
T H E MC C A R T H Y ' S R E C U R S I O N I N D U C T I O N

P R I N C I P L E : ~ O L D Y >~ BUT ~ G O O D Y >~

L. KOTT (1)

ABSTRACT - We present here a very fruitful tool for proving properties of LISP functions.
We implement the ancient, but quite natural and elegant, Recursion Induction
Principle stated by I. Mc Carthy by using the famous fold/unfold method elaborated
by R. Burstall and I. Darlington.

We thus obtain a very simple and flexible method for proving theorems about
LISP functions; we call it the Mc Carthy method. Furthermore the method is machine
oriented and we implement it in a conversational system, We do not make any
comparison with the R. Boyer and I. Moore theorem - prover since our system is
not automatic. But our system is implementable in a wide range of machines and
we expect to implement our method in the R. Burstall and I. Darlington system.
We then shall have a very powerful system which might perform program synthesis
and proofs of program properties simultaneously (in a way parallel to that followed
by Z. Manna and R. Waldinger).

In this paper we apply our method (by hand) to give the proof of two properties:
associativity of the append operation between lists and idempotence of the reverse
operation.

1. I n t roduc t ion .

In 1962 J. Mc Carthy stated a recurs ion induct ion pr inc ip le for p rov ing

p roper t i e s of recursive programs [6] . W e recal l wi th an example the bas ic idea

of this s imple and, in some sense, naive pr inc ip le (cf. [6]) . Let us cons ider

the recurs ive definit ion of addi t ion over the posi t ive integers

(i) P (m , n) ~ i] m=O then n else P (m - l , n) + l /i

- - Received: September 9, 1981.
0) Universit6 Paris VII LITP 2, place lussieu F-75251 Paris Cedex 05 France.

6 0 L. KOTT: The Mc Carthy's recursion

and assume that we want to prove the property

~ m ~ n P (m, n)+ l = P (m, n + l).

To prove this we introduce two new functions O and R defined by

(2) 0 (m, n) ~ P (m, n) -4- 1

(3) R (m, n) ~ P (m, n + 1)

and we show that each function satisfies the following recursive definition

(4) F(rn, n) ~ i] m=O then n + l else F (m - - l , n) + l ft.

From this fact we deduce the equality of the functions O and R (over the
domain of data where they both terminate) and the property

(P0) ~ r n ~ n P (m , n) + l = P (m , n + l) .

This method is very attractive because, in spite of its name, it does not
involve any induction principle. Unfortunately this method is not very easy
to use because the search for the common recursive definition (like (4)) is
somewhat difficult.

In order to solve this problem we propose a practical tool - - ca l l ed the
Me Carthy me thod - - using the well-known fold/unfold method (initiated by
R. Burstall and I. Darlington and Z. Manna and R. Waldinger [2, 8]) to try
to find the common recursive definition. This tool is well fitted to applicative
programming languages as LISP because it was developed in the framework
of recursive programs.

Our aim is to provide to LISP programmers (beginners and experts) a
tool for studying properties of their programs and increasing the knowledge
about programs and how they actually work.

To contrast our system to Boyer and Moore's one we must give the
following precisions:

- - expressiveness is the same: both systems deal with recursive functions
over lists or natural integers;

- - Boyer and Moore's system is a powerful automatic system for proving
properties about LISP programs. Our system is not automatic and its power is
equal to the ~ power ~ of the user;

last, but not least, our system may be implemented in a wide range of

induction principle: ~ oldy ~ but ~ goody ~ 61

computers, since its executable code rooms 25 K bytes. Furthermore it is
already implemented in a HB 68 under MULTICS and LSI 11/23.

Before describing our method we must give more details about the pro-
gramming language. Next we present an example of using the Mc Carty method,
then a formal presentation and we finish with a second example.

2. Programming language.

We use a subset of pure LISP [7] which has as primitives nil, cons, car,
cdr and cond. With these primitives we can define recursive functions as
pointed out in [1] . Nevertheless, to avoid many brackets we shall use instead
of cond the usual conditional i / . . . then ... e lse . . , fi and the predicate nil;
thus instead of cond (x, y, z) we shall write i/ nil (x) then z else y ft.

We express the programs in a recursive style as in [2] . We need the following:

X - - a set of variable x, y, z, x~

P F - - a set of primitives with zero or more arguments.

R F - - a set of recursive function symbols noted A, B, C F~, F2

Term - - a term is built in the usual way out of primitives, variables, and
recursive function symbols.
Recursive definition - - a recursive definition is written F (x~ x~) ~ s, where
s is an expression, F a recursive function symbol with n arguments.

