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ABSTRACT - The enthalpy formulation of two-phase Stefan problems, with linear 
boundary conditions, is approximated by C~ linear finite elements in 
space and backward-differences in time combined with a regularization 
procedure. Error estimates of L2-type are obtained. For general regularized 
problems an order e 1/2 is proved, while the order is shown to be e for 
non-degenerate cases. For discrete problems an order h2gq+h+l:e-ln+r 2/3 is 
obtained. These orders impose the relations e~r~h  4/a for the general case and 
e~h--r  2/a for non-degenerate problems, in order to obtain rates of convergence 
h 2/3 or h respectively. Besides, an order hllog hi +r  1/2 is shown for finite element 
meshes with certain approximation property. Also continuous dependence of 
discrete solutions upon the data is proved. 

1. Introduction.  

Many physical processes involving phase change phenomena give rise to 
parabolic free boundary problems of the Stefan type. In this paper we analyze the 
numerical approximation ofmuhidimensional two-phase Stefan problems via the 
enthalpy formulation. We use C~ linear finite elements in space and 
backward-differences in time combined with a regularization procedure. 

The enthalpy formulation has been extensively studied in recent years both 
from theoretical and numerical viewpoint. We refer to the survey [19] by E. 
Magenes where many references and comments are given. We only point out that 
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one advantage of this weak formulation is that explicit tracking of the free 
boundary is unnecessary. Therefore Stefan problems for which the behavior of 
the free boundary is unknown can be successfully treated. 

In this paper we obtain error estimates for temperature and enthalpy, using 
a new variational technique based on an integral test function. We present the 
results for parabolic problems involving non-homogeneous and anisotropic 
media, linear convective effects, non-linear internal heating term and linear 
mixed boundary conditions. 

Error estimates of this type were also proved in [15]. However our approach 
permits us to simplify the analysis and to improve some results on one hand, and 
to extend the study to more general parabolic operators and non-linear flux 
conditions on the other hand. In particular we deal with non-quasiuniform finite 
element meshes (except in w 5). 

The outline of our paper is the following. We state the problem and basic 
assumptions in w 1. Next we obtain error estimates of L2-type for the regularized 
problems in w 2, while in w 3 we show some a priori estimates for discrete 
solutions, and some auxiliary error estimates. In w 4 we obtain L2-type error 
estimates for discrete and semidiscrete solutions, and also a result of continuous 
dependence of discrete solutions upon the. data. Finally, in w 5 we prove an 
essentially linear rate of convergence under additional assumptions upon the 
initial temperature and the finite element mesh. 

1.1. Statement of the Problem 

Roughly speeking our aim is to study the singular parabolic problem 

0 
(1.1) J y ( u ) - V x ( K ( x ) ' V x u ) + b ( x ) - V x u  = f(x,t,u), in ~2x(0.T) 

Ot 

0 
(1.2) o u+p(x)u  = gl(x,t), on F l •  (0,T) 

0v 

(1.:3) u = g2(x,t), on F2• (0,T) 

1.4) z(u) = y0(x), on (0} ,  

where ~CIR  M ( M ~ I )  is a bounded smooth domain (0~=P1 LJF2), u=u(x , t )  is 
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the unknown (physically, the temperature), y(u)=y(x,t,u) is the enthalpy 
function defined by 

(1.5) r(u)  = c ( x , t , u ) + z ( u ) .  

The function ;~ is the characteristic of IR +, and c, f, K, b, p, gl, g2 and Y0 are given 
functions with regularity properties we shall state in w 1.2. 

Problem (1.1)-(1.4) has to be understood in a weak sense (see w 1.3) and 
naturally arises from standard heat tranfer problems with phase change, after 
applying the Kirchhoff transformation (see [4], [15], [17], [21], [22]). Then, 
thermal properties of the medium are contained in the function c, while X 
represents the latent heat content which we suppose normalized with a unitary 
jump. The matrix K takes the non-homogeneity and anisotropy of the medium 
into account, the vector b measures the convection, while the right hand side of 
(1.1) represents the internal heating term. 

The side boundary conditions are of two types: on/'1 there is a linear flux 
condition and p (p~0) measures the permeability to heat of the boundary, 
whereas on/'2 the temperature is imposed. We remark that either F1 or F2 could 
be empty. 

1.2. Basic Assumptions and Notation. 

(1.6) g2CIR M (M~>I) is a bounded domain with 0g2eC 2 (or optionally g2 is 
convex). We denote Q=f2•  (0,T), where 0<T<oo is fixed. 

(1.7) c(u)=c(x,t,u)~C~215 0<21~<cu(x,t,u)~<;tz, for(x, t ,u)~QxIR. 

(1.8) f(u) = f(x,t,u) is H61der continuous with respect to (t,u) uniformly in 
xag2, more precisely there exists a constant F>0  such that 

If(x,tl,Ul)-f(x,t2,t2)[ ~< F([u,-u2[+lt,-t212/3). 

(1.9) K = K(x)~C~ MxM) is a symmetric and uniformly positive 
definite matrix. 

(1.10) b - b(x)eL| 

(1.11) p = p(x)~L=(Ft), p~>0. 
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(1.12) 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 
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gl = gl(x,t) e HI(0,T;L2(F1)). 

g2 = g2(x, t) e H2(Q) (we consider an extension to Q of the Dirichlet 
da tum g2). 

uo = Uo(x) eHl (~)~L |  

Yo = yo(x) ey(x,O,uo(x)), i.e. Yo is a section of the maximal monotone 
operator y. 
Finally we denote 

V(g) = {q~Hl(s'2): ~ = g  on F2} , V* dual of V(0), 

(-,')L,(a),<','>L2(r0 scalar products in L2(Q) and L2(F1), 

a (u,v) = (K" V u, ~7 v) L,(a) + (b" ~7 u,v) L2(a) + <pu,v>L,(r,), for u,v e H 1 (g2). 

1.3. The Enthalpy Formulation 

This weak variational formulation was introduced by S. Kamenomostskaya 
[16], and then further studied by A. Friedman [13]. Both works consider 
Dirichlet boundary conditions and internal heating term independent of u (or 
linearly dependent  on u). Afterwards A. Damlamian proved in [6] existence and 
uniqueness results for problems with mixed boundary conditions of the type 
(1.2)-( 1.3) and non-linear heating terms, by a method of Lipschitz perturbations. 
More recently another type of nonlinearities have been considered ([3], [7], [8], 
[21], [30]). 

We now state rigorously the Stefan problem (1.1)-(1.4). We say that  apair of 
functions {u,o)} defined in Q is a weak solution of problem (P) /ff  

(1.1o) u eL2(0,T;V(g2(-,t)), co eL2(Q), 

(1.20) oJ(x,t) ey(x,t,u(x,t)), for a.e. (x,t) �9 Q, 

T T 

(1.21)f a(u,q~)-(w,qh)L,(a)= f <gl,~0>L,(r,)+(f(u),r 
0 0 

holds for all q) e V(0) with q)(-,T) =0. 

+ (:,o,r 
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For existence, uniqueness and global regularity we refer to [3], [6], [13], 
[14], [16], [17], [20], [21] and [30], and also to the survey [19] where a wide 
bibliography is given. It is known that 

(1.22) u e L=(Q)rl L| fl H~(0,T;L2(g2)). 

Local regularity was recently proved by L. Caffarelli and L. Evans [2], and 
E. Di Benedetto ([7], [8]), who have obtained a modulus of continuity for weak 
solutions of (P). Although these regularity results seem to be optimal for a 
general two-phase Stefan problem, they do not imply the existence of a smooth 
interface, and in fact it could vary in a discontinuous manner (see [ 13]) even if 
the data are very smooth. In [23] the author has given a characterization of a 
class of non-degenerate problems of Stefan type for which the free boundary is a 
Lipschitz manifold; in this paper we will show how this further regularity 
improves the rate of convergence of regularized problems, obtaining an order e 
instead of the order e 1/2 valid for general problems (see w 2). 

In order to achieve the error estimates the basic idea is to use an adequate 
integral test function in the weak formulation of the continuous problems (P) and 
(P~) (see (2.14)), and also in the discrete (P~,h,~) and semidiscrete problems (P~,h), 
(P~,~) (see (4.1), (~.24), (4.27)). In [15] a mapping defined by the inverse of-A x 
subject to homogeneous Neumann boundary conditions is used, and the notion of 
weak solution is adapted in terms of this operator. This technique seems not to be 
applicable for non-linear flux conditions. 

We finally point out that using the so-called freezing index, introduced by G. 
Duvaut [10], and M. Fr~mond [12], it is possible to obtain another weak 
formulation involving variational inequalities (see also [19] for details and 
references). Recently some results in the analysis of error estimates have been 
obtained (see [25]). Besides the non-linear semigroup of contractions in La(g2) 
provides another theoretical approach and suggests some converging algorithms 
(see [1], [29]). 

2. Error Estimates for the Regularized Problems. 
2.1. The Regularized Problems 

We begin this section by defining a family of nonlinear parabolic boundary 
value problems, regularized approximations to the Stefan problem (P): they are 
obtained by smoothing the enthalpy function. This procedure was proposed in 
some theoretical papers (see [2], [6], [ 13], [17], [21], [23], [30]) in order to prove 
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existence, uniqueness and regularity of (P), but also in numerical works (see [4], 
[11], [14], [15], [19], [20], [22], [25], [29], [32], [33], [34]). 

