
International Journal of Parallel Programming, Vol. 22, No. 5, 1994

XDP" A Compiler Intermediate
Language Extension for the
Representation and Optimization
of Data Movement

Larry Carter, 1 Jeanne Ferrante, 1 and Vasanth Bala 2

Received August 18, 1993

The ability to represent, manipulate, and optimize data placement and move-
ment between processors in a distributed address space machine is crucial in
allowing compilers to generate efficient code. Data placement is embodied in the
concept of data ownership. Data movement can include not just the transfer of
data values but the transfer of ownership as well. However, most existing
compilers for distributed address space machines either represent these notions
in a language- or machine-dependent manner, or represent data or ownership
transfer implicitly. In this paper we describe XDP, a set of intermediate
language extensions for representing and manipulating data and ownership
transfers explicitly in a compiler. XDP is supported by a set of per-processor
structures that can be used to implement ownership testing and manipulation at
run-time. XDP provides a uniform framework for translating and optimizing
sequential, data parallel, and message-passing programs to a distributed address
space machine. We describe analysis and optimization techniques for this
explicit representation. Finally, we compare the intermediate languages of some
current distributed address space compilers with XDP.

KEY WORDS: Optimizing compiler; intermediate language; data ownership;
data placement; parallel computers.

~IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598.
E-mail: {carterl,ferrant}@watson.ibm.com. Current address: University of San Diego,
9500 Gilman Drive, La Jolla, California 92093-0114.

2Kendall Square Research, 170 Tracer Lane, Waltham, Massachusetts 02154. E-mail:
vas@ksr.com.

485

0885.7458/94/1000-0485507.00/0 ~ 1994 Plenum Publishing Corporation

486 Carter e t al.

1. I N T R O D U C T I O N

Many program representations used in compilers represent data movement
and partitioning only partially, and in an implicit manner. Explicit Data
Placement (XDP) is a methodology for the explicit representation and
treatment of data movement and placement in a compiler. The key ideas
behind the XDP methodology are:

1. Explicit data and ownership transfer operations using nonblocking
semantics. A unified framework facilitates optimization of these
operations; in particular, the compiler can control the overlap of
communication with computation.

2. Language- and machine-independent representation of data
transfer operations, allowing their incorporation into existing
optimizations.

3. Generalized compute rules which allow the compiler freedom to
go beyond the "owner-computes" rule.

4. A run-time system to support the XDP primitives. This allows
unoptimized code to be executed, while optimizations can
eliminate the use of calls to run-time XDP primitives or reduce
their overhead.

5. Delayed binding of communication primitives to the transfer
operations.

The XDP methodology can be incorporated into compilers that use a
high-level compiler intermediate language in the SPMD (Single Program
Multiple Data) execution model; the same program will be loaded onto
every processor of the target machine that is assigned to the program. One
common way of writing SPMD programs is with barrier synchronization;
such synchronization can be translated in a straightforward manner to
XDP primitives. However, optimizations on the resulting intermediate code
might change the synchronization, yielding a less structured (but hopefully
more efficient) program.

While SPMD programs are commonly used in a distributed address
space setting, the XDP methodology can also be used for compiling a
shared address space program (either sequential or data parallel) to a
distributed address space SPMD node program. The original shared
address space program can be considered to be an SPMD node program
that is replicated along with all its data on every node. The compiler can
then use data partitioning to transform this into the eventual distributed
address space SPMD node program desired. At present, the XDP
methodology does not apply to languages with pointer variables.

XDP: A Compiler Intermediate Language Extension 487

The rules governing execution of XDP programs allow nondeter-
minism and do not guarantee coherence or freedom from deadlock. While
XDP could be used as a programming language, it has been designed for
use by the compiler, which can use XDP's unsafe operations with care.
Although not discussed here, a deadlock detection mechanism in the XDP
run-time environment might be desirable.

Our thesis is that if a compiler is to optimize data movement, it needs
a methodology with the key ideas 1-5 noted earlier. The XDP operations
and structures provide a convenient platform for this optimization. In
subsequent sections, we give a syntax and an operational semantics for the
XDP language constructs, outline an implementation of the data structures
and routines to support the constructs at run-time, give an example of
initial translation and optimization, discuss analysis and optimization, and
compare XDP with the intermediate languages of other distributed address
space compilers.

2. X D P L A N G U A G E C O N S T R U C T S

The Explicit Data Placement (XDP) methodology can be used to
extend an existing compiler Intermediate Language (IL) to obtain an
SPMD program representation. Henceforth, we will use "IL + XDP" to
denote a compiler intermediate language that has been extended with the
XDP constructs and support structures. Before giving the formal definition
of the XDP constructs, we first give some underlying assumptions and then
illustrate some of its features with an example.

2.1. Pre l iminar ies

In this paper, we assume every variable is either a scalar or an array.
(Adding structures is an easy extension, pointers would be harder.) Each
variable consists of elements; a scalar has only a single element.

XDP assumes the elements of all variables are distributed among
processors: every element of a variable is either exclusively owned by a
single processor or universally owned by all processors. (Techniques such as
in Refs. 1-3 address the question of how the data should be distributed
initially and redistributed during the program's execution.) It is possible to
transfer the ownership of exclusively owned elements between processors. If
an element is universally owned, each processor has a copy, and the values
at each processor can be different.

A section of a variable is either a scalar variable or some subset of an
array's elements. The form o f possible sections is determined by IL; in this
paper, we assume that sections are defined by Fortran 90 triplet notation.

488 Carter e t al.

We say that a section of a variable is exclusive if every element of the
section is exclusively owned; a section is universal if every element is univer-
sally owned. It is possible for one section of an array to be universal and
another section of the same array to be exclusive.

We say that a section of a variable is owned by a processor p if p
exclusively or universally owns every element of the section. A section is
unowned by p if it includes some element that is not owned by p. We
distinguish between references to the value and to the name of a section
of a variable. A value cannot be referenced unless it is owned by the
processor; names in XDP statements can be any section of any variable.

XDP language constructs include several forms of send and receive
operations. The communication constructs all have an initiation and a
completion to be described later. Initiation and completion are kept track
of by a run-time mechanism that records a state for each exclusive section.
Sends and receives, both of values and ownership, are nonblocking opera-
tions, so communication can take place concurrently with subsequent
operations. Thus, whenever a transfer occurs, the variable's state must be
tested to ensure the transfer has completed. (One exception to this rule is
that a value may be sent and then subsequently used without a state
check.)

In XDP an exclusive section can be in one of four states with respect
to a given processor p: unowned by p; R~ W accessible, meaning owned by

STATES OF A S E C T I O N

Unowned
(U)

Transitional

(T)

Read accessible

(R)

RIW accessible
(R/W)

Some element of section is not owned
by p.
Entire section is owned by p and an
uncompleted receive involving some
element of the section has been initi-
ated by p.
Entire section is owned by p and an
uncompleted send involving some el-
ement of the section has been initi-
ated by p.
Entire section is owned by p and p
has no uncompleted receives or sends
involving any element of the section.

Fig. 1. States of a section.

XDP: A Compiler Intermediate Language Extension 489

p, and p has no uncompleted receives or sends involving any element of
the section; and two additional states for owned sections that have uncom-
pleted communication. The section is transitional if p has initiated a receive
for that section that has not yet completed; it is read accessible if p has
initiated an uncompleted send. States of a section are summarized in Fig. 1.

2.2. A Simple Example

Consider the program fragment:

do i= I, n

A[i] = A[i] + S[i]

enddo

Assuming that the elements of arrays A and B are exclusively owned,
the fragment is straightforwardly translated into the IL + XDP S P M D
program:

do i= I, n

iown(B [i]) :

iown(A [i]) :

enddo

{ B[i] -> }
{

T[mypid] <- B[i]

readawait (T [mypid])

A[i] = A[i] + T[mypid]
}

This translation follows the "owner-computes" rule. The variable
raypid is an intrinsic which evaluates on each processor to a unique
integer. XDP requires that values be received into exclusively owned
sections, so the array T is used by each processor to receive an element of
B. We assume processor raypid owns the myp id - th element of T. The
variable i is universally owned, so each processor has its own copy of i .