For example, to define the append operation between t w o lists we write
the following recursive definition

(5) A (x, y) ~ iJ nil (x) then y else cons (car (x), A (cdr (x), y)) fi.

In some proofs we need some classical properties of primitives e. g.
cdr (cons (x, y)) is equal to y (cf. [1]).

3. Informal description.

Let us consider the append function defined by (5) and assume we want
to prove

~ x ~Zy ~ z A (cons (x, y), z) = cons (x, A (y, z)).

62

(6)

(7)

By using the fold/unfold method we perform a
through the following definitions:

(8)

L. KOTT: The Mc Carthy's recursion

To prove this, we introduce two new recursive function symbols defined by

B (x, y, z) ~ A r (x, y), z)

C (x, y, z) ~ cons (x, A (y, z)).

transformation of (6)

B (x, y, z) ~ if nil (cons (x, y)) then z else cons (car (cons (x, y)),

A (cdr (cons (x, y)), z)) fi

by unfolding the symbol A occurring in (6); we reach (9)

(9) B (x, y, z) ~ if nil (cons (x, y)) then z else cons (x, A (y, z)) f i

because car (cons (x, y)) is equal to x and cdr (cons (x, y)) to y.
But nil (cons (x, y)) is false so we obtain

(10) B (x, y, z) ~ cons (x, A (y, z)).

Now if we consider definitions (7) and (10) we see that they are identical
up to the recursive function symbols B and C. This fact has two consequences:

(i) the functions defined by (7) and (10) are equal

(ii) if we admit the transformation performed from (6) to (10) is
correct, that is to say that the functions defined by (5) and (10) are equal, then
the functions defined by (6) and (7) are equal.

Thus, we have proved the property

(P1) ~ x ~ y ~ z A (c o n s (x , y) , z) = c o n s (x , A (y , z)) .

Let us go further in the presentation of our method by showing

,~x ~ y ~ z A (x, A (y, z))=A (A (x, y), z)

which expresses the associativity of append function. As above we define two
new recursive functions

induction principle: ~ oldy ~ but ~ goody ~ 63

(11) D (x , y , z) ~ A (x ,A (y,z))

(12) E (x, y, z) ~ A (A (x, y), z).

By unfolding the outermost occurrence of A in (11) we reach (13)

(13) D (x, y, z) ~ if nil (x) then A (y, z) else cons (card (x), A (cdr (x),

A (y, z))) fi
then by folding

(14) D (x, y, z) ~ i[nil (x) then A (y, z) else cons (car (x), D (cdr (x), y, z)) fi.

Now we deal with the function E. From (12) by unfolding the innermost
occurrence of A we obtain

(15) E (x, y, z) ~ A (i/ nil (x) then y else cons (car (x), A (cdr (x), y))]i, z)

then by a usual law about i] ... then ... else . . . / i that we shall call distributivity
over conditional

(16) E (x, y, z) ~ i] nil (x) then A (y, z) else A (cons (car (x), A (edr (x), y)) ,z) / i

but the property P1 enables us to write

(17) E (x, y, z) ~ i /ni l (x) then A (y, z) else cons (car (x), A (A (cdr (x), y), z)) li
and, finally, by folding we reach

(18) E (x, y, z) ~ il nil (x) then A (y, z) else cons (car (x), E (cdr (x), y, z))]i.

Again, if we compare definitions (14) and (18), we realize their identity up
to the symbols D and E. So, if the transformations from (11) to (14) and from
(12) to (18) are correct, we know that functions defined by (11) and (12) are
equal and the property holds

(P2) ~ x ~ Z y ~ z A (x , A (y , z)) - ' A (A (x , y) , z) .

4. Formal presentation.

We recall the rules for transforming recursive definitions defined by R.
Burstall and I. Darlington. Given a set of recursive definitions we have the

64 L. KoT'r: The Mc Carthy's recursion

following:

(i) Def in i t ion . Introduce a new recursive definition whose left-hand
side is written G (x~ x~), where G is a new symbol. For example, (6), (7), (11)
and (12) are definitions.

(ii) Unfo ld ing . If F1 (Xl Xrn) ~ s~ and F2 (xl x ,) ~ s2 are recur-
sive definitions and there is some occurrence in s2 of an instance of F1 (x~ xm),
replace it by the corresponding instance of s~, obtaining s3; then add the
definition Fz (x~ x ,) ~ s3. For example, unfolding with (5) takes (11) to (13).

(iii) Folding. If FI (xl xm) ~ sl and F2 (xl x ,) ~ s2 are recursive
definitions and there is some occurrence in s2 of an instance of Sm, replace it by
the corresponding instance of F1 (xi xm), obtaining s3; then add the definition
Fz (x~ xn) ~ s3. For example, folding with (12) takes (17) to (18).

