ERROR ESTIMATES FOR FICTITIOUS
DOMAIN/PENALTY/FINITE ELEMENT METHODS

R. Growinski (') — Tsorc-Wanay Pan (?)

ABSTRACT - We obtain error estimates for the finite element solution of elliptic prob-
lems with Neumann boundary conditions for domains with curved boundaries
using fictitious domain/penalty methods.

1. Introduction

Fictitious domain methods for partial differential equations have shown re-
cently a most interesting potential for solving complicated problems from Science
and Engineering [e.g., 6]. One of the main reasons of this popularity of fictitious
domain methods (they are sometimes called domain embedding methods; cf. [1])
is that they allow the use of fast solvers on fairly structured meshes in a simple
shape auxiliary domain containing the actual one.

For solving elliptic problems on a domain with a curved boundary (i.e., the
domain is no longer assumed to be polygonal) by finite element methods, there
are usually two ways to handle the curved boundary: The first approach consists
in using a polygonal domain to approximate the domain with a curved boundary.
The second one consists in using isoparametric finite elemement which have
«curved» face and are used to approximate «as well as possible» the curved
boundary of the domain [e.g., 2].
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In [4], a fictitious domain/penalty solution method for elliptic problems with
Neumann boundary conditions for domains with curved boundaries was prop-
osed. The approximation of the curved boundary is not necessary any more. In
this article we study error estimates for the finite element solution of these prob-
lems, using a fictitious domain/penalty method. In Section 2, we describe the
elliptic problems with Neumann boundary conditions. In Section 3, we introduce
the fictitious domain/penalty treatment of Neumann problems for domains with
curved boundaries and its finite element approximation. In Section 4, we obtain
an H' error estimate for domains with curved boundaries by using finite element
of type (k) on n-simplices, for integers & > 0; by a duality argument, we derive a
L? error estimate. In Section 5, the results of numerical experiments are pre-
sented.

2. Elliptic problems with Neumann boundary conditions

We consider the following elliptic problem with a Neumann boundary con-

dition

(2.1) au—- Au=fin w,
d

(2.2) = =g ony,
on

where in (2.1), (2.2), @ > 0, 0 is a bounded domain in R® with a C""! boundary y,
f € L*(w) and g e H"(y).

Problem (2.1), (2.2) has a unique solution u in H*(w) [e.g., 5] and u is also
the solution of the following variational problem

Find u in H'(w) such that

(2.3) a1, v) = / Jodx + f gv dy, Vv € H'(w),

where

a,(u, v) = / (auv + Vu- Vo) dx.

w
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3. A fictitious domain formulation

3.1. A Fictitious domain/penalty method

A fictitious domain/penalty method was proposed for problem (2.1}, (2.2) in
[4]. Let us consider a «box» 2 which is an open set in R® such that o CCQ (see
Figure 3.1) and denote by I' the boundary of Q.

Figure 3.1
Let & > 0 be a parameter which will tend to zero. We consider the following
problem
Find u® in Hy(8) such that

aw(uej U) + eaQ(uE: U)

(3.1) =ffy dx-l-a/ Sfo dx+/gv dy, Vv € Hy(Q),
@ 0 Y
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where

ag(uf, v) = / (aufv + Vuf - Vo) dx,

2

and f e L*(R). Problem (3.1) has a unique solution in H4(£2). The finite element
approximation of problem (3.1) is described in the following Section 3.2.

Remarxk 3.1. The fact that H'(w) is «embedded» in Hy(Q) is not critical, we could have
chosen H'(Q) or H = {v]v € HY(Q), v periodic at T}.

3.2. A fictitious domain/penalty/finite element method

Let V, be a finite dimensional subspace of H}(22). We approximate the
variational problem (3.1) by

Find u5 in V), suck that

aw(”iy U},) + 6“9(”2: v/z)

(3.2) = / Jon dx + s/ Sfop dx + / guy dy, Yo, € V).
w Q Y

Problem (3.2) has a unique solution in V.

4. Error estimates

4.1. H'-error

In order to estimate the errors, ||u - ui” 10 and ”u - uﬁ,” 00> We need to extend the
solution « of problem (2.3) from H 2(w) into H 3(£2). In [3], there is a basic extension
result. We state it in the following.

THueOREM 4.1. Let w be a bounded connected domain in R® with a C*! boundary for some
integer k = 0 and w C C Q where Q is an open set. Then there is a bounded linear extension
operator E _from H **!(w) into H%"!(Q) such that Ev|,, = v and

(4.1) ”E””HIQ Clk, w, 2 ““”/c+1w
Sforall v € H*(w).

