
International Journal of Parallel Programming, Vol. 22, No. 4, 1994

Using True Concurrency to Model
Execution of Parallel Programs

Yosi Ben -Asher I and Eitan Farchi 2

Received June 1993

Parallel execution of a progam R (intuitively regarded as a partial order) is
usually modeled by sequentially executing one of the total orders (interleavings)
into which it can be embedded. Our work deviates from this serialization prin-
ciple by using true concurrency "1 to model parallel execution. True concurrency
is represented via completions of R to semi total orders, called time diagrams.
These orders are characterized via a set of conditions (denoted by Ct), yielding
orders or time diagrams which preserve some degree of the intended parallelism
in R. Another way to express semi total orders is to use re-writing or derivation
rules (denoted by Cx) which for any program R generates a set of semi-total
orders. This paper includes a classification of parallel execution into three
classes according to three different types of Ct conditions. For each class a
suitable Cx is found and a proof of equivalence between the set of all time
diagrams satisfying Ct and the set of all terminal Cx derivations of R is devised.
This equivalence between time diagram conditions and derivation rules is used
to define a novel notion of correctness for parallel programs. This notion is
demonstrated by showing that a specific asynchronous program enforces syn-
chronous execution, which always halts, showing that true concurrency can be
useful in the context of parallel program verification.

KEY WORDS.: True-concurrency; partial-orders; parallel program verification.

1. INTRODUCTION

Let R be a parallel program, composed of nested parallel and sequential
statements. Many parallel programming languages are of this type, such as

1 Mathematics and Computer Science Department, Haifa University, Haifa.
2 IBM Research Center, Haifa,

375

828/22/4-1 0885-7458/94/0800-0375507.00/0 �9 1994 Plenum Publishing Corporation

376 Ben-Asher and Farehi

OCCAM, (2) ADA, (3) and othersJ ~6) For instance, the following program
spawns two processes, each of which splits into two additional processes.

R(){
int x = 0;
par for i = 1.. 2 [

]}
par for j = 1 . .2 [x = i + j ;]

Such a syntax is equivalent to a partial order (also denoted by R):

R = (x = 0 ; ((i= 1; ((j = 1 ; x = i + j)] l (J=2 ; x = i + j))) [I
(i = 2 ; ((j = 1 ; x = i + j) J f (j = 2 ; x = i + j))))

between all instructions of A and B.
It is now fairly common for parallel machines to adhere to the dictates

of sequential consistency in order to facilitate our understanding of parallel
programs. (v-9) This requirement states that the results of parallel execution
of a program are the same as the results that would be obtained had the
instructions from distinct parallel processes been interleaved and executed
in some serial ordering. This is equivalent to a completion of R to a total
order executed as a sequential program.

The problem is that if the interleaving is not completely defined, the
program execution is indeterminate. As a consequence, distinct executions
of the same program may lead to different results. For example, one execu-
tion may terminate with a result while another enters an infinite loop. The
problem is especially severe in a shared memory model, where interactions
are mediated by side effects. It is therefore important to develop a notion
of correctness that enables the user to show that all execution orders of a
program are correct without explicitly generating them. This idea can be
expressed in terms of finding a "compact" representation to the set of all
possible execution orders of a parallel program.

Modeling parallel execution as the set of all completions of R to a
total order (interleavings') is rather arbitrary. Theoretically, parallel execu-
tion may be any set of partial orders which correctly augments (includes)
R. Total completions of R actually represent a particular time model in
which each instruction of R is assigned a unique time index. Another time
model may assign the same time index to several instructions, forming true
concurrency. As it turns out, true concurrency is essential in the context of
parallel program verification, since it allows the user to use compound
instructions in place of the original ones, leading to smaller size programs.
[Note that for a given program, a true concurrency model may contain
fewer execution orders than interleavings. This claim, although combina-

True Concurrency to Model Execution of Parallel Programs 377

torially false, may however hold in specific cases, which we believe to
be the practical ones.] Compound statements or abstractions, (formally
suggested in Ref. 7) may lead to true concurrency, e.g., when two or more
compound statements are mutually dependent.

As an example of true concurrency, consider the following machine
with two gears. It has four instructions, Al, Ar, BI, Br, used to turn the
gears A and B left or right. If AI and Bl are executed in parallel (Alll Bl),
then no gear can move and the counter will show zero. However, any
sequential order of execution (AI; BI or BI; AI) will yield a positive count-
ing. Hence, modeling parallel execution via interleavings fails to describe a
parallel execution.

Theory of concurrency contains many relevant results, advocating dif-
ferent time models that can be applied to parallel execution of programs. ~11)
(such as comparing the expressiveness of interleavings versus true con-
currency). ~~ In particular, Pratt ~l~ constructs a mixed term of partial
orders and temporal logic (Ref. 12) to model parallel processes. This work
also contains motivations for true concurrency execution, and a short sur-
vey of relevant results. The system proposed here can be best represented
through the formalism developed by Gaifman. ~3) Unlike Gaifman's
formalism, which is more general, this formalism is dedicated mainly to
parallel programs and scheduling only. In this sense, Gaifman's formalism
uses a set of partial orders to represent a device, while our formalism uses
a single partial order which is the program. [In comparison tO similar
works such as that of Pratt, ~t) this formalism excludes semantics operations
like loops, choice, recu.rsion, and communication. These issues are modeled
via a set of external restrictions and thus are not part of the suggested
formalism.] A more recent and general work demonstrating the power of
true concurrency is the work of Janicki and Kountny. (14)

Gaifman describes a computation (of a device) as a triple (E, (c, (t),
where E is a set of events, (c is a causal partial order representing inherent
semantics, and (~ is a temporal partial order describing a possible execu-
tion (completion or augmentation) of (c in time. For example, ({a, b},
a I[b, a; b) describes a sequential execution of the process a 1[b. In addition,
Gaifman defines a process as a set of partial orders P = p~,..., p , . The core
of a process is defined to be the maximal set of least constrained pi's (those

378 Ben-Asher and Farchi

which do not include any other pj). A process describes a specification of
a device if its core is a correct specification of the device and the process
is augment closed, i.e., every possible execution of the core is present in the
process. Thus a process P describes a device if it can be divided into
(c = core(P) and (' = P - core(P), and (' covers every possible computa-
tion of the device.

Gaifman's general notion requires that a specification should explicitly
include every possible execution or computation Pi ~ P - core(P). Our work
is based on the observation that in several cases the set of all possible
executions (temporal orders of a program R) can be represented in a
compact nonexplicit way (similar to a compact representation of all even
numbers as all numbers whose mod 2 is zero).

Our representation deals with processes that describe execution of
parallel programs rather than devices. Thus the core of every process con-
sists of a single partial order, which represents a parallel program. The set
of all possible computations of a program R (also referred to as executions
or scheduling) is represented as a restriction of a time model The notion of
time models has been pursued in many papers (see Refs. 1 and 13 for
relevance). In particular, let P(R) be the set of all possible partial
orders which are consistent with R (including completions to total or semi-
total orders). A time model can be described as a selection function
f (P (R)) ~ 2 mm which selects those partial orders which augment R in
time. ~7) For example, if the time model reflects serialization, then f will
select all completions of R to a total order. A compact representation o f f
may turn out to be useful in showing that all execution orders of R satisfy
some desired condition (such as halting).

We use two compact representations for a time model V: Ct v, a set of
conditions choosing a member of 2 e~nl and Cx v, a set of derivation rules
generating the desired member of 2 eIR). A process is a triple (R, Ct, C x)
where R is a program or a partial order and Ct= Ct v, C x c Cx v are
restrictions of a time model V used to describe specific semantics of R. In
Gaifman's notion, such a process should be represented as P = R, Ct(P(R))
or P = R, Cx(P(R)), where R = core(P). Hence, we use an explicit compact
representation of V rather than using a member of 2 e~m.

As explained before, in the context of parallel program verification ~5)
true concurrency is likely to be used. Hence, V should reflect true con-
currency (also referred to as linear-time model in Ref. 13). It turns out that
for some true concurrency time models, compact representation (Ct v, Cx v)
can be devised. This can be done using the fact that true concurrency par-
tial orders (referred as time diagrams) have a specific structure. Every
possible time diagram of a time model should be of the form $1 ;...; S,
where S; = e,., II "'" [I eik contains those instructions executed at time i. This

True Concurrency to Model Execution of Parallel Programs 379

structure is used in the proposed formalism, which includes the following
components:

Ct- is a finite set of conditions specifying necessary relations between
the states of every time diagram and the program.

Cx- is a finite set of derivation rules, such that every final derivation
R c% R' yields a time diagram selected by f

(R, Cx, Ct)- indicates that Ct and Cx are equivalent and yield the
same set of time diagrams, hence representing the same set of time
diagrams. (R, Cx, Ct) is referred to as an induction system for R.

Correctness. A program R is defined to be correct if it has an
induction system such that every time diagram of R also halts. In this way,
Ct actually describes every semantic aspect of executing R by a parallel
computer.

