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ABSTRACT - We obtain error estimates for the finite element solution of elliptic prob- 
lems with Neumann boundary conditions for domains with curved boundaries 
using fictitious domain/penalty methods. 

1. Introduction 

Fictitious domain methods for partial differential equations have shown re- 
cently a most interesting potential for solving complicated problems from Science 
and Engineering [e.g., 6]. One of the main reasons of this popularity of fictitious 
domain methods (they are sometimes called domain embedding methods; cf. [1]) 
is that they allow the use of fast solvers on fairly structured meshes in a simple 
shape auxiliary domain containing the actual one. 

For solving elliptic problems on a domain with a curved boundary (i.e., the 
domain is no longer assumed to be polygonal) by finite element methods, there 
are usually two ways to handle the curved boundary: The first approach consists 
in using a polygonal domain to approximate the domain with a curved boundary. 
The second one consists in using isoparametric finite elemement which have 
~,curved>> face and are used to approximate ,~as well as possible>> the curved 
boundary of the domain [e.g., 2]. 
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In [4], a fictitious domain/penal ty  solution method for elliptic problems with 
Neumann  boundary conditions for domains with curved boundaries was prop- 
osed. The  approximation of the curved boundary is not necessary any  more. In 
this article we study error estimates for the finite element soiution of these prob- 

lems, using a fictitious domain/penal ty  method. In Section 2, we describe the 
elliptic problems with Neumann boundary conditions. In Section 3, we introduce 
the fictitious domain/penal ty  treatment of Neumann problems for domains  with 
curved boundaries and its finite element approximation. In Section 4, we obtain 
an H t error estimate for domains with curved boundaries by using finite element 
of type (k) on n-simplices, for integers k > 0; by a duality argument,  we derive a 
L z error estimate. In Section 5, the results of numerical experiments are pre- 
sented. 

2. Elliptic problems with Neumann boundary conditions 

We consider the following elliptic problem with a Neumann boundary  con- 
dition 

(2.1) a u -  /ku = f i n  co, 

0u 
(2.2) - g on 7, 

On 

where in (2.1), (2.2), a > 0, o) is a bounded domain in R n with a C l'1 boundary  y, 

f ~ L2(co) and g ~H1/2(~). 
Problem (2.1), (2.2) has a unique solution u in/-/2(0)) [e.g., 5] and  u is also 

the solution of the following variational problem 

Find u in H l (co) such that 

(2.3) a~,(u, v) = / fv dx + f gv @, Vv e H'(~o), 

where 

a~(u, v) --- ! (auv + Vu" Vv) dx. 
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3. A fictitious domain formulation 
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3. I. A Fictitious domain~penalty method 

A fictitious domain/penal ty  method was proposed for problem (2.1), (2.2) in 
[4]. Let us consider a <<box>> t? which is an open set in R n such that o) C C g2 (see 
Figure 3.1) and denote by F the boundary of g2. 

1-" 

Figure 3.1 

Let e > 0 be a parameter which will tend to zero. We consider the following 
problem 

Find u ~ in Hlo(I2) such that 

ao,(u ~, v) + ~a,~(u ~, v) 

(3.1) =/ fvdx+~ f Zvdx+ f gvd~,,Vv eg~o(#), 
Q 
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where 

ao(u ~, v) = f (au~v + V u  e" Vv)  dx, 
~2 

a n d j  v ~ L2(~2). Problem (3.1) has a unique solution in H~(g2). The finite element 
approximation of  problem (3.1) is described in the following Section 3.2. 

REMARK 3.1. The fact that g I ( o) ) is ~embedded, in Hi(g2) is not critical, we could have 
chosen Hi(g2) or HTp(g2) = {vlv ~ HI(D),  v periodic at F}. 

3.2. A fictitious domain~penalty~finite element method 

Let Vh be a finite dimensional subspace of Hl(~2). We approximate  the 
variational problem (3.1) by 

Find u~ in Vh such that 

a~,(u], Vh) + eae(u], vh) 

(3.2) = f lvh dx + f fvh dx + f +, Vvh Vh 
Y 

Problem (3.2) has a unique solution in V h. 

4. Error estimates 

4.1. H l-error 

In order to estimate the errors, Hu - u][[ 1,~, and l[u- u][[ 0,~,, we need to extend the 
solution u of problem (2.3) from H 2(o)) into H 20(g2). In [3], there is a basic extension 
result. We state it in the following. 

