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ABSTRACT - We present here a very fruitful tool for proving properties of LISP functions. 
We implement the ancient, but quite natural and elegant, Recursion Induction 
Principle stated by I. Mc Carthy by using the famous fold/unfold method elaborated 
by R. Burstall and I. Darlington. 

We thus obtain a very simple and flexible method for proving theorems about 
LISP functions; we call it the Mc Carthy method. Furthermore the method is machine 
oriented and we implement it in a conversational system, We do not make any 
comparison with the R. Boyer and I. Moore theorem - prover since our system is 
not automatic. But our system is implementable in a wide range of machines and 
we expect to implement our method in the R. Burstall and I. Darlington system. 
We then shall have a very powerful system which might perform program synthesis 
and proofs of program properties simultaneously (in a way parallel to that followed 
by Z. Manna and R. Waldinger). 

In this paper we apply our method (by hand) to give the proof of two properties: 
associativity of the append operation between lists and idempotence of the reverse 
operation. 

1. I n t roduc t ion .  

In  1962 J. Mc Carthy stated a recurs ion  induct ion  pr inc ip le  for  p rov ing  

p roper t i e s  of  recursive programs [ 6 ] .  W e  recal l  wi th  an example  the bas ic  idea  

of  this s imple  and,  in some sense, naive  pr inc ip le  (cf. [ 6 ] ) .  Let us cons ider  

the  recurs ive  definit ion of addi t ion  over  the posi t ive integers 

(i) P ( m , n ) ~  i] m=O then n else P ( m - l , n ) + l  /i 
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and assume that we want to prove the property 

~ m  ~ n  P (m, n )+ l = P  (m, n +  l). 

To prove this we introduce two new functions O and R defined by 

(2) 0 (m, n) ~ P (m, n) -4- 1 

(3) R (m, n) ~ P (m, n + 1) 

and we show that each function satisfies the following recursive definition 

(4) F(rn, n ) ~  i] m=O then n + l  else F ( m - - l , n ) + l  ft. 

From this fact we deduce the equality of the functions O and R (over the 
domain of data where they both terminate) and the property 

(P0) ~ r n ~ n P ( m , n ) + l = P ( m , n + l ) .  

This method is very attractive because, in spite of its name, it does not 
involve any induction principle. Unfortunately this method is not very easy 
to use because the search for the common recursive definition (like (4)) is 
somewhat difficult. 

In order to solve this problem we propose a practical tool - - ca l l ed  the 
Me Carthy me thod - -  using the well-known fold/unfold method (initiated by 
R. Burstall and I. Darlington and Z. Manna and R. Waldinger [2, 8]) to try 
to find the common recursive definition. This tool is well fitted to applicative 
programming languages as LISP because it was developed in the framework 
of recursive programs. 

Our aim is to provide to LISP programmers (beginners and experts) a 
tool for studying properties of their programs and increasing the knowledge 
about programs and how they actually work. 

To contrast our system to Boyer and Moore's one we must give the 
following precisions: 

- -  expressiveness is the same: both systems deal with recursive functions 
over lists or natural integers; 

- -  Boyer and Moore's system is a powerful automatic system for proving 
properties about LISP programs. Our system is not automatic and its power is 
equal to the ~ power ~ of the user; 

last, but not least, our system may be implemented in a wide range of 
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computers, since its executable code rooms 25 K bytes. Furthermore it is 
already implemented in a HB 68 under MULTICS and LSI 11/23. 

Before describing our method we must give more details about the pro- 
gramming language. Next we present an example of using the Mc Carty method, 
then a formal presentation and we finish with a second example. 

2. Programming language. 

We use a subset of pure LISP [7]  which has as primitives nil, cons, car, 
cdr and cond. With these primitives we can define recursive functions as 
pointed out in [1] .  Nevertheless, to avoid many brackets we shall use instead 
of cond the usual conditional i / . . .  then  ... e lse . . ,  fi and the predicate nil; 
thus instead of cond (x, y, z) we shall write i/ nil (x) then z else y ft. 

We express the programs in a recursive style as in [2] .  We need the following: 

X - -  a set of variable x, y, z, x~ . . . .  

P F - - a  set of primitives with zero or more arguments. 

R F  - -  a set of recursive function symbols noted A, B, C . . . . .  F~, F2 .. . .  

