. 

Theorem 3.1. C D G  is cyclic iff C F G  is cyclic. 

We will be dealing exclusively with acyclic control flow graphs from 
now on. In an acyclic C F G  it is possible to assign a unique number  to each 
node in such a way that if there is a path from a node numbered x to a 
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node  numbered  y, then x < y. F r o m  now on, we will assume tha t  such a 
number ing  has  been done  in our  C F G ,  and  we will refer to a node  
numbered  x as s imply node  x. 

3.3. The Data Dependence Graph (DDG) 

N o d e  y conflicts with node  x if ei ther x or  y share access to a c o m m o n  
m e m o r y  locat ion,  a t  least  one of  which is a "write" opera t ion .  Conflicts  
induce a da t a  dependence  t9'31-34) relat ion a m o n g  nodes.  Exact ly  one of  the 
fol lowing can occur  between two dist inct  nodes x and  y. 

1. y is reachable  f rom x in C F G .  

2. x is reachable  from y in C F G .  

3. x is not  reachable  from y, and  y is not  reachable  f rom x in C F G .  

If  x and  y conflict with each other,  then we say that  y is data dependent on 
x in Case 1 (denoted  by x3ay), and x is da t a  dependent  on y in Case 2 
(yCSdX). In Case 3 the conflict does not  ma t t e r  and can be ignored;  we will 
assume that  Case 3 does  not  occur. 

The  data dependence graph D D G = ( D V ,  DE)  is defined as the 
d i rec ted  g raph  such that  

1. D V =  V and  

2. (x, y) 6DE if x6ay. 

Fig. 10. Control dependence graph for Fig. 8. 
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Figure 11 shows a possible data dependence graph for our example 
control flow graph. 

Note that since X~dy implies a path from x to y in CFG, the graph 
containing the arcs of both CFG and D D G  is also acyclic owing to the 
acyclicity of CFG. Similarly, the graph containing the arcs of both CDG 
and D D G  is also acyclic. In the terminology of Ref. 34, we are restricting 
ourselves to dependences whose direction vectors consist of only " = "  
components. 

3.4. Parallel Execution 

In the absence of data dependences, the parallel execution of CFG is 
based on CDG 114} where identically control dependent nodes are executed 
in parallel: 

1. Initially, only nodes that do not have any incoming arcs in the 
CDG begin execution in parallel. 

2. After executing a node, for example, x, if label x - a  is true (i.e., 
the branch x - a  would have been taken in the sequential execu- 
tion of CFG),  then all nodes y such that xcScy with label x - a  
start execution in parallel. 

The execution terminates when all nodes finish execution. By Theorem 2.2, 
CDG is acyclic and hence it is obvious that the parallel execution will 
terminate. 

Let ~9 ~ and ~ denote the sequential and parallel execution of CFG 
respectively. Sa specifies a single path, P, in CFG from START to STOP. 
The parallel execution of CFG specifies a set of trees in the control 
dependence graph; in the forward control dependence graph, which is 
connected, it specifies a single tree. tt41 

(D 

/\ ..... .... / 
/ \ "'--.. \ i f \ "---. \ ; 

Fig. 11. Possible data dependence graph for Fig. 8. 

828/22/5-5 
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A node is executed in 6~ if it lies on P. A label x - y  will be true in 
~' if the arc x - y lies on P. According to this model, a node x is executed 
in ~ when there is a path in the CDG, (ao,  a~ ..... an = x )  such that ao is 
a node with no incoming arcs and aj~caj+ ~ (0 <~j<n) with some true label 
aj-bj. 

The following theorem states the correctness of the parallel execution. 
A proof is given in Ref. 2. 

Theorem 3.2. Let CFG be acyclic. The parallel execution of CFG 
executes the same nodes as the sequential execution. 