We consider for e>O (the regularization parameter) the function 

(2.1) X~(s) = max(O,min(s/e,1)), 

and then we approximate y by the smooth function y~ defined by 

(2.2) y,(s) = y~(x,t,s) = c(x,t,s)+x,(s), for (x , t , s )eQ• 

We say that u, is a weak solution of the regularized problem (P~) / f f  

(2.3) u~ e L2(0,T;V(g2,~(-,t))), 

(2.4) 

T T 

f a(u~,q~)--(~'~(u~),r f <gl,q~>L2(r,)+(f(u~),q0r2(a) 
0 0 

+ (n(uo,,),r (',0)) 

holds for all r e V(0) with r  Here u0,, and g~,~ indicate approximations of 
u0 and g2 respectively (see (2.12) and (2.31)). 

(2.5) Remark: problems (P,) have been defined using the same functions f, gl, P, K 
and b as in (P) in order to simplify the argument but without loss of 
generality, being possible to consider some perturbations of these functions. 
At the same time g2,, is a regularization of g2 in the sense of Strang [28, p. 
93]. Therefore g2,e has some local regularity properties which shall be used in 
w167 to define and estimate its interpolant. Clearly ifg 2 is regular enough we 
can take g2,~=g2//. 

We now briefly comment on the global regularity results at our knowledge 
available in the literature. Problems (P~) have one and only one solution (see [3], 
[6], [13], [14], [16], [17], [19]. [21], [30] for details). In these works some a 
priori estimates for u~ are derived and, by compactness methods, the existence of 
a solution u of problem (P) is proved. We now recall some of these regularity 
results for u~: 
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There exists a constant C>O independent of e such that the following estimates are 

fulfilled, 

(2.6) lu~lla=(Q) ~< C, 

(2.7) IVxUelL| ! UelL,(Q ) ~ C, 
0t 

(2.8) ]rAu~),k,(Q~ < c r  1/2, 

(2.9) ]7~(U.)tlL| ~ C, if [[Auo,.la,(a) < C*, 

where C*>O is also a constant independent of e. 
Estimates (2.6)-(2.7) were proved by A. Friedman [13], for Dirichlet 

boundary conditions and without internal heating term. The same proof with 
minor modifications can be extended to other boundary conditions and nonlinear 
internal sources as it was shown in [6] and [21] (see also [14], [15], [17], [19], 
[22], [30]). The relation (2.8) is an immediate consequence of the proof of (2.7). 
The estimate (2.9) was obtained byJ .  Jerome and M. Rose in [15] (see also [19], 
where an easier proof by A. Visintin is given). We finally point out that under the 
hypotheses of w the solution u~ is H61der continuous in Q (see [17, chapter 
V]), but its norm depends on e. 

2.2. The Error Estimate 

In this paragraph we obtain an error estimate stronger than those proved in 
[11], [15] and [25] (see also [14, chapter 2]). We shall use the notation 

(2.10) A~(u) -- {(x, t)eQ : O~u(x,t)~e}, 

(2.11) A,(uo) = {x~g3 : 0~<Uo(X)~e}. 

(2.12) Remark: suppose the initial non-degeneracy condition [A~(u0)[~<Ce to hold, 
where C is a constant independent of e. So we can choose u0,,=u0 and 
obtain 

[r(uo)--r~(uoA]v(o~ ~< cd/2. 
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Notice that this condition holds if F0={xeg2: u0(x)=0} is locally a 

Lipschitz manifold and there exists C >0  such that ~ ~ uo+~C on F0//. 
ev 

In what follows we shall denote Z(u) =o~--c(x,t,u) (see ( 1.20)), thus Z=0 (= 1 ) 
if u < 0  (u>0).  Now we derive an elementary inequality which will be useful to 
obtain the desired error estimate. 

(2.13) LEMMA: (X(U)-"X,(U,)) (U--U,) t> -e~(A~(u)), where ~(A) denotes the characteristic 
function of  A. 

Proof." Consider the decomposition of IR into the intervals (-0%0), [0,e] and 
(e,+oo). I fu  and u~ do not belong to the same interval, then either u or u~ does not 
belong to [0,e]. I f  u ~ [0,e] (or u, g [0,e]) then Z(u) =Z,(u) (or X,(u,) =X(u~)) and the 
inequality is satisfied, with zero on the right hand side, because Z, (or Z) is a 
monotone function. If  u and u, belong to the same interval, the only non trivial 
case is: u, u, ~ [0,e]. Then we get, 

(X(u)---Xe(u,))(u-u,) ~-e~(A~(u)NA,(u,))  I>-e~(A,(u)),  

that completes the proof.// 

Now we establish convergence rates for the regularized problems in a general 
setting, i.e. without having an a priori control on ]A~(u)]. Notice that this is the 
case when the problem (P) has a mushy region. In what follows we shall use the 
notation: 

o1( ) o2( ) 2 
= = Ig2--g2,J U(0,T;H'(D))" 

(2.14) THEOm~M. Let u and u, be the solutions of the Stefan problem (P) and of the 
regularized problems (P~) respectively. Then there exists a constant C > 0  independent 
of  e, such that 

(2.15) lu-uJL,(Q) '/2, 

(2.16) ly(u)---y,(ue)lL-(0,T;V.) ~ C(elA,(u)l+al(e)+a2(e)) ~/2. 

Proof. We shall give the proof in three steps. In the first one we assume g2,~=g2 
and obtain the error estimate (2.15) for temperatures. In the second step we deal 
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with the case g2,:Pg2. Finally in the third step we achieve the error estimate 
(2.16) for enthalpies. 

1 st Step-Estimate (2.15): g2:=g2. 
Let us consider the weak formulations of (P) and (P,), i.e. expressions (I .21) 

and (2.4). Then, after subtraction and reordering, we have the relation 
T 

0 

= I + I I  + III 
T 

0 

+ (y(uo)-,/,(uo:),q~(',0))~.,(~) = IV + V  + VI + VII,  

for all q)~V(0) with ~(-,T)=0. The idea of the proof is to use a suitable test 
function in (2.17). For to fixed (0--.<to--<T), we propose the integral test function 

to 
A 

(2.18) q~(x,t) = ) (u-u~)(x,s)ds, if 0---< t--.< to 
t 

= 0, if to--.<t<--T. 

Clearly this function is admissible because u, u, ~ Hi(Q), and then ~ ~ Hi(Q), and 
besides ~ = 0  on Fzx(0,T)O {t=T}. 

Now, inserting (2.18) in (2.17), the rest of this step consists in analysing each 
term. In this sense, recalling that K is a symmetric positive definite matrix 
independent of t e(0,T), we have 

to to to 

0 t 20  

For II, using the assumption (1.7), we obtain 

I I =  ;(c(u)--C(.U,),u--u~)L~(~)~> ~, ft~ ). 
0 0 

Recalling that p is I>0 and independent of t, we get 
to to to 

o t 2o  v 
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The right hand side of (2.17) will be analyzed in the same manner. From the 
Lipschitz property of f (see (1.8)), we have 

to t to to t 

I V =  f(if(u)-f(u~),u-u~)L~(a) ~ < 2_~__/ iu_u~U2(s~)+C f(i l lu_u~(~)),  
0 0 0 0 

where we have used the Cauchy-Schwarz inequality and the elementary relation 

(2.19) 2ab ~< aa 2 + l b 2  (a ,baIR,a>0),  
a 

21 for a =  This inequality will be used extensively in the sequel. 
2 

Taking into account the assumption (1.10) upon b and applying again the 
Cauchy-Schwarz inequality and (2.19), we obtain 

to t to to t 

v---oi ~bo f ~<u-u~,,u-u~)~,<o, _~ ~of a~-u~n~,,o>+O of lifo ~x<U-U~) i~,,o, 

4 d  ]u-u,]Z, ca)+Co o Ki/2"Vx(U-U')]Z'(a)' 

where we have used again that K is positive definite. Due to (2.13) we get 

v I  = f'(z(u)-z=(u,),u=-u)L, Cm ~< ~lA=(u)l, 
o 

Finally for the last term in (2.17), using again the Cauchy-Schwarz inequality 
and (2.19), we have 

S" V I I  = (~ ' ( uo ) - r , ( uo , , ) ,  U--Ue)L'(.Q) ~ U - - U e l 2 L , ( t 2 ) + O O l  ( ~ ) .  

0 

Hence, by substitution of the previous estimates in (2.17), we easily see that 

~ f KI/2" V x(U-U.)]2L,(a)+ fflu--u.ll~,<m + Ifpl/2(u--uD 'l~cr,) 
0 o 0 

�9 to  t t 

0 o o 

Now, an application of the Oronwall inequality allows us to conclude that  the 
following relation holds 
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(2.20) 

to to to 
~/  K1/2"~Tx(u--ue)12L2(.o) "1- / [[U--UeII2z(K~) "j" I /  pl/2(U--Ue) 122(-r'l) 
0 0 0 

C(elA~(u)t+~rl(e)), 

for all to, 0<to---<T, where C>0 is a constant depending only on the data and T. 
Clearly (2.20) implies the desired estimate (2.15), for g2,~=g2, which completes 
the proof of this step. 