In the example, each iteration of the loop is executed on every
processor. On a given iteration of the loop, the execution of, the first
statement of the loop will be executed only by the owner of B [i] ; this
is insured by guarding the statement with the intrinsic predicate
" iown (B [i]) ." The use of iown is an example of a compute rule, which
can be used to guard any XDP statement. Similarly, only the owner of
A [i] will execute the second statement on any iteration of the loop.

Following " iown (B [i]) : " is a data transfer statement, where the
owner of B [i] sends its value to another, unspecified processor. The

490 Carter et al.

notation " - > " denotes the initiation of a data transfer operation in
which the executing processor sends both the name and the value of a
section of a variable to an unspecified processor. The statement
"Y [mypid] < - B [2] " is a data receive statement, where the executing
processor receives the message with name B [i] , putting the value into
T [m y p i d] . It is the responsibiliQr of the compiler to generate only
programs in which all sends have matching receives. The r e a d a w a i e ()
intrinsic ensures the sum is not computed until the received value is
available.

Optimization can be applied by the compiler to this straightforward
translation, based on its knowledge of ownership. For instance, if the same
processor that exclusively owns A [i] also owns B [i] , then the data trans-
fer statements can be eliminated. Even if they cannot be eliminated, the
compiler may be able to move them out of the computation loop and vec-

tor i ze 14) the messages, that is, combine many small messages into one large
message. In either case, if the loop bounds can be adjusted so that each
reference to A [i] is local, then the ownership test on the remaining body
of the loop can also be eliminated, yielding a more efficient S P MD
program.

An important feature of XDP is that other strategies than
"owner-compute" can be expressed. For instance, the compiler might deter-
mine that it would save future communication if ownership of each element
of the A array were moved to the same processor as the corresponding
element of the E array. The following IL + XDP program fragment shows
the result of this optimization:

do i = i, n

iown(A[i]) : { A[i] -=> }

iown(S[i]) : { A[i] <=-}

writeawait(A[i]): { A[i] = A[i] + S[i] }

enddo

Here, the " - = > " and " < = - " notation indicates that both the
ownership and value of A [2] is moved to the processor that owns 13 [i] .
Only the processor that is the new owner of A[2] will perform the
addition.

We next discuss the XDP language constructs and their semantics,
which are also summarized in Fig. 2.

XDP: A Compiler Intermediate Language Extension 491

N O T A T I O N
X Any exclusive Section.
E Exclusive section owned by p.
U Exclusive section, no element owned

by p.

mypid
mylb(X,d)

myub(X,d)

iown(X)

readable(X)

writeable(X)

re~dawait(X)

writeawait(X)

I N T R I N S I C S
Returns the unique identifier of p.
If any element of X is owned by p,
returns the smallest index in d th di-
mension, MAXINT otherwise.
If any element of X is owned by p,
returns the largest index in d th di-
mension, MININT otherwise.
Returns t r u e if X is owned by p,
f a l s e otherwise.
Returns t r u e if X is owned by p and
its data is read or R / W accessible,
: fa l se otherwise.
Returns t r u e if X is owned by p and
its da ta is R / W accessible, f a l s e
otherwise.
Returns f a l s e if X is unowned by
p, otherwise waits until X is read or
R / W accessible, then returns t r u e .
Returns f a l s e if X is unowned by
p, otherwise waits until X is R / W
accessible, then returns t r u e .

E ->

E -> S

E =>

E -=>

SEND S T A T E M E N T S
Waits until E is read or R / W acces-
sible, then initiates send of the name
and value of E.
Waits until E is read or R / W accessi-
ble, then initiates sends of the name
and value of E to processors specified
by set S.
Waits until E is read or R / W acces-
sible, then initiates send of the own-
ership of E.
Waits until E is read or R / W acces-
sible, then initiate send of ownership
and value of E.

E<-X

U <=

U <=-

R E C E I V E S T A T E M E N T S
Waits until E is R/W accessible,
then initiates receive of the value
named X into E.
Initiates receive of the ownership of
U.
Initiates receive of ownership and
value of U.

Fig. 2. Rules governing execution on processor p.

492 Carter et al.

2.3. Intrinsics

The first argument of an intrinsic is a name of an exclusive section, but
it need not be owned by the executing processor. Thus, intrinsics can be
evaluated on any processor.

XDP assumes each processor has a unique processor id denoted
mypid.

The routine mylb (X, d) returns the smallest index in the dth dimen-
sion of any element of the exclusive section X owned by the invoking
processor. If no element is owned, MAXINT, the largest representable
integer, is returned. A similar routine myub (X, d) can be used to get the
upper bound. (More elaborate intrinsics would undoubtedly be helpful,
particularly if IL allows complicated array distributions such as cyclic or
block-cyclic.)

The i o w n () predicate returns t r u e i f f the processor executing it
is the owner of all elements of the named section.

T h e w r i t a b l e () (r e a d a b l e ()) predicate returns t r u e i f f the
section is R/W (either read or R/W) accessible on the calling processor. It
can be used to allow a processor to perform a background computation
while awaiting data from another processor.

The w r i t e a w a i t () (r e a d a w a i t ()) intrinsic returns f a l s e if
the section is unowned, otherwise it waits until the section becomes R/W
(either read or R/W) accessible, at which time it returns t r u e . Thus, these
a w a i t intrinsics are for synchronization.

All of the intrinsics can be implemented as a lookup into the
processor's local run-time symbol table, discussed in Section 3.1. In
addition, the synchronization intrinsics may require waiting for a state to
change.

2.4. Compute Rules

A compute rule is any expression, including uses of intrinsics, that
evaluates to t r u e or f a l s e . However, compute rules may not have side
effects other than waiting for a state to change. In particular they may not
include send or receive statements. Compute rules are used to govern
execution of XDP statements. Only if the compute rule evaluates to true
will the statement it guards be executed. 15~

Compute rules can be handled exactly like i f statements. In XDP,
compute rules are shown syntactically distinct from the other IL + XDP
statements, and side effects are prohibited, so they can be treated
separately, allowing the compiler to optimize them more easily. A typical
optimization is compute rule elimination--the removal of a compute rule

XDP: A Compiler Intermediate Language Extension 493

that is not required for synchronization and always evaluates to true.
Compute rule elimination can often be performed after the loop bounds are
adjusted so that the computation within the loop only references owned
sections.<6-8

XDP generalizes the notion of compute rule used in previous work t7'8)
by allowing general Boolean valued expressions to be used by the compiler.

2.5. S t a t e m e n t s

Statements are executed only if the compute rules guarding them
evaluate to t r u e ; in the absence of a compute rule, statements are
executed by each processor that reaches the statement.

XDP augments IL with data and ownership transfer statements. These
are either send or receive statements, and have an initiation and a subse-
quent completion. One fundamental idea behind the XDP style of
communication is that communication statements are nonblocking in the
sense that once initiated, execution can proceed without waiting for the
completion of the communication. A second key idea is that argument
section(s) of a communication statement can be used as buffers, instead of
requiring separate buffer storage. However, in order to preserve the correct
order of receive statements, prior to initiating any communication, any
outstanding receive must be completed. Prior to initiating any receives, all
outstanding sends must have completed. Multiple sends of the value of a
section can be initiated on a processor, since the section's value Will not be
changed. However, there can be only one outstanding receive of the same
section initiated on any processor. When an outstanding send or receive
completes, any synchronization intrinsic that was in the wait state can
proceed. The initiation and completion of XDP communication statements
are kept track of using the states of the argument section, further described
in Section 2.6.

We now discuss the send and receive statements in turn. Since these
operations are distinct f rom the other operations in XDP + IL, they can be
separately optimized.

2.5. 1. Send Statements

Here, E always denotes a section that is exclusively owned by the
executing processor.