For example, the interleavings set of R can be represented by the
following induction system.

�9 Ct maintains that every e, < R eb should be in a different state, such
that e, e Si, eb e Sj and i < j.

�9 Cx includes all possible ways to interleave R without violating <R:

~(BIIA)

(A; B)II C-) {(AA; (Bit C);ll c)B (A [] B) ~ ~(A; B) (A; B)II (c; D) --, (A II C); (B]] D)

(.(B; A)

In this work we define three main classes of true concurrency time
models, using suitable Ct conditions and Cx rules. A proof that these
Ct, Cx form an induction system for every type of time model is devised.
These models are theoretically interesting, yet they serve as a mechanism to
preserve the intended parallelism invoked in the construct (A]] B). Thus,
when true concurrency is used, the time model of a specific program is
actually a restriction of the main time models or classes. A proof that a
specific (R, Ct, Cx) system is an induction system can exploit the fact that
both Ct and Cx are actually restrictions of the main Ct and Cx for which
an induction system exists. This usage of natural classes of time models will
be clarified in later sections.

Finally, an induction system (R~, Ct, Cx) is constructed for special
kinds of parallel programs, called parallel loop programs. Let R~ be a set
of k loops executed by different processors, where each loop contains l
instructions. It is shown that (R~, Ct, Cx) yields exactly all synchronous
executions of R~. This is used to show that a specific asynchronous
program is correct and can only be executed synchronously.

380 Ben-Asher and Farchi

2. BASIC DEFIN IT IONS FOR A TRUE
C O N C U R R E N C Y T I M E MODEL

This section contains basic definitions of a novel time model called V.
This time model reflects true concurrency via a special interpretation of the
[] operator, referred to as the "friction condition" (to be explained next).

Defini t ion 2.1. A parallel program corresponds to the following
regular expression:

R ~ (R) or (RII R) or (R; R) or [leg

where sub-programs are denoted with capital letters, and atomic instruc-
tions with small letters, e.g., R = (a; b)II (c; d). The meaning of execution of
programs will be the function that maps the Cartesian products of
programs and states to states (p: R x S--* S).

Let a parallel execution of a program R be a time diagram which
assigns a time index to every instruction as described in Fig. 1. This implies
that atomic instructions take one time unit and do not overlap.

For a given program there can be many and different time-diagrams
which describe different possible executions (see Fig. 2). Our first step in
defining what parallel execution of a program means is to formally define
the set of all time-diagrams or executions of a program.

D e f i n i t i o n 2.2. A program defines a partial order relation on the
atomic instructions of the program (e.g., "before") in the following way: if
a sub expression of the program is of the form El; E2 then every atomic
instruction in E1 precedes every atomic instruction in E2.

D e f i n i t i o n 2.3. For the V time model, a time-diagram of a
program (R) is a division of the atomic instructions of R into an order
sequence of "steps" ($1 St) such that the following Ct v conditions are
met.

(a l l b) ; c ; d

s u b) a_a___

M A C H I N ~ b c d

T I M E .

Fig. 1. Processors/time diagram of the
program (((a IIb); c); d).

True Concurrency to Model Execution of Parallel Programs 381

(a;b)](c;d)

a;(b I(c;d)) (allc);(blld) (cll(l;b));d c;(d I(a;b)) (atl(I;d);b)

1 I I 1
(allc);d;b c;(alld);b a;(bllc);d a;c;(blld)

~ c d a c a d
db a b bd c b

I I I I 1
(c[la);b;d a;(cllb);d c;(dlla);b c;a;(dllb)

~d ~ a c c a c d
b bd bd db a b

Fig. 2. Different normal forms of (a; b)l[(c; d) and their time diagrams.

1. S~ is not empty.

2. V(E. II Eb) E R there exists e, ~ E , , e b E E b such that e, , e b ~ S i.

This condition is also referred to as the friction condition since it
enforces minimum degree of true concurrency execution between
parallel expressions.

3. For every e, and e b such that e, is "before" eb there are j < i, such
that e. ~ Sj and eb E S r

The set of well-defined parallel machines can be defined as follows:

D e f i n i t i o n 2.4. A parallel machine M is well defined if any execu-
tion of a program R by M can be described by a legal time diagram of R.
Such a machine is referred to as a "discrete" machine.

Obviously, a time-diagram S~ S r can be expressed by a program of
the form (lIE1 ;...; IIEr) where IIE~ contains all the atomic instructions of S~.
We refer to a program of this form as a program in "normal form."

So far, the parallel execution was defined by a time trace on the
instructions executed by a parallel machine (time diagrams). Another
possibility to define or.understand the parallel execution of a program is to
imagine a virtual term rewriting system which reduces a program to normal
form using a set of rewriting or derivation rules. These rewriting rules are
not arbitrary and actually correspond to logical rules that parallel execu-
tion should fulfill. Thus the meaning of parallel execution is depicted in
terms of its outcome (time diagrams) and its logical behavior (axioms or
derivations).

D e f i n i t i o n 2.5. The following set of axioms or rewriting rules Cx v

formally defines the execution of a parallel program R via the set of all nor-
mal forms obtained by a final derivation R ~ R'.

382 Ben-Asher and Farchi

Commutativity. For every two programs R~ II R2 --- R2 I[R1. This
condition reflects a natural understanding that a parallel execution should
be symmetrical.

Associativity. Sequential execution is oblivious to order of execu-
tion (RI;R2); R3=-RI; (R2;R3). However, for parallel execution
associativity is allowed only at the instructions level, i.e., (ellle2)[le3 =
e= II (e2 II e3). Note that II between instructions indicates that all instructions
should be executed at the same time; thus, we use the notation e~ II-..ek to
indicate any placement of parentheses between parallel instructions.

Time division.

R Z._. ((Ro II R~); Rc
(Ro,; Ro2)I[(R~; R~)= ~R~; (Ro IP R~)

~.((R~l I1 Rb); (Ra2 }1 Re))

The restriction on associativity of complex terms reflects the require-
ment that (Et lIE2) denotes some true concurrency execution between El
and Ez. For example, consider the program R=((A[[B)[[(C[ID)). The
parentheses structure indicates that there should be a true-concurrency
execution between A and B. However, if associativity is allowed, then R is
also equivalent to (A[[(B[I(CI[D))) and there is no longer need for a
true-concurrency execution between A and B, but rather there could be
true-concurrency execution between A and C or D or both.

Clearly, the associativity axiom enables any manipulations of
parentheses in regular expressions with '; ', as (for the sake of complete-
ness) is proved next:

Lemma 2.1. Let R be a program of the form R = R~ ;...; R. and let
R" and R ~2 be any two legal (Def. 2.1) assignments of parentheses in R. By
applying the associativity axiom, R <1 can be transformed to R <z.

Proof. Let R r ----- (. . . ((R l ; R2); R3);...); Rn) denote a left-most
parentheses assignment of R. Let i . be a rapid application of "left"
associativity on sub expressions in R(R,; (Rb; R e)) ~ ((R,; (Rb); Re) until
no further application is possible. Clearly, there are no)) parentheses in R
after t" ,; hence, t", terminates in left-most parentheses assignments of R.
Since R" t*, R c, R t: ~', R c and associativity can be applied in both
directions, R " can be transformed to R ~ and then back to R ~2. [This
manipulation allows us to omit parentheses in any ; E expression.] []

True Concurrency to Model Execution of Parallel Programs 383

3. P R O V I N G T H A T C t v A N D C x v D E S C R I B E
T H E S A M E T I M E M O D E L

Until now two ways of evaluating parallel execution (R: s~ ~ $2) have
been presented:

A derivation through the axioms R f~ ' �9 ~ R , consisting of rapid
application of the axioms of Def. 2.5, until no further derivation is
possible.

�9 A time diagram D(R) satisfying the conditions of Def. 2.3.

The connection between the axioms and the time-diagrams of a
program is demonstrated in Fig. 2, where all legal time diagrams of
R = (a; b)il (c; d) are derived using rapid applications of the "time-division"
axiom.

In this section it is shown that both ways are equivalent, i.e., every
derivation R f*~R' yields a different time diagram, and every time
diagram D(R) can be derived by the axioms R s . D(R). Hence, both Ct v
and CxV define the same time model or class of parallel executions. From
now on we omit v from both Ct v and cxV, making the V time model the
default one.

D e f i n i t i o n 3.1. For a given program R let:

T(R) be the set of all time diagrams of the program R satisfying the
time diagram definitions (Def. 2.3).

R s * R' be a "forward" derivation of R' from R by applying the
axioms of parallelism. Note that the time division axiom has three
alternatives to replace (al;a2)][(b;c). Thus s . is a forward
derivation in which (al;a2)ll(b; c) is replaced by one of the three
alternatives.

R "* > R' be a "backward" derivation of R' from R in which one of the
three alternatives of the time division axiom is replaced by
(al;a2)][(b;c): Clearly, if R r , R', then by reversing the "*,
derivation R' s . R.

R* be the set of all programs resulted by s - , , which can not be
further reduced.