Thus for the polygonal fictitious domam R, wC C 2, we can extend the
solution # of the problem (2.3) from H *(w) to H %(©2) by Theorem 4.1.
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Now in (2.3) let v = v, € V, and use the extension Eu instead of u. Then we
have

(4.2) a,(Fu, v) = f Son dx + f guy dy, Vv, € V).
w Y
Substracting (4.2) from (3.2), we have
(4.3) a,(u5 — Eu, vy) + eag(uf, vy) = ¢ / fv,, dx, Yo, € V,.
Q

Since Eu is in H 3(2), we can consider
a,(uy ~ Eu, uf — Eu) + eag(ul — Eu, u5, ~ Eu)
= a,(u} — Eu, vy — Eu) + eap(uf ~ Eu, v, — Eu)
+ a,(uh — Eu, u§ — vy) + eag(ul — Eu, u§, — vy)
(4.4) = a,(uh - Eu, u5— Eu) + eag(u ~ Eu, v, — Eu)
+ {a,(uh — Eu, u§ — vy) + eag(us, u5 — vy))}

— eag(Eu, u, — vy).

Then by (4.3) and (4.4), we have
ay(uh ~ Eu, uf — Eu) + eag(ul — Eu, u§ ~ Eu)
= a,{(u} ~ Eu, vy — Eu) + eao(uf — Eu, vy, — Eu)
+ ¢ f (uf — v,,)];dx — gao(Eu, u — vy)
2
(4.5) = a,{(ul — Eu, v, — Eu) + gao(u - Eu, v, — Eu)
+ s/ (uﬁ,—Eu)fdx + s/ (Eu - vy) f dx
2

Q
— eag(Fu, uy — Eu) — cag(Eu, Eu — u,).
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(4.7)
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Then from (4.5), we have the following inequality

s, — Eal] 3.0 + ellus — Eulf o

< o1 { |l = Eulloll 04 ~ Ed], o

+ ellus — Euly,ofl s - Edlli 0

+ el fll o, 0llh ~ Eull 1.0 + Al olles — Eully o

+ el|Eul 1 ol — Edls o + ellEds ollow — Edlly 0}

Using (4.6) and the inequality ab < na® + i172 valid for all # > 0, we have
n

s, — Eulfi o + ellus — Euff .

< ai{mlis — Edff., + %} low — Edf .
+ engllus - Eufi o + — ””h - Edf} o
+ engllus - Eulfi o + — ”f“

+ englos ~ Bl o + — |lfl|

+ensllus — Eulli o + — ”Eull

+ engllos — Euli 0 + — IIEuH
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1 | .
Letnyo=n3=1n5=—,1n =— ,n4 =756 = | in (4.7), then we have
361 201

g, — Eul} o < 261{2c\llos — B3 + By + 2)|ow — Edff o
(4.8) )
+€(361+ 1)“][”20’9 -+ 8(361 + 1)]|Eu“21’9}

Thus we have
1

(4.9) e, — Eully o < cofllon — Eul} o+ s“fn%,g + eHEu“QI,g}Q— , Vo, € V.
And since |[u5 - Eul; , = |ju5 — |10, we have the following

LEMMA 4.2, Assume that @ is a bounded connected domain in R” with a C*! boundary and
wC C Q where Q is a polygonal domain. Then there exists a constant Cy such that

1
10)  lh-dho< G inf (i Edfo + o + dlEulR o)
] A

where u is the solution of problem (2.3) and uj, is the solution of problem (3.2).

Let us give a brief description of the finite element spaces used to obtaine the
error estimates in the following. Let 7}, be a regular triangulation of the polygonal
domain . We would like to use finite elements, n-simplices of type (k), for integer
k > 0 (other finite elements can be used). The finite element spaces V} associated
with the finite elements n simplices of type (k) are given by

Vi = {valon € HYQ)NCUR), vilr € P, YT € Ty}

where Py is the space of the polynomials in n variables of degree < £.
Let {1;}"/=; be the bases of the finite element spaces ¥, where N is the dimen-
sion of ¥V, and {d;}*V=; be the mesh nodes; they satisfy the following relation

1,ifi=j,

Vi) =05 = 0 iri e
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for 1 =14, j < N. Also for any v, in V¥, we have
N
Uy = E ACALS
The X,-interpolant is defined by
N
Mo = =2 od)y,

i=/

for any v € C%Q). There are estimates of the interpolation error in [2]. We will
use the following

Tueorem 4.3. Ifk > % — 1, then there exists a constant Cq independent of h such that,

Jor any function v € H*'(Q) N Hy(RQ),

(4’1 1) “I} - H/ﬂl“]}g = Cghk|v‘k+’_(_).