Send statements come in several flavors. The statement " E - - > "
denotes the initiation of a data transfer operation in which the executing
processor sends the name and the value of E it exclusively owns to another
unspecified processor. (The name is used as a tag to associate a send with
a corresponding receive. It will be unnecessary to actually send the name

494 Carter e t al.

if either the association between sender and receiver can be made at
compile time, or if the hardware can make the association as on a shared
address space machine.) The restriction of data sends to exclusively owned
sections of variables can always be overcome by copying the value of a
universally owned section to an exclusive section. We impose the restriction
to simplify semantics; specifically, universal variables do not require
state-checking.

XDP also has statements of the form "E -- > S," where S is some set
of processor id's. This statement denotes the initiation of a set of data
transfer operations in which the executing processor sends the value and
name of E it exclusively owns to the specified processors�9 This statement
can be used with S containing only one processor id as a way for the
compiler to indicate which processor will be the recipient of the section. It
can also be used for a broadcast or multicast operation.

A novel feature of XDP is its treatment of data ownership. Ownership
in XDP is a transferable object, just as a data value can be transferred from
one processor to another through communication. (Any ownership transfer
always includes the boundaries of the section�9 The statement " E - - - - - > "
denotes the initiation of an ownership send in which the executing pro-
cessor relinquishes the exclusive ownership of E as well as its value to an
unspecified processor. The statement "E = > " indicates the transfer of only
the ownership of E, and not the value. In this case, the value is lost.

Before it initiates, any data or ownership send statement waits for all
previously initiated receives (but not sends) of the section on the executing
processor to complete, at which time the section will be in state read
accessible or R/W accessible. Upon initiation of a data send, the section is
put in state read accessible; upon initiation of an ownership send the
section is put in state unowned. Sends are nonblocking in the sense the
current send does not have to complete in order for execution to continue.
Upon completion of the data send, the section is put in state R/W
accessible. Figure3 summarizes the state transition rules for XDP
statements.

There are various uses that can be made of XDP's ability to transfer
ownership. First, when ownership of a section is transferred out of a pro-
cessor, the storage it had occupied can be reused for a newly acquired sec-
tion. (In the case of a " - -- > " operation, the storage is not reclaimed until
the data transfer is completed.) This conserves address space and reduces
paging. Second, it provides a wealth of possibilities for redistributing
computation among the processors. Normally, one implements load
balancing by migrating processes between processors. However, in XDP,
load balancing can be implemented by migrating ownership of data while
still running the same SPMD program on each processor. Since ownership

XDP: A Compiler Intermediate Language Extension 495

STATEMENTS
X ->

X = >
X -=>

X<-Y

X <=

X <=-

=X

X=

INTI~INSICS

iown

readable

writeable

readawait

writeawait

Error
Error
Error
Error

T

T

STATE OF X

Wait R
Wait U
Wait U

Wait Wait
Error Error
Error Error

R

U

U

T

Error
Error

false true true true

false false true true

false false false true

false Wait true true

false Wait Wait true

Initiation Complelion

i - - - i
- .<- i

~ 1 7 6 1 7 6 ,,<=:

i '~ ' i [f.--i

I I"
. .ol . . ,
' , = > 1 : -=>"

�89 acoessiblq
r l

,,->: : ->,
, . . . J , , . . . J

I
I./w ar162 I"

,, => ,,
:-=>:
" ' T ' "

t i
: <= ~---

!5-.-!

Fig. 3. State transition rules.

496 Car ter e t al.

dictates which SPMD program statements are executed by each processor,
the ability to transfer data ownership allows the computation done on each
processor to be altered dynamically without migrating any code. Thirdly,
it opens up the possibility of new uses. For instance, a debugger could
allow the user to input an ownership transfer command that moves
exclusive ownership of a variable (and hence the permission to execute'
certain SPMD code segments, such as a print command that outputs the
value of local data structures to the user's screen) from one processor to
another. Thus, processors can be selectively monitored by simply transfer-
ring ownership of this variable.

2.5.2. Receive Statements

Here, X always denotes an exclusive section (but not necessarily one
owned by the executing processor p), E always denotes a section
exclusively owned by p, and U denotes an exclusive section, no element of
which is owned by p.

The statement "E < -- X" denotes the initiation of a data receive opera-
tion, in which the executing processor assigns to the variable E the received
value of X. XDP restricts the left-hand side of a receive statement to an
exclusive section so that the run-time symbol table need not contain entries
for universally owned variables. "U < = - " denotes the initiation of an
ownership and value receive from an unspecified processor, in which the
executing processor accepts the exclusive ownership and value of U. The
statement "U < = " indicates the initiation of only the receipt of ownership
of U, and not the value of U.

Any statement of the form "E < -- X" waits for all outstanding sends
and receives of E to complete before it initiates; upon initiation, the state
of E becomes R/W accessible. For an ownership receive, there shouldn't be
any outstanding sends or receives of the section, since as previously stated,
the section cannot be received unless all elements are previously unowned.
Thus at initiation of an ownership receive, it is an error if the section is not
in state unowned. Upon .initiation of a receive, the section is put in state
transitional. Receives are also nonblocking. Upon completion of any
receive, the section is put in state R/W accessible.

It is legal to have several procesors initiate receive statements for the
same section concurrently. To simplify the run-time procedures needed to
support XDP communication, a particular compiler may choose not to use
this construct. However, it can be used to advantage, for instance to
facilitate load balancing. This could be accomplished by having the owner
of a particular variable initiate a sequence of sends of values of the
variable, each value representing a certain job to be performed. Meanwhile,
any processor that was otherwise idle could initiate a receive of that

XDP: A Compiler Intermediate Language Extension 497

variable, and then perform the indicated job. Depending on the load at
run-time, there might be multiple outstanding sends or outstanding
receives.

2.6. S ta tes of a Sect ion

XDP enforces the restrictions mentioned above by assigning a state to
each section.

Figure 4 shows the effects of the XDP statements on the states of the
referenced section. The table shows which states are legal for the different
language constructs. Execution of a transfer statement is the initiation of
the communication; the table shows which state is entered upon initiation.
Completion of communication occurs asynchronously sometime later. The
state transition indicates which state is entered upon both initiation and
completion of each legal statement.

The table entries labeled "wait" mean that the statement is not
initiated until the section enters the R/W accessible state, and then begins
execution. For instance, if a "X < - Y" statement is encountered while X is
read accessible, the statement waits until the outstanding send is
completed, then the receive is initiated (which leaves X in the transitional
state.)

E - >
E -> S
E =>
E < - X
U <=
E =
- - E

S T A T E M E N T S
Use of E, Use and Def of E.state
Use of E, Use and Def of E.state
Use of E, Use and Def of E.state
Def of E, Use and Def of E.state
Use and Def of U.state
Def of E, Use of E.state
Use of E, Use of E.state

r n y p i d
m y l b (X , d)
m y u b (X , d)
i o w n (X)
r e a d a b l e (X)
w r i t a b l e (X)
r e a d a w a l t (X)
w r i t e a w a i t (X)

I N T R I N S I C S
Use of mypid
Use of X.state and d
Use of X.state and d
Use of X.state
Use and Def of X.state
Use and Def of X.state
Def of X.state, Use of all .state's
Def of X.state, Use of all .state's

Fig. 4. Data flow effects of XDP constructs.

498 Carter e t al.

U C)
0 ~ 0 ~

 ,= ili iil
�9 ~ I i i i

ill i=~i~i=i~i~

!:!:i~i~i:i!ii~i[iii::!ii! i

~! ~ ~
II

0 ~ H

N O

-N

I.i

r4
o @

i
s

P4
X

0

! i

!=
P~ <<J:

~c
c ~ ' , "

0

"8
E

XDP: A Compiler Intermediate Language Extension 499

The value of a transitional section is undefined, and an error could
occur if the value of a read accessible variable were to be changed.
Nevertheless, XDP does not automatically check the state of a variable at
run-time; instead, the state must be explicitly checked by calls to the
appropriate intrinsics. For most types of statements, there is an intrinsic
'which determines whether the statement is legal, and there are also
intrinsics that can be used as compute rules to ensure an error will
not occur. For instance, an assignment into a variable X is safe if and
only if w r i t e a b l e (X) returns true. Similarly, the statement
w r i t e a w a i t (X) : {X=3} cannot cause an error.