Further, in the following discussion we will use D(R) both for a time
diagram of R and the unique normal form that matches D(R).

T h e o r e m 3.1. There is a one to one mapping between the set of all
time diagrams of a program and the set of programs derived by the axioms,
hence R* = T(R). This equivalence shows that both conditions of Def. 2.3

384 Ben-Asher and Farchi

and the derivation rules of Def. 2.5 define a class with true concurrency
executions called V.

ProoL Follows from Th. 3.3, which shows that every number of R*
is in normal form and represents a time diagram, hence R* c T(R). From
Th. 3.2 every time diagram D(R) ~ T(R) is in R*, i.e., R :----~ D(R).

Corollary 3.1. In order to define a parallel machine M, it suffices
to describe only the effect of executing s: lIE---, s' (rather than describing VR
s: R ~ s').

ProoL Immediate from the normal form definition.

3.1. P roo f for the Der iva t ion of T i m e D i a g r a m s

The fact that every time diagram of R can be derived by the axioms
of parallelism is stated and then proved as follows:

T h e o r e m 3.2. Every time diagram D(R)~T(R) is in R*, i.e., for
every D(R), R f*, D(R).

ProoL By induction on the structure of R. Note that for single
instruction programs T(R)=R*. Assume that P1 f*, D(P1) and
P2 : ' , D(P2). It is sufficient to show that (P1;P2) :*, D(P1;P2) and
that (PI I IP2) f ' ,D(PIIIP2) .

By the induction hypothesis (P1; P2) :% (D(P1); D(P2)). Trivially,
(D(P 1); D(P2)) = D((P 1; e2)), hence (P 1; P2) : ' , D((P 1; e2)).

The second case is more complicated and uses several sub claims and
a "roll-back" process, which restores D((P1 lIP2)) to a program of the
form (D(P1)I[D(P2)). Lemma 3.2 shows that the effect of the roll-back
process is to transform D(P1 II P2) to

D(PI lIP2) " , ([]cq;..~;][c~,)[[([[fll;...; rlflm) [[ct,~P1 ^ [[fli~P2

Lemma 3.3 shows that the roll-back process yields separate time diagrams
of P1 and P2. This is done by showing that

(llcq ;...; 1[~,)~ T(P1) ^ ([Jill;...; I[flm)~ T(P2)

The induction hypothesis yields that D(P 1 [I P2) r . , D(P 1) 11D(P2) r . ,
f P1 lIP2, hence P I 1[P2 JL:--~ D(PI lIP2), as required. []

True Concurrency to Model Execution of Parallel Programs 385

The following notation is used to describe the roll-back processes of
D(P1 II P2) = Sl Sk where:

S~ ~]~i

~i = (~1 ;'"; (~n)II (]~1 ;'"; t im)

if S i contains instructions from P 1 only

if S i contains instructions from P2 only

mixed term of a and fl sub expressions

Note that initially in Y~ both m, n = 1, while during the roll-back process Vg
accumulates states. Clearly, up to commutativity and associativity of '; E'
and Ilei every D(PIIIP2) is of this form. Hence any D(PIIIP2) is a
sequence ...; ~;...; y;...; fl;...; ~; Initially every 7 in D(P1 [I P2) contains one
a and one ft. During the roll-back process, any ~ expression collects more
a, fl terms. However, the structure ...; a;...; y;...; fl;...;y;.., is maintained
throughout the process.

D e f i n i t i o n 3.2. A roll-back step is a step where the time division
axiom is applied backwards to reduce sub-programs of the form <Si; Y > or
<y; S~> to 7:

"/ 7

)' 7

/~X; . r *) ~.,, II (~x;/~z)

~ 0 ~ x r * ~ , ~

Y 7

(~v II/L);/~x r .

Lemma 3.1. D(P1 lIP2) contains at least one Si in a ~ form.

ProoL D(P1 lIP2) is a time diagram and the second condition of
Def. 2.3 implies that there exists el~P1, e2~P2 such that e~,e2~Si.
Clearly this S~ is in 7 form. []

D e f i n i t i o n 3.3. The roll-back process consists of repeating
applications of the roll-back step on D(P1 [I P2) until no further steps are
possible.

I.emma 3.2. The roll-back process reduces D(P 1 II P2) into a single
Y form (D (P I l I P 2) r . y).

386 Ben-Asher and Farchi

ProoL Lemma 3.1 yields that there is at least one y expression in
D(P1 lIP2) which we can use in the roll-back process. Parentheses can
be ignored while performing the roll-back process. Initially D(R) is an
expression with full associativity and commutativity (see Def. 2.5), hence
parentheses can be placed in any desired order. Now every application of
the roll-back process maintains an overall structure of ;E and hence
parentheses can be further ignored. Note that every application of the roll-
back step increases the overall length of the sum of gamma sub programs
by at least one. Therefore this reproduction system terminates in a program
of the form ~,. []

So far we have found a derivation (the roll-back process) which
changes D(P1 II P2) to a 7 form program. It still remains to be shown that
this V form program consists of the time diagrams of P1 and P2
(D(e 1 I1P2) r . 7 = D(P 1)IL D (P 2)) .

L e m m a 3.3. Let },i= (~1 ;...; ~,)f] (/~1 ;--.; tim) be the outcome of the
roll-back process of D(P1 [I P2) then (~ ;...; ~ ,) e T(P1) and the same for

ProoL The proof claim uses a graph representation of programs,
where the nodes are the atomic instructions and an edge corresponds to the
partial relation before. In the following, a program and its graph represen-
tation will have the same denotation. Let a "mixed-edge" in D(P1 [I p2) be
an edge between a vertex in P1 and a vertex in P2. In Lemma 3.4 it is
shown that by removing all mixed-edges from D(P1 tiP2) we obtain a
separate time diagram for P1 and a separate time diagram for P2
(D(PI[[P2) I d~L,,ix.~Jj. D(P1)IID(P2). Now Lemmas 3.5 and 3.6 show
that the roll-back process does exactly that (i.e., removes all mixed-edges
and no other edge). Hence the claim follows. []

k e m m a 3.4. Let H be a projection graph of D(P1 lIP2) onto P1
(wherein the vertices belong to P 1 and an edge (a, b) ~ H iff a, b E P 1) then
Hr

ProoL Let S~ ;...; Sk denote the states of D(P1 [I P2). For each Si let
z,. denote the set of vertices in Si that belongs to P2. Clearly H contains all
atomic instructions of P 1. If s~ = S~\zl, then it is sufficient to show that the
non empty s,.'s are states of P1. (S~;...;SkE T(P1)). Note that if P1 is not
empty there is at least one s~ which is not empty. Let a, b z P 1 be such that
a is before b in D(PI[IP2), then using the third condition of the time
diagram there exists i, j where i< j such that a~ S~ ^ b ~ Sj. Since the
projection process does not remove a, b or the edge between them, a ~ s~
and b~sj. Hence, regarding s~ ;...; s k, the third condition of Def. 2.3 is met.

True Concurrency to Model Execution of Parallel Programs 387

W.o.l.g. the second condition of Def. 2.3 yields that V(E~LIEb)~ P1
there exists e~ ~ E~, eb E Eo such that ea, eb ~ S~. Thus e, , eb ~ s; and the
second condition is also valid for H. �89

L e m m a 3.5. Every step in the roll-back process removes mixed
edges from D(P1 [I P2) and only mixed edges.

Proof. Immediately follows from the observation that in every case
of the roll-back step only mixed edges are removed. Consider for example:

Here only the mixed edges between ax and/~y, fix and cry are removed. []

L e m m a 3.5. At the end of the roll-back process all mixed edges are

removed.

ProoL All mixed-edges result from programs of the form E l ; E2 (see
Def. 2.3). The final result of the roll-back process is a program in the form
7 = (c<~;...; c<,)ll (/~ ;...;/~). Therefore there are no mixed edges in the final
result of the roll-back process. []

3.2. Proving tha t the Max imal f~ Yields Only T ime Diagrams

T h e o r e m 3.3. Every member of R* is in normal form, and
represents a time diagram of R (R* c T(R)).

The proof has two stages. First it is shown that every final derivation
R [' , R ' must terminate in a normal form program (Lemma 3.7). The
structure of the normal form program is then used to show that R' satisfies
the three conditions of the time-diagram definition (Def. 2.3).

Def in i t ion 3.4. Let m(R)=Z~xllr)~R #{ ' ; ' in (XII Y)} be the sum
of ';' in all the sub expressions of the form (X[I Y).

L e m m a 3.7. For the system defined by I*, , m(R) is a descending
function, i.e., m(R) > re(P) where R f*, P. Moreover, m(R) = 0 iff R is in
normal form. Therefore any derivation R I*, p terminates in a normal

form.