3.5. Precedence and the Closure Graph ( C D D G )  

Based on this execution model, we try to define the idea of one node 
executing before another. Intuitively, node y can execute before node x if 
there is a parallel execution such that y can begin execution before x. We 
aim to formalize this definition purely in graph theoretic terms. Again, in 
the absence of data dependences, the following definition works. Node y 
can execute before node x if there is a path in the CFG from S T A R T  to 
STOP which contains x and y (this must be true for y and x to be executed 
in the same execution) and there is no path in the CDG from x to y. In 
our example graph, clearly there is a path in CFG from S T A R T  to S T O P 
containing 3 and 4. Node 3 can execute before 4 because there is .no path 
from 4 to 3 in the CDG; however 4 cannot execute before 3 as 3fic4. A 
more interesting case is of the nodes 2 and 3, where we find that 2 can 
execute before 3 and 3 can execute before 2 as 2 and 3 are disconnected in 
the CDG. Note that we cannot say 6 can execute before 7 because even 
though there is no path from 7 to 6 in the CDG, there is no path in the 
CFG from S T A R T  to S T O P  containing both 6 and 7. 

With the addition of data dependences, our execution model under- 
goes some changes. Now, before a node y can start execution, it should 
also be checked to determine if the necessary data dependence conditions 
are also satisfied. Thus, if there is a data dependence arc x~a y, before y can 
start execution, we have to make sure that x has finished execution or that 
x will not be executed at all. Our initial impulse would be to try to 
formalize this definition in terms of paths in the CDG + DDG. However, 
this is rather hard as the following two incorrect definitions illustrate. 

Node y can execute before node x if there is a path in the CFG from 
S T A R T  to STOP which contains x and y and there is no path in the 
CDG § DDG from x to y. This is a reasonable first attempt, but we show 
that this definition is too restrictive. It is possible for node y to execute 
before node x even though there is a path from x to y in the CDG § D D G  
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Fig. 12. Another example 
flow graph. 

as the following example shows. Consider the control flow graph shown in 
Fig. 12 with its C D G  + D D G  graph as shown in Fig. 13. Clearly, there is 
a path from 1 to 4 in the C D G  + D D G  as l~j3 and 3ga4. However, 4 can 
conceivably execute before 1 in the following execution sequence. 

1. Node 2 starts and finishes execution. 

2. The branch 2-4 is taken. 

3. Node 4 can now begin execution as it is now clear that 3 will not 
execute and hence the dependence 3-k4 can be ignored. 

4. Node 1 begins execution. 

The problem with this definition was that the original path in 
C D G + D D G  was through node 3, and node 3 is not executed in the 

Fig. 13. CDG + DDG for Fig. 12. 
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counter-example. We can solve this problem by requiring that the path in 
C D G  + D D G  be restricted on only those nodes that are executed in the 
CFG. We first formally define a restriction on a graph. 

If  P is a path in a graph, let N(P) be the set of nodes in P. If G( V, E) 
is a graph and A ___ V, let GA be the subgraph GA( V', E ' )  of G restricted on 
A where 

1. V ' = A  and 

2. (x, y )~E '  if x, y ~ A  and (x, y)~E.  

Now we can try to fix our previous definition and use the following 
instead. Node y can execute before node x if there exists a path P in C F G  
from S T A R T  to STOP containing x and y such that there is no path from 
x to y in (CDG + DDG)N(ej. This gets rid of the preceding problem in 
the counter example, because once the branch 2--4 is taken, we will be 
restricted in the C D G  + D D G  on the nodes {START, 1, 2, 4, STOP} and 
there is no path from 1 to 4 in the C D G  + D D G  when restricted on 
this set. 

This definition is still in error; it is possible according to the definition 
for us to say that node y can execute before x even when such a thing will 
not occur. Consider the example control flow graph shown in Fig. 14 with 
its control and data dependence graph shown in Fig. 15. If  we consider the 
path P =  (START,  1, 3, STOP),  we see that there is no path from 1 to 

r 

) 

Fig. 14. Example control flow 
graph. 
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3 in the (CDG + DDG)Nle> as 2 ~N(P);  hence according to the definition 
node, 3 should be able to execute before node 1. However, we see that this 
can never happen, because for node 3 to start execution it has to know 
whether 2 has finished execution or 2 will not execute at all. In either case, 
node 1 will have finished execution, and hence node 3 will always start 
after node 1 has finished. To correct this problem we need to define a new 
graph from the CDG + DDG, which we call the closure graph. 

The closure of the data and control d e p e n d e n c e g r a p h  
C D D G  --- (CDV, CDE) is defined as the directed graph with arcs such that 

1. CD V = V and 

2. (x, y )~  CDE if x f * y  or 3z such that x~*z  and Zfiay. 