One way to ensure that a section is not referenced illegally is to
precede each statement with the appropriate intrinsics. As we will see later,
optimizations can remove unnecessary run-time checks. Assuming a proper
translation of the source program into IL + XDP and valid optimizations
(ones that never produce code that could evoke the E r r o r condition)
assignments and uses to exclusive variables can proceed without the
run-time overhead of checking the variables' states. (However, it would be
a good idea to have run-time checks in place while developing the
compiler.)

The rationale for some of the details of XDP is to allow the compiler
to manage send and receive buffers explicitly. Another point is that
ownership sends can proceed even if there are outstanding value sends.
However, we decided to disallow ownership sends while .there are
outstanding receives. This decision was made to avoid the run-time
complication of having to forward received values of sections that are no
longer owned.

3. RUN-TIME STRUCTURES

While XDP language constructs are designed to be used by a
compiler, it is entirely p.ossible that the compiler will not be able to remove all
ownership or accessibility tests, and so 2 own, r e a d awa % t , w r 2 t e awa 2 z,
r e a d a b l e , and w r i t e a b l e predicates may need to be evaluated at
run-time. In addition, ownership transfers result in run-time changes in
ownership and so may need to be tracked at run-time. To support this, the
XDP methodology supplies a run-time, per-processor symbol table for
exclusive sections, discussed in detail in the next section.

The XDP language constructs allow ownership transfers to occur at
the granularity of a single element. However, for efficiency's sake, a
compiler may use a coarser granularity of ownership transfer. We illustrate
this with the use of segments.

828/22/5-2

500 Carter et al.

Whether the symbol table is simple or complex depends on such
choices as whether the number of processors is fixed and known at
compile-time, and what partitioning of arrays into sections are allowed.
These choices also affect what optimizations can be performed. In our
examples, we assume a fixed, known processor grid and partitioning as
allowed in HPF. t9)

3.1. Symbol Table

An important structure required for incorporating the XDP method-
ology is the symbol table. The XDP symbol table structure is used at
compile-time by the compiler, as well as at run-time by all the processors
that execute the output SPMD code. Each processor must maintain and
update its own local copy of the XDP symbol table structure at run-time,
unless all uses of the table have been optimized away. In contrast to a
compiler's symbol table, the run-time XDP symbol table only contains
information about exclusive sections.

Figure 5 illustrates the XDP symbol table structure for two
array variables A [l : 4 , 1:8] and B [l : 1 6 , 1 : 1 6] , partitioned over 4
processors, which are assumed to be indexed as a 2 x 2 processor grid.
Each exclusive variable has a symbol table entry. The symeab i ndex ,
symbol name, rank, and g l o b a l shape fields are self-explanatory. The
partitioning field indicates the partitioning scheme of the array. The
partitioning scheme, together with the shape of the processor grid, are used
by the compiler and the XDP run-time system to determine ownership of
array sections. The last two fields of the XDP symbol table are shaded dark
in Fig. 5, to indicate that these entries are filled in only at run-time.

For efficiency's sake, the compiler can logically divide each processor's
local partition of an array into segments of a size and shape chosen by
the compiler. A processor can transfer the ownership of each segment
individually. The last three fields of the symbol table describe the parti-
tioning. They specify how many segments comprise the processor's
partition, the shape of each segment (which must have the same rank as
the array variable), and finally an array of segment descriptors, which
record, for each segment, the array elements contained in the segment and
the current state (unowned, transitional, read accessible or R/W
accessible). In our implementation, the segment descriptor data struc-
ture is declared as:

struct SegmentDesc {
int state; /* accessibility state */
int Ibound[rank]; /* lower bound indices */

XDP: A Compiler Intermediate Language Extension 501

int ubound[rank]; /* upper bound indices */

int strideErank]; /* strides */

... /* other relevant info */

long segptr; / * pointer to segment * /

} segdesc [#segments];

Either at the start of program execution or dynamically, each
processor allocates local storage for its segments in contiguous chunks
whose sizes are determined by the s e g m e n t s h a p e field. The number of
such segments allocated depends on the number of array elements the
processor owns. Figure 6 illustrates two different partitioning schemes for a
4 x 8 array, and for each partitioning scheme, two possible logical segmen-
tations a re shown.

The use of segments allows the pipelining of a transfer of a section,
either ownership or data. A processor can transfer each segment
individually, requiring only enough synchronization to ensure that the
transfer is legal in XDP. In many cases, this can effectively reduce the total
time by allowing a processor to overlap one segment's transfer with
computation on another segment. This will be illustrated in the 3-D FFT
example.

If the code running on a processor executes an •) intrinsic at
run-time, the symbol table entry for the array variable named in the query
is used as follows. The section described in the query is intersected with all
the segment bounds corresponding to the named array variable. If the
union of all the results is equal to the queried section, and no segment that

(,,)

(b}

1 2 3 4 5 6 7 R

P I !::i~i!!~i!i!i!i!i!ii!!!!!~ 5 , ~ , s , 7 ,

3 2

4 P2 P4

DlSl~ZBUTION = (BUOCK,DLOCK) 2XI , ,ogmontod 2x2 g~lTmont~!
PROCESSORS = (2,2)

I ~. 3 4 5 6 7 9 3 7 3 7

, , N, H, :NB ,N
, I I I ,

DISTRIBUTEON z (',CYCLIC)
PROCESSORS = { i, 4)

Fig. 6. Example distributions and local segmentations of a 4 x 8 array C, shown for
processor P3.

502 Carter e t al.

has a non-null intersection is unowned, then the iown() query returns
true. Otherwise it returns false. For example, consider an array
C [1 : 4 , 1 : 8] , distributed as (BLOCK, BLOCK) over a 2 x 2 processor
grid, and 2 x 1 segmented (as shown in Figure 6(a)). Suppose processor P3
executes the operation iown (C [1 . 5 : 7]) . Intersecting the bounds of the
section (1 ,5 : 7) with the bounds of the four 1 x 2 segments owned by P3
yields: { (1 , 5) , (1 , 6) , (1 , 7) , n u l l } . The union of these is (t , 5 : 7) ,
which is equal to the section specified in the iown () query. Now, if none
of the non-null intersecting segments are unowned, the operation returns
t r u e , and it returns f a l s e otherwise. (Although the algorithm we
described for evaluating iown () involves examining the entire segment
descriptor array, more efficient algorithms could be developed.) The intrin-
sics r e a d a b l e and w r i t e a b l e are handled similarly by consulting the
appropriate symbol table entry, r e a d a w a i t and R/W a w a i t might
involve waiting for the s t a t e field of the symbol table entry to be changed
due to the completion of an outstanding communication.

When any send or receive is initiated or completed on a segment, the
s t a t e field of the segment needs to be updated as well. When any
ownership transfer is initiated, the processor must update the s e g m e n t
d e s c r i p t o r fields of its symbol tables to reflect the data that are currently
owned. The p a r t i t i o n i n g field may need to be updated as well.

We have chosen not to supply in the XDP methodology a mechanism
for determining the id of the processor that owns an arbitrary section at
run-time. A compiler using the XDP methodology could itself provide such
a mechanism. If such information is unavailable at compile-time and needs
to be repeatedly computed at run-time, techniques r can be used to
improve efficiency. Note, however, that it may be unsafe to compute owner
information on an array that is undergoing incremental ownership transfer,
until the transfer of all segments has been finished.