,Drool Let R' denote a program obtained from R by applying the
time division axiom on R (R--~ R'), and let # R denote the number of ';'s
in R. The proof shows that m(R')<m(R) for all cases of applying the

axiom:

388 Ben-Asher and Farchi

Casa (P1; P2)If P3 --~ P1; (P211P3): Evaluating m(R) yields:

m((P1;P2)fIP3)= # (P I ; P 2) + #P3+m(P1;P2)+m(P3)

= #P1 + # P 2 + 1 + #P3 +m(P1)+m(P2)+m(P3)

> # P 2 + #P3+m(P1)+m(P2)+m(P3)

= m(t ' l) + m(P2 fl P3) = m(P I: (P2 fl P3))

Case (P1; P2)IIP3---~ (P1 IIP3);P2: is symmetric to the previous
case, hence follows in the same way.

Case (PI; P2)rl (P3; P4)--s (P1; P3)If (P2; P4): Evaluating m(R)
for this case yields:

m((P1; P2)][(P3; P4))= #(P1; P2)+ #(P3; P4)

+ m(P 1; P2)+m(P3; P4)

= #P1 + # P 2 + # P 3 + # P 4 + 2

+ m(P 1) + m(P2) + m(P3) + re(P4)

> #P1 + # P 2 + # P 3 + # P 4

+ m(P 1) + m(P2) + m(P3) + m(P4)

= m(P 1 [] P3) + m(P2]l P4)

= m ((e l II P3); (P2 II P4))

Clearly m(R)=0 iff R is in normal form, since all '[]' operate between
atomic instruction only. In addition, if re(R)> 0 then there exists at least
one sub expression XII Y for which either # X > 0 or # Y>0, and ,.i, can
be applied once more. Hence, since when m(R)>0, one can still apply
R--~ R' and m(R') decreases, the derivation must terminate in m(R')= O,
i.e., with a normal form. []

Lemma 3.8. Let R' be a program in a normal form obtained by
R i . R', then R' is a time diagram of R.

Proof. Let: �9 be a mark of thej ' th ';' in R and (X ; Y) denote its
~6 �9 , ~) J "

surroundings, Lemma 3.7 yields that R' is in normal ~orm, therefore
R'=S1;...;Sk where Si=J[E. We will show that R' satisfies the time
diagram conditions of Def. 2.3. Clearly each Si is not empty. Now two
properties are preserved in every application of the time division axiom:

True Concurrency to Model Execution of Parallel Programs 389

Forward Preservation. If el is before e z in R, then el is before e z in P
where R --~ P.

Parallel Preservation. Let (XI[Y)~P where R --L, P, then there is
(X~ II Yr) ~ R such that Xt c X and Yr C Y and both Xz, Yr are not empty.

Let us assume that the forward preservation property holds for every
application of--s Then if e~ is before e2 in R, then el is before e z is R'
where R s . R'. However, R'=SI;.. .;Sk, Si=[IE thus, e~ before e z~R
implies that ez ~ Sj ^ e~ ~ Si where j < i, and the third condition of Def. 2.3
holds.

Let (Eo[IEb)~ R and assume that the parallel preservation property
holds. Then by induction on the derivation f---~-~, there exists E'aE Ea,
E~, ~ E b such that (E'~ 11E~,)~ R'. R' is in normal form and every I[E~ R' fits
to some S;, hence (E', 1[E~,)~ St and the second condition holds.

It remains to be shown that the forward and the parallel preservation
properties are valid: For the case of (A; B)II (C; D) "~ (A IL C); (B i[D), the
forward preservation holds since after the derivation still both A is before
B and C is before D. For the parallel preservation, if (X[I Y) belongs to
either A, B, C, or D then the property trivially holds. Otherwise X = (A; B)
and Y = (C ; D) and the choice Xt=A and Yr=C satisfies the parallel
preservation property. In a similar way both properties are valid for the
two other cases of applying the time division axiom, i.e., AI[(B; C)--~
(AI[B);C and AII(B;C)~-L~ B;j(AIIC) both satisfy the properties. []

4. S E R I A L I Z A T I O N A N D S E L F - S I M U L A T I O N IN
PARALLEL M A C H I N E S

The main result of the previous section is the notion of equivalence
between an axiom based execution (see Def. 2.5) and execution based on
the relation order induced by the conditions of Def. 2.3. This equivalence
lies at the core of a formal understanding of parallel execution or time
models. It actually defines a class of parallel machines (discrete machines)
for which this equivalence is true. In this section we further pursue this
equivalence by introducing new axioms, and verify their counterpart order
relation conditions. Adding new axioms restricts the class of discrete
parallel machines and forms new classes. Two additional classes are of
interest and form a natural classification of parallel machines:

VI: Fully serializeable execution class- All discrete machines such that any
parallel execution is equivalent to any sequential execution of the same
program.

V2: Partially serializeable execution class- All discrete machines such that

390 Ben-Asher and Farchi

any parallel execution is equivalent to some order of sequential execution
but not to all possible orders.

Note that both V1 and V2 are not equivalent to the interleaving time
model. They still include a requirement for friction, which is expressed by
adjacency of instructions in consecutive states rather than by true con-
current execution (see exact definitions next).

4.1. Ax ioms versus T ime Condi t ion of the V1 Class

In order to construct a twofold structure for V1, i.e., axioms versus
time diagram conditions, we use the following definitions. The axioms for
V1 are the three original ones plus a new axiom (called "the full serializa-
tion axiom" (fs)).

De f in i t i on 4.1. The fs-axiom is a one direction axiom, indicating
that for any two atomic instructions a, b:

aJ[b=~a;b ^ allb:e.b;a

The new conditions for time diagrams are as follow:

De f in i t i on 4.2. A time diagram DYe(R) for the execution of a
program R by a machine in V1 is a division of the atomic instructions of
R into steps S~ Sk such that:

1. Each Si contains one instruction.

2. If e a is "before" e b in R then there are j < i such that e~ ~ Sj and
e b E S i.

3. V(Ea[IEb)~R there exists ea6E~, eb~E b such that eo; eb~DVl(R)
or eb; carD(R).

Intuitively, these conditions allow all possible arrangements of the instruc-
tions which are not in before relation to one another. Moreover the parallel
friction condition is transformed to a sequential friction, thus maintaining
the original interpretation of the '[1' operation.

Def in i t ion 4.3. Let

R I,., R' be a nonempty derivation of R using only the V1 axiom until R'
can not be reduced any further.

R I I , R' be a nonempty derivation of R using the usual axioms until R'
is in normal form, Theorem 3.3.

R (f+s)* R t be a final derivation of R using the fs-axiom plus the usual
ones, until no further application is possible.

True Concurrency to Model Execution of Parallel Programs 391

R vl* be the set of all programs resulting from (i+s)O which can not be
further reduced.

T W (R) the set of all legal time diagrams of R satisfying the time conditions
of Def. 4.2.

In the following we will identify the program R = el;...; e, with the time
diagram Si = e;.

Theorem 4.1. Under the above definitions R V l * = T W (R) .

Proof. The first direction shows that R H * c TrY(R). Let P ~ R v~*,
by Lemma 4.1 P = e~ ;...; e,. Now set Si = ei, it remains only to verify that
P satisfies the conditions of Def. 4.2. Now, if ei before ej in R then e~ before
ej in P. This can be shown to be true, using a simple induction argument
on the derivation (y+s)- such that if ea is before e b then e, is still before
e b after any application of the Vl-axioms.

Let R--L-~ I R' denote one application of the regular axioms (Def. 2.5).
If (E, I1 Eb) ~ R then there are non empty E,, e E, and Eb, ~ Eb such that
(E,, 1[Eb,)~ R'. This can be easily verified by checking all possible cases of
__~F. Clearly every '11' which is transformed to ';' by the fs-axiom creates a
sequential friction between some (E , I IEb)eR. Since there are no '11' in
P ~ R vl* all (E, II Eb)~ R have a sequential friction in P, and the conditions
of Def. 4.2 hold and R v~* c T vx.

The second direction uses the following argument: according to
Lemma 4.2, for a given D e TVl(R) , one can find P c T(R) such that there
is a derivation P ~/+"~*, D. According to Theorem 3.2 there is a R /* , P,
hence there is a R i.f+s~* D or D ~ R v~* []

The replacement process (to be described next) actually shows that a
final derivation in V1 can be always divided into two phases: first a regular
time diagram is obtained, then using the Vl-axiom, it is transformed into
the final form:

Corollary 4.1. .Any mixed derivation which includes J*, and the
fs-axiom is equivalent to first applying I - and then applying (./+s~* on
the lie left in the result (f+'~*, ~ if+s)*

L e m m a 4.1. If P ~ RV~* then P is in the form P = e l ;...; e , .

Proof. By negation, assume that P contains at least one sub expres-
sion of the form (;(11 Y). Three cases are possible:

�9 X, Y are atomic instructions, hence the fs-axiom can be applied.

�9 X or Y are non-atomic programs which do not contain a ';', then
again the f s -ax iom can be applied.

828/22/4-2

392 Ben-Asher and Farchi

�9 Either X or Y contains a ';', hence the original axioms can be fur ther
applied.