Note that an arc from x to y in C D D G  implies a path from x to y in 
CDG + DDG, and thus CDDG is also acyclic. Figure 16 shows the closure 
graph for our data and control dependence graphs in Figs. 10 and 11. The 
thick arcs in Fig. 16 represent additional arcs which were not present in the 
CDG + DDG. 

We can now give the precise definition of when a node can execute 
before another. We say that node y can execute before node x if there exists 
a path P in CFG from S T A R T  to S T O P  containing x and y such that 
there is no path from x to y in CDDGNle>. 

We say that node x precedes node y (written x-< y) if for any path P 
in CFG from S T A R T  to STOP containing x and y there is a path from x 
to y in CDDGN<e>. Note that for any such path P, the path in CDDGN~p> 
will consist only of nodes on P between x and y. If we use x -K y to denote 
x does not precede y, then y can execute before x is equivalent to x -~ y. 

We point out some special cases. 

1. Since the trivial null path from x to x exists in the CDDG,  x ~ x. 

2. If there is no path in CFG from S T A R T  to S T O P  containing x 
and y, then trivially, x < y and y < x. 

3. x -K y does not necessarily imply y < x. 

Fig. 15. The CDG + DDG for Fig. 14. 
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The notion of precedence was also defined in Ref. 18 in a different 
context. In Ref. 18, the definition is in terms of parallel executions and time 
as opposed to the graph theoretic one given earlier. We summarize some 
of the important aspects by which this work differs from Ref. 18. 

1. The problem of proving a given parallel program correct with 
respect to a sequential interpretation is considered in Ref. 18. As 
such, the parallelism is given by the constructs used in the 
program rather than detected from a sequential program. 

2. Although conditional statements are used in some of the proofs in 
Ref. 18, explicit control dependences are not used. 

3. In Ref. 18, the synchronization arcs arise due to post and wait 
statements in the program. Hence, a node can begin execution 
when any of its predecessors finish execution. In our description of 
the problem, the analog to synchronization arcs in Ref. 18 are the 
data dependence arcs. However, a node can begin execution only 
when all data dependences incident to it are satisfied. The satisfac- 
tion of data dependences is also not equivalent to the completion 

@ | @ 

Control dependence 

Data dependence 

Arcs not present in CDG + DDG 

Fig. 16. The closure graph four Fig. 8. 
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of the execution of the source node; data dependences can also be 
satisfied when it can be determined that the source node will not 
be executed. This changes the nature of the proofs and also may 
be the reason that it does not seem possible to define the notion 
of precedence on the basis of the graph terms alone in Ref. 18. 

3.6. Example to I l lustrate Precedence 

Consider the example flow graph and its CDG + D D G  shown in 
Figs. 12 and 13 respectively. The closure graph is shown in Fig. 17. The 
additional arc (2, 4) is present because 2fic3 and 3rid4. Consider the 
problem of determining whether 1 ~ 4  (this is the same as determining 4 
can execute before 1). There are two paths in the CFG from S T A R T  to 
STOP containing both 1 and 4; P1 = ( S T A R T ,  1, 2, 4, STOP)  and 
P 2 = ( S T A R T ,  1, 2, 3, 4, STOP).  There is no path from 1 to 4 in 
CDDGNle~), but there is a path from 1 to 4 in CDDGN(e2), namely, 
( I, 3, 4 ) .  Due to the existence of path Pl ,  4 can execute before 1, or in 
other words, 1 ~ 4. 

4. I M P L E M E N T A T I O N  

The HTG has been implemented as part of the Parafrase-2 
compiler. ~35) Details of this implementation are given in this section. The 
HTG was built according to the procedures outlined in previous sections 
and some static analysis of programs was done to measure the "amount" 
of functional parallelism. 

4.1. Parafrase-2 

Parafrase-2 is a multilingual restructuring compiler. A block diagram 
of Parafrase-2 is shown in Fig. 18. The core of Parafrase-2 works on inter- 
mediate data structures used to represent the source program. Optimiza- 

Fig. 17. The closure graph for Figs. 12 and 13. 
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tions on the code are done through passes which operate on these data 
structures. The HTG is used as the main data structure in the auto- 
scheduling part of the compiler. The HTG is built from the loops detected 
in the flow graph of the program (generated by the flow and induction 
passes t36~) and is only slightly different from the construction described in 
Section 2. It' has the following type of nodes. 

1. start nodes. 
2, stop nodes. 