4. AN EXAMPLE: 3-D FFT

We now illustrate a use of XDP, using a 3-dimensional Fast Fourier
Transform (3-D FFT) application as an example. The 3-D F F T code
considered here operates on an array A [1 : N, 1 : N, 1 : N] which is initially
distributed as (, , . . BLOCK) over a linear array of processors. The 3-D
algorithm employs a 1-D FFT routine, f f t l D () , that is successively
applied along each line of the second dimension of the array, then the first
and finally the third dimensions to compute the 3-D FFT. The initial
(. , , . BLOCK) distribution of the array allows the first two dimensions to
be handled with no interprocessor communication. The array is then
redistributed to a (. , BLOCK, .) scheme in order that the I-D F F T along

XDP: A Compiler Intermediate Language Extension 503

the third dimension can be done independently on each processor without
communication.

The following programs illustrate the steps involved in the translation
and optimization of the FFT program. The program in Fig. 7 is an SPMD
Program with H P F directives for the distribution and redistribution. We
remark that such a program could also have resulted from a F O R T R A N
program without H P F directives. The compiler could use known techni-
ques (1-3) to automatically determine a good distribution and redistribution.

This program could execute in SPMD mode on each processor by
copying all the data and ignoring the directives. However, having all the
processors do all the work is not an efficient way to execute a program.
The IL + XDP program in Fig. 8 shows a straightforward translation of the
initial program using the owner-computes rule.

C Distribute A as (*,*,BLOCK)

!HPF$ DYNAMIC A

!HPF$ DISTKIBUTE A(*,*,BLOCK)

C Phase1: 1-D FFT in the j direction

do k = I, N

do i = i, N

fftlD(A[i,*,k])

enddo

enddo

Phase2: I-D FFT in the i direction

dok= I, N

doj = 1, N

fftlD (A [*, j ,k])

enddo

enddo

C Phase3: Redistribute A as (*,BLOCK,*)

!HPF$ REDISTRIBUTE A(*,BLOCK,*)

Phase4: I-D FFT in the k direction

doj = I, N

do i= I, N

fftlD(A[i,j,*])

enddo

enddo

Fig. 7. SPMD program with HPF directives.

504 Carter e t al.

C Distribute A as (*,*,BLOCK)

do k =-I, N

do j = I, N

do i = I, N

iown(A[i,j,k]): {A[i,j,k] -=>}

enddo

enddo

enddo

BS = ceiling(N/numprocs)

mylo = mypid*BS+l

myhi = min(N,mypid *(BS+I))

A[*,*,mylo:myhi] <=-

C Phasel: I-D FFT in the j direction

dok= i, N

do i= I, N

writeawait(A[i,*,k]): {fftlD(A[i,*,k])}

enddo

enddo

C Phase2: I-D FFT in the i direction

do k = i, N

do j = I, N

writeawait(A[*,j,k]):{fftlD(A[*,j,k])}

enddo

enddo

C Phase3: Redistribute A as (*,BLOCK,*)

A[*,*,mylo:myhi] -=>

A [*,mylo:myhi,*] <=-

C Phase4: 1-D FFT in the k direction

doj = I,N

do i= I, N

writeawait(A[i,j ,*] :{fftlD(A[i,j ,*])}
enddo

enddo

Fig. 8. Ini t ia l IL + X D P program.

XDP: A Compiler Intermediate Language Extension 505

Translation of the initial distribution of A is general: the elements of
A could reside on any processor, and thus no initial knowledge of the
ownership of A is assumed. However, if there is analysis that determines the
prior distribution as in Ref. 11, simpler code for ownership sends can be
generated.

A typical optimization step is achieved by adjusting the outer loop
bounds so that each processor only does those iterations for which it owns
the data. In our example, in Phasel, the compiler can determine that when
k is not between mylo and myhi , the w r i t e a w a i t will evaluate to false,
allowing the inner loop to be eliminated for those values of k. The
improved code segment is shown here.

C Phasel: I-D FFT in the j direction

do k = mylo, myhi

do i = I, N

wri~eawait(A[i,*,k]): {fftlD(A[i,*,k])}

enddo

enddo

Phase2 and Phase4 benefit from similar optimization. Phase2 allows
the added optimization of eliminating the w r i t e a w a i t compute rule
altogether. This is a consequence of two considerations: when
w r i t e a w a i t returns, it always has the value t r u e since the loop bounds
have been adjusted appropriately, and no synchronization is needed since
there is no intervening communication after Phasel made sure the data are
R/W accesible. The resulting code for Phase2 is:

C Phase2: I-D FFT in Zhe i direczion

do k = mylo, myhi

do j = I, N

fftlD(A[*,j ,k])

enddo

enddo

The Redistribute in Phase3 relies on the run-time system to figure out
which sections of A get moved to which processors. However, some of this
work can be done at compile time. First, the data can be partitioned into
sections so that each processor sends only one section to each other
processor. The variables j l o and j h i are introduced to bound the
columns that need to be sent, and similarly k l o and k h i delimit the da ta
being received. Second, some of the ownership transfers are redundant,
namely those sent and received from a processor to itself. These can be

506 Car ter e t al.

eliminated by inserting tests into both the send and receive loops. The
results are as shown:

C Phase3: Redis~ribuCe A as (*,BLOCK,*)

do idto = O,numprocs-i

jlo = idto*BS+l

jhi = min(N,idto*(BS+l))

if (idto.ne.mypid) A[*,jlo:jhi,mylo:myhi] -=>

enddo

do idfrom = O,numprocs-I

klo = idfrom*BS+l

khi = min(N,idfrom*(BS+$))

if (idfrom.ne.mypid)A[*,mylo:myhi,klo:khi] <=-

enddo

Even with the improvements mentioned earlier, the program must
complete Phase2 before beginning the redistribute operation. An extremely
aggressive optimizing compiler might arrange for the ownership transfer to
be "pipelined" so that as sections are computed in Phase2, the appropriate
sends and receives are initiated. This would allow overlapping communica-
tion with computation. A substantial amount of reorganization is required
to realize the benefit of such pipelining. Standard optimizations like loop
fusion are needed, as well as more advanced transformations. In particular,
it would be undesirable for all the processors to flood processor.0 with
results, then inundate processor 1, and so on. More balanced communica-
tion results if processor • first computes and transfers the data that goes
to processor • then • and so on. The entire program shown in Fig. 9
illustrates pipelined communication. (We remind the reader that the
purpose of this paper is to present a language in which various code
improvements can be expressed. We do not wish to imply that we know
how to find all such improvements automatically!)

Finally, we mention an interesting question that arises concerning the
optimization of await instructions. It is possible for the compiler to move
the w r i t e a w a i t in Phasel (or similarly for Phase4) out of the inner loop,
as shown here:

C Phasel: I-D FFT in the j direction

do k = mylo, myhi

writeawait(A[*,*,k]) : {

do i= I, N

fftlD(A[i,*,k])

enddo
}

enddo

XDP: A Compiler Intermediate Language Extension

C A is distributed as (*,*,BLOCK)

do k = i, N

do j = I, N

do i = I, N

iown(A[i,j,k]): {A[i,j,k] -=>}

enddo

enddo

enddo

BS = ceiling(N/numprocs)

mylo = mypid*BS+l

myhi = min(N,mypid *(BS+I))

A[*,*,mylo:myhi] <=-

C Phasei: i-D FFT in the j direction

do k = mylo, myhi

do i = i, N

writeawait(A[i,*,k]): {fftlD(A[i,*,k])}

enddo

enddo

C Phase2~3: FFT in the i direction and redistribute

do distance = O, numprocs-i

idto = mod(mypid+distance,ntunprocs)

jlo = idto*BS+l

jhi = min(N,idto*(BS+l))

do k = mylo, myhi

do j = j l o , j h i
f f t l D (A [* , j ,k])

enddo
enddo
if (idto.ne.mypid) A[*,jlo:jhi,mylo:myhi] -=>

idfrom = mod(mypid-distance,numprocs)

klo = idfrom*BS+l

khi = min(N,idfrom*(BS+l))

if (idfrom.ne.mypid) A[*,mylo:myhi,klo:khi] <=-

enddo

C Phase4: I-D FFT in the k direction

do j = mylo, myhi

do i= i, N

writeawait(A[i,j,*]): {fftlD(A[i,j,*])}

enddo

enddo
Fig. 9. Pipelined IL + XDP program.