If the ax ioms can be further applied, then Pq~R vt*, which is a cont ra-
diction. []

L e m m a 4 .2 . Fo r any D=e~;.. .;e, eTZ~(R) there is a ' ; ' to II
replacement processes P = replacement(D) such that P c T(R). Moreover ,
there is a derivat ion to the original t ime diagram P (Y+~)*, D.

Proof. Define a replacement process that yields S~;...;Sk which
satisfies the condit ions of Def. 2.3. The replacement process produces St by
replacing adjacent ' ; 's to IIs. Hence by T h e o r e m 3 . 2 this defines
P = Sl ;...; Sk where Sy= ei, II ... I1% and P c T(R).

The replacement process is described in Fig. 3.
SS is a legal t ime d iagram of R, since it preserves the condi t ions

of Def. 2.3, as follows:

�9 Every Si~ SS is not empty because it contains at least one ei.

�9 According to Def. 4.2 V(E. [1Eb) 6 R there exists e , ~ E,,, eb ~ E b such
that e , ; eb~D(R) or eb; e, ED(R). Clearly e, is not before eb and the
replacement process will replace e , ; eb by e~ I1 eb thus pursuing the
friction condit ion of Def. 2.3.

�9 In the replacement process, a new state starts with an instruct ion e~
which has some instruction ey before e~ where ej is in the current
state (see S S in Fig. 4). If ey before e~ and ey belongs to a previous
state there is no need to start a new state since eg is a l ready
separa ted from ej by a ';'. Hence the third condi t ion of Def. 2.3 is
met.

INPUT D = e l ; . . . ; en E TVI(R) and R;
OUTPUT SS = S1;...;Sk E T(R);
S' = el; /.* current s t a t e */
SS = 0; /* list of all states */

FOR i = 2 . . . n DO {
IF(3 e i E S A ei before ei) THEN {

SS ---- SS q- S'; /* add the new s t a t e */
S t = {el}; /* start a new state*/

} ELSE I' --- S' + e~; /* replace ';' by a 'If' */
}
SS = S~ Jr S'; /* add the last state */

Fig. 3. Replacement process transforming DrI(R) to D(R).

True Concurrency to Model Execution of Parallel Programs 393

before

[~ " "~ 11 ~ " ~176 II j i]

s s~ -ew state

Fig. 4. Creating new states in the replacement process.

Lemma4.3 completes the proof by showing that there is a derivation
p (i+s)* D which re-replaces every II back to a ';'. []

I_emma 4.3. For every ;E=e~; . . . ;ekeDVl(R) there is a derivation
lIE (f+s)' , ;E such that IIE=e~ll ... liCk (in fact, to any permutation of
(e t ; . . . ;ek)) .

Proof. By induction on the length of liE(k):

For k = 1, the claim trivially holds, also by using the fs-axiom it holds for
k = 2 .

For k > 2, assume that el II---lick ~J+sJT, et ;...; ek hence:

(f + s)*
elN .-. [lek--,l[ekllek+l ' ((et; . . . ;ek_l);ek)l lek+l

/ " ' ((et ;...; ek- l) ; (ek Nek + l))

J~ ~ ((el ;...; ek_ 1); ek; ek+ 1))

=e~;...; ek_~; ek; ek + t []

Note that changing parentheses in [lei and ;E expressions is a valid step
according to Lemma 2.1.

4.2. A x i o m s versus T i m e Cond i t ion in the V 2 Class

As in V1, the axioms for V2 are the original three plus a new axiom
(called "the partial serialization axiom"):

D e f i n i t i o n 4.4. The ps-axiom differs from one program to
another, indicating that for any two atomic instructions a, b s R one of the
following is true:

either (a[lb=.a;b ^ ~ (a N b = . b ; a)) or (a H b ~ b ; a ^ --n(alLb=~a;b))

Note that the ps-axiom is a list which describes "directions" in trans-
forming every expression of the form e ill ej to ei; ej (justifying the notation

394 Ben-Asher and Farchi

ps-axiom(R)). This definition is reflected in the new conditions for time
diagrams in V2:

D e f i n i t i o n 4.5. A time diagram DVZ(R) for the execution of a
program R by a machine in V2 is a division of the atomic instructions of
R into steps S~ Sk such that:

1. Each S;, contains one instruction.

2. V(E, IIEb)eR there exists e ,~E , , eb~gb such that G ; eb~D(R) or
et,; e,,~DV:(R).

3. If e, is "before" eb in R then there are i and j such that i < j and
e,,~ Sj and eb ~ Si.

4. For all pairs of atomic instructions, there is a pre-defined list
L V2(R) = {... (ei ; ej}... } which indicates a potential "before" rela-
tion. In addition, there should be a matching relation between
some time diagram D(R)~ V and a candidate P for a time
diagram in V2. P~ T v2 if the identity matching between instruc-
tions of D(R) and the instructions of P preserves the order on the
states of D(R). I.e. P can be constructed by inducing order on the
instructions of the states of D(R). Hence, the third condition for
P c TVZ(R) states that for all e;~ R:

�9 Let S(ei)= e I ... e, be the state in a D(R) that matches P,
such that eg ~ S(eg).

�9 There is at least one instruction ej~S(e~) such that either
S (e i) -= ei o r :

(e~; ej) ~ L V2(R) ~ ei before ej in P

(ej; ei) ~ L V2(R) ~ ey before ei in P

Intuitively, the last condition excludes all the time diagrams in Try(R)
which violate all the directions in LV2(R). For instance, choose the
ps-axiom to match L V2,.thus showing that there exist derivations which
violate some, but not all of the directions. In particular, let R = a]J b If c and
L V 2 (R) = ((a ; b) (a ; c) (b ; c }) , then using the V2-axioms it is possible
to derive:

a[I b II c --* a[I (b; c) --* b; (a If c) -* b; a; c ~ contradiction to (a ; b } e L V2(R)

a 41 b 11 c --* c II (a; b) --* (a I1 c); b ~ a; c; b =~ acontradiction to (b; c } ~ L V2(R)

However, it is not possible to obtain a llb[Ic ~ c; b; a, a time diagram
which violates all the directions in L V2.

The main equivalence theorem for V2 can be stated and proved. The

True Concurrency to Model Execution of Parallel Programs 395

following notations: (f+P~)',, R v2*, VV2(R) and TV2(R) are used in the
same way as in Def. 4.3.

T h e o r e m 4.2. Under the above definitions if LV2(R)=ps-
axiom(R) (i.e., the directions in LV2(R) are the same as those given in the
ps-axiom list) then R v2* = TV2(R).

Proof. The proof follows the same path as that of Theorem4.1.
Lema 4.1 is also valid for V2 (just replace V1 by V2 and fs-axiom by
ps-axiom). The first step is to prove that Rv2*cTV2(R) . Let P ~ R v2*,
according to Lemma 4.1 P=e~ ;...; e,. Set Si=ei, it remains to verify that
P satisfies the conditions of Def. 4.5. As in the V1 case, an induction on the
axioms can be used to show that the second and third conditions of
Def. 4.5 are preserved by any axiom application.

The fourth condition is also preserved through the following argu-
ment: Any derivation in V2 is also a derivation in V1, and therefore (using
cf. 4.1) can be broken into two stages R (f+P")*, P = R f*)'
D(R) (f+ps)* p. Clearly D(R) matches P in the sense of condition 4.5,
therefore requiring us to show that the third condition (of Def. 4.5) is
preserved in every ei~ R and in every state S(ei)~D(R).

If S(e~)=ei the claim holds. Otherwise, every application of the
ps-axiom e~l[eb P~ei;eb satisfies the third condition for the pair
(e~; eb) E LV2(R). This last claim can be proven by an induction argument
showing that no further application of the axioms can reverse the order
between e~ and e b. Thus it suffices to prove that the ps-axiom was applied
on every ek ~ I[EE D(R).

By negation, assume that in IIE~D(R) there is an instruction ek on
which the ps-axiom was not applied. Since ek is separated by a [I from the
rest of the instructions in lIE and no ps-axiom was applied on ek, then this
[I should have "survived" and continued separating ek in all applications of
the regular axioms (Def. 2.5). This claim can be easily verified by induction
on the axiom applications, e.g., (A; B)1[ek --* (A I1 ek); B, showing that the [I
still separates between ek and A. This contradicts the fact that R' should
not contain any IIs according to Lemma 4.1. Therefore P e Try(R).

The other direction of the proof (to show that TV2(R) ~ R v2*) follows
the same structure as that of the proof for V1. The replacement process of
Lemma 4.2 remains the same as in V2, since it uses only the "before" rela-
tions in R. In order to prove Lemma4.3 for (s+ps). , it is sufficient to
re-prove Lemma 4.3 as follows:

L e m m a 4.4. For every lIE= (e~ll...llek)~D(R) such that D(R)
matches (in the sense of Def. 4.5) DVZ(R) there is a derivation
LIE (s+ps)* ;E such that ;E=e~;...;ek~DV2(R).

396 Ben-Asher and Farchi

Proof. By induction on k the length of lIE:

For k = I- the claim trivially holds.

For k = 2- the ps-axiom hold as well.

