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The ability to represent, manipulate, and optimize data placement and move- 
ment between processors in a distributed address space machine is crucial in 
allowing compilers to generate efficient code. Data placement is embodied in the 
concept of data ownership. Data movement can include not just the transfer of 
data values but the transfer of ownership as well. However, most existing 
compilers for distributed address space machines either represent these notions 
in a language- or machine-dependent manner, or represent data or ownership 
transfer implicitly. In this paper we describe XDP, a set of intermediate 
language extensions for representing and manipulating data and ownership 
transfers explicitly in a compiler. XDP is supported by a set of per-processor 
structures that can be used to implement ownership testing and manipulation at 
run-time. XDP provides a uniform framework for translating and optimizing 
sequential, data parallel, and message-passing programs to a distributed address 
space machine. We describe analysis and optimization techniques for this 
explicit representation. Finally, we compare the intermediate languages of some 
current distributed address space compilers with XDP. 
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1. I N T R O D U C T I O N  

Many program representations used in compilers represent data movement 
and partitioning only partially, and in an implicit manner. Explicit Data 
Placement (XDP) is a methodology for the explicit representation and 
treatment of data movement and placement in a compiler. The key ideas 
behind the XDP methodology are: 

1. Explicit data and ownership transfer operations using nonblocking 
semantics. A unified framework facilitates optimization of these 
operations; in particular, the compiler can control the overlap of 
communication with computation. 

2. Language- and machine-independent representation of data 
transfer operations, allowing their incorporation into existing 
optimizations. 

3. Generalized compute rules which allow the compiler freedom to 
go beyond the "owner-computes" rule. 

4. A run-time system to support the XDP primitives. This allows 
unoptimized code to be executed, while optimizations can 
eliminate the use of calls to run-time XDP primitives or reduce 
their overhead. 

5. Delayed binding of communication primitives to the transfer 
operations. 

The XDP methodology can be incorporated into compilers that use a 
high-level compiler intermediate language in the SPMD (Single Program 
Multiple Data) execution model; the same program will be loaded onto 
every processor of the target machine that is assigned to the program. One 
common way of writing SPMD programs is with barrier synchronization; 
such synchronization can be translated in a straightforward manner to 
XDP primitives. However, optimizations on the resulting intermediate code 
might change the synchronization, yielding a less structured (but hopefully 
more efficient) program. 

While SPMD programs are commonly used in a distributed address 
space setting, the XDP methodology can also be used for compiling a 
shared address space program (either sequential or data parallel) to a 
distributed address space SPMD node program. The original shared 
address space program can be considered to be an SPMD node program 
that is replicated along with all its data on every node. The compiler can 
then use data partitioning to transform this into the eventual distributed 
address space SPMD node program desired. At present, the XDP 
methodology does not apply to languages with pointer variables. 
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The rules governing execution of XDP programs allow nondeter- 
minism and do not guarantee coherence or freedom from deadlock. While 
XDP could be used as a programming language, it has been designed for 
use by the compiler, which can use XDP's  unsafe operations with care. 
Although not discussed here, a deadlock detection mechanism in the XDP 
run-time environment might be desirable. 

Our thesis is that if a compiler is to optimize data movement,  it needs 
a methodology with the key ideas 1-5 noted earlier. The XDP operations 
and structures provide a convenient platform for this optimization. In 
subsequent sections, we give a syntax and an operational semantics for the 
XDP language constructs, outline an implementation of the data structures 
and routines to support the constructs at run-time, give an example of 
initial translation and optimization, discuss analysis and optimization, and 
compare XDP with the intermediate languages of other distributed address 
space compilers. 

2. X D P  L A N G U A G E  C O N S T R U C T S  

The Explicit Data Placement (XDP) methodology can be used to 
extend an existing compiler Intermediate Language (IL) to obtain an 
SPMD program representation. Henceforth, we will use "IL + XDP"  to 
denote a compiler intermediate language that has been extended with the 
XDP constructs and support structures. Before giving the formal definition 
of the XDP constructs, we first give some underlying assumptions and then 
illustrate some of its features with an example. 

2.1. Pre l iminar ies  

In this paper, we assume every variable is either a scalar or an array. 
(Adding structures is an easy extension, pointers would be harder.) Each 
variable consists of elements; a scalar has only a single element. 

XDP assumes the elements of all variables are distributed among 
processors: every element of a variable is either exclusively owned by a 
single processor or universally owned by all processors. (Techniques such as 
in Refs. 1-3 address the question of how the data should be distributed 
initially and redistributed during the program's execution.) It is possible to 
transfer the ownership of exclusively owned elements between processors. If 
an element is universally owned, each processor has a copy, and the values 
at each processor can be different. 

A section of a variable is either a scalar variable or some subset of an 
array's elements. The form o f  possible sections is determined by IL; in this 
paper, we assume that sections are defined by Fortran 90 triplet notation. 
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We say that a section of a variable is exclusive if every element of  the 
section is exclusively owned; a section is universal if every element is univer- 
sally owned. It is possible for one section of an array to be universal and 
another section of the same array to be exclusive. 

We say that a section of a variable is owned by a processor p if p 
exclusively or universally owns every element of the section. A section is 
unowned by p if it includes some element that is not owned by p. We 
distinguish between references to the value and to the name of a section 
of a variable. A value cannot be referenced unless it is owned by the 
processor; names in XDP statements can be any section of any variable. 

XDP language constructs include several forms of send and receive 
operations. The communication constructs all have an initiation and a 
completion to be described later. Initiation and completion are kept track 
of by a run-time mechanism that records a state for each exclusive section. 
Sends and receives, both of values and ownership, are nonblocking opera- 
tions, so communication can take place concurrently with subsequent 
operations. Thus, whenever a transfer occurs, the variable's state must be 
tested to ensure the transfer has completed. (One exception to this rule is 
that a value may be sent and then subsequently used without a state 
check.) 

In XDP an exclusive section can be in one of four states with respect 
to a given processor p: unowned by p; R~ W accessible, meaning owned by 

STATES OF A S E C T I O N  

Unowned 
(U) 

Transitional 

(T) 

Read accessible 

(R) 

RIW accessible 
(R/W) 

Some element of section is not owned 
by p. 
Entire section is owned by p and an 
uncompleted receive involving some 
element of the section has been initi- 
ated by p. 
Entire section is owned by p and an 
uncompleted send involving some el- 
ement of the section has been initi- 
ated by p. 
Entire section is owned by p and p 
has no uncompleted receives or sends 
involving any element of the section. 

Fig. 1. States of a section. 
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p, and p has no uncompleted receives or sends involving any element of 
the section; and two additional states for owned sections that have uncom- 
pleted communication. The section is transitional if p has initiated a receive 
for that section that has not yet completed; it is read accessible if p has 
initiated an uncompleted send. States of a section are summarized in Fig. 1. 

2.2. A Simple Example 

Consider the program fragment: 

do i= I, n 

A[i] = A[i] + S[i] 

enddo 

Assuming that the elements of arrays A and B are exclusively owned, 
the fragment is straightforwardly translated into the IL + XDP S P M D  
program: 

do i= I, n 

iown(B [i] ) : 

iown(A [i] ) : 

enddo 

{ B[i] -> } 
{ 

T[mypid] <- B[i] 

readawait (T [mypid] ) 

A[i] = A[i] + T[mypid] 
} 

This translation follows the "owner-computes" rule. The variable 
raypid  is an intrinsic which evaluates on each processor to a unique 
integer. XDP requires that values be received into exclusively owned 
sections, so the array T is used by each processor to receive an element of 
B. We assume processor raypid  owns the myp id - th  element of T. The 
variable i is universally owned, so each processor has its own copy of i .  