(iv) L a w s . We may transform a recursive definition by using on its
right-hand side any laws we have about primitive functions, obtaining a new
equation. For example, laws about car, cdr and cons enable us to rewrite (8) as (9).

Starting with a system S of recursive definitions, we transform one or
more recursive definitions with the above rules and we reach a system S' of
new recursive definitions, for the recursive function symbols. A problem left
open by R. Burstall and I. Darlington [2] was the correctness of the system
that is to say the equality of functions defined by S and S'. We have studied
this problem in the framework of algebraic semantics of recursive program
schemes developed by M. Nivat [3, 10], and given a lot of sufficient conditions.

Here, we do not deal with program schemes but LISP programs. That
means we have chosen an interpretation which interpretes the symbols of
primitive functions (elements of PF) as LISP base operators with their usual
properties. Under this assumption, as a corollary of the results mentioned
above, the following proposition holds:

PROPOSITION 1. Assume we transform a system S of recursive definitions
into a system S' by the fold/unfold method. This transformation is correct as
soon as the number of unfolding is greater or equal than the number of folding.

For example, the proposition 1 ensures the transformations from (6) to (10)
and from (11) to (14).

Let be S a set of recursive definitions, and t and s two terms. Assume we
want to prove the equality

~ X z ~ x n t = s (xl x , are the variables) (occurring in t and s).

induction principle: ~ oldy ~ but . goody ~ 65

We introduce two new recursive function symbols, say G and H, and two
new systems of recursive definitions

S~IS G (x, x.) ~ S S21S H (xt xn) ~ t

If we may transform St and $2 into $1' and Sz"

S t t~ (x l x,) ~ s " sztHs(X, x.) ~ t "

such that s' and t' are identical up to the symbols G and H (i. e. t' is s" in
which G is replaced by H) and the transformations are correct, then we have
proved the desired equality by the Mc Carthy method. For example, we proved
the property (P1) by this method.

Now we define a new transformation rule:

(v) Properties. We may transform a recursive definition by using on
its right-hand side any properties we have proved by the Mc Carthy method
about the recursive functions, obtaining a new equation. For example, the property
(Pl) enables us to rewrite (16) as (17). We call this system of transformations
the generalised fold/unfold method and we have studied it in [5] too. As
for its correctness the proposition obtained from proposition 1 by replacing the
words • fold/unfo!d method ~ by ~ generalised fold/unfold method ~, holds [5].

We shall keep the name Mc Carthy method when we use the generalised
fold/unfold method. For example, we have proved the property (P2) by this
new version of the Mc Carthy method because the transformation from (12) to
(18) is correct.

5. Second example.

We define the reverse function by

(19)

and we are going to prove

(20)

R (x) ~ q nil (x) then nil else A (R (cdr (x)), car (x)) ti

~ x R (R (x))=x

F (x) ~ R (R (x))

66 L. KoT'r: The Mc Carthy's recursion

(21) F (x) ~ R (i] nil (x) then nil else A (R (cdr (x)), car (x)) fi)

by unfolding of the outermost occurrence of R in (20); then by law

(22) F (x) ~ if nil (x) then R (nil) else R (A (R (cdr (x)), car (x))) 1i.

We see that we need a property about R and A and, indeed, we are going
to prove the property

V x ~/y R (A (x, y))=A (e (y), e (x)).

This step looks very like the generalisation step of Boyer and Moore theorem-
prover. Let us define

(23) G (x, y) ~ R (A (x, y))

(24) H (x, y) ~ A (R (y), R (x)).

From (23) by unfolding of the symbol A we obtain

(25) G (x, y) ~ R (if nil (x) then y else cons (car (x), A (cdr (x), y)) fi).

By distributivity over conditional we reach

(26) G (x, y) ~ if nil (x) then R (y) else R (cons (car (x), A (cdr (x), y))) / i

by unfolding the rightmost occurrence of R we obtain

(27) G (x, y) ~ if nil (x) then R (y) else if nil (cons (car (x), A (cdr (x), y)))

then nil else A (R (cdr (cons (car (x), A (cdr (x), y)))),

car (cons (car (x), A ~cdr (x), y)))) f i f i .