For k > 2 - assume that etll...[le k (f+ps)') el ;...; ek. Let l ie=
(el II .-. II ej 11 ... tl ek)11 ek + l ~ D(R). The fourth condit ion of Def. 4.5 guaran-
tees that there is some ej~(e~]l.. .Irek) such that ej is before ek+~ in
(el ;...; ej;...; et,; el,+ l) ~ DV2(R), hence:

(e t 11 ... I[ej 1[... [I e k) II ek + x = (el [I ..-[I ej _1 II ej + t [I ... II ek) l[(ej [1 ek + t)

t, t~jlfe~ (e III .-. II ej_ 1 II ej+ 1 II ... II ek) II (ej; ek + 1)

f ' , ((e l I] .-. [I ej_ 111 ej+l I[... [] ek)[I ej); ek+l

inducti~ i. ((el;. . .;ei_l;ei;ej+l;. . .;ek);ek+l) []

5. A C O R R E C T I O N N O T I O N FOR PARALLEL P R O G R A M S

The proposed correct ion notion is built upon Th. 3.1, which states that
the t ime d iagrams of a given p rogram T(R) can be derived using the
axioms based derivations. This defines a parallel execution model which
actually ignores, semant ic knowledge regarding the execution, such as
infinite loops, dead-locks, and forced termination. Thus the set of all
possible t ime diagrams of a specific p rog ram R is actually a subset of T(R),
containing all t ime d iagrams which do not violate the semantics of R. Fo r
example, consider the following parallel p r o g r a m R in C style:

(x = 0; (x = 1; [l(while(x = = 0); pr in t (x)))

(Note that as explained in the introduction, a complex code segment (such
as 'while(x==O); ') can be regarded as an a tomic instruction.) Clearly,
'print(x)' and 'x = 1 can n.ot be executed at the same state, even though it
is al lowed by the V t ime model. Similarly, 'x = 1' and 'while(x = = 0) ' must
be executed in the same state, forming a true concurrency condition, which
is not required by V.

The not ion for correctness is based on the ability to express the
semantics of a parallel execution of a p rog ram R in a t ime model V, as a
restriction of V, to ma tch R's semantics. Only the par t of T(R) which
matches the semantics of R (left unspecified) should be allowed by the
chosen Ct conditions. The choice of Ct is left undefined, mak ing Ct an
open slot for adding semant ic knowledge abou t R. Once Ct is chosen, a
suitable Cx must de devised such that (R, Cx, C t) is a t ime model for R.

True Concurrency to Model Execution of Parallel Programs 397

Such a notion of correctness avoids the need for specifying a precise
semantics for R, using formalisms like petri-nets, ccs and logic formulas. ~6)
This notion is therefore correct up to the ability to express semantics by Ct
conditions. If the user has failed to do so (i.e., his or hers choice of Ct con-
tradicts a possible formal semantics), a correctness proof might be false.
The advantage of such a notion stems from its ability to supply proofs
against all possible schedulings or executions, without computing all of
them.

A time diagram of a program represents a history of some parallel
execution. Thus all its states (except the last) should terminate, making the
time diagram consistent with the semantics (what ever it may be). The last
state need not halt, since the execution may end in an infinite loop.

This intuition leads to the following definition:

D e f i n i t i o n 5.1. For a given program R executed by a parallel
machine M, which belongs to one of the classes Is, V1, or V2, let:

Ct- be a finite set of conditions which restricts all time diagrams of R, such
that:

1. T/Ct(R) ~_ T(R).

2. Let D(R)=St;. . .;S'n~T/Ct(R) then St; . . . ;Sn_t halts when
executed by M.

3. Let D(R) = S'~ ;...; S'n E T(R) - T/Ct(R), then S'~ ;...; S ' _ t when
executed by M does not halt. All time diagrams which violate
D(R) E T(R)-T/Ct(R)"contradic t any possible" execution of R.

Where T/Ct(R) denote the set of all time diagrams of R which preserve
Ct.

Cx- be a set of derivation rules, such that R/Cx* ~_R*, where R/Cx*
denotes the set of programs obtained by a final derivation which
preserves Cx.

Induction system The triple (R, Cx, Ct) is an induction system if
T/Ct(R) = R/Cx*.

Correctness R is correct in respect to a condition C, if there is an
#induction system (R, Cx, Ct), such that every D(R)~ T/Ct halts and
satisfies C.

Once an induction system has been devised for R, it can be used to
prove desired properties of R, e.g.:

�9 Assume that the initial program R satisfies some property C, and
c x preserves this property, then so does T/Ct(R).

398 Ben-Asherand Farchi

�9 Assume that some time diagram D/Ct(R) satisfies some property,
and cx preserves this property both backwards and forwards, then
so does T/Ct(R).

Note that finding Cx which generates all T/Ct(R) might be difficult, since
Cx reflects "on-line" conditions while Ct characterizes the final result.
However, if the program halts, then clearly there are some scheduling rules
by which it was executed. Thus if the program is correct, then Cx exists.

The choice of Ct as the open slot rather than Cx is natural. Clearly it
is easier to characterize a subset (T/Ct(R)~ T(R)) by conditions than to
devise a general rule for constructing this subset.

5.1. An Induct ion System for Parallel Loop Programs

This section presents an induction system for a special category of
programs, namely parallel loop programs executed in the V time model. We
are interested in a synchronous execution of these programs, i.e., the ith
state in every time diagram contains all the ith instructions from every
loop, thus all loops are actually executed synchronously. Note that the V
time model is an asynchronous model and allows all possible interleavings
of instructions from different loops. Thus we seek to find an induction
system for parallel loop programs characterizing (via Ct and Cx) the
desired synchronous execution.

Def in i t ion 5.2. Let a loop of length 1 be a sequential sequence of
l instructions. A parallel loop program R~, consists of k parallel loops:

R~ = (x*x ;...; xt,)I1... II (xg ;...; x~)

D e f i n i t i o n 5.3. The length of a program [R] is recursively defined
as follows:

t l if R i s a n a t o m
JR] - - [A] + [B] if R = (A ; B)

[m a x ([A] , [B]) if R=(AI[B)

Def in i t ion 5.4. An S - J derivation s - j is a "symmetric"
application of the time derivation axiom such that:

((A;B)I[(C;D)) s-J,((AIIC);(B[[D)) if [A] = [C] , [B] = [D]

The proposed induction system uses S - J as Cx, and its Ct will
simply restrict all time diagrams to having l states, and containing the

True Concurrency to Model Execution of Parallel Programs 399

regular conditions of Def. 2.3. In addition to the proof showing that
(R~,S-J , [D(R~)]=l) is an induction system, we show that there is
only one possible time diagram in T/Ct satisfying synchronous execution of
Rtk . Intuitively, the induction system proves that if a parallel execution
deviates from S - J the result (any time diagram) will no longer be syn-
chronous and will have more than l states. The difficulty, or the non-
triviality of such a proof stems from the need to prove that any deviation
from S - J will end by a non synchronous execution (i.e., S - J is not only
sufficient but necessary).

L e m m a 5.1. If Rlk s - j * R' then JR'] = l and for every (A [1 B) e R'
the following condition holds [(A [L B)] = [A] = [B].

ProoL By definition [R~] =/ , assume by induction that JR"] =/ ,
where R J, R'. Hence there exists E" = (A; B)11 (C; D) e R" such that
[A] = [C] , [B] = [D] and E"=((A;B)II(C;D)) "-J,E'=((AI[C);
(BIID)). Using the assumption [A] = [C] and [B] = [D] yields that

[E '] = [((A LI C); (BII O))-I = max([A], [C]) + max([B] , [D])

= [A] + [B] = [C] + [D] = max([A] + [B], [C] + [D]) = [E"]

Hence, by the induction hypothesis JR"] = [R '] = l. []

Lemma 5.2. Let G(R) denote the graph representation of a
program R, such that there is a direct edge from a to b if a and b are
atomic instructions of R and a is in "before" relation to b. Clearly G(R) is
a directed acyclic graph. Let ~(N') be the set of all maximal paths in G(R),
i.e., there is a "last" node u in every path, such that there is no other node
v satisfying u before v. Let Lo be the maximal length in ~ , then rR] = Lo
(i.e., the length of a program R is the length of the maximal path in G(R)).

Proof. By induction of the structure of R:

[R] = 1, then G(R) contains one node, and a maximal path of length one.

R = (A; B), then G(R) is formed by placing an edge between every node in
A and B. Hence the longest path in s is the longest path in s
joined by an edge to the longest path in s and the claim follows.

R = (A II B), then ~ (R) = s w &-~ and the claim follows. []

L e m m a 5.3. If R ~ R' then [R'] >~ JR].

Proof. By verifying cases of possible derivations.