THEOREM 4. I. Let o) be a bounded connected domain in R n with a C ~,1 boundaTy for some 
integer k >I 0 and o) C C D where g2 is an open set. Then there is a bounded linear extension 

operator E from H k+l (o)) into H ko+l (g2) such that Evil, = v and 

(4.1) 

for all v ~ Hk+l(w) .  
Thus  for the polygonal fictitious domain g2, o)C C g2, we can extend the 

solution u of  the problem (2.3) from H2(a~) to H2o(D) by Theorem 4.1. 



(4.4) 
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Now in (2.3) let v = Vh ~ Vh and use the extension Eu instead ofu. Then  we 
have 

(4.2) a~,(Eu, vh) = (  fvh dx + ( gVh d~, VVh E Vh. 
V ), 

Substracting (4.2) from (3.2), we have 

(4.3) ao,(U~h -- Eu,  vh) + ea~(u~h, Vh) = e f fVh dx, VVh ~ Vh. 
D 

Since Eu is in H 2o(D), we can consider 

ao,(u~ - Eu,  U~h -- Eu)  + eaa(u~ - Eu, U~h -- Eu) 

= a~,(U~h -- Eu, vh - Eu)  + eara(U~h -- Eu, Vh -- Eu) 

+ ao,(U~h -- Eu,  u*h - Vh) + eaa(u~h -- Eu, U~h -- Vh) 

= a~,(u~ -- Eu, U~h -- Eu)  + eaa(u~ - Eu, Vh -- Eu) 

+ {a~,(U~h -- Eu, U~h -- Vh) + eaa(u~, u~ -- vh)} 

- -  ea~(Eu,  U~h -- Vh). 

(4.5) 

Then by (4.3) and (4.4), we have 

a~(u~h -- Eu,  u] - Eu)  + eaa(u*h - Eu,  U~h - Eu) 

= ao/u] - Eu, vh - Eu)  + ea~(u] - Eu, vh - Eu)  

+ e f (u] - vh)J" dx - eae (Eu ,  u] - Vh) 
D 

= ao~(u]- Eu, v h -  Eu)  + e a a ( u ] -  Eu, v h -  Eu)  

O 

- cao(Eu,  u] - Eu)  - ear2(Eu, Eu  - vh). 
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Then from (4.5), we have the following inequality 

~, (Ilus,- Eull,,~,ll ~h- Eull~,~o 

(4.6) + ~llu~ - EulI,AI v~- E~lh,~ 

+ Ellfll o,~llu~- Eull I,Q + El[f-N o,..c211Uh- EUlll,Xa 

+ ~IlE, tL ~,,~LI~- eutt,,,~ + EfLe,,II~,,~%- e,,ll,,,~}. 

1 
Using (4.6) and the inequality ab <<- rla 2 + --:--b 2 valid for all r / >  0, we have 

rh 

+ E,7211~N- Eull2,~ .4- e-E-IIo~- Eull~,~ 
r/2 

(4.7) + E~llu~- Eull%,~ + ~ ILfll2,~ 
r/3 

r/4 

?5 

+ E'761[vh- Eull~,~ + ~ IIEull~,~). 
r/6 
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1 1 
Let r/2 = ~3 = r/5 3cl ' ~1 2C 1 , Y]4 T]6 1 in (4.7), then we have 
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(4.8) 
Ilu%- Eull~l,~ ~ 2c~(2c~11v~- Eull~,~ + ~(3c~ + 2)llv~- Eull~,~ 

+~(3c~+ 1)lb~ll~o,,~ + ~(3c, + 1)llEull~,,~}. 

Thus we have 
1 

(4.9) Ilu%- Eulll,~ ~ c2{llv~- EuIIN,~+ ~l[?lro,~ + ~llEul[~,,~) ~ , Vv~ ~ vh. 

And since [lu~, - Eu[l~,~, = [lu~,- u[ll,~,, we have the following 

LEM~A 4.2. Assume that o) is a bounded connected domain in R" with a C 1"r boundary and 

o) C C t2 where f2 is a polygonal domain. Then there exists a constant Cz such that 

(4.10) [lu~, - ulll,,o ~< CI inf 
Vh~ V h 

1 

{llv~- Eull~,~ + ~lk~l12o,~ + ~llEull~,~) ~- , 

where u is the solution of  problem (2.3) and u] is the solution of problem (3.2). 