507

508 Car ter et al.

In fact, the writeawait could be moved outside of the outer loop
also. There is a trade-off involved in such motion. By reducing N calls to
w r i t e a w a i t on small sections of data by one call on a larger section,
there may be less overhead. On the other hand, leaving w r i t e a w a i t
inside a loop may allow operations to proceed that might otherwise have
to wait for the arrival of larger sections of data. Thus, whether such code
motion is profitable depends on implementation considerations.

5. ANALYSIS AND OPTIMIZATION

Compiler optimizations that affect data movement and ownership
issues can be represented as transformations to the IL + XDP code. Some
of these optimizations fit naturally into the framework of traditional
optimizing compilers for sequential languages. We will illustrate this by
first describing how data flow analysis of IL + XDP can be performed, and
then showing how some optimizations can proceed using this information.

Other optimizations, particularly those that redistribute ownership
among the processors, require more advanced techniques. An example
would be, in the FFT section, the change of communication order when
Phases 2 and 3 were combined. Such optimizations need more information
than is provided by traditional data flow analysis, both to identify what
transformations are legal, and also which are desirable. While these trans-
formations are perhaps the most interesting, they are also beyond the scope
of this paper. The point we wish to make here is that XDP is designed to
facilitate the incorporation of optimizations that have been developed for
both data-parallel and message-passing languages.

5.1. Analysis

To support the more traditional optimizations, our approach is to
analyze the program tha t is run on one of the processors without instan-
tiating the value of mypid . This analysis will therefore be valid for all
processors. Data and ownership transfers, as well as calls to the intrinsics,
are treated as calls to a run-time library. The data flow effects of these calls
are determined by the semantics of the library routines. Given this informa-
tion, data flow analysis can proceed using standard techniques. ~2) This
analysis determines the def, use, and refinformation for each section at each
statement of the program, where def means the statement assigns a new
value to the section, use means the statement uses the section's value, and
a ref is either type of reference. Finally, optimizations can be performed
using the data flow information.

XDP: A Compiler Intermediate Language Extension 509

The data flow effects of the XDP constructs are determined by details
of the run-time library. XDP allows some flexibility in the implementation
of these routines. In particular, correct IL + XDP programs should not use
(def) a variable after a receive (send) has been initiated but before the state
has been checked with a call to an appropriate intrinsic. Thus, a correct
program will behave identically independent of when, within this range, the
transfer occurs or when the variable's state changes from transitional (read
accessible) to R/W accessible occurs. Because of this, we can choose the
operational semantics (which are used to derive to data flow effects of the
run-time library) to be different from the actual implementation. We do so
to enhance the optimization opportunities.

To this end, the operational semantics model execution by a single
machine M that simulates all the processors. M runs the code of processor
p until it encounters a synchronization intrinsic (readawait or
w r i t e a w a i t) , at which point it switches execution to other processors'
code before returning to further simulation of p's code. During the course
of executing p's code, M uses and updates p's run-time symbol table, in
particular the state field of each exclusive section. Notice that, except at
synchronization points, the only references to the symbol table (or any
other variable) are the explicit actions of the simulated operations. Thus,
the operational semantics (unlike the actual implementation) has no
asynchronous communication or state changes.

The data flow effects for the various I L + X D P constructs are
summarized in Fig. 4 and described later in more detail.

For each exclusive section E of the program, the compiler introduces
a new variable, E. s t a t e , to represent the state field of the per-processor
symbol table information for E. (Since sections of exclusive variables can
overlap, uses and defs of E. s t a t e also affect other symbol table entries.
Data access descriptors ~'3) or regular section descriptors ~ ~4~ are appropriate
techniques for summarizing these effects.) Whenever E is referenced in the
program, it is a use of E. s t a t e , since M must consult E. s t a t e to deter-
mine if the section's state is valid for the operation. Additionally, any
reference to E that has the potential of changing E's state is a def of
E. s t a t e . This includes all sends and receives, as well as the some of the
intrinsics.

When a synchronization intrinsic is encountered, M may query what
transfers have been initiated in order to determine which other processors
can proceed. Thus, the two synchronization intrinsics must be considered
to be uses of all symbol table entries. (These uses can prevent an optimiza-
tion from changing the set of pending transfers that reach a synchroniza-
tion intrinsic. This prevents optimizations from introducing deadlock.) The
r e a d a b l e (X) and w r i t e a b l e (X) intrinsics must also be treated as

510 Carter et al.

possible defs o fX. s t a t e , giving M an opportunity to change X. s t a t e to
R/W accessible.

The statement E -- > is a use orE and E < -- X is a d e f o f E . That is,
we consider the data transfer to occur at the transfer statement, even
though the E remains in state read accessible or transitional until the
corresponding intrinsic is executed.

Figure 4 omits the entries for " - = > " and " < = - " since these are
obtained by combining the effects of the data and ownership transfer
operations listed. Also, a guarded IL + XDP statement "g :{ S}" is treated
as "if g then S".

There are a number of enhancements to this basic data flow informa-
tion that might be helpful for some optimizations. First, data flow analysis
techniques for computing def-use chains and similar information make a
distinction between preserving defs, which retain currently-live defs, and
killing defs, which kill all reaching defs. When E's ownership is transferred,
it can be considered to be a killing def of E. s t a t e , since E. s t a t e is
always set to unowned. The defs in the intrinsics are preserving defs;
for instance, r e a d a w a i t (E) will leave E. s t a t e unchanged if it was
unowned or read accessible, but change state transitional to R/W
accessible.

Second, it is useful for the compiler to derive other information as
well. Ideally, the compiler attempts to determine the distribution of
ownership of all sections at each point in the program. Additionally, it can
keep track of the source or target of a receive or send statement. This infor-
mation may be present in the original program (for instance, the H P F
redistribute statements in our FFT example), or derivable by suitable
analysis techniques (such as reaching decompositions analysis t~) . Such
information can be used by optimizations that redistribute the data and
computation, and to bind the XDP communication primitives to efficient
object code.

Finally, analysis of the parallel execution order 115-19~ can yield more
precise information about which communications statements can be reor-
dered without introducing deadlock or other errors. This information can
be represented by removing some of the uses of state variables at certain
occurrences of synchronization intrinsics.

5.2. Opt imizat ion

In this section, we illustrate how traditional optimization techniques
can be applied to the XDP constructs, resulting in some of the code
improvements illustrated in the earlier examples.

XDP: A Compiler Intermediate Language Extension 511

5.2.1. Loop Fusion

From Ref. 20, loop fusion for two adjacent do loops Lz and L 2 with
the same loop bounds is valid if[there are not statements $1 eL~ and
$2 e L2 such that there is a ref-ref dependence from S~ on iteration i~ to $2
on iteration i2 with il > i 2. This criterion must be applied to both the
variables of the original program and to the compiler-created state entries.
This criterion is strong enough to fuse simple cases, such as the following:

do k = mylo, myhi

A [*,*,k]= foo (k)

enddo

do k = mylo, myhi

A[*,* ,k] -=>
enddo

Applying loop fusion to these adjacent loops would yield:

do k = mylo, myhi

A[*,*,k]= foo(k)

A [* ,* ,k]-=>
enddo

This transformation allows a simple pipelining effect, where the value
can be sent as soon as it is produced.

5.2.2. State Analysis and Optimization

It is possible for some unnecessary calls to XDP intrinsics to be
eliminated or simplified by optimizations, particularly if the compiler
performs constant propagation on the state variables. For instance, a
straightforward translation of source code to I L + X D P might produce
code fragments such as:

iown(A) : {

A <-Y

readawait(A) : {B = A+I}

writeawait(A) : {A = 5}
}

Within the scope of the iown (A) compute rule, A. s t a t e cannot be
unowned. Thus, the two await statements are certain to evaluate to t r u e ,
allowing conditional branches to be eliminated. This change is reflected in
the IL + XDP code as:

512 Carter et al.

iown(A) : {
A<-Y

readawai~ (A)

B = A+I

wri~eawait (A)

A=5
}

Summary information derived from Fig. 3 shows that the A < -- state-
ment will leave A. s t a t e transitional and the r e a d a w a i t (A) will change
it to R/W accessible. This should enable the compiler to eliminate the
w r i t e a w a i t intrinsic entirely, leaving:

iown(A) : {

A <-Y

readawait (A)

B = A+I

A=5
}

Similarly the occurrence of iown (A) might be eliminated if for all defs
of A . s t a t e that reach the i own(A) , A . s t a t e cannot be set to state
unowned.