400 Ben-Asher and Farchi

Associativity or commutativity- By definition does not change the length.
E = ((A; B)][(C; D)) ~ E ' = ((AII C); (B]I D)), then

[E] = max([A] + [B], I-C] + [D])

~< max([A], [C]) + rn.ax([B], [D]) = [E ']

W.l.o.g. E= ((A; B)I[C) ---~s E ' = (A; (B[[C)), then

[El = max([A] + [B], [C]) ~< [A] + max([B], [C]) = [E'] []

Lemma 5.4. If R~, s -y+ R,, i___,R, and R" i---~R ' not an S - J
derivation, then [R'] >/.

Proof. By verifying cases of possible derivations.

E " = ((A; B) II (C; D))--L r E ' = ((A If C); (BIID)), then since ~ violates the
S - J condition, w.l.o.g. [A] > [C] , by LemmaS.1 [A] + [B] =
[C] + [O], hence [D] > [B]. Now

[E'] = max([A], [C]) + max([B], [D])

> max(([A] + [B]), ([C] + [D]))= [E"]

I4:l.o.g. E" = ((A; B)[I C) ~ E ' = (A; (BII C)), then since by Lemma 5.1
[A] + [B] = [C]

[E '] = [A] + max([B], [C]) > [A] + [B] = [E"] []

Def in i t ion 5.5. Let the "synchronous" normal form of R~,
denoted by zl(R~) be the program:

~J(R~,) = (x l II ... II xL);. . . ; (xZt I[... II x~,)

Lemma 5.5. All normal forms of D(R~) different from z/(R~) have
lengths greater than [A(R~)] = I.

Proof. By definition [A(R~)] = l, by Lemma 5.3 [D(R~)]/> l, hence
by Lemma 5.2 (length of the maximal path in G(R~)) the number of states
in D(R~)>1 l. Assume that D(R~):/: A(R~); yet, [D(R~)] = [A(R~)]. G(R~)
contains k distinct paths of length l. The time diagram conditions of
Def. 2.3 employs that the j th node of a path should be placed in the j th
state of D(R~). Since there are exactly l states D(R~) = ,4(R~,), a contradic-
tion. []

Lemma 5.6. There is an S-Jder iva t ion such that R~ s-j.> A(R~).

True Concurrency to Model Execution of Parallel Programs 401

ProoL A(R~) satisfies the conditions of Def. 2.3, hence A(R~)~ T(R~).
Let Jx~"t s-j+, ~n' ~/~"" /. , A(R~) where R'---Q I R" is the first derivation
different from S - J . By Lemma5.1 [R']=l and by Lemma5.4 [R"]>I,
then by Lemma 5.3 [zJ(R~,)] >/ , which contradicts Lemma 5.5. []

T h e o r e m 5.1. T/ct(R~)=Rr

ProoL By Lemma 5.5 T/ct(R~) = A(R~). By Lemma 5.6 A(R~) ~ R ('-j)*.
Using Lemma 5.5 yields that every D(R~) ~ A(R~) has length [D(R~)] > L
Finally, if R~ "-;*, D(R~) then by Lemma 5.1 [D(R~)] = l, resulting in a
contradiction. Therefore D(R~)q~ Rt'-J)*(R~) and Rt'-/~*(R~)=zJ(R~) as
well. []

5.2. V e r i f i c a t i o n of a Spec i f ic P r o g r a m

The induction system for R~ can be used to prove correctness (as
defined in Def. 5.1) of a specific parallel program, such as the program in
Fig. 5. A common structure in parallel programming with shared memory
is flag synchronization. In this type of programming several processes
"wait" for a flag to be changed. The program spawns k + 1 processes all
waiting for one activity to reset a flag, and all this is repeated 2l times in
a loop. Assume that the user wants to avoid re-spawning k + 1 activities.
Thus, he needs to "nest" the outer loop inside the spawn statement. This
problem is interesting in its own right; however, its solution leads to the
complicated program of Fig. 5. This solution overcomes the problem of
resetting the flag (flag = 0) by implementing two counters (counta, countb)
through which the 13 process can determine when it is safe to set and reset
the flag. The faa instructions (fetch and add (17"18)) a r e used to decrement
the counter in parallel. Note that a "naive" nesting of the outer loop will
cause infinite loops, as it might be that the 13 processes will terminate long
before the rest.

There are only a.few methods for verifying asynchronous programs
which use f&aa.(~9~A proof based on constructing an induction system is
naturally considered, since flag() is "correct" only when all possible orders
of execution (schedulings) of flag() halt.

Let Rflag --- (2; w)t l [(Xl; yl)/l[... [I (xk, yk) I be an abstraction of flag()
such that z, w,x, y are mapped to statements as follows: z = 7 ; 8 ; 9 ,
w= 10; 11; 12, x i = 14; 15 and y i = 16; 17 (i is the process id). We will also
use the notation x{ to describe the j th iteration of xi (sometimes referred
to by x).

The proof for R pag correctness (according to Def. 5.1) includes: deter-
mining Ct/Tag, fixing Cx, proving that (R a"g, Ct flag, C.'r is an induction

402 Ben-Asher and Farchi

f l ag (k ,1){
O- INT flag,counZa,countb;

i- flag=O;

2- counZa=k;

3- FOR ALL i = O...k SPAWN PROCESS:

4- { INT n , j ;
5- FOR(n=O;n<l;n++){

6- IF(i==13){
7- flag = i;
8- countb = k;

9- WHILE(counZa > 0);

i0- counta = k;

ii- flag = O;
12- WHILE(couautb > 0);

13- }ELSE {

14- WHILE(flag == 0);

15- faa(&counta,-l);

16- WHILE(flag == I);
17- faa(acountb,-l);

18- }
19- }

20- } EPAR
}

Fig. 5. "flag()" a program demonstrating flag syn-
chronization between processes.

system, and showing that any time diagram that violates Ct will not halt
(in a state different from l~he last one).

For every D/CtJT"g(RP"g)=S~;...; S,, Ct p~g includes the following
conditions:

Ct v- this condition determines the time model V, V1, V2 to be used.
Note that after the abstraction, x, y, w, z contains busy waiting loops
with interdependencies, such that a true parallel execution model
is needed. V, being the least restrictive of all three, is naturally
considered. For example, the first state $1 E D/Ct(Rjr~g) will not
terminate if it contains a single x, y, z or w instruction (i.e., it will
be "stacked" in its busy-waiting loop).

True Concurrency to Model Execution of Parallel Programs 403

Ct=- for every z~ Sj, j < n there is a sequence of kx instructions in
states Sj_ , , ... Sj, m < k, which contains no y, w instructions.
Clearly each z can not terminate before its counter has been
decreased to zero, which can happen only by executing k x instruc-
tions. A w executed between these k instructions will reset the
counter back to k. A y executed between these 20 instructions will
iterate forever since the flag must be set to 1 if the kx-instructions
are to terminate. Let S A, A = x, y, z, w denote a state containing an
x, y, z or w instruction, respectively. Hence the set of states between
S: and S x contains only x instructions. The dual condition for w,
Ct w is obtained by replacing z by w and x by y respectively.

Ct x indicates that every x E Sj, j < n has some z ~ Sq, q <~ j such that
there is no y, w in these states (Sq ... Sj).
Each x can not terminate before f lag has been set to 1, which can
happen only by executing z instructions. A w executed between Sq
and Sj will reset the f lag back to 0. A y executed between Sq and Sj,
will iterate forever since the flag must be set to 1 if the x instructions
ought to terminate. The dual condition for y, Ct y is obtained by
replacing x by y and z by w respectively.

Note that these conditions are valid for all states except the last one.
This follows from the interpretation of a time diagram as a history of
parallel execution. Thus all states, except the last one S, , should have
terminated, and therefore can not contain infinite loops. The termination of
the last state of every time diagram of RI7~ x is equivalent to proving that
RI7,, ~ halts no matter what scheduling took place.

The proof is based on the following claim:

kemma 5.7. T/Ctflag(RIr~g)=A(R Izug) and any time diagram of
RlTag with more than 2l states violates Ct, before the last state.

Proof. Let SzE D/Ct flag denote a state containing z (same for S x, S.",
S"'), so that any time diagram of R llag has the following form:

D/Ct fl~g ; S] ;...; S~';...; S~;...; S~'; ; S~;...; S't~' ;...