In the example, each iteration of the loop is executed on every 
processor. On a given iteration of the loop, the execution of, the first 
statement of the loop will be executed only by the owner of B [ i ] ;  this 
is insured by guarding the statement with the intrinsic predicate 
" iown  (B [ i ]  ) ."  The use of iown is an example of a compute rule, which 
can be used to guard any XDP statement. Similarly, only the owner of 
A [ i ]  will execute the second statement on any iteration of the loop. 

Following " iown  (B [ i ]  ) : " is a data transfer statement, where the 
owner of B [ i ]  sends its value to another, unspecified processor. The 
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notation " - > "  denotes the initiation of a data transfer operation in 
which the executing processor sends both the name and the value of a 
section of a variable to an unspecified processor. The statement 
"Y [mypid]  < -  B [2] " is a data receive statement, where the executing 
processor receives the message with name B [ i ] ,  putting the value into 
T [ m y p i d ] .  It is the responsibiliQr of the compiler to generate only 
programs in which all sends have matching receives. The r e a d a w a i e  ( ) 
intrinsic ensures the sum is not computed until the received value is 
available. 

Optimization can be applied by the compiler to this straightforward 
translation, based on its knowledge of ownership. For instance, if the same 
processor that exclusively owns A [ i ]  also owns B [ i ] ,  then the data trans- 
fer statements can be eliminated. Even if they cannot be eliminated, the 
compiler may be able to move them out of the computation loop and vec- 

tor i ze  14) the messages, that is, combine many small messages into one large 
message. In either case, if the loop bounds can be adjusted so that each 
reference to A [ i ]  is local, then the ownership test on the remaining body 
of the loop can also be eliminated, yielding a more efficient S P MD  
program. 

An important feature of XDP is that other strategies than 
"owner-compute" can be expressed. For instance, the compiler might deter- 
mine that it would save future communication if ownership of each element 
of the A array were moved to the same processor as the corresponding 
element of the E array. The following IL + XDP program fragment shows 
the result of this optimization: 

do i = i, n 

iown(A[i]) : { A[i] -=> } 

iown(S[i]) : { A[i] <=-} 

writeawait(A[i]): { A[i] = A[i] + S[i] } 

enddo 

Here, the " - =  > "  and " < = - "  notation indicates that both the 
ownership and value of A [2] is moved to the processor that owns 13 [ i ] .  
Only the processor that is the new owner of A[2] will perform the 
addition. 

We next discuss the XDP language constructs and their semantics, 
which are also summarized in Fig. 2. 
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N O T A T I O N  
X Any exclusive Section. 
E Exclusive section owned by p. 
U Exclusive section, no element owned 

by p. 

mypid 
mylb(X,d) 

myub(X,d) 

iown(X) 

readable(X) 

writeable(X) 

re~dawait(X) 

writeawait(X) 

I N T R I N S I C S  
Returns the unique identifier of p. 
If any element of X is owned by p, 
returns the smallest index in d th  di- 
mension, MAXINT otherwise. 
If any element of X is owned by p, 
returns the largest index in d th  di- 
mension, MININT otherwise. 
Returns t r u e  if X is owned by p, 
f a l s e  otherwise. 
Returns t r u e  if X is owned by p and 
its data  is read or R / W  accessible, 
: fa l se  otherwise. 
Returns t r u e  if X is owned by p and 
its da ta  is R / W  accessible, f a l s e  
otherwise. 
Returns f a l s e  if X is unowned by 
p, otherwise waits until X is read or 
R / W  accessible, then returns t r u e .  
Returns f a l s e  if X is unowned by 
p, otherwise waits until X is R / W  
accessible, then returns t r u e .  

E -> 

E -> S 

E => 

E -=>  

SEND S T A T E M E N T S  
Waits until E is read or R / W  acces- 
sible, then initiates send of the name  
and value of E. 
Waits until E is read or R / W  accessi- 
ble, then initiates sends of the name  
and value of E to processors specified 
by set S. 
Waits until E is read or R / W  acces- 
sible, then initiates send of the own- 
ership of E. 
Waits until E is read or R / W  acces- 
sible, then initiate send of ownership 
and value of E. 

E<-X 

U <= 

U <=- 

R E C E I V E  S T A T E M E N T S  
Waits until E is R/W accessible, 
then initiates receive of the value 
named X into E. 
Initiates receive of the ownership of 
U. 
Initiates receive of ownership and 
value of U. 

Fig. 2. Rules governing execution on processor p. 
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2.3. Intrinsics 

The first argument of an intrinsic is a name of an exclusive section, but 
it need not be owned by the executing processor. Thus, intrinsics can be 
evaluated on any processor. 

XDP assumes each processor has a unique processor id denoted 
mypid. 

The routine mylb (X, d) returns the smallest index in the dth dimen- 
sion of any element of the exclusive section X owned by the invoking 
processor. If no element is owned, MAXINT, the largest representable 
integer, is returned. A similar routine myub (X, d) can be used to get the 
upper bound. (More elaborate intrinsics would undoubtedly be helpful, 
particularly if IL allows complicated array distributions such as cyclic or 
block-cyclic. ) 

The i o w n (  ) predicate returns t r u e  i f f  the processor executing it 
is the owner of all elements of the named section. 

T h e w r i t a b l e (  ) ( r e a d a b l e ( ) )  predicate returns t r u e i f f  the 
section is R/W (either read or R/W) accessible on the calling processor. It 
can be used to allow a processor to perform a background computation 
while awaiting data from another processor. 

The w r i t e a w a i t  ( ) ( r e a d a w a i t  ( ) )  intrinsic returns f a l s e  if 
the section is unowned, otherwise it waits until the section becomes R/W 
(either read or R/W) accessible, at which time it returns t r u e .  Thus, these 
a w a i t  intrinsics are for synchronization. 

All of the intrinsics can be implemented as a lookup into the 
processor's local run-time symbol table, discussed in Section 3.1. In 
addition, the synchronization intrinsics may require waiting for a state to 
change. 

2.4. Compute Rules 

A compute rule is any expression, including uses of intrinsics, that 
evaluates to t r u e  or f a l s e .  However, compute rules may not have side 
effects other than waiting for a state to change. In particular they may not 
include send or receive statements. Compute rules are used to govern 
execution of XDP statements. Only if the compute rule evaluates to true 
will the statement it guards be executed. 15~ 

Compute rules can be handled exactly like i f  statements. In XDP, 
compute rules are shown syntactically distinct from the other IL + XDP 
statements, and side effects are prohibited, so they can be treated 
separately, allowing the compiler to optimize them more easily. A typical 
optimization is compute rule elimination--the removal of a compute rule 
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that is not required for synchronization and always evaluates to true. 
Compute rule elimination can often be performed after the loop bounds are 
adjusted so that the computation within the loop only references owned 
sections.<6-8 

XDP generalizes the notion of compute rule used in previous work t7'8) 
by allowing general Boolean valued expressions to be used by the compiler. 