Let us assume that the solution u of problem (2.3) verifies u € H**! (w) for
an integer £ > max { 0, —;-~ 1}. Suppose also that w is a bounded connected
domain in R™ with a C*! boundary, strictly contained in the polygonal open set

Q. By (4.10) we have

!
(4.12) |l - dlso < € {JTEu - Edlf o + 6|71 0 N ell Eulff 0} .
1 1 1
Using (4.12) and inequality (a + 5)? <a® +b? validfora, b = 0, we have

[l - “”1,w < C |0} Eu— Euf;0 + Ve ”J;“o,g + Ve “Eu“I,Q}
< o{MEdss0 + Ve floe + Ve |Edio)

(4.13) .
< cfilllisrw + Ve |flloe + Ve llullisre).

by (4.1) and Theorems 4.1 and 4.3. Thus we proved the following
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THEOREM 4.4. Let @ be a bounded connected domain in R™ with a C*' boundary for
integer k > max {0, ™ — 1}, strictly contained in the polygonal open set Q.

If the solution u of problem (2.3) verifies u € H**'(w), then there exists a constant Cy
independent of h such that

(414) ”ui_ u“l,w = Cﬁ{hk”qu+l,w + Ve ”./;HO,Q + Ve ||u||k+1,w}9

where u, is the solution of problem (3.2) and ¢ > 0.

Therefore the optimal choice of ¢ is ¢ = MAh® where M is constant and s=£ so
that ||lu — 5], , is of order 4.

4.2. L*error
Let us consider the following auxiliary problem

Find ¢ in H (0) such that

(4.15) a,(p, v) = /(u —u5)v dx, Vv ¢ H'(0).

w

Since u — u5 € H'(w), we have

(4.16) ¢llo. < csllu — uillo o

Also we consider the auxiliary problem with fictitious domain/penalty
approach

Find ¢° in HY(Q) such that

(4.17) 2,(6°, 0) + 0ap(¢®, ) = / (1 — ul)o dx, Vo € HY(Q).
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and the finite element approximation of problem (4.17)

Find ¢$ in V;, such that
(4.18) a,( 'i, v) + oag(99, w) = f(u - up)oy dx, Vo, € V.

Problems (4.17) and (4.18) have a unique solution in H,(2) and ¥}, respectively.
Let v = u — uf in (4.15); we have then

”u - u;t”%,w = aw(¢; u-— Hi)

(4.19)

aw(¢ - ¢£;l: u-— ui) + aw(q)i: u-— ui)

Let v; = ¢¢ in (4.3), then (4.19) becomes

(4.20) lu - il e = au(@ — @3, u —uj) + eag(¢}, ) — ¢ /fcpi dx.

Thus we have

e — wilf 0 < co{llo = 8%l ulle — w0
(4.21) )
+ ellg?li,ollwill,e + ellAl.allgdl,a}-

Let us now assume that z < 3. Then for ¢ ¢ H?*(w) by Theorem 4.4, we have

(4.22) e = ¢%h.o < er{tlglz + Ve lglw)

since ¢, ¢4 are the solutions of problems (4.15) and (4.18) respectively. Then by
(4.17), we have

(4.23) e = ¢%ho < (b + Vo ) u~uilbe.
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For the estimates of||¢€,'l|11,9 and [[ujll; ¢ in (4.21), we have
(4.24) lgslh.e < 1E¢ - ¢5ll.0 + [1Edll.c.
(4.25) luilh 0 < 1Eu ~ w0 + Bl 0,
since ¢ is in H%(w), it has an extension E¢ in H3(Q).

For obtaining the estimates of [[Eu — uj/|; o and ||[Ep — ¢‘;1[|1,Q, we would like

1 1
touse (4.7). Letyy = —, my =93 =95=— | 7y = 55 = 1 in (4.7), then we

have a 6cy

elEu — uiff o < 2i{eillon — Ed3 ., + e(6e) + 2)|los — Edl o
e(6er + Dl + e(6er + DIIEAR o)

(4.26) )
< cofflon — Eulf o + e/l + el Euli o}

for all v, € V,. So

(4.27)  [|1Bx — w10 < ciof = s - Bulh o + oo + 1By 0}, Vo, € ¥
Then let the conditions in Theorem 4.3 hold, we have

. 1 ;
”Eu - uh“l,.Q = €11 {7_8_ ” Eu - n/,Equ’Q + ‘VHO,Q + HEu“l’Q}

k

”Eu“k+1,9 + ||j“0,9 + ||Eu||1,g}

< opof ( \ﬁ/k_

€

< 19

(4.28)

1) ”Eu”kH,Q + ”j”o,g}-

Similarly to (4.27), for ||[Egp — ¢i||]yg we have

(429)  [Eg - ¢2fla < {.vl__? 1E® ~ vil.o + [Er0}, Yor € Vi
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since there is nofterm in (4.18). Then for Ep € H%(R) by Theorem 4.3, we have

1Ep - 920 < {JV_? | Eo - Mgl + |Eol10}
(4.30)

< o (—j—_— + 1) [Ep|2, .
0

The by (4.24) and (4.30), we have

loedl o < c* (Vi_g_ +1)1Elh.q + 1Bl 0
< o5 (.é_? + 1)”E¢||2,9
< s (_”_Q 4 1) Bl by (4:1)
R, (5__9_ +1) = i, by (+16).