Let us give a brief description of the finite element spaces used to obtaine the 
error estimates in the following. Let Th be a regular triangulation of the polygonal 
domain g?. We would like to use finite elements, n-simplices of type (k), for integer 
k > 0 (other finite elements can be used). The finite element spaces Vh associated 
with the finite elements n simplices of type (k) are given by 

vh = (vhlvh ~ /-/~(e) n c~  vhlT ~ P~, VT e Th) 

where P~ is the space of the polynomials in n variables of degree ~< k. 
Let {~0i}'v/=l be the bases of the finite element spaces Vh where Nis  the dimen- 

sion of Vh and (di}N=l be the mesh nodes; they satisfy the following relation 

1, i f / = j ,  
~Pi(dj) = 6/j = 0, if i 4= j ,  
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for 1 ~< i, j ~< N. Also for any vh in Vh, we have 

N 
vh = -~ vh(di)~0i, 

i=l 

The Xh-interpolant is defined by 

N 
17~o9 = = Z v(d3v~i, 

i=1 

for any v ~ C~ There are estimates of the interpolation error in [2]. We will 

use the following, 

THEOREM 4.3. I f  k > n _ 1, then there exists a constant C2 independent of  h such that, 
2 

for  any function v ~ Hk+I(Y2) fl Hlo(I2), 

(4.11) 

Let us assume that the solution u of problem (2.3) verifies u e H k1+1 (w) for 

an integer k > max { 0, n _  1}. Suppose also that co is a bounded connected 
2 

domain in R ~ with a C k'~ boundary, strictly contained in the polygonal open set 

f2. By (4.10) we have 

1 

(4.12) Ilu% - ulb,o~ ~ c1 (llnhgu- Eull~,~ + ~lLfll~,~ + ~[[Eull~,~) ~ 
1 1 1 

Using (4.12) and inequality (a + b) ~ <~ a ff + b ~ valid for a, b >1 0, we have 

(4.13) 

Ilu%- ull,,~ ~ el{rim E u -  Eull,,~ + ~ Ikfllo,~ + ~ Ileulll,~) 

<_ c,{hkllEullk+,,~ + x/i-[b~llo,~ + ~ Ilfu[b,~) 

c4{hkllullk.i,o, + v%-- Ib~l[o,~ + x/7-~ Ilullk+,,,~). 

by (4.1) and Theorems 4.1 and 4.3. Thus we proved the following 
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THEOREM 4.4. Let w be a bounded connected domain in R n with a C k'l boundary for 
integer k > max {0, _n _ 1 }, strictly contained in the polygonal open set f2. 

2 
I f  the solution u of problem (2.3) verivqes u ~ Hk+l (o)), then there exists a constant C3 

independent of  h such that 

(4.14) [lug,- u[[~,o~ ~< C3{hkl[ul[k+~,o, + ~ [D?[10,a + VTe  [[u[lk+,,o,}, 

where u~ is the solution of problem (3.2) and e > O. 

Therefore the optimal choice ofe is e = Mh 2s where M is constant and s~k  so 

that Ilu- u%lll,~ is of order h k. 

4.2. L2-error 

Let us consider the following auxiliary problem 

Find 0 in Hi(co) such that 

(4.15) a~,(~0, v) = f ( u  - u~)v dx, V~ ~ H~(,o). 

Since u - u] s H l(tO), we have 

(4.16) 

Also we consider the auxiliary problem with 
approach 

Find 4) o in HXo(f2) such that 

fictitious domain/penal ty  

(4.17) a~,(cp ~ v) + oaa(q~ ~ v) = j ( u  - u~)v &,  Vv ~ Hlo(g2). 
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and the finite element approximation of problem (4.17) 

Find 4J~ in Vh such that 

�9 / (4.18) a,,(c])~ h, vh) + Qaa(dp~, vh) = (u - u])vh dx, Vvh ~ Vh. 

Problems (4.17) and (4.18) have a unique solution in H~(g2) and Vh respectively. 
Let v = u - u] in (4.15); we have then 

(4.19) 

Ilu - , 4 1 1 L ,  = a ~ , ( r  u - u~ /  

= a ,o(~,  - r  ~ - 4 )  + a , o ( r  u - u~,). 