2.5. S t a t e m e n t s  

Statements are executed only if the compute rules guarding them 
evaluate to t r u e ;  in the absence of a compute rule, statements are 
executed by each processor that reaches the statement. 

XDP augments IL with data and ownership transfer statements. These 
are either send or receive statements, and have an initiation and a subse- 
quent completion. One fundamental idea behind the XDP style of 
communication is that communication statements are nonblocking in the 
sense that once initiated, execution can proceed without waiting for the 
completion of the communication. A second key idea is that argument 
section(s) of a communication statement can be used as buffers, instead of 
requiring separate buffer storage. However, in order to preserve the correct 
order of receive statements, prior to initiating any communication, any 
outstanding receive must be completed. Prior to initiating any receives, all 
outstanding sends must have completed. Multiple sends of the value of a 
section can be initiated on a processor, since the section's value Will not be 
changed. However, there can be only one outstanding receive of the same 
section initiated on any processor. When an outstanding send or receive 
completes, any synchronization intrinsic that was in the wait state can 
proceed. The initiation and completion of XDP communication statements 
are kept track of using the states of the argument section, further described 
in Section 2.6. 

We now discuss the send and receive statements in turn. Since these 
operations are distinct f rom the other operations in XDP + IL, they can be 
separately optimized. 

2.5. 1. Send Statements 

Here, E always denotes a section that is exclusively owned by the 
executing processor. 

Send statements come in several flavors. The statement " E - - > "  
denotes the initiation of a data transfer operation in which the executing 
processor sends the name and the value of E it exclusively owns to another 
unspecified processor. (The name is used as a tag to associate a send with 
a corresponding receive. It will be unnecessary to actually send the name 
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if either the association between sender and receiver can be made at 
compile time, or if the hardware can make the association as on a shared 
address space machine.) The restriction of data sends to exclusively owned 
sections of variables can always be overcome by copying the value of a 
universally owned section to an exclusive section. We impose the restriction 
to simplify semantics; specifically, universal variables do not require 
state-checking. 

XDP also has statements of the form "E -- > S," where S is some set 
of processor id's. This statement denotes the initiation of a set of data 
transfer operations in which the executing processor sends the value and 
name of E it exclusively owns to the specified processors�9 This statement 
can be used with S containing only one processor id as a way for the 
compiler to indicate which processor will be the recipient of the section. It 
can also be used for a broadcast or multicast operation. 

A novel feature of XDP is its treatment of data ownership. Ownership 
in XDP is a transferable object, just as a data value can be transferred from 
one processor to another through communication. (Any ownership transfer 
always includes the boundaries of the section�9 The statement " E - - - - - > "  
denotes the initiation of an ownership send in which the executing pro- 
cessor relinquishes the exclusive ownership of E as well as its value to an 
unspecified processor. The statement "E = > "  indicates the transfer of only 
the ownership of E, and not the value. In this case, the value is lost. 

Before it initiates, any data or ownership send statement waits for all 
previously initiated receives (but not sends) of the section on the executing 
processor to complete, at which time the section will be in state read 
accessible or R/W accessible. Upon initiation of a data send, the section is 
put in state read accessible; upon initiation of an ownership send the 
section is put in state unowned. Sends are nonblocking in the sense the 
current send does not have to complete in order for execution to continue. 
Upon completion of the data send, the section is put in state R/W 
accessible. Figure3 summarizes the state transition rules for XDP 
statements. 

There are various uses that can be made of XDP's ability to transfer 
ownership. First, when ownership of a section is transferred out of a pro- 
cessor, the storage it had occupied can be reused for a newly acquired sec- 
tion. (In the case of a " -  -- > "  operation, the storage is not reclaimed until 
the data transfer is completed.) This conserves address space and reduces 
paging. Second, it provides a wealth of possibilities for redistributing 
computation among the processors. Normally, one implements load 
balancing by migrating processes between processors. However, in XDP, 
load balancing can be implemented by migrating ownership of data while 
still running the same SPMD program on each processor. Since ownership 



XDP: A Compiler Intermediate Language Extension 495 

STATEMENTS 
X -> 

X = >  
X -=> 

X<-Y 

X <= 

X <=- 

=X 

X= 

INTI~INSICS 

iown 

readable 

writeable 

readawait 

writeawait 

Error 
Error 
Error 
Error 

T 

T 

STATE OF X 

Wait R 
Wait  U 
Wait  U 

Wait  Wait 
Error Error 
Error  Error  

R 

U 

U 

T 

Error 
Error 

false true true true 

false false true true 

false false false true 

false Wait true true 

false Wait Wait true 

Initiation Complelion 

i - - - i  
- .<- i  

~ 1 7 6 1 7 6  ,,<=: 

i '~ ' i  [f.--i 

I I" 
. .ol . . ,  
' , = > 1  : -=>"  

�89 acoessiblq 
r l 

,,->: : ->,  
, . . . J  , , . . . J  

I 
I./w ar162 I" 

,, => ,, 
:-=>: 
" ' T ' "  

t . . . .  i 
: <= ~--- 

!5-.-! 

Fig. 3. State transition rules. 
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dictates which SPMD program statements are executed by each processor, 
the ability to transfer data ownership allows the computation done on each 
processor to be altered dynamically without migrating any code. Thirdly, 
it opens up the possibility of new uses. For instance, a debugger could 
allow the user to input an ownership transfer command that moves 
exclusive ownership of a variable (and hence the permission to execute' 
certain SPMD code segments, such as a print command that outputs the 
value of local data structures to the user's screen) from one processor to 
another. Thus, processors can be selectively monitored by simply transfer- 
ring ownership of this variable. 

2.5.2. Receive Statements 

Here, X always denotes an exclusive section (but not necessarily one 
owned by the executing processor p), E always denotes a section 
exclusively owned by p, and U denotes an exclusive section, no element of 
which is owned by p. 

The statement "E < -- X" denotes the initiation of a data receive opera- 
tion, in which the executing processor assigns to the variable E the received 
value of X. XDP restricts the left-hand side of a receive statement to an 
exclusive section so that the run-time symbol table need not contain entries 
for universally owned variables. "U < = - "  denotes the initiation of an 
ownership and value receive from an unspecified processor, in which the 
executing processor accepts the exclusive ownership and value of U. The 
statement "U < = "  indicates the initiation of only the receipt of ownership 
of U, and not the value of U. 

Any statement of the form "E < -- X" waits for all outstanding sends 
and receives of E to complete before it initiates; upon initiation, the state 
of E becomes R/W accessible. For an ownership receive, there shouldn't be 
any outstanding sends or receives of the section, since as previously stated, 
the section cannot be received unless all elements are previously unowned. 
Thus at initiation of an ownership receive, it is an error if the section is not 
in state unowned. Upon .initiation of a receive, the section is put in state 
transitional. Receives are also nonblocking. Upon completion of any 
receive, the section is put in state R/W accessible. 

It is legal to have several procesors initiate receive statements for the 
same section concurrently. To simplify the run-time procedures needed to 
support XDP communication, a particular compiler may choose not to use 
this construct. However, it can be used to advantage, for instance to 
facilitate load balancing. This could be accomplished by having the owner 
of a particular variable initiate a sequence of sends of values of the 
variable, each value representing a certain job to be performed. Meanwhile, 
any processor that was otherwise idle could initiate a receive of that 
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variable, and then perform the indicated job. Depending on the load at 
run-time, there might be multiple outstanding sends or outstanding 
receives. 