2 "d Step-Estimate (2.15): g2,~#g2 
Instead of (2.18) we take the following integral test function 

to 
~(x,t) = qh--~2 = f [(u-u.)-(gz-g2,.)](x,s)ds, 

t 

if 0 --.< t --.< to 

q~(x,t) = 0, if to~<t<~T. 

The analysis of each term in (2.17) for q~=~l is exactly the same as in the 
previous step. For ~=r we proceed in almost the same manner as before, 
obtaining the inequality (2.20) with 02@) on the right hand side. 

3 "~ Step-Estimate (2.16) 
Let r/be a function belonging to V(0), and to be an arbitrary point in (0,T). 

For 6>0 small enough, consider the function q0(x,t)=r/(x)~6(t), where ~a is the 
piecewise-linear function equal to one in [0,to-d] and zero in [to+d,T]. Obviously 
~0 is an admissible test function in (2.4), whence we obtain 

? +6 
I 

2d to~ 
T 

= / "~,~[-(KU2"Vx(U-U~),K1/2"Vxrl)L'(~)-(bVx(U-U~),rl)L2(~) 

- + 

Now taking into account that ~ converges (in L 2) to the characteristic function of 
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(0,t0), and employing the Lebesgue differentiation lemma on the left hand side, 

we have 

( ( r ( u ) - r . ( u . ) ) ( - , t o ) , ~ ) L 2 ( Q )  

to to 

~< (llf K' /2V,(u-u,)IL,(~)+If  P'/2(U--U*)IIL2(r,) 
0 0 

+ 
0 

for a.e. to, 0<to<T.  Next, from the last inequality and (2.20), we obtain 

which implies the desired estimate (2.16). Then the theorem has been proved//.  

This theorem says that the error introduced by the regularization procedure 
itself is of order (elA~(u)l) 1/2. In particular if the behavior of u near the free 
boundary is unknown or mushy regions can appear there is not an estimate on 
IA~(u)l, and the error is e 1/2 (see [15], [25] where the same order was obtained). 
At the same time it shows that u0,, and g2,~ have to be chosen in such a way that 
al(e), a2(e)<---Ce, in order to get an error 0f order e 1/2. By virtue of (1.13), g2,, 
defined in (2.5) verifies this condition. Besides, if u0 satisfies the non-degeneracy 
property IA~(uo)l---<Ce, the choice u0,,=u0 is possible (see Remark (2.12)). 

Now we summarize this latter comment. 

(2.21) COROLLAR;r Assume at(e), o2(e)<<-Ce. Then there exists a constant C>0  
independent o f e, such that 

l u-u&,(Q)+lr(u)-r.(u.) k=(0,.;v./-< c* 1/2 

2.3. The Non-Degenerate Case: [A,(u)l---<Ce. 
We say that (P) is a non-degenerate problem i f  there exists a constant C>0 such that 

(2.22) IAXu)I Ce. 

Clearly this condition excludes explicitly mushy region problems, and also other 
cases with almost regular free boundary (for instance, consider the harmonic 
function u = x y  in the unit ball of IR 2, for which [A~(u)]~<Ce]log el). 
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A characterization of a class of such problems is given in [23]. Now we are 
going to state the essential assumptions upon the data and recall the main result 
of that paper. 

Assume, for the sake of simplicity, that 12 is an annulus with boundaries Fl 
and/ '2 and that a Dirichlet boundary condition gl is imposed o n  F 1. Suppose that 
the following hypotheses hold: there exist constants a, Or, 02, I~x, 1~2 with a, 01>0, 
02<0, 0</~</~1, such that 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

0 
- - g i  ~ a, on Fi (i=1,2), 
Ot 

(-1)i(gi-0i) I> 0, on Fi (i=1,2), 

Fo = {x e g2: Uo(X)=0} is locally a Lipschitz manifold, 

uo e C ~ 

AxU0+f(u0) t> a, in D'(I2), 

uo + (resp. uo--)sCl(G +) (resp. G-), where G is a neighborhood of Fo, and 

0 0 
- - u o  + I> ~1,  uo-- ~< ~2 on Fo, 
Ov Ov 

(2.29) f(0) ~< 0. 

Then we have, 

(2.30) THEOREM ([23]). There exists a constant C >0  such that [A,(u)l~<Ce. Moreover 
the free boundary is a Lipschitz manifold: t=o(x). 

From (2.14) and (2.30) we conclude that the rate of convergence could be of 
order e if u0,~ and g2,~ are chosen so that: ol(e), o2(e)~<Ce 1. 

(2.31) Remark: from (2.25) and (2.28), Uo satisfies: IA~(uo)[~<Ce. Therefore, uo,, 
can be taken as 
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u0, if u0~e or u0<0 

(u0+ 1), if' e>Uo~>e 2 
UO, ~ ~- 

E 

l + e  

1 +e 2 
Uo, if e2>Uo~>0, 

e( l+e)  

and verifies ol(e)~<Ce 2, 

Now we state the order of convergence for non-degenerate cases. 

( 2 . 3 2 )  C O R O L L A R Y .  Assume that al (e), a2(e) ~<Ce 2 and (P) is non-degenerate. Then there 
exists a constant C>0 independent of e, such that 

IU--UelL=(Q)+Iy(U)--~r(Ue)IL| *) ~ CE. 

2.4. Stability of  Solutions 
We end this section with another application of the variational technique 

developed in (2.14). In fact it is easy to prove the continuous dependence of u 
(and u~) upon the data. Results of this type are well known (see [13, p. 65]; [6, p. 
1032]; [21, p. 205]), but our approach seems to be easier. 

We shall omit the proof because it follows the lines of (2.14). 

(2.33) THEOREM. Let u and fa be the solution of  (P) with data u0, f, g2 and rio, f', g2 
respectively. Then there exists a constant C>O independent of  the data, such that 

T 

/ (y(u)--~(fi),u--fi)e2(=)+ sup ly(u)--~(fi)12V �9 
0 0< t<T 

T T 

0 0 

We only point out that the adequate integral test function is: 
to 

q~(x,t) = / (u-fi)-(g2"-~2), if 0 < t < t o  
t 

= O, if t o m t i T .  
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3. The Discrete Problems. 

This section is devoted to define and analyse the discrete problems. We shall 
prove some a priori estimates for discrete solutions and also some auxiliary error 
estimates we need in w 4 to obtain the desired L2-rate of convergence. 

3.1. Notation and Basic Assumptions 
Let ~ h be a family of finite elements and let h~ (resp. 0~) be the diameter of 

the smallest ball containing S e ~h (resp. greatest ball contained in S). Then the 
size of the mesh ~ h  is defined as h = max hs. 

Se.@ h 

We suppose that ~h is regular (see [5, p. 132 or 247]). If ~h is a family of 
n-simplcxes thc regularity mcans that thcrc cxists o>0 indcpcndcnt of h such 

that h~<o~)s for all S e@ h. 

For thc sakc of simplicity we shall assumc that 

Se@h 

The case I2q:I2h involves some technical calculations near the fixed boundary 0f2 
which are omitted in this work (see [22], where a Stefan problem with Dirichlet 
boundary conditions and 0QeC 2 was considered). 

Let us now define the following finite element spaces, 

(3.1) Vh = ( r176  ~b[s is linear for all S e 2 h } ,  

(3.2) Vh(g) = Vhf'l(~beC~ ~=gI on F2}, 

where gI is the C~ linear interpolant of g. 
The regularity of ~h yields the following approximation property of Vh (see 

[28], and also [5, chapter 3]), 

(3.3) inf ]v-~/l[m(a) ~< Ch2-k]V]ls2(a), 
r /eV h 

for all veil2(12), k=0,1. 

(3.4) Remark: we do not need to assume that ~h 'is quasiuniform (i.e. there exists 
3,>0 fixed such that h~<?'Qs for all S e t h  (see [5, p. 140])) as done in 
[15111. 
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(3.5) Remark: taking into account the global regularity of u, (and u) stated in 
(2.6)-(2.9), we see that it is not strong enough to justify the use of 
interpolant polinomials of degree greater than one//. 

We consider now an auxiliary elliptic boundary value problem, that we shall 
use to obtain the desired error estimate. Let b(-,') be the following bilinear, 
continuous, coercive (p~0) and symmetric form in H1(s 

b(r/,r = (K(x)Vr],V~b)L,(a)+(rl,~b)L~(O)+<pr/,r 

We say that a function v is the solution of the auxiliary problem (A) /ff  

(3.6) veV(g2) 

(3.7) b(v,q~) = (~u,q~)L2(O)+<gl,q~>L2(r,), for all @~V(0). 

Let us suppose that (A) is regular (see [5, p. 138]), i.e. if ~U~L2(g2), 
gl ~H1/2(F1), g~aH3/2(F2) then veH2(s and there exists C>0  such that 

(3.8) ~V~H~(O) ~ C(i~lL,(O)+l[gl~w,2(r,)+l[g2~m,2(r2)). 