Let pre(S~) denote all states between S~ and S::-~ including S~ (and
pre(S~Y) respectively). Then according to Ct:, for all S=, pre(S=) contains k
instructions of type x, and pre(S") contains k instructions of type y except
for the last S ~ state. Since only k . l instructions of type x are distributed
evenly among all pre(S:), then all p r e (S ') do not contain x instructions.
Thus, all pre(S=) contain no y instructions either. Hence, pre(S~)=xJ;

k ~ j

(z [~) ; however, Ct x requires all x E x j to be executed after or in

404 Ben-Asherand Farchi

k k

parallel to some z, so pre(S:~) = z [I x [J ... f[x. Similarly pre(S~') = w Ir Y II .,-II y ,
i < l except the last state S~' which might violate this structure. Clearly, if
S~" is not the last state, it has already terminated, and so pre(S~') contains
k instructions of type y. This plus the previous observat ion contradicts the
assumpt ion that S~' is not the last state, yielding that D/Ctftag(R flag) can
only be of the following form:

k k f |

s ; = z [I x II ... II x ; s ~ = w If [I ;

. ; . ;

.............. ; ;

S] _ l = z [] x II .-. [] x ; S'l'_ ~ = w II Y [I ... II y II y]1 .--II y ;
k j)~

87 = z II x II .-. II x; $ / = w

such that E~=, f,- = k - j

However , if f , > 0 for i < l then there are at least two y instruct ions
parallel to one another which originally belonged to the same loop in
(x, y) ~ e R .1z~e. This contradicts Ct v, which requires all t ime d iagrams to
preserve the before relations. Finally we obtain that T/Ct p~g contains one
time d iagram of the form:

k k k k

D/Ct/7~g(R n~g) = zl [I x l] ... [I x; w t I] Y [I ... II y;...; zt II x [I--. II x; wt II y l] ..-]l y

with exactly 2l states. If there are more than 2l states and no state can
contain more than k instructions of type x (or y), then there are at least
two states of type S=, S w that violate Ct-" or Ct w. []

T h e o r e m 5.2. R .I7~g is correct, in the sense of Def. 5.1.

Proof. Clearly R a~g is a parallel loop p rog ram such that RlT~g = R2~+ 1.
Theorem 5.1 combined with L e m m a 5.7 yield that T/Ctn~g(R p~g) = A(R -trig)
=RtS -S)* (R~g) . Hence Ct jz~g is equivalent to the general condi t ion for

synchronous execution such that [D(Rn~g)] = 2l and (Rpag, S - J , c t .n~g)
is an induction system. Moreover , by L e m m a 5.5, any violat ion of S - J
yields a t ime d iag ram with more than 2l states, which by L e m m a 5.7 violates
Ct -a~g is an inner state (a state different from the last one). Clearly, using
Ct .p~g definition, any violation of Ct tTag in an inner state will cause this

True Concurrency to Model Execution of Parallel Programs 405

state to be in an infinite loop. However, if every state satisfies Cl flag then
every state halts and so does A(RJq"g). Thus all conditions of Def. 5.1 are
fulfilled. []

6. CONCLUSIONS

In this paper we study a model for parallel execution of parallel
programs. Parallel programs have been defined to be expressions for
expressing partial order relations of atomic instructions. It contains explicit
(Xll Y) or "incomparable" relation (indicating parallelism), and the usual
(,Y; Y) relation (indicating sequentiality or <). The I[relation has been
interpreted as a weak requirement for true concurrency, namely that at
least two instructions (one from X and one from Y) will be executed
simultaneously.

Our goal is to develop a framework in which verification of a parallel
program against all possible orders of execution (schedulings) can be
realized. The proposed framework is based upon two observations:

�9 Sometimes, a compact representation for all possible execution
orders can be devised.

�9 True concurrency tL) must be used when compound instructions are
used instead of the original ones.

Three novel classes of parallel execution models have been defined, such that
different degrees of the intended parallelism in (XII Y) must be preserved
in every execution. It is assumed that verification of parallel programs is
simplified when it is performed using these classes. In particular, two dual
compact representations are used to characterize all execution orders of a
parallel program in every class:

Ct- A set of conditions or relations between the program and all its
execution orders.

Cx- A set of derivation rules from which one can construct all
possible execution orders of a program.

A proof that shows equivalence between Ct and Cx is devised for every
class of parallel execution. This equivalence is referred to as an induction
system ((R, Ct, Cx)).

The execution of a specific program R is viewed as a sub-class with a
specific induction system of its own. This induction system generates
exactly all possible executions which agree with the semantic of R. Recall
that an induction system contains two redundant ways to represent all
possible executions, namely Ct and Cx. This is used to determine a novel
verification method for parallel programs with three phases:

406 Ben-Asher and Farchi

1. The semantics of R is expressed as a set of conditions and added
to the Ct of the general class in which R is executed.

2. A set of derivation rules Cx is devised such that (R, Cx, Ct) is an
induction system.

3. Since Cx is a rewriting system which generates all possible execu-
tions of R, it can be used to show that all executions of R halt or
preserve some desired property.

We use this method to show that the set of all possible executions of
a specific parallel program, consists of a single synchronous execution (out
of a large set of possible asynchronous executions). This program realizes
a complex pattern of synchronization between 21 processes, each setting
and resetting common flag 10 times. The fact that only one synchronous
execution is possible is used to show that the program halts and terminates.

Further research is needed in order to give this method a more "solid"
base. In particular more types of parallel programs must be studied using
the proposed framework. Future research efforts may focus on the
following set of problems:

1. Which restrictions of Ct (such as restriction to first order logic)
can guarantee suitable C,v such that (R, Ct, Cx) is an induction
system?

2. For a given program and a set of Ct conditions, is there a
systematic way (an algorithm) to find suitable C?c?

3. Devise a notion of execution time and efficiency which exploits the
induction system to predict performances.

4. Study different types of classes, for parallel execution, which might
be useful for verification of all possible execution orders.

5. Determine specific types of programs (such as parallel loop
programs) for which an induction system can be determined.

6. Operators like the ones suggested by Pratt ~t) and Gaifman ~31 can
be embedded into the framework, such that the syntax of a
parallel program will include choice, recursion, loops, and com-
munication.

R E F E R E N C E S

1. V. Pratt, Modeling Concurrency with Partial Orders, International Journal of Parallel
Programming 15(1):33-71 (1986).

2. INMOS Ltd. Occam Programming Manual, Prentice Hall (1984).
3. United Stated Department of Defense, Reference Manual for the Ada Programming

Language. ANSI MIL-STD-1815 (1983).

True Concurrency to Model Execution of Parallel Programs 407

4. S. Ahuja, N. Carriero, and D. Gelernter, Linda and Friends, Computer 19(8):26-34
(1986).

5. A. H. Karp and R. G. Babb II, A Comparison of 12 Parallel Fortran Dialects, IEEE
Software 5(5):52-67 (1988).

6. J. T. Kuehn and H. J. Siegel, Extensions to the C Programming Language for
SIMD/MIMD Parallelism, Intl. Conf. Parallel Processing, pp. 232-235 (August 1985).

7. L. Lamport, How to Make a Multiprocessor Computer that Correctly Executes Multi-
process Programs, IEEE Trans. Computers C-28(9):690-691 (1979).

8. C. A. R. Hoar, Communicating Sequential Process, Prentice Hall (1985).
9. C. H. Papadimitriou, The Serializability of Concurrent Database Updates, Journal of the

ACM 26(4):631-653 (1979).
10. W. Reisig, Concurrency Is More Fundamental Than Interleavings, EATCS Bull, Vol. 36

(1988).
11. V. S. Adve and M. D. Hill, Weak Ordering--A New Definition, Ann. Intl. Symp.

Computer Architecture 17:2-14 (1990).
12. A. Pnueli, The Temporal Logic of Programs, Proc. of the 18th Symp. on the Foundations

of Computer Science, ACM (November 1977).
13. H. Gaifamn, Modeling Concurrency by Partial Orders and Nonlinear Transition Systems,

Springer Verlag, Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, Lecture No~es in Computer Science 354:467-488 (1988).

14. R. Janicki and M. Kountny, Structure of Concurrency, Theoretical Computer Science
112:5-52 (1993).

15. A. K. Deshpande and K. M. Kavi, A Review of Specification and Verification Methods
for Parallel Programs, including the Dataflow Approach, Proc. IEEE 77(12):1816-1828
(December 1989).

16. E. R. Olderog, Nets, Terms and Formulas, Cambridge Tracts in Theoretical Computer
Sciences, Vol. 23 (1991).

17. L. Rudolph, Software Structures for Ultraparallel Computing, Ph.D. Thesis, Courant
Inst., NYU (1982).

18. E. Freudenthal and A. Gottlieb, Process Coordination with Fetch-and-lncrement, Ann.
Intl. Symp. Computer Architecture 17:2-14 (1990). Intl. Syrup. Architect. Support for Prog.
Lang. & Operating Syst. 4:260-268 (1991).

19. B. D. Lubachevsky, An Approach to Automating the Verification of Compact Parallel
Coordination Programs, Acta Informatica 21:125-169 (1984).

20. H. E. Bal, J. G. Steiner, and A. S. Tanenbaum, Programming Languages for Distributed
Computing Systems, ACM Comput. Surv. 21(3):261-322 (1989).

21. H. Gaifamn and V. Pratt, Partial Order Models of Concurrency and the Computation of
Function, Symp. on Logic in Computer Science (1987).

22. M. P. Herlihy and J. M. Wing, Axioms for Concurrent Objects, JPDC 14:13-26 (1987).
23. U. Montanari, True Concurrency: Theory and Practice, Springer-Verlag, Proc. of Mathe-

matics of Program Construction, Oxford (1992).
24. W. E. Weihl, Commutativity-based Concurrency Control for Abstract Data Types, IEEE

Trans. on Computers 37(12):1488-1505 (December 1988).

828/22/4-3