2.6. S ta tes  of a Sect ion  

XDP enforces the restrictions mentioned above by assigning a state to 
each section. 

Figure 4 shows the effects of the XDP statements on the states of the 
referenced section. The table shows which states are legal for the different 
language constructs. Execution of a transfer statement is the initiation of 
the communication; the table shows which state is entered upon initiation. 
Completion of communication occurs asynchronously sometime later. The 
state transition indicates which state is entered upon both initiation and 
completion of each legal statement. 

The table entries labeled "wait" mean that the statement is not 
initiated until the section enters the R/W accessible state, and then begins 
execution. For instance, if a "X < - Y" statement is encountered while X is 
read accessible, the statement waits until the outstanding send is 
completed, then the receive is initiated (which leaves X in the transitional 
state.) 

E - >  
E -> S 
E => 
E < - X  
U <= 
E =  
- - E  

S T A T E M E N T S  
Use of E, Use and Def of E.state 
Use of E, Use and Def of E.state 
Use of E, Use and Def of E.state 
Def of E, Use and Def of E.state 
Use and Def of U.state 
Def of E, Use of E.state 
Use of E, Use of E.state 

r n y p i d  
m y l b ( X , d )  
m y u b ( X , d )  
i o w n ( X )  
r e a d a b l e ( X )  
w r i t a b l e ( X )  
r e a d a w a l t  (X)  
w r i t e a w a i t ( X )  

I N T R I N S I C S  
Use of mypid 
Use of X.state and d 
Use of X.state and d 
Use of X.state 
Use and Def of X.state 
Use and Def of X.state 
Def of X.state, Use of all .state's 
Def of X.state, Use of all .state's 

Fig. 4. Data flow effects of XDP constructs. 
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The value of a transitional section is undefined, and an error could 
occur if the value of a read accessible variable were to be changed. 
Nevertheless, XDP does not automatically check the state of a variable at 
run-time; instead, the state must be explicitly checked by calls to the 
appropriate intrinsics. For  most types of statements, there is an intrinsic 
'which determines whether the statement is legal, and there are also 
intrinsics that can be used as compute rules to ensure an error will 
not occur. For instance, an assignment into a variable X is safe if and 
only if w r i t e a b l e  (X) returns true. Similarly, the statement 
w r i t e a w a i t  (X) : {X=3} cannot cause an error. 

One way to ensure that a section is not referenced illegally is to 
precede each statement with the appropriate intrinsics. As we will see later, 
optimizations can remove unnecessary run-time checks. Assuming a proper 
translation of the source program into IL + XDP and valid optimizations 
(ones that never produce code that could evoke the E r r o r  condition) 
assignments and uses to exclusive variables can proceed without the 
run-time overhead of checking the variables' states. (However, it would be 
a good idea to have run-time checks in place while developing the 
compiler. ) 

The rationale for some of the details of XDP is to allow the compiler 
to manage send and receive buffers explicitly. Another point is that 
ownership sends can proceed even if there are outstanding value sends. 
However, we decided to disallow ownership sends while .there are 
outstanding receives. This decision was made to avoid the run-time 
complication of having to forward received values of sections that are no 
longer owned. 

3. RUN-TIME STRUCTURES 

While XDP language constructs are designed to be used by a 
compiler, it is entirely p.ossible that the compiler will not be able to remove all 
ownership or accessibility tests, and so 2 own, r e a d awa % t ,  w r 2 t e awa 2 z, 
r e a d a b l e ,  and w r i t e a b l e  predicates may need to be evaluated at 
run-time. In addition, ownership transfers result in run-time changes in 
ownership and so may need to be tracked at run-time. To support this, the 
XDP methodology supplies a run-time, per-processor symbol table for 
exclusive sections, discussed in detail in the next section. 

The XDP language constructs allow ownership transfers to occur at 
the granularity of a single element. However, for efficiency's sake, a 
compiler may use a coarser granularity of ownership transfer. We illustrate 
this with the use of segments. 

828/22/5-2 
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Whether the symbol table is simple or complex depends on such 
choices as whether the number of processors is fixed and known at 
compile-time, and what partitioning of arrays into sections are allowed. 
These choices also affect what optimizations can be performed. In our 
examples, we assume a fixed, known processor grid and partitioning as 
allowed in HPF. t9) 

3.1. Symbol  Table 

An important structure required for incorporating the XDP method- 
ology is the symbol table. The XDP symbol table structure is used at 
compile-time by the compiler, as well as at run-time by all the processors 
that execute the output SPMD code. Each processor must maintain and 
update its own local copy of the XDP symbol table structure at run-time, 
unless all uses of the table have been optimized away. In contrast to a 
compiler's symbol table, the run-time XDP symbol table only contains 
information about exclusive sections. 

Figure 5 illustrates the XDP symbol table structure for two 
array variables A [ l : 4 ,  1:8]  and B [ l : 1 6 ,  1 : 1 6 ] ,  partitioned over 4 
processors, which are assumed to be indexed as a 2 x 2 processor grid. 
Each exclusive variable has a symbol table entry. The symeab i ndex ,  
symbol name, rank,  and g l o b a l  shape  fields are self-explanatory. The 
partitioning field indicates the partitioning scheme of the array. The 
partitioning scheme, together with the shape of the processor grid, are used 
by the compiler and the XDP run-time system to determine ownership of 
array sections. The last two fields of the XDP symbol table are shaded dark 
in Fig. 5, to indicate that these entries are filled in only at run-time. 

For efficiency's sake, the compiler can logically divide each processor's 
local partition of an array into segments of a size and shape chosen by 
the compiler. A processor can transfer the ownership of each segment 
individually. The last three fields of the symbol table describe the parti- 
tioning. They specify how many segments comprise the processor's 
partition, the shape of each segment (which must have the same rank as 
the array variable), and finally an array of segment descriptors, which 
record, for each segment, the array elements contained in the segment and 
the current state (unowned, transitional, read accessible or R/W 
accessible). In our implementation, the segment descriptor data struc- 
ture is declared as: 

struct SegmentDesc { 
int state; /* accessibility state */ 
int Ibound[rank]; /* lower bound indices */ 
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int ubound[rank]; /* upper bound indices */ 

int strideErank]; /* strides */ 

... /* other relevant info */ 

long segptr; / *  pointer to segment * /  

} segdesc [#segments]; 

Either at the start of program execution or dynamically, each 
processor allocates local storage for its segments in contiguous chunks 
whose sizes are determined by the s e g m e n t  s h a p e  field. The number  of 
such segments allocated depends on the number of array elements the 
processor owns. Figure 6 illustrates two different partitioning schemes for a 
4 x 8 array, and for each partitioning scheme, two possible logical segmen- 
tations a re  shown. 

The use of segments allows the pipelining of a transfer of a section, 
either ownership or data. A processor can transfer each segment 
individually, requiring only enough synchronization to ensure that the 
transfer is legal in XDP. In many cases, this can effectively reduce the total 
time by allowing a processor to overlap one segment's transfer with 
computation on another segment. This will be illustrated in the 3-D FFT 
example. 