(3.9) Remark: the latter condition imposes certain regularity restrictions on 892 
and the sets Fl,/'2. In fact, being either g2 convex or 892 ~C 2, ifFl=Q) (or 
F2=O) then (A) is regular (see [18, p. 148 - Vol. I]). In this case we 
would actually have a Dirichlet or a Neumann condition respectively, in 
the whole fixed boundary 8g2. If  g2 is an annulus and Fl (resp. /"2) is the 
interior (resp. exterior) fixed boundary, (A) is also regular. For mixed 
boundary conditions (A) is not regular. However such conditions may be 
taken into account (see remark (4.14))//. 

(3.10) Remark: clearly a.e. in (0,T) the function u~(.,t) satisfies (A) with 

gl = gl(',t), g2 = g2(',t), 

= f(u~(',t)) + u,(',t)-b" Vxu,(',t)-y~(u,(',t)) t. 

Due to (2.6)-(2.8), after an integration in (0,T) it is easily seen that 
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(3.1 l) iU, IIL2(0,T;m(~)) ~< C "e-u2, 

where C > 0  is a constant independent of e//. 

Finally we shall introduce some notation for the time-discretization. Let 
T 

z = ~  be the size of a uniform partition of (0,T), with N �9 IN arbitrary. 
N 

Then let us denote t~=nr, n=l,.. . ,N, and 

kr.tn = kr.t(.,tn), 

(3.12) 

+! = ~(',t)dt, 

tm(~]) = f(-,tn,1/In), 

where gt is any continuous function defined in Q. 

+/n 
P(g0 = f(',t, gt(',t))dt, 

3.2. The Discrete-Time Galerkin Scheme 
Let us consider the discrete scheme obtained from (P~) using C~ 

linear finite elements in space and backward-differences in time. 
We say that a family {Un}~=l is a solution of the discrete problem (P~,h,~) /ff 

(3.13) U , e  Vh(g~,~) 

(3.14) a(U.,q~)+ I(),~(U.)--r~(U~_t),~0)L2(a ) = <g"bq~>L2(r.)+(P(U.),~)L,(~), 

holds for all q)e Vh(0), l ~ n ~ N .  
Here U0 is chosen ~<closo> to u0.. in L2(f2), for instance so that 

(3.15) Phyt(Uo) = PhTe(u0,,), 

where Ph is the L2-orthogonal projection operator onto Vh(u0,,). However if u0 
satisfies further regularity properties, U0 may be chosen equal to uI0 (see (3.36), 
(3.38) and (4.19)). 

(3.16) Remark: the discrete problem (P~,h,~) is a recursive nonlinear system of 
algebraic equations, associated with a continuous monotone operator in 
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by 

IR N. Then applying the theory of monotone operators (see [24, p. 167]), 
we conclude that (P~,h,,) has a unique solution. For the same reason there 
exists a unique function U0 satisfying (3.15)//. 

Let us denote by Ue,h,r, and call it the discrete solution, the function defined in Q 

Ue,h,r( ' , t )  = U n ,  i f  t . _ a < t ~ < t .  (l~<n~<N). 

3.3. A Priori Estimate in HI(Q) 

Now we shall derive an energy estimate for discrete problems which is the 
discrete analogue of an a priori estimate proved by A. Friedman for the 
continuous problem (see [13, p. 56]; see also [30, p. 69] and [21, p. 221], where 
more general problems are considered). 

First we shall prove an elementary inequality we need in the sequel. 

N 
(3.17) LE.MblA. Let aneIR M, 0~<n~<N. Then 27 an(a.-a~l)  I_. __1 (a2rc__a2o). 

n=X 2 
N 1 N Y 

Proof'. 2? a.(a .-a ._l)  = - -  2? (an+a~x)(a~-a~_l)+ __1 2: (a_a~_l)2 
n = l  2 n=l  2 n=l  

N 1 
~> __I 27 a~_a2_l = __ (a2r~.a2o)//" 

2 ,=l 2 

(3.18) Remark: let an  e I R  M, l~<n~<N. Then the following inequality holds 

N N 1 N 
2? an "27 ak I > - -  (~v an)2. 

n = l  k=n 2 n=l  

N 
In fact, denoting an = 2? ak, l~<n~<N and aN+l=0, and proceeding as in 

k=n 

(3.17), we easily obtain the desired inequality//. 

Now we are ready to prove the a priori estimate in HI(Q).  

(3.19) THEOREM. There exists a constant C > 0  independent of e, h, and 3, such that 

N 
(3.20) max ]VU.~2~(a)+ X 

1 ~ n ~ N  n= l 
~-'(r.(Un)-7.(U._,),Un--U~_,)L2(m ~< C, 
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where N {Un} n=l  /S the solution of (P~,h,~). 

Proof'. Let us consider the family of test functions 

1 
~ n  = - -  [(Un-U~I)-(Gn-Gn_I)], l~<n~<N, 

%- 

G G n'I where we have denoted n = 2,~. Clearly ~On~Vh(0) for l~<n~<N, and therefore 
~0n is an admissible test function in (3.14). 

Then we replace ~bn in (3.14), add on n for l~<n~<k~<N (k fixed) and after 
some calculations we will explain in the sequel, we obtain the inequality 

k 
(3.21) I 

n=l 
~-I (re(Un)__~e(Un_l),Un__Un_l) L2(~) 

k 
< c , + c = z  

n= l  i=l  
"t "-I (~e ( U i ) - y ~  (U i_ l )  , U i - U i _ l  ) L~(~)). 

The latter expression has the appropriate form for applying the discrete Gronwall 
inequality, from which we easily get the desired bound (3.20). 

Now we briefly describe how to estimate the various terms of (3.14) in order 
to get (3.21). We begin by observing that , by (3.17) and properties of K, we have 

k 
X 

n = l  
( K .  r U n ,  V (Un--Un_I))L2(.Q) ~ C 1 ! VUk[[12(~)--C2[I VU0I[2L2(.Q), 

k k 
Z (K. VU.,V(G.-Gn-~))L,(a) ~< Cr2; ]VUn[l%,(a) 

n----1 n= l  

k 
z 11• 

n= 1 .1" 

At the same time, recalling (2.2), we get 

k 
X 

n----I 
VI (7~(Un)-7~(U.-I),G.-G~I)L~(a) = 

k 
= X  

n = l  
V -1 (C (Un)-c(Un_l),Gn-Gn_l) L2(ga) 

k 
+ X  

n= l  
V-1 ~e (Un)-Ze(Un-1),Gn-Gn-1) L2(~) 
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k k 
__;h X r-1]U_U~_,~L,(a)+C2: r-]~G,,-Gn_,~2,(a) 

5 n----I n----I 

k-1 
+ X  

n = l  
r- '  I G._, +G.+  1-2G.I L,(~ ) + r-' I Gk--Gk_, ~ L,(~ ) +V'] lG,-Go]u(a ) 

C+  2~ k Z I~-I ] Un-Un_l ] 2L,(~), 
5 n=l 

where we have used the Cauchy-Schwarz inequality, a formula of addition by 
parts and the regularity assumption g2 e H2(Q) combined with the choice of g2: 
(see (2.5)). For the convective term we have 

k k k 
Z (b V Un,Un--Un-I)U(~)< ~I ~, -I i Un_Un__l ~ %,(~) .4. CT ~ I V Un 12L,(.Q)" 

n----I 5 n=l n=l 

n 

Now taking into account that Un=U0-[-i__~ 1 Ui-Ui_l, and the Lipschitz continui- 
ty of f, the nonlinear internal source term can be bounded as follows, 

k k 
z (f(u.),u.-u._,)L,(a)~<c+ ~' z :'Iu.-u~,~,(r 
n=l 5 n=l 

k n 

+ z (_{ 
n=l  i 1 

Finally, in order to analyse the boundary terms, we note that there exists C > 0  
depending only on r such that 

IUnI2L2(/"[) ~ C(IIVUn~2L2(.(~)'-~'-]IUnlI~2($,"3)) 

2 n. 
C i - F C 2 ( I  V U n ]  U(Q)'{- is I'-I ~ Ui-Ui_112u(~)). 

k 
To complete the proof observe that terms X v-1~Un-Un_l~2u(~) may he 
ibsorved into the left hand side of (3.21) n=l (recall that 7'~>A,>0), while the 
emaining terms yield the right hand side of (3.2l)//. 

Let us now remark that (3.20) implies trivially an a priori estimate in 
L| for the discrete enthalpy. In fact, using again the relation 
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Un '=  U0+ -~ (Ur--U~_I), and recalling that y,(Un) = c(Un)+z,(U~) with 
0 ~ Z ~  1, weieXasily obtain, 

(3.22) COROLLARY. max  ]7~(Un)IIL2(U) ~< C. 
l~<n~<N 

(3.23) Remark: (3.22) was considered as an assumption in [15]. 

3.4. Some Auxiliary Results 
In this paragraph we compare u, with its HLprojection onto gh(g2,,(',t)) 

using b(.,-) as scalar product, and we also obtain some error estimates for the 
initial enthalpies. 

Let Y(',t) be the function that satisfies a.e. in (0,T) 

(3.24) Y(-,t) z Vh(g2,,(',t)) 

(3.25) b((u~-Y)(',t),q~) = O, for all q~eVh(O). 