Let v, = q~ in (4.3), then (4.19) becomes 

(4.20) Ilu u]ll2o,o, = a~,(r - c/)~ h, u - u]) + eaa(cp~, u;) - e f f i~~  h dx. 
(1) 

Thus we have 

(4.21) 
Ilu - u%ll2,o~ ~ ~6(11~ - oNIh,o,}lu - u%ll,,o~ 

Let us now assume that n ~< 3. Then for ~ ~ H2(o~) by Theorem 4.4, we have 

(4.22) 

since O, r are the solutions of problems (4.15) and (4.18) respectively. Then  by 
(4.17), we have 

(4.23) Hq ~ - q~ltl,o, ~< cs (h + V~-  )]] u - u~,ll0,~,. 
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For  the  e s t ima te s  of I1~11,,~ and Ilu~ll~,~ in (4.21), we have 

(4.24) II4,%111,,, -< IIE~,- ~,%lh,,~ + IIE~,II~,,,, 

(4.25) [tuNIll,,~ <-liEu - u%ll,,~ + IIEulI~,~, 

since q~ is in H2(o)),  it has  an ex tens ion  E4} in H~(s 

For  o b t a i n i n g  the es t imates  of  l i e u  - u%ll,,~ and IIf~ - q~%l[l,~, we wou ld  like 

1 1 
to use  (4.7). Le t  rh = - - ,  ?2 = ?3 = ~5 - , ?g = ?6 = 1 in (4.7),  t hen  we 
have  cl 6Cl 

_ ~ 2 

"JI- E(6C 1 q- 1)l[?ll~o,~ + ~(6C, + 1)llEull~,~} 
(4.26) 

_ - 2 <-c~{llv, Eull~,,~ + ~Ullo,,~ + 4Eull~,,~}, 

for a l lvh ~ Vh. SO 

(4.27) liEu- u~ll~,~ ~ c,0{ 1 
V e  

T h e n  let the condi t ions  in T h e o r e m  4.3 hold,  we have  

{1 
l i e u -  u%111,~ ~ Cll ~ II Eu -  n,  Eull~,~ + ID~llo,~ + IIEull~,~} 

h k 

c~2{ V T  IIEull,+,,~ + Ikfll0,~ + IIEulk~) 

(4.28) h k 
C12{ ( ~ "Jr- 1)[[EUIIk+I,-('J "t-[~[[0,D}' 

Simi la r ly  to (4.27), for IIE~ - q ~ [ l l , ~  we have  

(4.29) IIEq) - qS~l[1,~ <~ q3( l__ {{E~O - Vh[[l,~ + [[Eqh,a}, Vvh ~ Vh. 
V O  
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since there is nov2term in (4.18). Then for EO ~ Hz(f2) by Theorem 4.3, we have 

(4.30) 
~< q4 ( h + 1)IIE~'ll~,,~. 

-c-b- 

The by (4.24) and (4.30), we have 

(4.31) 

[[q~Ohl[,,~ ~ C '4 ( h +1 ) [IE~i]2,a + [[E~III,o 

v ~  

~< c16 \( h + 1\" ")l[q~ll2,o,, by (4.1) 

+ - by (4.16). 

Similarly by (4.25) and (4.28), we have 

(4.32) 

h k 

x / T  

h ~ 
-< c~8( ( 

h k 
c~9{ ( 

x /T  

+ x)llgut[k+~,~ + ILTIIo,~> + IIEuI[~,~ 

+ 1 )IIE.II~+,,o + Ib~Ho,.. 

- -  + 1) 11.11.+,,~ + Ib~llo,~}, by (4.1). 
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Thus by (4.23), (4.31) and (4.32), (4.21) becomes 

Ilu - u~ll%,~ -< c=o{(h + v-b- )Iru - u~llo,o, llu - u~ll,,o 
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(4.33) +~(h 
v--y 

+ e (  h 

v% 

h k 

+ 1)llu - u~'[[~176 ( X/-)-e 

+ l) II.- u~llo,o,l~l[o,D}. 
/ 

§ 1)llull~+,,~ + l[Jlro,~) 

Hence we have 

Ilu- u%llo,~ ~ c2o {(h + V%- ) l lu -  u%11o,~ 

(4.34) 

h k 
+ + l)Ilull~+,,~, + 21L?llo,,~) 

C~o((h + v?~ ) ( (e  + ~-)liullk+,,o + ~-rt?rlo,~) 

+ ~ (  h 
v ~ -  

h k 

Therefore we have the following result. 

THEOREM 4.5. Assume that the conditions in Theorem 4.4 hold and n ~ 3. Then there exists 

a constant C4 independent of h such that 

Ilu- u~llo,~ -< C4{(h + v ?  ) ((h k + ~ )lluHk+,,~ + ~ Ib~Ho,~) 

(4.35) + e  ( h + 1) { ( - - + h k  1) [[ul[k+],o,+ 21~lto,a}} 
v%-o 

where u is the solution of problem (2.3), u] is the solution of problem (3.2) and e, Q > O. 
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Let  e = Mlh '2s and  ~ = M2h 21 where  M b  M2 are cons tants  and  s, l are  inte- 

gers. T h e n  the op t imal  choices o f  e and  ~ are s t> k and  s /> l > 0 so tha t  

- u~llo,o is o f  o r d e r  h k+ ]. 