Other methods for identifying redundant synchronization appear in
Refs. 21-24.

5.2.3. Compute Rule Elimination

Compute rule elimination has been used by distributed address space
compilers such as in Refs. 4, 7, and 8, to speed up SPMD programs. Given
knowledge of data placement, the compiler can sometimes adjust the
bounds of a loop so that a processor will execute only those iterations
whose data are local to the processor. For example, consider the simple
owner-computes example in Section 2.2. Assume A and B are distributed as
blocks of size BS, where n = n u m p r o c s , B S . The compiler can split the
original loop (do i = l . n) into loops with three disjoint ranges (1 to
mylo -- 1, mylo to myhi , and m y h i + l to n) using index set splitting. 125~
Then the compiler can eliminate the first and third loops by dead code
elimination, resulting in the following code:

mylo = BS*mypid
myhi = BS*mypid+BS-i

XDP: A Compiler Intermediate Language Extension 513

do i = mylo, myhi

iown(B[i]) : { B[i] -> }

iown(A[i]) : {

T[mypid] <- B[i]

readawait (T [mypid])

A[i] = A[i] + T[mypid]
}

enddo

Further analysis and optimizations might now eliminate the two iown
compute rules since they always evaluate to t r u e , replace the now-adja-
cent send and receive of]3 [i] by the assignment "T [mypid] =B [i] ", and
remove the r e a d e w a i t since the section T [mypid] is certain to be in
state R/W accessible. The resulting code would be:

do i = mylo, myhi

T[mypid] = B[i]

A[i] = A[i] + T[mypid]

enddo

Finally, value numbering or variable propagation could eliminate the
unnecessary T [rnypid] .

5.2.4. Optimization of Communication

Knowledge of current ownership information at each point in the
program can help to eliminate redundant communication. In the example
of Section 5.2.3, we saw that if the same processor that exclusively owns
A [i] also owns 13 [i] , then the data transfer statements can be eliminated.

Even if they cannot be eliminated, the compiler may be able to
vec tor i ze ~ the messages. In that paper, following an algorithm of Refs. 26
and 27, for a given statement, all true data dependences to the statement
are examined to determine the loop level at which messages can be
combined. In Ref. 4, message tags are inserted to mark the level of
the necessary communication for message vectorization. In XDP, the
dependences from actual transfer statements to the statement can be
examined, and the statements can actually be moved to the appropriate
loop level and combined. Suppose in our example, A and B are distributed
in blocks of the same size but not aligned. In this case, the data transfer
statements can be moved out of the loop as shown later. Note that analysis
can also determine that the writeawait can be moved as well.

514

iown(B[mylo:myhi]) : {B[mylo:myhi] -> }

iown(A[mylo:myhi]) :

{T[mylo:myhi] <- B[[mylo:myhi]}
writ eawait (T [mylo ;myhi])

do i = mylo,myhi

A[i] = A[i] + T[i]
enddo

Carter et al.

5,2.5. Other Optimizations

Many other traditional compiler optimizations (e.g., dead code
elimination, value numbering, and so on) can proceed as usual based on
the data flow information described earlier. Optimizations that affect the
order of statements (such as invariant code motion and statement
reordering) will be prohibited from moving synchronization intrinsics
across send and receive statements since the transfer statement is a def of
some section's state, and the synchronization is a use of all sections' states.
This prevents optimizations from introducing deadlock. The restriction
could be relaxed to allow optimizations that increase, but not decrease, the
set of sections for which sends and receives have been initiated. More
sophisticated analysis can allow even more aggressive code motion.

Some optimizations can only be done with knowledge of the
underlying architecture. For instance, if the communication primitives of
the underlying machine are nonblocking, then it is generally desirable to
move the XDP receive statements as early in the program as possible
(consistent with the data dependence constraints) to give the maximum
opportunity of overlapping communication with computation. However, if
the communication primitives are blocking, then the optimizations must be
careful not to introduce deadlock.

The set of optimizations on XDP code, as well as details of XDP itself,
are the subject of current research. For instance, aggregating a set of
separate data transfers into a single message can reduce overhead on some
systems. It might be desirable to allow this aggregation to be expressed in
XDP, for instance by allowing the left-hand side of XDP send and receive
statements to be a set of sections, rather than a single section.

6. C O M P A R I S O N TO OTHER I N T E R M E D I A T E L A N G U A G E S

Traditional optimizing compilers ~2) use relatively language- and
machine-independent intermediate program representations. Some IL's for
these compilers tl2) first generate load and store operations assuming an

XDP: A Compiler Intermediate Language Extension 515

infinite number of symbolic registers, and then assign these to real machine
registers. However, these compilers do not otherwise represent data move-
ment and placement between devices in an explicit manner, as done in
XDP. Lake IEs) has cited the importance of annotating programs with data
placement, and suggested its insertion into imperative languages.
Ownership transfer at the operating system level is considered by systems
such as in Ref. 29. The KSR113~ implements ownership transfers automati-
cally in hardware. A preliminary version of this paper appeared in Ref. 31.
Here, the semantics of XDP send statements has been changed so buffering
of messages is not required, states of a section have been adjusted accor-
dingly and are discussed in more detail, and a method for including XDP
primitives in data flow analysis and further details about optimization are
given.

In the remainder of this section we describe several existing IL's for
compilers developed for distributed address space multiprocessors and
compare them with XDP. These range from IL's with language- or
machine-specific representation of data transfers, to no explicit representa-
tion of data transfer, except as auxiliary data structures to the IL, to IL's
with explicit machine-independent representation of data but not
ownership transfer.

The compiler developed at Rice 132) uses a high-level language as IL:
Fortran77 with data decompositions, FORALL, and FORTRAN90 intrin-
sics such as CSHIFT, PACK, and UNPACK, and reductions such as
SUM and DOTPRODUCT. Thus the data transfer operations here are
language-dependent. The back-end compiler uses Fortran77 plus machine-
specific message-passing calls as IL. Hence at no level does this compiler
represent data and ownership transfer in a language- or machine-
independent manner.

The FortranD compiler ~41 developed at Rice uses message-tags ~4) to
indicate where communication must be inserted. Although these tags can
be moved, it seems clear they are not operations with semantics like XDP
operations, and cannot be manipulated by the compiler in the same
manner as an operation like addition.

In fact, the FortranD compiler has embraced the philosophy that
program analysis should come first and drive code generation, rather than
inserting guards and element-wise messages and then performing optimiza-
tion to obtain more efficient code. ~4~ For example, by manipulating only
Fortran77 code, there is no possibility of introducing deadlock. This style
of compilation is compatible with XDP in that compute rules and transfer
operations need not be initially generated. While we agree that initial
program analysis is both necessary and beneficial, we also believe that
unless there is a direct representation of data and ownership transfer at the

828/22/5-3

516 Carter et al.

right level, the compiler will have a more difficult job of manipulating these
operations. Allowing their representation as in XDP might afford this
compiler greater opportunities for optimization, particularly in getting
beyond the owner-computes rule.

The Kali system t33) calculates send and receive sets like FortranD but
they are not" represented as operations.

Several existing distributed address space compilers represent data
transfer in a language- and machine-independent manner. The SUPERB
system ~6~ generates general EXchange Send and Receive (EXSR)
statements to communicate overlaps, Similarly, Rogers and Pingali ~s) insert
send and receive operations from an abstract message-passing machine
model into their IL. Callahan and Kennedy ~7) insert general load and store
operations before actual communication generation. Crystal t34) generates
communication actions prior to analyzing specific communication patterns.
None of these represent ownership transfer operations in the manner
suggested by XDP.