If the code running on a processor executes an •  ) intrinsic at 
run-time, the symbol table entry for the array variable named in the query 
is used as follows. The section described in the query is intersected with all 
the segment bounds corresponding to the named array variable. If the 
union of all the results is equal to the queried section, and no segment that 
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Fig. 6. Example distributions and local segmentations of a 4 x 8 array C, shown for 
processor P3. 



502 Carter e t  al.  

has a non-null intersection is unowned, then the iown( ) query returns 
true. Otherwise it returns false. For example, consider an array 
C [ 1 : 4 ,  1 : 8 ] ,  distributed as (BLOCK, BLOCK) over a 2 x 2  processor 
grid, and 2 x 1 segmented (as shown in Figure 6(a)). Suppose processor P3 
executes the operation iown (C [ 1 . 5 : 7 ]  ) .  Intersecting the bounds of the 
section ( 1 ,5  : 7 ) with the bounds of the four 1 x 2 segments owned by P3 
yields: { ( 1 , 5 ) ,  ( 1 , 6 ) ,  ( 1 , 7 ) ,  n u l l } .  The union of these is ( t , 5 : 7 ) ,  
which is equal to the section specified in the iown ( ) query. Now, if none 
of the non-null intersecting segments are unowned,  the operation returns 
t r u e ,  and it returns f a l s e  otherwise. (Although the algorithm we 
described for evaluating iown ( ) involves examining the entire segment 
descriptor array, more efficient algorithms could be developed.) The intrin- 
sics r e a d a b l e  and w r i t e a b l e  are handled similarly by consulting the 
appropriate symbol table entry, r e a d a w a i t  and R/W a w a i t  might 
involve waiting for the s t a t e  field of the symbol table entry to be changed 
due to the completion of an outstanding communication. 

When any send or receive is initiated or completed on a segment, the 
s t a t e  field of the segment needs to be updated as well. When any 
ownership transfer is initiated, the processor must update the s e g m e n t  
d e s c r i p t  o r fields of its symbol tables to reflect the data that are currently 
owned. The p a r t i t i o n i n g  field may need to be updated as well. 

We have chosen not to supply in the XDP methodology a mechanism 
for determining the id of the processor that owns an arbitrary section at 
run-time. A compiler using the XDP methodology could itself provide such 
a mechanism. If such information is unavailable at compile-time and needs 
to be repeatedly computed at run-time, techniques r can be used to 
improve efficiency. Note, however, that it may be unsafe to compute owner 
information on an array that is undergoing incremental ownership transfer, 
until the transfer of all segments has been finished. 

4. AN EXAMPLE:  3-D FFT 

We now illustrate a use of XDP, using a 3-dimensional Fast Fourier 
Transform (3-D FFT)  application as an example. The 3-D F F T  code 
considered here operates on an array A [ 1 : N, 1 : N, 1 : N] which is initially 
distributed as ( , ,  . .  BLOCK) over a linear array of processors. The 3-D 
algorithm employs a 1-D FFT routine, f f t l D ( ) ,  that is successively 
applied along each line of the second dimension of the array, then the first 
and finally the third dimensions to compute the 3-D FFT. The initial 
( . ,  , .  BLOCK) distribution of the array allows the first two dimensions to 
be handled with no interprocessor communication. The array is then 
redistributed to a ( . ,  BLOCK, . )  scheme in order that the I-D F F T  along 
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the third dimension can be done independently on each processor without 
communication. 

The following programs illustrate the steps involved in the translation 
and optimization of the FFT  program. The program in Fig. 7 is an SPMD 
Program with H P F  directives for the distribution and redistribution. We 
remark that such a program could also have resulted from a F O R T R A N  
program without H P F  directives. The compiler could use known techni- 
ques (1-3) to automatically determine a good distribution and redistribution. 

This program could execute in SPMD mode on each processor by 
copying all the data and ignoring the directives. However, having all the 
processors do all the work is not an efficient way to execute a program. 
The IL + XDP program in Fig. 8 shows a straightforward translation of the 
initial program using the owner-computes rule. 

C Distribute A as (*,*,BLOCK) 

!HPF$ DYNAMIC A 

!HPF$ DISTKIBUTE A(*,*,BLOCK) 

C Phase1: 1-D FFT in the j direction 

do k = I, N 

do i = i, N 

fftlD(A[i,*,k] ) 

enddo 

enddo 

Phase2: I-D FFT in the i direction 

dok= I, N 

doj = 1, N 

fftlD (A [*, j ,k] ) 

enddo 

enddo 

C Phase3: Redistribute A as (*,BLOCK,*) 

!HPF$ REDISTRIBUTE A(*,BLOCK,*) 

Phase4: I-D FFT in the k direction 

doj = I, N 

do i= I, N 

fftlD(A[i,j,*]) 

enddo 

enddo 

Fig. 7. SPMD program with HPF directives. 
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C Distribute A as (*,*,BLOCK) 

do k =-I, N 

do j = I, N 

do i = I, N 

iown(A[i,j,k]): {A[i,j,k] -=>} 

enddo 

enddo 

enddo 

BS = ceiling(N/numprocs) 

mylo = mypid*BS+l 

myhi = min(N,mypid *(BS+I)) 

A[*,*,mylo:myhi] <=- 

C Phasel: I-D FFT in the j direction 

dok= i, N 

do i= I, N 

writeawait(A[i,*,k]): {fftlD(A[i,*,k])} 

enddo 

enddo 

C Phase2: I-D FFT in the i direction 

do k = i, N 

do j = I, N 

writeawait(A[*,j,k]):{fftlD(A[*,j,k])} 

enddo 

enddo 

C Phase3: Redistribute A as (*,BLOCK,*) 

A[*,*,mylo:myhi] -=> 

A [*,mylo:myhi,*] <=- 

C Phase4: 1-D FFT in the k direction 

doj = I,N 

do i= I, N 

writeawait(A[i,j ,*] :{fftlD(A[i,j ,*])} 
enddo 

enddo 

Fig. 8. Ini t ia l  IL  + X D P  program.  
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Translation of the initial distribution of A is general: the elements of 
A could reside on any processor, and thus no initial knowledge of the 
ownership of A is assumed. However, if there is analysis that determines the 
prior distribution as in Ref. 11, simpler code for ownership sends can be 
generated. 

A typical optimization step is achieved by adjusting the outer loop 
bounds so that each processor only does those iterations for which it owns 
the data. In our example, in Phasel, the compiler can determine that when 
k is not between mylo  and myhi ,  the w r i t e a w a i t  will evaluate to false, 
allowing the inner loop to be eliminated for those values of k. The 
improved code segment is shown here. 