(Fortran) ( C 

Intermediate 
Common 

Representation 

Parallelizer 
Inter & Introprocedural Depend. 
Control Dependence Anolysis 
Vectorization - Parallelization ~ - 

~ Para l le l  ; For t ran .... ( Paral le l  ~ C 

Fig. 18. The Parafrase-2 restructuring compiler. 
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3. basic nodes. These correspond to simple statements in the 
program. 

4. call nodes. These correspond to statements having a subroutine 
call. 

5. loop nodes. These correspond to the loops in the program. 

6. compound nodes. These correspond to the basic blocks in the flow 
graph. The top level of the HT G  is also a compound node. 

4.2. Experiment 

An experiment was done to analyze statically the effect of functional 
parallelism in a program. It was designed to measure the nature of the 
parallelism obtained. In the absence of proper timing measurements, the 
following two approximate measures were used. 

1. The ratio of the length of the longest path (in terms of the number 
of nodes on the path) in the derived CDDG to the length of the 
longest path in the original CFG of HTG loop and compound 
nodes. We denote this ratio by r. 

2. The fraction of instances when two identically control dependent 
HTG nodes can be executed in parallel, 

The HTG of program MDG, a molecular dynamic simulation 
program which is a part of the Perfect BenchmarksXM, ~37~ was built and 
analyzed. Results of the experiment are given in Tables IV and V. We 
explain the entries in the tables. The entry of 15 (.50 ~< r~<.75, Loop) in 
Table IV indicates that 15 loop nodes in the HTG had their iteration body 
(measured in number of nodes) shortened to between 50 and 75 percent of 
the original. The entry of 29.73 (Loop, Compound) in Table V indicates 

Table IV. Ratio of Longest Paths in CDDG 
and CFG for Program MDG 

N u m b e r  of nodes  

Ra t io  r L o o p  C o m p o u n d  

0 ~< r ~< .25 0 29 

.25 < r ~< .50 1 54 

.50 < r ~< .75 15 27 

.75 < r ~< 1.0 38 180 
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Table V. 

Girkar and Polychronopoulos 

Parallelism in Identically Control Dependent 
Nodes for Program MDG 

Basic Call Loop Compound 

Basic 76.18 21.94 - -  - -  
Call 21.94 17.65 - -  - -  
Loop - -  - -  4.55 29.73 
Compound - -  - -  29.73 44.92 

that whenever a loop and a compound node have been found to be identi- 
cally control dependent they can be executed in parallel in 29.73 percent of 
those instances. Note that Table V is symmetric. 

4.3.  D i s c u s s i o n  of  t h e  R e s u l t s  

The following observations can be made from the data obtained. 

1. From Table IV, it is clear that the iteration bodies of loops or the 
bodies of basic blocks can be considerably shortened (r ~<.50 for 
52 + 26- -78  compound nodes) by finding functional parallelism. 

2. Table V indicates that when two H T G  nodes are identically 
control dependent, they are independent of data dependences and 
hence can be executed in parallel a significant proport ion of the 
time. Some of the entries in Table V are blank, because that 
particular combination of nodes will not occur because of the way 
the H T G  is constructed. For example, a basic H T G  node which 
corresponds to a simple statement is always nested inside a 
flowgraph node which corresponds to a compound H T G  node. 
Thus it is always the compound H T G  node which is at the level 
of other loop or compound nodes in the H T G  and never the basic 
H T G  node. From Table V it can be seen that the largest amount  
of parallelism is available among simple statements. The 
parallelism among simple statements will lead to significant 
decreases in execution time if this parallelism is nested inside 
loops; otherwise it may not have much of an effect, as normally 
the execution time of statements without subroutine calls will be 
small. Another encouraging item of interest is that about  17.65 
percent of the time a pair of subroutine calls can be done in 
parallel with each other. 
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5. CONCLUSION 

As presented in this paper, the HTG can serve as an intermediate 
program representation for a variety of high-level languages. In addition to 
consolidating the control flow, data dependence, control dependence, and 
syntax tree structures into a single representation, the HTG exposes the 
notion of precedence relations between program statements of different 
granularity. Precedence information is vital for efficient and correct parallel 
code generation. The HTG has been implemented in Parafrase-2 as the IR 
target for Fortran and C, as well as the source for program optimizations 
and parallel code generation. 
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