7. C O N C L U S I O N S A N D F U T U R E W O R K

The XDP methodology has been designed to give the compiler the
power to manipulate data and ownership transfer. We have given rules
governing the use of its constructs; the compiler must supply adequate
synchronization to satisfy these rules. Coherence and freedom from
deadlock must also be ensured by the compiler.

The key ideas behind the XDP methodology are its separations of
data transfer from local computation, its nonblocking semantics to allow
overlapping of communication with computation, and its unified treatment
of data and ownership transfer. In addition, XDP offers the compiler a
convenient platform for doing optimizations involving data movement by
providing mechanisms for delayed communication binding and generating
generalized compute rules. A run-time symbol table allows XDP to be
implemented as an extension to a compiler's intermediate language.

We have given here some optimizations which use the explicit
representation of data and ownership transfer in XDP. Future work lies in
the development of further optimizations and their evaluation.

While XDP has been designed with distributed address space
machines in mind, future work will include the application of its key ideas
in more general contexts. In particular, we would like to use it to optimize
data transfers across different levels of a memory hierarchy.

XDP: A Compiler Intermediate Language Extension 517

ACKNOWLEDGMENTS

We would like to thank Manish Gupta for participating in several
discussions with us and also helping us with a preliminary implementation.
We are also grateful to Fran Allen, David Culler, Guang Gao, Dave
Gelernter, Dirk Grunwald, Franqois Irigoin, Kathy Knobe, Piyush
Mehrotra, Sam Midkiff, Anne Rogers, Randy Scarborough, Edith
Schonberg, Harini Srinivasan, Guy Steele, Hans Zima, the PPoPP93
program committee, and the referees for their input. A preliminary version
of this paper appeared in PPOPP93.

REFERENCES
I. M. Gupta and P. Banerjee, Automatic data partitioning on distributed memory multipro-

cessors, Proc. of the Sixth Distributed Memory Computer Conf. (DMCC6), Portland,
Oregon (April 1991).

2. M. Gupta and P. Banerjee, Demonstration of automatic data partitioning techniques for
parallelizing compilers on multicomputers, IEEE Trans. on Parallel and Distributed
Systems (April 1992).

3. K. Knobe, J. D. Lukas, and G. L. Steele, Jr., Data optimization: allocation of arrays
to reduce communication on SIMD machines, J. of Parallel and Distrib. Comput.
(8):102-118 (1990).

4. Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng, Compiling Fortran D for
mired distributed-memory machines, Comm. of the ACM, 35(8):66-80 (August 1992).

5. V. Balasundaram, Translating control parallelism to data parallelism, Fifth SIAM Conf.
on Parallel Processing for Sci. Comput., Houston, Texas (March 1991).

6. H. P. Zima, H. J. Bast, and M. Gerndt, SUPERB: A tool for semi-automatic
SIMD/MIMD parallelization, Parallel Computing 6:1-18 (1988).

7. D. Callahan and K. Kennedy, Compiling programs for distributed-memory multipro-
cessors, J. of Supercomput. 2:151-169 (October 1988).

8. A. Rogers and K. Pingali, Process decomposition through locality of reference, ACM
SIGPLAN 89 Col~ on Programming Language Design and Implementation, pp. 69-80
(June 1989).

9. HPF Forum, High Performance Fortran Language Specification, Version 1, available from
Rice University, Houston, Texas (January 1993).

10. J. Wu, J. H. Saltz, S. Hiranandani, and H. Berryman, Runtime compilation methods for
multicomputers, Proc. of the 1991 hit. Conf. on Parallel Processing, St. Charles, Illinois
(August 1991).

11. Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng, Compiler optimizations for
Fortran D on mind distributed-memory machines, Proc. of Supercomputing '91
(November 1991.).

12. A. V. Aho, R. Sethi, a n d J. D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley (1988).

13. V. Balasundaram, A mechanism for keeping useful internal information in parallel
programming tools: the Data Access Descriptor, J. of Parallel and Distrib. Comput.
(9):154-170 (1990).

14. D. Callahan and K. Kennedy, Analysis of interprocedural side effects in a parallel
programming environment, J. of Parallel and Distrib. Comput. 5(5):517-550
(October 1988).

518 Carter et al.

15. D. Callahan and J. Subhlok, Static analysis of low-level synchronization, Workshop on
Parallel and Distributed Debugging, pp. I00-111 (May 1988).

16. D. Callahan, K. Kennedy, and J. Subhlok, Analysis of event synchronization in a parallel
programming tool, ACM SIGPLAN Syrup. on Principles and Practice of Parallel
Programming, pp. 21-30 (March 1990).

17. D. Grunwald and H. Srinivasan, An efficient construction of parallel static single assign-
ment form for structured par/~llel programs, Technical Report CU-CS-564-91, University
of Colorado, Boulder (1991).

18. D. Grunwald and H. Srinivasan, Data flow equations for explicitly parallel programs,
Proc. of SIGPLAN Conf. on Principles and Practice of Parallel Programming (May 1993).

19. D. Grunwald and H. Srinivasan, Efficiently computing preserved sets, Technical Report in
preparation, University of Colorado, Boulder (1993).

20. Hans Zima and Barbara Chapman, Supercompilers for Parallel and Vector Computers,
ACM Press, Addison-Wesley (1991).

21. D. N. Jayasimha, Communication and synchronization in parallel computation, PhD.
Thesis, CSRD Report No. 819, University of Illinois, Urbana-Champaign (1988).

22. S. P. Midkiff and D. A. Padua, Compiler generated synchronization for DO loops. In
K. Hwang, S. Jacobs, and E. Swartzlander (eds.), Proc. of the 1986 Int. Conf. on Parallel
Processing, pp. 544-551 (August 1986).

23. P. L. Shaffer, Minimization of interprocessor synchronization in multiprocessors with
shared and private memory. In F. Ris and P. M. Kogge (eds.), Proc. of the 1989 Int. Conf.
on Parallel Processing, Vol. 3, pp. 138-141 (August 1989).

24. S. P. Midkiff, The dependence analysis and synchronization of parallel programs,
PhD. Thesis, CSRD Report No. 1165, University of Illinois, Urbana-Champaign
(January 1992).

25. S. Carr and K. Kennedy, Compiler blockability of numerical algorithms, Supercomputing
92, Minneapolis, Minnesota (November 1992).

26. V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer, An interactive enviroriment for
data partitioning and distribution, Proc. of the Fifth Distrib. Memory Comput. Conf.,
Charleston, S. Carolina (April 1990).

27. M. Gerndt, Updating distributed variables in local computations, Concurrency." Practice
and Experience (1990).

28. T. Lake, Distributing computations. In R. H. Perrott (ed.), Software for Parallel
Computers, Chapman and Hall, London (1992).

29. E. Jul, H. Levy, N. Hutchinson, and A. Black, Fine-grained mobility in the Emerald
system, ACM Trans. on Computer Systems 6(1):109-133 (February 1988).

30. Kendall Square Research, Technical summary, Technical report, Kendall Square Research
(1992).

31. Vasanth Bala, Jeanne Ferr/mte, and Larry Carter, Explicit data placement (xdp): A
methodology for explicit compile-time representation and optimization of data movement,
Fourth ACM SIGPLAN Syrup. on Principles and Practice of Parallel Programming,
pp. 139-149 (May 1993).

32. Chau-Wen Tseng, An optimizing Fortran D compiler for MIMD distributed-memory
machines, PhD. Thesis, Rice University (1993).

33. P. Mehrota and J. Van Rosendale, Compiling high level constructs to distributed memory
architectures, Proc. of the Fourth Conf. on Hypercube Concurrent Computers and
Applications (March 1989).

34. J. Li and M. Chen, Generating explicit communication from shared memory program
references, New York, Supercomputing 90, pp. 865-877 (November 1990).