C Phasel: I-D FFT in the j direction 

do k = mylo, myhi 

do i = I, N 

wri~eawait(A[i,*,k]): {fftlD(A[i,*,k])} 

enddo 

enddo 

Phase2 and Phase4 benefit from similar optimization. Phase2 allows 
the added optimization of eliminating the w r i t e a w a i t  compute rule 
altogether. This is a consequence of two considerations: when 
w r i t e a w a i t  returns, it always has the value t r u e  since the loop bounds 
have been adjusted appropriately, and no synchronization is needed since 
there is no intervening communication after Phasel made sure the data are 
R/W accesible. The resulting code for Phase2 is: 

C Phase2: I-D FFT in Zhe i direczion 

do k = mylo, myhi 

do j = I, N 

fftlD(A[*,j ,k]) 

enddo 

enddo 

The Redistribute in Phase3 relies on the run-time system to figure out 
which sections of A get moved to which processors. However, some of this 
work can be done at compile time. First, the data can be partitioned into 
sections so that each processor sends only one section to each other 
processor. The variables j l o  and j h i  are introduced to bound the 
columns that need to be sent, and similarly k l o  and k h i  delimit the da ta  
being received. Second, some of the ownership transfers are redundant, 
namely those sent and received from a processor to itself. These can be 
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eliminated by inserting tests into both the send and receive loops. The 
results are as shown: 

C Phase3: Redis~ribuCe A as (*,BLOCK,*) 

do idto = O,numprocs-i 

jlo = idto*BS+l 

jhi = min(N,idto*(BS+l)) 

if (idto.ne.mypid) A[*,jlo:jhi,mylo:myhi] -=> 

enddo 

do idfrom = O,numprocs-I 

klo = idfrom*BS+l 

khi = min(N,idfrom*(BS+$)) 

if (idfrom.ne.mypid)A[*,mylo:myhi,klo:khi] <=- 

enddo 

Even with the improvements mentioned earlier, the program must 
complete Phase2 before beginning the redistribute operation. An extremely 
aggressive optimizing compiler might arrange for the ownership transfer to 
be "pipelined" so that as sections are computed in Phase2, the appropriate 
sends and receives are initiated. This would allow overlapping communica- 
tion with computation. A substantial amount of reorganization is required 
to realize the benefit of such pipelining. Standard optimizations like loop 
fusion are needed, as well as more advanced transformations. In particular, 
it would be undesirable for all the processors to flood processor.0 with 
results, then inundate processor 1, and so on. More balanced communica- 
tion results if processor • first computes and transfers the data that goes 
to processor • then • and so on. The entire program shown in Fig. 9 
illustrates pipelined communication. (We remind the reader that the 
purpose of this paper is to present a language in which various code 
improvements can be expressed. We do not wish to imply that we know 
how to find all such improvements automatically!) 

Finally, we mention an interesting question that arises concerning the 
optimization of await instructions. It is possible for the compiler to move 
the w r i t e a w a i t  in Phasel (or similarly for Phase4) out of the inner loop, 
as shown here: 

C Phasel: I-D FFT in the j direction 

do k = mylo, myhi 

writeawait(A[*,*,k] ) : { 

do i= I, N 

fftlD(A[i,*,k]) 

enddo 
} 

enddo 
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C A is distributed as (*,*,BLOCK) 

do k = i, N 

do j = I, N 

do i = I, N 

iown(A[i,j,k]): {A[i,j,k] -=>} 

enddo 

enddo 

enddo 

BS = ceiling(N/numprocs) 

mylo = mypid*BS+l 

myhi = min(N,mypid *(BS+I)) 

A[*,*,mylo:myhi] <=- 

C Phasei: i-D FFT in the j direction 

do k = mylo, myhi 

do i = i, N 

writeawait(A[i,*,k]): {fftlD(A[i,*,k])} 

enddo 

enddo 

C Phase2~3: FFT in the i direction and redistribute 

do distance = O, numprocs-i 

idto = mod(mypid+distance,ntunprocs) 

jlo = idto*BS+l 

jhi = min(N,idto*(BS+l)) 

do k = mylo, myhi 

do j = j l o ,  j h i  
f f t l D ( A [ * , j  ,k])  

enddo 
enddo 
if (idto.ne.mypid) A[*,jlo:jhi,mylo:myhi] -=> 

idfrom = mod(mypid-distance,numprocs) 

klo = idfrom*BS+l 

khi = min(N,idfrom*(BS+l)) 

if (idfrom.ne.mypid) A[*,mylo:myhi,klo:khi] <=- 

enddo 

C Phase4: I-D FFT in the k direction 

do j = mylo, myhi 

do i= i, N 

writeawait(A[i,j,*]): {fftlD(A[i,j,*])} 

enddo 

enddo 
Fig. 9. Pipelined IL + XDP program. 
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In fact, the writeawait could be moved outside of the outer loop 
also. There is a trade-off involved in such motion. By reducing N calls to 
w r i t e a w a i t  on small sections of data by one call on a larger section, 
there may be less overhead. On the other hand, leaving w r i t e a w a i t  
inside a loop may allow operations to proceed that might otherwise have 
to wait for the arrival of larger sections of data. Thus, whether such code 
motion is profitable depends on implementation considerations. 

5. ANALYSIS AND OPTIMIZATION 

Compiler optimizations that affect data movement and ownership 
issues can be represented as transformations to the IL + XDP code. Some 
of these optimizations fit naturally into the framework of traditional 
optimizing compilers for sequential languages. We will illustrate this by 
first describing how data flow analysis of IL + XDP can be performed, and 
then showing how some optimizations can proceed using this information. 

Other optimizations, particularly those that redistribute ownership 
among the processors, require more advanced techniques. An example 
would be, in the FFT  section, the change of communication order when 
Phases 2 and 3 were combined. Such optimizations need more information 
than is provided by traditional data flow analysis, both to identify what 
transformations are legal, and also which are desirable. While these trans- 
formations are perhaps the most interesting, they are also beyond the scope 
of this paper. The point we wish to make here is that XDP is designed to 
facilitate the incorporation of optimizations that have been developed for 
both data-parallel and message-passing languages. 

5.1. Analysis 

To support the more traditional optimizations, our approach is to 
analyze the program tha t  is run on one of the processors without instan- 
tiating the value of mypid .  This analysis will therefore be valid for all 
processors. Data and ownership transfers, as well as calls to the intrinsics, 
are treated as calls to a run-time library. The data flow effects of these calls 
are determined by the semantics of the library routines. Given this informa- 
tion, data flow analysis can proceed using standard techniques. ~2) This 
analysis determines the def, use, and refinformation for each section at each 
statement of the program, where def  means the statement assigns a new 
value to the section, use means the statement uses the section's value, and 
a ref  is either type of reference. Finally, optimizations can be performed 
using the data flow information. 
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The data flow effects of the XDP constructs are determined by details 
of the run-time library. XDP allows some flexibility in the implementation 
of these routines. In particular, correct IL + XDP programs should not use 
(def) a variable after a receive (send) has been initiated but before the state 
has been checked with a call to an appropriate intrinsic. Thus, a correct 
program will behave identically independent of when, within this range, the 
transfer occurs or when the variable's state changes from transitional (read 
accessible) to R/W accessible occurs. Because of this, we can choose the 
operational semantics (which are used to derive to data flow effects of the 
run-time library) to be different from the actual implementation. We do so 
to enhance the optimization opportunities. 

To this end, the operational semantics model execution by a single 
machine M that simulates all the processors. M runs the code of processor 
p until it encounters a synchronization intrinsic (readawait or 
w r i t e a w a i t ) ,  at which point it switches execution to other processors'  
code before returning to further simulation of p's code. During the course 
of executing p's code, M uses and updates p's run-time symbol table, in 
particular the state field of each exclusive section. Notice that, except at 
synchronization points, the only references to the symbol table (or any 
other variable) are the explicit actions of the simulated operations. Thus, 
the operational semantics (unlike the actual implementation) has no 
asynchronous communication or state changes. 

The data flow effects for the various I L + X D P  constructs are 
summarized in Fig. 4 and described later in more detail. 