Term - -  a term is built in the usual way out of primitives, variables, and 
recursive function symbols. 
Recursive definition - -  a recursive definition is written F (x~ . . . . .  x~) ~ s, where 
s is an expression, F a recursive function symbol with n arguments. 

For example, to define the append operation between t w o  lists we write 
the following recursive definition 

(5) A (x, y) ~ iJ nil (x) then y else cons (car (x), A (cdr (x), y)) fi. 

In some proofs we need some classical properties of primitives e. g. 
cdr (cons (x, y)) is equal to y (cf. [ 1 ]). 

3. Informal description. 

Let us consider the append function defined by (5) and assume we want 
to prove 

~ x  ~Zy ~ z  A (cons (x, y), z ) =  cons (x, A (y, z)). 
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(6) 

(7) 

By using the fold/unfold method we perform a 
through the following definitions: 

(8) 

L. KOTT: The Mc Carthy's recursion 

To prove this, we introduce two new recursive function symbols defined by 

B (x, y, z) ~ A r (x, y), z) 

C (x, y, z) ~ cons (x, A (y, z)). 

transformation of (6) 

B (x, y, z) ~ if nil (cons (x, y)) then z else cons (car (cons (x, y)), 

A (cdr (cons (x, y)), z)) fi 

by unfolding the symbol A occurring in (6); we reach (9) 

(9) B (x, y, z) ~ if nil (cons (x, y)) then z else cons (x, A (y, z)) f i  

because car (cons (x, y)) is equal to x and cdr (cons (x, y)) to y. 
But nil (cons (x, y)) is false so we obtain 

(10) B (x, y, z) ~ cons (x, A (y, z)). 

Now if we consider definitions (7) and (10) we see that they are identical 
up to the recursive function symbols B and C. This fact has two consequences: 

(i) the functions defined by (7) and (10) are equal 

(ii) if we admit the transformation performed from (6) to (10) is 
correct, that is to say that the functions defined by (5) and (10) are equal, then 
the functions defined by (6) and (7) are equal. 

Thus, we have proved the property 

(P1) ~ x ~ y ~ z  A ( c o n s ( x , y ) , z ) = c o n s ( x , A ( y , z ) ) .  

Let us go further in the presentation of our method by showing 

,~x  ~ y  ~ z  A (x, A (y, z ) )=A (A (x, y), z) 

which expresses the associativity of append function. As above we define two 
new recursive functions 
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(11) D ( x , y , z )  ~ A  (x ,A  (y,z))  

(12) E (x, y, z) ~ A (A (x, y), z). 

By unfolding the outermost occurrence of A in (11) we reach (13) 

(13) D (x, y, z) ~ if nil (x) then A (y, z) else cons (card (x), A (cdr (x), 

A (y, z))) fi 
then by folding 

(14) D (x, y, z) ~ i[ nil (x) then A (y, z) else cons (car (x), D (cdr (x), y, z)) fi. 

Now we deal with the function E. From (12) by unfolding the innermost 
occurrence of A we obtain 

(15) E (x, y, z) ~ A (i/ nil (x) then y else cons (car (x), A (cdr (x), y)) ]i, z) 

then by a usual law about i] ... then ... else . . . / i  that we shall call distributivity 
over conditional 

(16) E (x, y, z) ~ i] nil (x) then A (y, z) else A (cons (car (x), A (edr (x), y)) ,z) / i  

but the property P1 enables us to write 

(17) E (x, y, z) ~ i /ni l  (x) then A (y, z) else cons (car (x), A (A (cdr (x), y), z)) li 
and, finally, by folding we reach 

(18) E (x, y, z) ~ il nil (x) then A (y, z) else cons (car (x), E (cdr (x), y, z)) ]i. 

Again, if we compare definitions (14) and (18), we realize their identity up 
to the symbols D and E. So, if the transformations from (11) to (14) and from 
(12) to (18) are correct, we know that functions defined by (11) and (12) are 
equal and the property holds 

(P2) ~ x ~ Z y ~ z  A ( x , A ( y , z ) ) - ' A ( A ( x , y ) , z ) .  

4. Formal presentation. 

We recall the rules for transforming recursive definitions defined by R. 
Burstall and I. Darlington. Given a set of recursive definitions we have the 
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following: 

(i) Def in i t ion .  Introduce a new recursive definition whose left-hand 
side is written G (x~ . . . . .  x~), where G is a new symbol. For example, (6), (7), (11) 
and (12) are definitions. 