Our  aim is to estimate in L2(Q) the error between u, and Y. 

(3.26) LEMMA. There exists a constant C>0  independent of  e and h, such that 

h 2 
(3.27) IY--u, IL2(Q) ~ C _ _  

el/2 

t 

(3.28) I f  ~Tx(Y--ue)IL| ~ Ch. 
o 

Proof'. It is well known from the elliptic theory (see [5, p. 139], for homogeneous 
bcrundary conditions) that 

I(Y-u~)(',t)lL2(a) ~ Ch21u,(',t)lm(s~). 

Then, by integration in (0,T) and using (3.11), we immediately obtain the 
estimate (3.27). In order to derive (3.28) we have to notice that the function 

t 

v=  j u ~  satisfies a problem zlxv=~r176176 ' with regular mixed 
0 
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boundary conditions. Applying again the elliptic theory we easily get the desired 
estimate (3.28), hence the proof is complete//. 

Now we define a time discretization of Y. For l~n~<N we consider the 
function 

(3.29) Y~(x) = __1 Y(x,t)dt. 
T t~ I 

It is easy to verify from (3.24)-(3.25) that 

? (3.30) Y, e Vh( 1 g2,~(',t)dt) = Vh(g2,,),'~ 

(3.31) a(Y~,~)+ l(~,,(u~)--y~(u~-l),~,)L~(a) = <~nl,~>L2(r,) 

+ (P(u~),q~)L,(~)+ (fif-Yn,~)L,(a)+ (b" Vx(Yn-fi?),~)L~(a), 

for all q)eVh(0), l ~ n ~ N .  
In the following lemma we compare the families {Y~} and {u~}, obtaining a 

discrete version of (3.26). 

(3.32) LEMMA. There exists a constant C>0 independent ore and h, such that 

N h 2 
(3.33) (n=Xl vllYn-u:~2L,(r~)) 1/2 ~< C(e--i~-+v), 

(3.34) ] r  ~ ~Tx(Yn--llen)]L,(~) ~< Ch, l~<n~N. 
k----1 

Proof'. Notice that 1[ 
= (Y(',t)-u,(',tn))dt Y~---u? -~-t 

= (Y(',t)-u~(',t))dt+ "~'t -~--t (u~(',t)-u~(',tn))dt = In + IIn. 

Now we analyse each term of the latter expression. Using (3.26) we get 
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N N 

n = l  n=l 

For the second term fin we have 

" h2  2 
[[Y(',t)-u~(',t)~2,(~)dt = IY-u~[[2~(Q) ~< C ( _ _ )  . 

El/2 

" l~-t u~(',t)[[ u(a)dt 
N 
Z rll lI . l~(a) ~< Cr  ~ i~ O 2 ~< Cry, 

n = l  n = l  
tr~-I 

where we have used (2.7). Proceeding in the same manner, (3.34) is an easy 
consequence of (3.28), which completes the proof//. 

We shall finish the paragraph by giving two error estimates for the initial 
enthalpies. We assume that u0 satisfies the non-degeneracy condition 

(3.35) IA (uo)[ < Ce, 

and denote by f2 + and ~ the following sets: 

~+ = {x~Q: Uo(X)>0}, ~ -  = { x ~ :  Uo(X)<0}. 

(3.36) LEMMA. Suppose that F0 and Uo satisfy (2.25), (2.26) and (3.35). Then there exists 
a constant C>0 independent of e and h, such that 

ly,(u0)--y~(uI0)iL2(a) ~< C(e+h) 1/2. 

Proof'. Consider the set Fh={S e ~a: S flFor Then we have [Fh]~<Ch, because 
FoeC ~ Clearly X~(Uo)=Z~(Ulo)=0 in D'-/Fh. At the same time we get 

{xeg2+xFa: X,(Uo(X))--~,(uI(x))r C {xe~2+: Uo(X)~<e+Ch} = Ae+ch(Uo), 

because if x~A,+ch(Uo), then 

uIo(x) I> Uo(x)-Ch I> e+Ch-Ch = e, 

which implies X,(Uo(X))=Z,(ulo(x))=l. Now, applying the n0n-degeneracy 
condition on Uo, we obtain 

hXuo)--z,(ulo)b,( > _< Ivhl'/ +lA.+ch(uo)l '/2 ~< C(e+h) '/2. 
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Finally recalling that y~(s)=c(s)+x~(s) with c regular, it is easy to conclude the 
desired result//. 

We now suppose that the finite element mesh follows the initial free 
boundary Fo, in the sense that: 

(3.37) there exist two subsets ~+h and (2-'h of finite elements such that 
(2=(2+h U (2-h and the nodes of O(2+h (resp. 0H'h) belong to 0(2 + (resp. 
0 a - ) .  

(3.38) LEMMA. Assume (3.37), FoeC I'I and u+oeW2'| (resp. U-oeW2'| 
where G is a neighborhood of Fo. Then there exists a constant C>0 independent of h 

and e such that 

2 

]Y~(u0)-y~(u I) [L'(U) ~ C (e+ h 2) 1/2"min (I ,-~..). 
e 

Proof'. Notice that Z~(uI0)=0 in (2-h, and then 

[X~(Uo)--X.(UI0)IL2(~) ~< ( f  [X,(Uo)[2) 1/2 ~ Ch.min(1, h2). 

In order to obtain the estimate in (2+h, let us call fi+o the W2'| of u+o 
to (2. Then 

-< + = I +  11. 

For I, by virtue of [(2+hX~+[~Ch 2, we have 

f h' I = ( [x.(uo)~(a%)12) 1/2 ~ Ch'min(1,-- ). 

For the other term, taking into account that uto is the interpolant of~+o in g2+h, we 
get 

{x ~ Q+h: Z,(ulo)--~,(fi+o) #0)C{x e g2+h: fi+0(X)<e+Ch2)CA,+ch2(uo) U ((2+h \ (2+), 

which can be proved as in (3.36). Hence 

1 2 
II ~< IAe+ch2(uo) U (a+h \ ~+)[ 1/2 min (1,---]fi+o-uIo] L.(G+h)) ~ C (e+h 2) t/2 min(1, h'~ ). 

8 8 

that completes the proof//. 
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4. Error Estimates for Discrete Problems. 

In this section we derive some L2-error estimates for solutions of (P,,h,~). The 
main idea in our proof is to use a discrete version of the integral test  function 

(2.18) (see (4.7)). 
At the end we will make some remarks about some usual semidiscrete 

schemes in space and time, and we also state L2-rates of convergence, leaving the 
details to the reader. 

4. I. Error Estimates for a Discrete-Time Galerkin Scheme 
Observe that (Pe,h,~) is a mildly non-linear parabolic problem, for which an 

order of convergence Clh2+C2r is known (see [31, p. 753]; see also [9] for more 
general results). Actually C1 and C2 depend on the regularity of the continuous 
solution u,, i.e. they depend on e. Then the difficulty lies in finding that 
dependence, for which the theory developed in [31] and [9] seems not to be 
applicable. 

Now we are ready to prove the main result of this section. 

(4.1) THEOREM. Let u~ and U,,h, , be the solutions of  (P,) and (Pe,h,r) respectively. Then 
there exists a constant C>0  independent o f  e, h and r, such that 

(4.2) lu,--U,,h,~IL2(Q) ~< c ( h 2 + h + . f -  r +v2/3), 
E El/2 

(4.3) [Y,(U,)--Y;(U,,h,~)IL-(0,T;V*) ~ c ( h 2 + h +  r +r~/3) ' 
E E 1/2 

where the initial datum U0 satisfies (3.15). 

Proof'. We give the proof in three steps. In the first we suppose {Un}~=l verifying 
(3.13)-(3.14) with ~2,e, ~l  and ~, and we obtain an L2-rate of convergence for the 
temperature. In the second step we give the essential modifications in order to 
consider the exact conditions g~2,e, g~l and f~, while in the last step we obtain the 
enthalpy error estimates. 

{U.} .= l satisfying 1 n Step: Suppose N 

(4.4) U .  E Vh (~'a2,e) 
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(4.5) 
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a (U. , r  + 1  (y~(U.)-)'~(Un_,),OIL.(U) = < ~ l ~ l , { ~ ) L 2 ( / ~ l ) ' ~ ' - ( P ( U I , I ) , O ) L 2 ( ~  ) 

for all r l~<n~<N. 
The idea of the proof is to reproduce in the discrete the technique of (2.14). 

Then we first obtain an integral version of (4.5) by addition on n for 1~<n~<n0, 
with no fixed (l~<no~<N). Denoting q~no+l=0, and reordering, we have 

no 1 
z" ~Y' [a(Un,t/~n) + (ye(Un),__ (@n--~n+ 1)) L2(a) 

n=l  ~- 

no 

= (ys(Uo),q)l)L2(a)+r ~' 
n=l 

[<grll, I~n>L2(FI) "t- (P(Un),~n)L2(O)] 

where ~ n E V h ( 0 ) ,  l~<n~<n0 . Proceeding in the same way with (3.31), we can 
obtain the following relation for {Yn}N_l, 

no n 1 
X [a(Y~,On) + (y~(u~),-- (~bn--~n+ 1)) L2(.Q) 

n=l .g 

no  

= (r~(Uo,~),qh)L~(a) + r -2: 
n----1 

[<gnl ,  (~:)n> L2(F,) -~ (~'n (Ug), ~n)  L~(~ ) 

+ (fi:-Yn,q)n)L,(u)+ (b" V (Yn-fi:),q)n)a~(u)]. 