For  each exclusive section E of the program, the compiler introduces 
a new variable, E. s t a t e ,  to represent the state field of the per-processor 
symbol table information for E. (Since sections of exclusive variables can 
overlap, uses and defs of E. s t a t e  also affect other symbol table entries. 
Data  access descriptors ~'3) or regular section descriptors ~ ~4~ are appropriate  
techniques for summarizing these effects.) Whenever E is referenced in the 
program, it is a use of E. s t a t e ,  since M must consult E. s t a t e  to deter- 
mine if the section's state is valid for the operation. Additionally, any 
reference to E that has the potential of changing E's state is a def of 
E. s t a t e .  This includes all sends and receives, as well as the some of the 
intrinsics. 

When a synchronization intrinsic is encountered, M may query what 
transfers have been initiated in order to determine which other processors 
can proceed. Thus, the two synchronization intrinsics must be considered 
to be uses of all symbol table entries. (These uses can prevent an optimiza- 
tion from changing the set of pending transfers that reach a synchroniza- 
tion intrinsic. This prevents optimizations from introducing deadlock.) The 
r e a d a b l e ( X )  and w r i t e a b l e ( X )  intrinsics must also be treated as 
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possible defs o fX.  s t a t e ,  giving M an opportunity to change X. s t a t e  to 
R/W accessible. 

The statement E -- > is a use orE  and E < -- X is a d e f o f E .  That is, 
we consider the data transfer to occur at the transfer statement, even 
though the E remains in state read accessible or transitional until the 
corresponding intrinsic is executed. 

Figure 4 omits the entries for " -  = > "  and " <  = - "  since these are 
obtained by combining the effects of the data and ownership transfer 
operations listed. Also, a guarded IL + XDP statement "g :{  S}" is treated 
as "if g then S". 

There are a number of enhancements to this basic data flow informa- 
tion that might be helpful for some optimizations. First, data flow analysis 
techniques for computing def-use chains and similar information make a 
distinction between preserving defs, which retain currently-live defs, and 
killing defs, which kill all reaching defs. When E's ownership is transferred, 
it can be considered to be a killing def of E. s t a t e ,  since E. s t a t e  is 
always set to unowned. The defs in the intrinsics are preserving defs; 
for instance, r e a d a w a i t  (E) will leave E. s t a t e  unchanged if it was 
unowned or read accessible, but change state transitional to R/W 
accessible. 

Second, it is useful for the compiler to derive other information as 
well. Ideally, the compiler attempts to determine the distribution of 
ownership of all sections at each point in the program. Additionally, it can 
keep track of the source or target of a receive or send statement. This infor- 
mation may be present in the original program (for instance, the H P F  
redistribute statements in our FFT example), or derivable by suitable 
analysis techniques (such as reaching decompositions analysis t~ ) .  Such 
information can be used by optimizations that redistribute the data and 
computation, and to bind the XDP communication primitives to efficient 
object code. 

Finally, analysis of the parallel execution order 115-19~ can yield more 
precise information about  which communications statements can be reor- 
dered without introducing deadlock or other errors. This information can 
be represented by removing some of the uses of state variables at certain 
occurrences of synchronization intrinsics. 

5.2. Opt imizat ion 

In this section, we illustrate how traditional optimization techniques 
can be applied to the XDP constructs, resulting in some of the code 
improvements illustrated in the earlier examples. 
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5.2.1. Loop Fusion 

From Ref. 20, loop fusion for two adjacent do loops Lz and L 2 with 
the same loop bounds is valid if[ there are not statements $1 eL~ and 
$2 e L2 such that there is a ref-ref dependence from S~ on iteration i~ to $2 
on iteration i2 with il > i 2. This criterion must be applied to both the 
variables of the original program and to the compiler-created state entries. 
This criterion is strong enough to fuse simple cases, such as the following: 

do k = mylo, myhi 

A [*,*,k]= foo (k) 

enddo 

do k = mylo, myhi 

A[*,* ,k ]  -=> 
enddo 

Applying loop fusion to these adjacent loops would yield: 

do k = mylo, myhi 

A[*,*,k]= foo(k) 

A [* ,* ,k]-=> 
enddo 

This transformation allows a simple pipelining effect, where the value 
can be sent as soon as it is produced. 

5.2.2. State Analysis and Optimization 

It is possible for some unnecessary calls to XDP intrinsics to be 
eliminated or simplified by optimizations, particularly if the compiler 
performs constant propagation on the state variables. For instance, a 
straightforward translation of source code to I L + X D P  might produce 
code fragments such as: 

iown(A) : { 

A <-Y 

readawait(A) : {B = A+I} 

writeawait(A) : {A = 5} 
} 

Within the scope of the iown (A) compute rule, A. s t a t e  cannot be 
unowned. Thus, the two await statements are certain to evaluate to t r u e ,  
allowing conditional branches to be eliminated. This change is reflected in 
the IL + XDP code as: 
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iown(A) : {  
A<-Y 

readawai~ (A) 

B = A+I 

wri~eawait (A) 

A=5 
} 

Summary information derived from Fig. 3 shows that the A < -- state- 
ment will leave A. s t a t e  transitional and the r e a d a w a i t  (A) will change 
it to R/W accessible. This should enable the compiler to eliminate the 
w r i t e a w a i t  intrinsic entirely, leaving: 

iown(A) : { 

A <-Y 

readawait (A) 

B = A+I 

A=5 
} 

Similarly the occurrence of iown (A) might be eliminated if for all defs 
of A . s t a t e  that reach the i own(A) ,  A . s t a t e  cannot be set to state 
unowned. 

Other methods for identifying redundant synchronization appear in 
Refs. 21-24. 

5.2.3. Compute Rule Elimination 

Compute rule elimination has been used by distributed address space 
compilers such as in Refs. 4, 7, and 8, to speed up SPMD programs. Given 
knowledge of data placement, the compiler can sometimes adjust the 
bounds of a loop so that a processor will execute only those iterations 
whose data are local to the processor. For example, consider the simple 
owner-computes example in Section 2.2. Assume A and B are distributed as 
blocks of size BS, where n = n u m p r o c s , B S .  The compiler can split the 
original loop (do i = l .  n) into loops with three disjoint ranges (1 to 
mylo  -- 1, mylo  to myhi ,  and m y h i + l  to n) using index set splitting. 125~ 
Then the compiler can eliminate the first and third loops by dead code 
elimination, resulting in the following code: 

mylo = BS*mypid 
myhi = BS*mypid+BS-i 
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do i = mylo, myhi 

iown(B[i]) : { B[i] -> } 

iown(A[i]) : { 

T[mypid] <- B[i] 

readawait (T [mypid] ) 

A[i] = A[i] + T[mypid] 
} 

enddo 

Further analysis and optimizations might now eliminate the two iown 
compute rules since they always evaluate to t r u e ,  replace the now-adja- 
cent send and receive of ]3 [ i ]  by the assignment "T [mypid ]  =B [ i ]  ", and 
remove the r e a d e w a i t  since the section T [mypid]  is certain to be in 
state R/W accessible. The resulting code would be: 

do i = mylo, myhi 

T[mypid] = B[i] 

A[i] = A[i] + T[mypid] 

enddo 

Finally, value numbering or variable propagation could eliminate the 
unnecessary T [rnypid ] .  