But for any lists x, y nil (cons (x, y)) is false, car (cons (x, y)) is equal to x and
cdr (cons (x, y)) to y; thus we have

(28) G (x, y) ~ if nil (x) then R (y) else A (R (A (odr (x), y)), car (car (x))) ti

(29) G (x, y) ~ if nil (x) then R (y) else A (G (cdr (x), y), car (x)) fi

induction principle: ~ oldy ~ but ~ goody ~ 67

with a folding. The transformation is correct since there are 2 unfolding and
1 folding. Now from (24) we reach by unfolding the rightmost occurrence of
the symbol R

(30) H (x, y) ~ A (R (y), if nil (x) then nil else A (R (cdr (x)), car (x)) fi)

Again by distributivity over conditional we obtain

(31) H (x , y) ~ i] nil(x) then A (R (y),nil) else A (R (y),A (R (cdr(x)) ,

car (x)))fi.

By the property (P2) and the obvious property (P3)

(P3) ~ x A (x, ni l)=x

which is provable by the Mc Carthy method too, we obtain

(32) H (x, y) ~ i/ ni.1 (x) then R (y) else A (A (R (y), R (cdr (x))), car (x))) fi

and, by folding,

(33) H (x, y) ~ if nil (x) then R (y) else A (H (cdr (x), y), car (x))]i.

The transformation from (24) to (33) is correct since there is 1 unfolding and 1
folding. Again definitions (29) and (33) are identical up to the symbols G and
H and, since the performed transformations are correct, we have proved the
property (P4)

(P4) ~ x ~ y R (A (x, y))=A (R (y), R (x)).

We use (P4) to transform (22) into (34)

(34) F (x) = q nil (x) then R (nil) else A (R (car (x)), R (R (cdr (x)))) ft.

To save some lines we admit that with 2 unfoldings and laws we may write

(35) F (x) ~ if nil (x) then nil else A (car (x), R (R (cdr (x)))) ft.

68 L. KoTr: The Mc Carthy's recursion

By unfolding the symbol A we obtain

(36) F (x) ~ i] nil (x) then nil else i] nil (car (x)) then R (R (cdr (x)))

else cons (car (car (x)), A (cdr (car (x)), R (R (cdr (x))))) / i]i.

But nil (car (x)) is false, car (car (x)) is equal to car (x) and cdr (car (x)) to nil, so

(37) F (x) ~ if nil (x) then nil else cons (car (x), A (nil, R (R (cdr (x))))) [i

and by another unfolding of A we reach

(38) F (x) ~ i] nil (x) then nil else cons (car (x), R (R (cdr (x)))) t i

and by folding

(39) F (x) ~ / / nil (x) then nil else cons (car (x), F (cdr (x))]i.

The transformation from (20) to (39) is correct since there are 5 unfoldings
and 1 folding is correct. Furthermore if we admit that the identity function
over the domain of lists may be defined by

(40) I (x) ~ i] nil (x) then nil else cons (car (x), I (cdr (x)))]i.

Then we notice that (39) and (40) are identical up to the symbols F and
I and we have established the property (PS)

(P5) ~ x R (R (x)) = I (x) = x .

To conclude we hope the reader is convinced that this method is useful
and that there is a simple and flexible system which uses it. Furthermore if
we want a more automatic system it is possible to adapt the Burstall-Darlington
system to perform the Me Carthy method. By the way we could use the same
system for developing recursive programs and proving properties about them,
which, as pointed out by Z. Manna and R. Waldinger [9] , seems a very
fruitful approach.

induction principle: ~ oldy ~ but ~ goody ~ 69

BIBLIOGRAPHY

[1] R. BOYER, J. MOORE: Proving theorems about LISP function. J. of ACM (22) 1 (1975),
129-144.

[2] R. BURSTALL, J. DARLINGTON: A transformation system for developing recursive
programs, I. of ACM (24) 1 (1977), 44-67.

[3] B. COURCELLE, M. NWAT: Algebraic lamilies o[interpretations, 17 th FOCS, Houston,
(1976).

[4] L. KOrT: About transformation system: a theoretical study, in ~ Transformations de
Programmes>~, (1978), 232-247.

[5] L. Korr: Des substitutions dans les systkmes d'~quations algdbriques sur le magma,
Doctoral Dissertation, Univ. Paris VII, (1979).

[6] J. MAC CARTHY: A basis for a mathematical theory of computation, in ~ Computer
Programming and Formal Systems ~, (1963).

[7] J. Mc CARTHY et al.: LISP 1.5 Programmer's Manual, M.I .T . Press Cambridge,
Mass., (1962).

[8] Z. MANNA, R. WALmNGER: Knowledge and reasoning in program synthesis, Artif.
Intel. J. (6) 2 (1975), 175-208.

19] Z. MANNA, R. WALDL~GER: A deductive approach to program synthesis, ACM ToPLaS
(2) 1 (1980), 90-121.

[10] M. NIVAT: lnterprdtation universelle d'un schdma de programme rdcursif, Informatica
(7) 1 (1977), 9-16.