Now, subtracting the last two expressions and reordering, we get the equality 

(4.6) no L r X [(K-V(Un.Yn),VCn)LZ<O)+<p(Un-Yn),r 2(r,) 
n=l 

. 1 
+ (y~(U~)-y~(u~),~(~"r = I+II+III 

I: 

= ( r . ( U o ) - e . ( u o , . ) , ~ ) . ( ~ )  

no 

+ rX (b" ~7 (Yn-Un),q)n) L2(r 
n----1 
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no 
+ ~ X  

n = 1  

(fn (Un)--fn (ue), Cibn) L2(O ) 
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no 

n ~ l  
[(fi~-Yn,On) L~(Ca) + (b 'V (Yn-fin),On) L2(a)] 

= I V + V + V I  + V I I  + V I I I .  

In  order  to analyse each term of (4.6) we shall use a variational technique. In 
fact we propose the following f a m i l y / ~  ~N+I ~ ' n s  ~=1 of discrete test functions: 

(4.7) 

no 
qb n = v X (Uk-Yk), 1 ~<n~<no 

k = n  

~,~ = O, no<n~<N+l .  

Clearly r  l~<n~<N+l, because both Yn and Un attain the same 
boundary  value ~ , ,  in/ '2 (see (3.30) and (4.4)). Thus 4~, is an admissible test 
function for (4.6). 

We now start estimating the left hand side of (4.6). For I, using Remark 
(3.18), we have 

no no 
I = r X  (K'/2"V(U~--Y~),* X 

n =  1 k = n  
K 1/2" V (Uk--Yk)) L2(~2) 

I> ]v~  ~ K'/2-V(U.-Y.)I2L~(~) = A~o. 
n = 1 

For II ,  using again (3.18), we get 

no 
I I = v  X 

n = l 

no no 
~pl/2(Un"Wn),Z" k~__n pl/2"(gk--Yk)> I> []~" n~__l pl/2(Un-Yn) HL2(/ 'I) = B n o .  

The  third term requires a different analysis, namely 

no nO 
I I I =  �9 Z (ye(Un)--re(Uen),Un--Yn)L2(O) = Z" ~ '  

n = l  n = l  
(r,(Ur,)-r,(u:),U~u?)u(~) 

no 
rl rl + r X (y.(U~)--y,(u,),u,-Y~)L~(a) = D~o + E.o- 

n = l  
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We now consider the auxiliary function an(x) defined by 

an(X) = (y,(Un)-yE(un))(Un-un) -1, if U n ~ u ~  

= 0, if U .=u~ .  

From (1.7) and (2.2), it is easy to verify that 0~an(x)~C'e  -1. Hence, applying the 
Cauchy-Schwarz inequality, we get 

no n n 1/2 no 
E. ~ < [\z I (r.(U.)--n(u.),U.-u~)Lv, I] " [Lzl (~.(u:-Y.),ut-Y.)L,(,,~] I~= 

D1/2" 1 h 2 1 D +C" h2 + v 
-< c " ~  ~<T ~ ~-U 7 w)~' 

5 h2  
where we have used (3.33). Therefore I l l  ~> " D , o - C ( -  + )2. 

6 e e 1/2 

In order to estimate the right hand side of (4.6) we notice that by virtue of 
(3.15), y~(Uo)-y~(uo,,) is orthogonal t o  V h ( 0  ).  Thus, IV=0.  

The  term V can be bounded by making use of (3.33), the elementary 
inequality (a+b)2~2(a2+b 2) a,belR, and reordering the double sum. Namely, 

no 
V = r X (3 X b-V (Yk--Uk),Un--Y,)L2(a) 

n----I k = l  

6 n----1 n = l  

no no h 2 
+ C v Z  Iv:~ KI/2"V(Yk-Uk)12L~(~) ~< 1 D n o + C v Z  An+C( +v) 2. 

n=l k = l  6 n=l 

Now recalling the Lipschitz continuity off, the a priori estimate (2.7), and 
proceeding in the same manner as before, we can estimate VI. Indeed, 

VI = r X  
n----I [ 

]~(Uk)-~ (u.),U=-Y.) L,(=) 

6 n=l n=l 
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tk 

no n , , f  2 

tk-I 

5 2 
~< 1D'~ n=X"~~ D n + C ( - ~  +r) 2. 

Repeating again the previous analysis we can bound VII and VIII  (use 
(3.33) and (3.34) respectively), obtaining 

n o  

V I I  = - r  X 
n=l 

n 
(~=X 1 fi~-Yk, U~Yn)L2(,~) ~ 1Dno+C( +v) 2, 

6 e 

no 1 h 2 
VIII  = r X  (b'r:~ ~7(fi)-Yk),Un-Y,)L~(a) ~< D~+C( +h+v) 2. 

n=, k=, T 7 

Now we are ready to conclude our analysis. Combining all of the previous 
estimates we easily see from (4.6) that the following relation is fulfilled 

B~o+(A,o+Dno ) ~< c(h2+h+.f_.r )2+C r,~o (A,+Dn) 
E E I/2 n = l  

for all no, l ~ n o ~ N  (notice that terms D,o on the right hand side of (4.6) are 
absorbed into the left hand side). The last expression has an appropriate form for 
applying the discrete Gronwall inequality. This yields 

n o  

(4.8) vX 
n = l  

(y~(Un)-7~(u2),U~-u?)L2(a) 

n o  

+ Ir ~o K,/2.V(Un_Y,)II2L2(,~)+ivX_ - 
n----I 1 

~ c(h~+h+!)~, 
g ~1/2 

pln(U.--Yn) 12L~(r,) 

for all no, l~<no~N. Taking no=N in (4.8), and recalling that 7 e ( S ) ~ l > 0  a . e .  

s elR, (4.8) clearly implies the following L2-rate of convergence for the 
temperature, 

K (r Z [[u~-Unl~2(o)) 1/2 ~< C( + h + _ _  r ). 
n = 1 ~ ~1/2 
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IlL Now due to (2.7), i.e. recalling that U+IL2(Q)~<C, it is easy to achieve the 
0t 

desired estimate (4.2). Then the first step'is proved. 

{Un},=t satisfies the discrete problem (P,,h,~), i.e. 2 ~d Step: Suppose that N 
no 

(3.13)-(3.14). Now, the term I X = r X  <g"l--~"t,~n>L,(r,) has to be added to the 
n = l  

right hand side of (4.5). Instead of (4.7) we propose the following family of test 
functions, 

(4.9) 

no 
~b n ( ~ n l - - ~ n  2 r • I - I = = (Uk--Yk)--(gk~,~k~,+), 1 ~<n~n0 

k = n  

q>, = 0, n0<n~<N+l.  

Due to (3.13) and (3.30), it follows that @,eVh(0). 
The  analysis of (4.6) for q~l (l~n~<n0) can be carried out as in the first step, 

except for IX. For this term we have, 

no 
IX = rX <rX 

n----1 k---1 
gkl--g'kl, Un-Yn > L,(r,) 

no n - n  2 1/2. no ~< C(r X ~g 1-g II L,(r,)) (rZ= IU..Y.]2L.(r,)) I/2 
n : l  --I 

n n ' -  eU L ( ~ ) }  = II g -  nn L ( Q ) J  

] - ~  ~ \ e-iT~)2+T2D~" 

0 
Here we have used the assumption --gl eL2(/"1), the uniform boundedness of 

0t 
{U.}N.=I in H'(a) proved in (3.19), the analogous property of {y.}N (recall 
that Yn is the Ht-projection of fin, and the estimate (2.7)), the estimate 

]OU~IL2(Q)~<C and, finally, the well known inequalities: 
0t 
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IIvII~L=(*',> ~ CIIvIIL+<~>CIIvII+.=<~) + II V VlIL=<~)), 

ab ~ • 1 7 7  ( b )  q, a,b +IR +, 
p q - a "  

for all vaHt(12), 

•177 = 1 

P q 

For the remaining term q~2n we first observe that by construction ofg2,~ (see 
(2.5) and [28, p. 93]) the following estimate is valid: 

IIg�89 ~ Cllg2,+(',t)llH'(+~), for all t+CO,T) 

Therefore, using that g2 ~H2(Q), we get 

no i in ,  _n,ii 2 no r X g ~,+-g ~,~ H,(a) ~< r E 
n = l  n = l  

n o  

~< C r E  
n = l  

n = l  

t n  

( v ~ f  IIgI'~ ("t)-gI'~ ("tn) ]lH'(a) ) 2 

( + t / "  'g2'~("t)--g2'~("t") ]'I-I'(a)) 2 

/" [l~ ~< C+mlIN=,+II.+(Q> ~< c~  ~. 
t n _  I - 

Finally, by virtue of this estimate and proceeding as in the first step, it is not 
difficult to find the relation 

B,o+Ano+Dn0 ~< C \...~_. 

for all no, 1 ~<n0~<N. Then, applying the discrete Gronwall inequality, we obtain 

( h 2 + h +  r +r~/3)2 an expression like (4.8) with the right hand side \-.~-. ~ . This 

inequality implies the desired estimate (4.2) for the temperature, and provides an 
additional information we shall use in the next step. The second step is complete. 