5.2.4. Optimization of Communication 

Knowledge of current ownership information at each point in the 
program can help to eliminate redundant communication. In the example 
of Section 5.2.3, we saw that if the same processor that exclusively owns 
A [ i ]  also owns 13 [ i ] ,  then the data transfer statements can be eliminated. 

Even if they cannot be eliminated, the compiler may be able to 
vec tor i ze  ~ the messages. In that paper, following an algorithm of Refs. 26 
and 27, for a given statement, all true data dependences to the statement 
are examined to determine the loop level at which messages can be 
combined. In Ref. 4, message tags are inserted to mark the level of 
the necessary communication for message vectorization. In XDP, the 
dependences from actual transfer statements to the statement can be 
examined, and the statements can actually be moved to the appropriate 
loop level and combined. Suppose in our example, A and B are distributed 
in blocks of the same size but not aligned. In this case, the data transfer 
statements can be moved out of the loop as shown later. Note that analysis 
can also determine that the writeawait can be moved as well. 
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iown(B[mylo:myhi]) : {B[mylo:myhi] -> } 

iown(A[mylo:myhi] ) : 

{T[mylo:myhi] <- B[[mylo:myhi]} 
writ eawait (T [mylo ;myhi] ) 

do i = mylo,myhi 

A[i] = A[i] + T[i] 
enddo 

Carter et  al.  

5,2.5. Other Optimizations 

Many other traditional compiler optimizations (e.g., dead code 
elimination, value numbering, and so on) can proceed as usual based on 
the data flow information described earlier. Optimizations that affect the 
order of statements (such as invariant code motion and statement 
reordering) will be prohibited from moving synchronization intrinsics 
across send and receive statements since the transfer statement is a def of 
some section's state, and the synchronization is a use of all sections' states. 
This prevents optimizations from introducing deadlock. The restriction 
could be relaxed to allow optimizations that increase, but not decrease, the 
set of sections for which sends and receives have been initiated. More 
sophisticated analysis can allow even more aggressive code motion. 

Some optimizations can only be done with knowledge of the 
underlying architecture. For  instance, if the communication primitives of 
the underlying machine are nonblocking, then it is generally desirable to 
move the XDP receive statements as early in the program as possible 
(consistent with the data dependence constraints) to give the maximum 
opportunity of overlapping communication with computation. However, if 
the communication primitives are blocking, then the optimizations must be 
careful not to introduce deadlock. 

The set of optimizations on XDP code, as well as details of XDP itself, 
are the subject of current research. For instance, aggregating a set of 
separate data transfers into a single message can reduce overhead on some 
systems. It might be desirable to allow this aggregation to be expressed in 
XDP,  for instance by allowing the left-hand side of XDP send and receive 
statements to be a set of sections, rather than a single section. 

6. C O M P A R I S O N  TO OTHER I N T E R M E D I A T E  L A N G U A G E S  

Traditional optimizing compilers ~2) use relatively language- and 
machine-independent intermediate program representations. Some IL's for 
these compilers tl2) first generate load and store operations assuming an 
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infinite number of symbolic registers, and then assign these to real machine 
registers. However, these compilers do not otherwise represent data move- 
ment and placement between devices in an explicit manner, as done in 
XDP. Lake IEs) has cited the importance of annotating programs with data 
placement, and suggested its insertion into imperative languages. 
Ownership transfer at the operating system level is considered by systems 
such as in Ref. 29. The KSR113~ implements ownership transfers automati- 
cally in hardware. A preliminary version of this paper appeared in Ref. 31. 
Here, the semantics of XDP send statements has been changed so buffering 
of messages is not required, states of a section have been adjusted accor- 
dingly and are discussed in more detail, and a method for including XDP 
primitives in data flow analysis and further details about optimization are 
given. 

In the remainder of this section we describe several existing IL's for 
compilers developed for distributed address space multiprocessors and 
compare them with XDP. These range from IL's with language- or 
machine-specific representation of data transfers, to no explicit representa- 
tion of data transfer, except as auxiliary data structures to the IL, to IL's 
with explicit machine-independent representation of data but not 
ownership transfer. 

The compiler developed at Rice 132) uses a high-level language as IL: 
Fortran77 with data decompositions, FORALL, and FORTRAN90 intrin- 
sics such as CSHIFT,  PACK, and UNPACK, and reductions such as 
SUM and DOTPRODUCT.  Thus the data transfer operations here are 
language-dependent. The back-end compiler uses Fortran77 plus machine- 
specific message-passing calls as IL. Hence at no level does this compiler 
represent data and ownership transfer in a language- or machine- 
independent manner. 

The FortranD compiler ~41 developed at Rice uses message-tags ~4) to 
indicate where communication must be inserted. Although these tags can 
be moved, it seems clear they are not operations with semantics like XDP 
operations, and cannot be manipulated by the compiler in the same 
manner as an operation like addition. 

In fact, the FortranD compiler has embraced the philosophy that 
program analysis should come first and drive code generation, rather than 
inserting guards and element-wise messages and then performing optimiza- 
tion to obtain more efficient code. ~4~ For example, by manipulating only 
Fortran77 code, there is no possibility of introducing deadlock. This style 
of compilation is compatible with XDP in that compute rules and transfer 
operations need not be initially generated. While we agree that initial 
program analysis is both necessary and beneficial, we also believe that 
unless there is a direct representation of data and ownership transfer at the 

828/22/5-3 
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right level, the compiler will have a more difficult job of manipulating these 
operations. Allowing their representation as in XDP might afford this 
compiler greater opportunities for optimization, particularly in getting 
beyond the owner-computes rule. 

The Kali system t33) calculates send and receive sets like FortranD but 
they are not" represented as operations. 

Several existing distributed address space compilers represent data 
transfer in a language- and machine-independent manner. The SUPERB 
system ~6~ generates general EXchange Send and Receive (EXSR) 
statements to communicate overlaps, Similarly, Rogers and Pingali ~s) insert 
send and receive operations from an abstract message-passing machine 
model into their IL. Callahan and Kennedy ~7) insert general load and store 
operations before actual communication generation. Crystal t34) generates 
communication actions prior to analyzing specific communication patterns. 
None of these represent ownership transfer operations in the manner 
suggested by XDP. 

7. C O N C L U S I O N S  A N D  F U T U R E  W O R K  

The XDP methodology has been designed to give the compiler the 
power to manipulate data and ownership transfer. We have given rules 
governing the use of its constructs; the compiler must supply adequate 
synchronization to satisfy these rules. Coherence and freedom from 
deadlock must also be ensured by the compiler. 

The key ideas behind the XDP methodology are its separations of 
data transfer from local computation, its nonblocking semantics to allow 
overlapping of communication with computation, and its unified treatment 
of data and ownership transfer. In addition, XDP offers the compiler a 
convenient platform for doing optimizations involving data movement by 
providing mechanisms for delayed communication binding and generating 
generalized compute rules. A run-time symbol table allows XDP to be 
implemented as an extension to a compiler's intermediate language. 

We have given here some optimizations which use the explicit 
representation of data and ownership transfer in XDP. Future work lies in 
the development of further optimizations and their evaluation. 

While XDP has been designed with distributed address space 
machines in mind, future work will include the application of its key ideas 
in more general contexts. In particular, we would like to use it to optimize 
data transfers across different levels of a memory hierarchy. 
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