5. N u m e r i c a l  experiments 

l m m m l m m m l m m m l l m m  
I m ~ D l i m B i ~ i m m l m m  
| m m m i m m m m m m m m m m  
| m m m l m m m l ~ m m l m l l  
| l m m m R ~ m l m m m m m  
| m m B m m l m m m M i m m m  

| m m l m l ~ l m l m l m m  
| m m m u m m m l m m m m i m m  
I m m l m m m m l m m m l m m m  
| m m l l a m m l m J m m m m m  
I m m l E ~ m ~ ~ m l m m m  
| m l m l m m D I m m m l l m m  
mmmmmmmmmmmmmm~ 
|mm~mmmmmmmmlmmm 
Immmlmmmlmmmlmmm 

Figure 5.1 

W e  cons ider  the fol lowing test p roblem.  Let  ~o = {(x,y)lx 2 + y2 ~ 1 }  
4 

and  (2 = (-1,  1) x (-1,  1), and  let u(x,y) = x 3-y3 be the solut ion o f  the  fol lowing 

N e u m a n n  p rob l e m  

u -  A u  = f i n c o ,  

0u 
= g on 7; 

On 
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we then h a v e f ( x , y )  = x 3 _y3  _ 6(x - y )  and  g(x , y )  = 6(x 3 _y3) .  

I n  numer i ca l  exper iment ,  we use 2-simplices of  type (1) finite e lements ,  so 

Vh = (VhlVh E H~)(.t'-2)[']C~ VhlT E P1, V T  E rh) 

where  Th is a regula r  un i form t r iangula t ions  o f  g2 (e.g., see Figure  5.1) and  PI is 

the space o f  the po lynomia l s  in 2 variables  o f  degree 1. T h e  l inear  sys tems  have 

been solved via  a Choleskyfactorization. In  Tables  5.1 and  5.2, we list the relat ive 

H 1 and  L 2 errors  with e going f rom 10-1 to 10 -10. The  H 1 errors are  o f  o rde r  h, the 

L 2 errors be ing  o f  o rder  h 2 if e is small  enough.  These  are w h a t  we expect  f rom 

T h e o r e m s  4.4 a nd  4.5. 

Table 5.1 

Ilu- u lll,Jllutl,,o 

e h - -  1/8 h = 1/16 h = 1/32 

10 -x 1.27759362699 1.62154953409 2.16374221811 

10 -2 0.32358749061 0.26197911257 0.29164753716 

10 -3 0.19417803703 8.3662335694x 10 -2 5.0478305305 x 10 -2 

10 -4 0.18043329784 6.5094253508x 10- 2 2.5674105973x 10 -2 

10 .5 0.17899468270 6.3208218876x 10 -2 2.3200437070x 10 -2 

10 .6 0.17884885920 6.3018799334x 10 .2 2.2953287236 x 10- 2 

10 .7 0.17883425279 6.2999847513x 10 -2 2.2928574657 x 10- 2 

10 .8 0.17883279190 6.2997952230x 10 -2 2.2926103423 x 10- 2 

10- 9 0.17883264581 6.2997762701 x 10- 2 2.2925853300 x 10- 2 

10-1~ 0.178832~3120 6.2997743748x 10 .2 2.2925831587 x 10- 2 
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Table 5.2 
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Ilu - u llo,o/ll-IIo,  

e h = 1/8 h = 1/16 h = 1/32 

1 0.1 1.48056340340 1.32677581622 1.23291488149 

1 0.2 0.37017875130 0.21327731659 0.16603820621 

10. a 0.21946578156 6.6884846802 x 10 -2 2.8487414845 x 10 .2 

10 -4 0.20345479970 5.1556945153 x 10 .2 1.4246838113x 10 .2 

10. 5 0.20178058788 4.9997028789x 10. 2 1.2813815642x 10. 2 

10. 6 0.20161092886 4.9840331005 x 10. 2 1.2670335191 x 10. 2 

10 .7 0.20159393549 4.9824652763 x 10. 2 1.2655985068x 10 .2 

10. a 0.20159223587 4.9823084852 x 10 .2 1.2654550035 x 10 .2 

10. 9 0.20159206590 4.98229280611~0. 2 1.2654406531 x 10. 2 

10. w 0.20159204898 4.9822912381 x 10. 2 1.2654392181 x 10. 2 
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