3 ~ Step: In this part we derive the error estimate (4.3) for the enthalpy. Let ~ be 
an arbitrary function belonging to V, and ~h be its Hkprojection on Vh(0), using 
b(.,-) as scalar product. Employing a duality argumentbased on the regularity of 
(A) (see [5, p. 138]), it is easy to see that 

U~'-~'hh,<.) ~< Chlt~ll.,<~). 
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We now propose the following family of test functions in (4.5): 

@~ = ~th, 1 ~<n~<n0 

= O, no<n~<N+ 1, 

with which we obtain the relation 

(r,(U.o)--r,(u2),~Vh)L.(O) 
= - ( r  ~o 

n = l  

n o  

KI/2"V(U , -  Y n ), K1/2" V q'th) L 'O_--() <VnZ__ 1= pl/2(Un--Yn),pl/2~r/h>L2(G ) 

no 

+ (r:~~ b-V(Y.-U,),~h)L2(a)+(rX__ 1 t~(Un)---~(U,),~h)L2(ta) 
n = l  

no no 
- (v 2: f in -yn+b 'V (Yn--fin),~h)L,(O)+<r Z gnl--~nl,~h>L,(r,). 

n=l n = l  

Then, applying the Cauchy-Schwarz inequality to each term on the right hand 
side, and taking into a~count (3.33), (3.34), the relation (4.8) obtained in the 
second step, and that m g  I ~ L2(Fl), we have the estimate 

Ot 

I -< C ( h ' + h + ~  + r  2/s) ~ kghiH,(~ ). 
\ E 81/2 

Finally, using (3.22) and (2.6), we get 

[(n(U,0)--n(u:~ ~< [(r,(U.o)--rJU2),~'h)L,~)l 

( h2 + h +  r + I(r,(U,0)--r~(u:~ <~ C \..~.- - ~  +r  vs) I~'IH,(~), 

which clearly implies (4.3) because no (l~<n0~N) is arbitrary. With this estimate 
we have completed the proof of the theorem//. 

The following remark concerning the structure of the previous proof is given 
as a reference for the next section. 

(4.10) Remark: from the first step of (4.1) it clearly follows the relation, 
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(4.11) r Z  

n=l  

in Several Space Variables, I: Linear Boundary Conditions 

()re (Un)-~t~ (Une), Un-une)  L2(~) 
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2 no 

+ Iv.=1~~ Km'V (Un-Yn)H-<=)+II~,= Pl/2(Un-Yn)ll2e=(r,) 

n S n n C r (r,(Un)-Te(u ,),Yn-u ~)L2(~) 
I 

no 
+ r , ~  

n=l n=l 
V (fin-Yn)12L2<a)]//. 

In the sequel we mention possible modifications and extensions of theorem 
(4.1). 

(4.12) Remark: if (P,,h,~) is defined with ~t  and ~2,, instead ofgnl and g%,,, and 
without convective term, the rate of convergence is O(h2e-l+re-l/2). In 
this case the assumptions (1.12) and (1.13) upon gl and g2 respectively 
can be relaxed according to the requirements for existence, uniqueness 
and regularity of the solution of(P)  and (P~). Now we are not able to 
prove (3.20) and (3.22), and therefore to carry out the third step of (4.1), 
obtaining only an L2-error estimate for the temperature//. 

(4.13) Remark: observe that in (4.1) we supposed that Uo satisfies (3.15), and then 
y,(Uo)-y~(uo,,) is orthogonal to Vh(0). In general, the error between the 
initial enthalpies, 

a(E,h) = ]y.(Uo)-y.(uo,~)[[L,(~), 

has to be added to the right hand side of (4.8). Perhaps the natural choice 
is: Uo,,=Uo, Uo=uIo. Hence, recalling (3.36) and (3.38), we get 

a(e,h) ~ C(e+h) 1/2 or a(e,h) ~ C(e+h2)l /2 .min(1,_~) ,  

respectively//. 

(4.14) Remark (On Mixed Boundary Conditions). For mixed boundary conditions 
the auxiliary problem (A) is not regular (see (3.6)-(3.9)), and consequently 
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we can not expect to have the error estimates stated in (3.26) and (3.32). 
In fact, it is well known (for instance, see [27]) that, 

u,(.,t) e H3n-6(g-2), for all 6>0. 

Next, by virtue of (2.8) and (5.7), and a priori estimates for elliptic 
problems in H'(t2), s<2 (see [18, p. 189]), we get 

]UelL~(0,T;H3/2~(..Q)) ~ C6.8-1/2(1/2-'di), 

instead of (3.11). Now, using a duality argument (see [5, p. 139]), we are 
able to obtain the non-optimal error estimates, 

t 
IY-ue~L2(Q) ~ C6 ( - ~ )  T M  , I / ~Tx(Y-ue) n L-(0,T;L~(~)) ~ C6h 1/2-6 , 

o 
and finally a global LLrate of convergence O(h2/5"-6), if the relationship 
e ~ r ~ h  4/5 is satisfied//. 

We end this paragraph by showing the continuous dependence of discrete solutions 
upon the data. This result reproduces in thediscrete a well known property of 
continuous problems (see w 2.4). The proof is based on the variational technique 
used in (4.1); thus the details are omitted. 

For the sake of simplicity we only consider perturbations of the initial and 
Dirichlet boundary datum, and of the internal heating term. 

N (4.15) THEOgEM. Let {U,}~=l and {~,} ,=, be the solutions of the discrete problems 
(P,.h.~) with data u0, f, g2 and rio, ~', g2 respectively. Then there exists a constant 
C>0  independent of the data, e, h and r, such that 

N 
l~(ye(Un)-yg(~n),Un-~n)L,(~)-~- max  ]~e(Un)--~e(On)]2g �9 

n=l l~<n~<N 

[I N 
n=l 

G nI where we have set G,=g"~,I~. I f  g2, g2 are sufficiently regular we can take , = g 2 '  �9 
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Sketch of the Proof'. We take the difference between the identities (3.14) 
corresponding to each discrete solution. Then we propose the following family of 
integral test functions 

n o  

q~. = r Z (U.--I~.)-(G.--~.), if l~<n~<no~<N 
k = n  

r  = O, if no<n~<N+ l, 

and proceed as in (4.1)//. 

(4.16) Remark: for e=0, (4.15) can also be obtained, as a limit case, because C is 
independent of e. 

4.2. Relationship between e, h, and r 
From (2.21) and (4.2)-(4.3) it is easily seen that for general two-phase Stefan 

problems the suitable relationship between e, h and r is 

(4.17) h 4/3 ~ e ~ v ,  

which yields a global LLrate of convergence of order h z~3 for the whole approximation 
procedure. This condition was also obtained byJ .  Jerome and M. Rose in [15], 
for homogeneous Neumann conditions, but using a different variational tech- 
nique, assuming the validity of (3.22) and dealing with quasiuniform finite 
element meshes. 

I f  problem (P) is of non-degenerate type, i.e. IAe(u)[~<Ce, by (2.30) the rate 
of convergence for the regularized problems is linear in e. Therefore the adequate 
relationship between the parameters is 

(4.18) h ~ e ~ r 2/a, 

which yields a global LLrate of convergence of order h. 
The previous conditions are true if U0 is chosen according to (3.15). Let us 

now point out which relationship and rates are valid for the choice U0=u I. By 
virtue of (4.1) and (4.13), under the assumptions of Lemma (3.36), we should 
impose the relation 

(4.19) h ~ e ~ r, 
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to get a global L2-rate of convergence of order h 1/e. Clearly (4.19) is more restrictive 
than (4.17) and the rate is worse than in that case. If  we consider (3.38), instead 
of (3.36), then the relationship (4.17) and the rate O(h ~/~) are preserved. 

In the sequel we give a final remark concerning the choice U0=u I. Let us 
consider the continuous problem for initial data u0 and uI0, and call the 
corresponding solutions u and ft. In view of a well known stability result (see 
(2.33); and also [13, p. 65], [21, p. 205]), it follows that 

]u--fi]L,(Q) ~< C~7(Uo)--y(uTo)]L,(~) ~< Ch '/2, (resp. h), 

under the assumptions stated in (3.36) (resp. (3.38)). Then we should not expect 
an L2-rate better than O(h 1/2) to hold in general, but if the regularity properties 
of (3.38) are satisfied the order should be h. 

4.3. Error Estimates for some Semidiscrete Schemes 
In this section we deal with two semidiscrete schemes: the Continuous-Time 

Galerkin Scheme and the Discrete-Time Scheme. These schemes are commonly 
used in the theoretical analysis of the numerical approximation of time- 
dependent problems. 

We point out that the main idea to obtain the error estimates is again the use 
of an integral test function similar to (2.18) and (4.7), and the same variational 
technique explained in w167 2, 4. Therefore the proofs are omitted, leaving them to 
the reader. 