Similarly by (4.25) and (4.28), we have

}lk

&

sl o= €12 {( + 1>”Eu”k+l,!2 + “f”o,sz} + || Edly o

}lk ~
430 < aol( = + 1)WElkero + oo}
[

s 619{( j_

€

+ 1) llks 1o + U}, by (4.1).
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Thus by (4.23), (4.31) and (4.32), (4.21) becomes

”u - uﬂl%,w = 620{(/1 + Vo )”u - u?z“O,w”u - ui“l,w

1) s + 7o)

(+.33) e (K/k“: b 1) l= sl ( 2
0 £

te (o +1) e sloollba)

@

Hence we have

flu ~ willow < co0 {(h + Vo ) [lu - uiflon

(G ) U= 1) Mo+ 20a)

&

(4.34) < co{(h + Vo ) ((h" + Ve dksro + Ve [[f[lo,g)

(e (L

4] &

+ l) lelles 1,0 + 20 flo,a}}-

Therefore we have the following result.

THEOREM 4.5. Assume that the conditions in Theorem 4.4 hold and n < 3. Then there exists
a constant Cy independent of h such that

=l < Cufh + Ve ) (0 + VE ldhro + VE i)
k ~
(4.35) +e (\_}’/_Z)_ + 1) { ( \};_ + 1) Il + 2 e}

£

where u is the solution of problem (2.3), uj, is the solution of problem (3.2) and &, ¢ > 0.
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Let ¢ = MA* and ¢ = M,h?' where M, M, are constants and s, [ are inte-

gers. Then the optimal choices of ¢ and ¢ are s 2 £ and s 2 [ > 0 so that
llw = 250, is of order AF*!.

5. Numerical experiments

Figure 5.1

We consider the following test problem. Let @ = {(x, y)|x* + »2 < L

and 2 = (-1, 1) X (=1, 1), and let u(x, ) = »* —»* be the solution of the following
Neumann problem

u— Au= fin o,

Ju
— =gony;
on
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we then have f(x, ) = x> - »* — 6(x - ) and g(x,3) = 6(x* - »%).
In numerical experiment, we use 2-simplices of type (1) finite elements, so

Vi = {walon € Hy(Q)NCYR), valr € P, VT € T}

where T, is a regular uniform triangulations of 2 (e.g., see Figure 5.1) and P, is
the space of the polynomials in 2 variables of degree 1. The linear systems have
been solved via a Cholesky factorization. In Tables 5.1 and 5.2, we list the relative
H' and L? errors with ¢ going from 107! to 107'%. The H' errors are of order 4, the
L? errors being of order 4% if ¢ is small enough. These are what we expect from
Theorems 4.4 and 4.5.

Table 5.1
lle — ] /e 0
€ h=1/8 k= 1/16 h=1/32
107! 1.27759362699 1.62154953409 2.16374221811
1072 0.32358749061 0.26197911257 0.29164753716
1073 0.19417803703 8.3662335694 X 1072 5.0478305305% 1072
10 0.18043329784 6.5094253508 % 102 2.5674105973x 1072
1073 0.17899468270 6.3208218876x 1072 2.3200437070x 1072
107 0.17884885920 6.3018799334X 1072 2.2953287236X 1072
1077 0.17883425279 6.2999847513x 1072 2.2928574657 x 1072
1078 0.17883279190 6.2997952230x 1072 2.2926103423x 1072
107° 0.17883264581 6.2997762701 %1072 2.2925853300x 1072

10710

0.17883263120

6.2997743748% 1072

2.2925831587x 1072

139
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Table 5.2
lr — 2o,/ el
£ h=1/8 h=1/16 h=1/32

107! 1.48056340340 1.32677581622 1.23291488149
1072 0.37017875130 0.21327731659 0.16603820621
1073 0.21946578156 6.6884846802x 1072 2.8487414845x 1072
107* 0.20345479970 5.1556945153x 1072 1.4246838113x 1072
107° 0.20178058788 4.9997028789% 1072 1.2813815642% 1072
1076 0.20161092886 4.9840331005x 1072 1.2670335191%x 1072
1077 0.20159393549 4.9824652763x 1072 1.2655985068 X 1072
1078 0.20159223587 4.9823084852x1072 1.2654550035% 1072
10°° 0.20159206590 4.98229280610072 1.2654406531x 1072
10710 0.20159204898 4.9822912381x1072 1.2654392181 %1072
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