(ii) Unfo ld ing .  If F1 (Xl . . . . .  Xrn) ~ s~ and F2 (xl . . . . .  x , )  ~ s2 are recur- 
sive definitions and there is some occurrence in s2 of an instance of F1 (x~ . . . . .  xm), 
replace it by the corresponding instance of s~, obtaining s3; then add the 
definition Fz (x~ . . . . .  x , )  ~ s3. For example, unfolding with (5) takes (11) to (13). 

(iii) Folding.  If FI (xl . . . . .  xm) ~ sl and F2 (xl . . . . .  x , )  ~ s2 are recursive 
definitions and there is some occurrence in s2 of an instance of Sm, replace it by 
the corresponding instance of F1 (xi . . . . .  xm), obtaining s3; then add the definition 
Fz (x~ . . . . .  xn) ~ s3. For example, folding with (12) takes (17) to (18). 

(iv) L a w s .  We may transform a recursive definition by using on its 
right-hand side any laws we have about primitive functions, obtaining a new 
equation. For example, laws about car, cdr and cons enable us to rewrite (8) as (9). 

Starting with a system S of recursive definitions, we transform one or 
more recursive definitions with the above rules and we reach a system S' of 
new recursive definitions, for the recursive function symbols. A problem left 
open by R. Burstall and I. Darlington [2] was the correctness of the system 
that is to say the equality of functions defined by S and S'. We have studied 
this problem in the framework of algebraic semantics of recursive program 
schemes developed by M. Nivat [3, 10], and given a lot of sufficient conditions. 

Here, we do not deal with program schemes but LISP programs. That 
means we have chosen an interpretation which interpretes the symbols of 
primitive functions (elements of PF) as LISP base operators with their usual 
properties. Under this assumption, as a corollary of the results mentioned 
above, the following proposition holds: 

PROPOSITION 1. Assume we transform a system S of recursive definitions 
into a system S' by the fold/unfold method. This transformation is correct as 
soon as the number of unfolding is greater or equal than the number of folding. 

For example, the proposition 1 ensures the transformations from (6) to (10) 
and from (11) to (14). 

Let be S a set of recursive definitions, and t and s two terms. Assume we 
want to prove the equality 

~ X z  . . . . .  ~ x n  t = s  (xl . . . . .  x ,  are the variables) (occurring in t and s). 
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We introduce two new recursive function symbols, say G and H, and two 
new systems of recursive definitions 

S~IS G (x, . . . . .  x.) ~ S  S21S H (xt . . . . .  xn) ~ t  

If we may transform St and $2 into $1' and Sz" 

S t t~ (x l  . . . . .  x,) ~ s "  sztHs(X, . . . . .  x.) ~ t "  

such that s' and t' are identical up to the symbols G and H (i. e. t' is s" in 
which G is replaced by H) and the transformations are correct, then we have 
proved the desired equality by the Mc Carthy method. For example, we proved 
the property (P1) by this method. 

Now we define a new transformation rule: 

(v) Properties. We may transform a recursive definition by using on 
its right-hand side any properties we have proved by the Mc Carthy method 
about the recursive functions, obtaining a new equation. For example, the property 
(Pl) enables us to rewrite (16) as (17). We call this system of transformations 
the generalised fold/unfold method and we have studied it in [5] too. As 
for its correctness the proposition obtained from proposition 1 by replacing the 
words • fold/unfo!d method ~ by ~ generalised fold/unfold method ~, holds [5]. 

We shall keep the name Mc Carthy method when we use the generalised 
fold/unfold method. For example, we have proved the property (P2) by this 
new version of the Mc Carthy method because the transformation from (12) to 
(18) is correct. 

5. Second example. 

We define the reverse function by 

(19) 

and we are going to prove 

(20) 

R (x) ~ q nil (x) then nil else A (R (cdr (x)), car (x)) ti 

~ x  R (R (x))=x 

F (x) ~ R (R (x)) 
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(21) F (x) ~ R (i] nil (x) then nil else A (R (cdr (x)), car (x)) fi) 

by unfolding of the outermost occurrence of R in (20); then by law 

(22) F (x) ~ if nil (x) then R (nil) else R (A (R (cdr (x)), car (x))) 1i. 

We see that we need a property about R and A and, indeed, we are going 
to prove the property 

V x  ~/y R (A (x, y))=A (e (y), e (x)). 