4.3.1. Continuous-Time Galerkin Scheme 
We say that a function Ue,h: [0,T]--*Vh is a solution of the Continuous-Time 

Galerkin Scheme (P,,h) /ff  

(4.20) 

(4.21) 

(4.22) 

Ue,h(',0) = U0 (given by (3.28)) 

U,,h(',t) ~ Vh(g2,,(',t)), 0 < t < T  

a (U~,h(',t),q~) + (y,(u,,h(',t))t,q~) L,(a) 

= <g,  (',t),~>L,(r,)+ (f(U~,h(',t)),~) L'(n), 

holds for all �9 ~Vh(0) and a.e. in (0,T). 
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(4.23) Remark: (4.22) is an ordinary differential equation, that cannot be 
understood in the classical sense, at least for y~ Lipschitz continuous. 
However it is not difficult to prove existence and uniqueness ofa  Lipschitz 
solution (for instance using a C| of y, and compactness 
methods, or via monotone operator theory as in [22])//. 

Prior to the statement of the result, we observe that the following a priori 
estimate is valid 

[ye(Ur,h) ]L-(0,T;L2(~2)) ~ C. 

Moreover, it can be proved in an easier way than (3.22) (see [15, p. 399]). Then 
using a variational procedure based on the integral test function 

q~(x,t) = f (Ue,h-Y)(x,s)ds, 0<t<to~<T 
t 

= 0, to~t~<T, 

(Y defined in (3.24)-(3.25)), we can prove 

(4:24) THZOREM. Let u~ and U~,h be the solutions of(P,) and (P~,h) respectively. Then there 
exists a constant C>0 independent ore and h, such that 

c(h2 +h) 
The comments given in w 4.2 are also applicable here. In particular if 

Ur,h(',0 ) =UI0, the error o(e,h) (see (4.13)) has to be added to the right hand side of 
the latter estimate. 

4.3.2. Discrete- Time Scheme 
We say that a family o f functions {Un}~= 1 is a solution of  the Discrete-Time Scheme 

(P,,,) (also called Horizontal Line Method or Rothe method) /ff  

(4.25) Un a V(gn2,,) 

(4.26) a(Un,~) +-~-(ye(Un)-y,(Un_l),~l~)L2(r -~- <gnl,~>L2(r,)+ (fn(Un),~)L2(~2), 
T 
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holds for all @eV, l~<n~<N, where U0=uo,~. 
The existence and uniqueness of the solution of (P~,~) is well known (see for 

example [14, p. 104]), as well as the a priori estimate (see [14, p. 57]): 

Then we take the family of test functions (no is fixed, 1 ~no~<N) 

no 
r = v Z (Uk--uk~), 1 ~<n~<no<N+ 1 

k=n  

= 0, n0<n~<N+ I. 

Next, we can prove: 

{U,} ,=l be the solutions of  (P,) and (P~,~) respectively. (4.27) THEOREM. Let u~ and N 

Then there exists a constant C>0 independent of  e and �9 such that 

N (~: 
n = l  

~u%-U.ll~,(=))In+ max lT,(u%)-y.(U.)~v. ~< C( ~ +~/3). 
l ~ n ~ N  81/2 

5. A Quasioptimal L2-Error Estimate 

In this section we shall prove, under certain restrictions on the initial datum 
and on the finite element mesh, that the discrete scheme (Pe,h,z) is essentially 
O(h+rl/2)-accurate (independent of e). Our result improves the one obtained by 
J. Jerome and M. Rose in [15], because we do not need the assumption 

max ly,(U,)IL.(a ) <~ C 
1 ~ n ~ N  

(see [15, p. 401 and 408]; or [14, p. 152]). 
Let us consider the following assumption upon the initial temperature: 

(5.1) A uo/s a finite regular Baire measure. 

Consequently, if Uo,~ is a regularization of Uo, there exists a constant C>0  
independent of e, such that 

(5.2) ~Au0,E]LI(~ ) ~ C.  

We also suppose that the auxiliary problem (A) has the approximation property 
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(5.3) IV-Vh]L-(a) ~< C log 1 .  min lv--ClL| 
h r 
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where Vh is the HI-projection ofv  onto Vh(V). 
If  the finite element mesh ~ h satisfies an inverse property, i.e. 

h ~ COs, for all S e ~ h, C>0  

and the boundary conditions are of Dirichlet type, the property (5.3) was proved 
by A. Schatz and L. Wahlbin in [26]. 

Prior to the statement of the main result we need some auxiliary error 
estimates. Recall that Y(.,t) is the HI-projection ofu~(',t) onto Vh(g2(',t)) and Yn 
its mean value in (tn,tn-1) (see w 3.4). 

(5.4) LEMMA. There exists a constant C>0 independent ore, h and r, such that 

(5.6) max IYn-unlLl(~) ~ C(h211og hl2+v). 
l ~ n ~ N  

Proof'. Due to (2.6)-(2.7) it easily follows that 

(5.7) ~ye(Ue)tlL| *) ~ C (independent of e). 

Now, taking into account that (A) is regular, a standard duality argument (see 
[5, p. 139]) yields the estimate 

~(Y-u,)(',t)]L2(m ~< Chl(Y-u~)(',t)~H,(a) < Chlu,(',t)lH,(a ) ~ Ch. 

Then proceeding in the same manner as in (3.26) and (3.32), we immediately 
obtain (5.5). At the same time, by virtue of (5.2) and (2.9), we get 

In(U,)t]L| ~ C (independent of e). 

Using again a duality argument (between L 1 and L | and the approximation 
property (5.3), it is not difficult to show (5.6) (see [15, p. 401] for the details)//. 
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Now we state and prove the quasioptimal L=-error estimate. 

(5.8) THEOREM. Let u, and U~,h.~ be the solutions of (P,) and' (P,,h,r) respectively. Then 
there exists a constant C>0  independrnt ore, h and r, such that 

~U~--U,,h,~L,(Q)+IJy,(U,)--y,(U,,h,,)k| ~ C(h[log h[+v'/2). 

Proof'. Recalling (4.1 I) and using (3.34) and (5.5), we get the relation 

no 
( 5 . 9 )  r ~ '  (n (Un)--ye (un) ,Un-un) L,(~2) 

n=l 

+ ~r,~"~=, K'/2"V(U.-Yn)~2L,(a)+]Tn~__ ~ p'/2(U.-Y.)]2e,(r,) 

~< C(h+r )2+r  ~7~ (Y,(Un)-r,(uS),V.--US)L,(D). 
n = l  

Our aim is to analyse the second term on the right hand side of (5.9) in a different 
manner  from that one in (4.1), employing now the additional information (5.6). 
In fact we have 

no 
rZ 
n=l 

(y, (Un)--Y, (une),Yn-un) L2(O) 

no no 
= r • (c(Un)-c(un),yn-u%)L2(~)+r 

n=l n=l 
( X e ( U n ) - Z e ( u n e )  ,Un--un)L=(~) 

I n 2 �9 r~ Ic(U=)-c(u%)12e,(~)+Cr~ lu~--Y.]e,(~) 
~ 2  n = l  n = l  

no 
+ ( r Z  

n = l  
];~,(U.)-X.(u%)]L-(a))'( max ]un~-Y.]L,(~)) 

1 ~ n ~ n  o 

~< ! r  ~ (r,(Un)-r,(u%),U,-u%)L,(~)+C(h2[log hl2+r). 
2 r :=l  

Now combining this expression and (5.9) we obtain the L2-error estimate for the 
temperature and two remaining terms that, proceeding as in the third step of 
(4.1), yield the enthalpy error estimate. Then we have finished the proof// .  
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The previous theorem establishes a rate of convergence of order hIlog hi + r  
for discrete problems (Pc,h,,). Then for general two-phase Stefan problems the 
suitable relationship between the parameters would be 

(5.10) h 2 ~ e ~ 3, 

in order to obtain a global if-rate of convergence of order h[log hi. In this case we have 
an almost linear order of convergence, improving the order h 2/3 given by (4.17). 
Besides, (4.17) is more restrictive than (5.10). 

For non-degenerate cases the adequate relationship is 

(5.11) h ~ e ~ r 1/2, 

which yields a global L2-rate of convergence of order hllog h I . Actually (5.11) is more 
restrictive than (4.18) and provides almost the same order. 

Finally we point out that, in general, the choice U0--uI0 reduces the order of 
convergence to h 1/2, but the essentially linear order is preserved under the 
assumptions stated in (3.8). 

(5.12) Remark: Call Uh, r the solution of the discrete problems (Ph,r) without 
regularization (e=0). It is possible, using the same technique as in (2.14), 
to obtain an L2-error estimate of order e 1/2 between Uh,, and U,,h,,. Thus, 
taking e---*0, we get the estimate 

]U--UhAL2(Q)+ Hr(U)--r(Uh,.)nL-(0,T;V*) ~ C(h]log hi +~1/2). 

Then the advantage of a regularization procedure is that it makes the 
effective calculation of discrete solutions easier, for instance using 
standard iterative methods, and allows us to relate the parameters e, h 
and r in order to preserve the order of convergence. 
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