This step looks very like the generalisation step of Boyer and Moore theorem- 
prover. Let us define 

(23) G (x, y) ~ R (A (x, y)) 

(24) H (x, y) ~ A (R (y), R (x)). 

From (23) by unfolding of the symbol A we obtain 

(25) G (x, y) ~ R (if nil (x) then y else cons (car (x), A (cdr (x), y)) fi). 

By distributivity over conditional we reach 

(26) G (x, y) ~ if nil (x) then R (y) else R (cons (car (x), A (cdr (x), y))) / i  

by unfolding the rightmost occurrence of R we obtain 

(27) G (x, y) ~ if nil (x) then R (y) else if nil (cons (car (x), A (cdr (x), y))) 

then nil else A (R (cdr (cons (car (x), A (cdr (x), y)))), 

car (cons (car (x), A ~cdr (x), y)))) f i f i .  

But for any lists x, y nil (cons (x, y)) is false, car (cons (x, y)) is equal to x and 
cdr (cons (x, y)) to y; thus we have 

(28) G (x, y) ~ if nil (x) then R (y) else A (R (A (odr (x), y)), car (car (x))) ti 

(29) G (x, y) ~ if nil (x) then R (y) else A (G (cdr (x), y), car (x)) fi 
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with a folding. The transformation is correct since there are 2 unfolding and 
1 folding. Now from (24) we reach by unfolding the rightmost occurrence of 
the symbol R 

(30) H (x, y) ~ A (R (y), if nil (x) then nil else A (R (cdr (x)), car (x)) fi) 

Again by distributivity over conditional we obtain 

(31) H ( x , y )  ~ i ]  nil(x) then A (R (y),nil) else A (R (y),A (R (cdr(x)) ,  

car (x)))fi. 

By the property (P2) and the obvious property (P3) 

(P3) ~ x  A (x, ni l )=x 

which is provable by the Mc Carthy method too, we obtain 

(32) H (x, y) ~ i/ ni.1 (x) then R (y) else A (A (R (y), R (cdr (x))), car (x))) fi 

and, by folding, 

(33) H (x, y) ~ if nil (x) then R (y) else A (H (cdr (x), y), car (x)) ]i. 

The transformation from (24) to (33) is correct since there is 1 unfolding and 1 
folding. Again definitions (29) and (33) are identical up to the symbols G and 
H and, since the performed transformations are correct, we have proved the 
property (P4) 

(P4) ~ x  ~ y  R (A (x, y ) )=A (R (y), R (x)). 

We use (P4) to transform (22) into (34) 

(34) F (x) = q nil (x) then R (nil) else A (R (car (x)), R (R (cdr (x)))) ft. 

To save some lines we admit that with 2 unfoldings and laws we may write 

(35) F (x) ~ if nil (x) then nil else A (car (x), R (R (cdr (x)))) ft. 
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By unfolding the symbol A we obtain 

(36) F (x) ~ i] nil (x) then nil else i] nil (car (x)) then R (R (cdr (x))) 

else cons (car (car (x)), A (cdr (car (x)), R (R (cdr (x))))) / i  ]i. 

But nil (car (x)) is false, car (car (x)) is equal to car (x) and cdr (car (x)) to nil, so 

(37) F (x) ~ if nil (x) then nil else cons (car (x), A (nil, R (R (cdr (x))))) [i 

and by another unfolding of A we reach 

(38) F (x) ~ i] nil (x) then nil else cons (car (x), R (R (cdr (x)))) t i  

and by folding 

(39) F (x) ~ / /  nil (x) then nil else cons (car (x), F (cdr (x)) ]i. 

The transformation from (20) to (39) is correct since there are 5 unfoldings 
and 1 folding is correct. Furthermore if we admit that the identity function 
over the domain of lists may be defined by 

(40) I (x) ~ i] nil (x) then nil else cons (car (x), I (cdr (x))) ]i. 

Then we notice that (39) and (40) are identical up to the symbols F and 
I and we have established the property (PS) 

(P5) ~ x  R (R ( x ) ) = I ( x ) = x .  

To conclude we hope the reader is convinced that this method is useful 
and that there is a simple and flexible system which uses it. Furthermore if 
we want a more automatic system it is possible to adapt the Burstall-Darlington 
system to perform the Me Carthy method. By the way we could use the same 
system for developing recursive programs and proving properties about  them, 
which, as pointed out by Z. Manna and R. Waldinger [9] ,  seems a very 
fruitful approach. 
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