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Generally, the extrapolation behavior of empirical equations of state is regarded 
as poor, but it can be shown that state-of-the-art equations of state yield reliable 
results well beyond the range where they were fitted to experimental data. 
During tile past years a new generation of highly accurate equations of state 
which yield reasonable results even up to the limits of chemical stability of the 
considered substances has been developed. In this paper, the positive influence 
of recent methods for the development of equations of state on their extrapola- 
tion behavior is discussed. Tile influence of the mathematical structure on 
the extrapolation characteristics is analyzed and requirements for a reasonable 
behavior up to extreme temperatures and pressures are formulated. As possible 
ways Ibr assessment of the extrapolation behavior of an equation of state, com- 
parisons with experinaental data at very high pressures and temperatures and 
with theoretically predicted features of the so-called "'ideal curves" of a fluid are 
discussed. Finally, the current status of our knowledge of the extrapolation 
behavior of empirical equations of state is summarized and its shortcomings are 
pointed out. 

KEY WORDS: empirical equations of state; high pressures: high temperatures; 
Hugoniot curve; argon; carbon dioxide: ethane; helium; methane; nitrogen; 
oxygen: water. 

1. I N T R O D U C T I O N  

Over the years, considerable interest in thermodynamic properties of fluids 
at very high pressures and temperatures has resulted mainly from applica- 
tions in geology, petrology, and geophysics. Several simple equations of 
state have been developed especially for these applications. Usually, these 
equations are valid only in restricted ranges of temperature and pressure 
and they fail to represent properly accurate experimental data at lower 
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temperatures and pressures. On the other hand, empirical multiparameter 
equations of state are able to represent thernlodynamic data under fluid 
conditions for which there exist accurate experimental equipment, but 
they have often failed with respect to extrapolation beyond the range of 
temperatures and pressures of the data to which the equations were fitted. 
Instead of developing special equations of state for very high temperatures 
and pressures, it would be desirable to improve the extrapolation behavior 
of these accurate equations of state in order to describe the entire range of 
thermodynamic properties of a fluid as accurately as possible with a single 
equation of state. With this in mind, the extrapolation behavior of empiri- 
cal equations of state was one of the main topics in the discussion sessions 
of the Fifth International Workshop on Equations of State, which took 
place at the Ruhr-Universit~it Bochum in 1990. De Reuck [1] summarized 
the results of this discussion, which focused mainly on the so-called "ideal 
curves" (see Section 5 and the Appendix) of pure fluids. 

Based on this discussion, we investigated the representation of data 
outside the range of primary data, the influence of the mathematical struc- 
ture of the equation on the extrapolation behavior, and the course of 
the ideal curves in more detail during our work on a new equation of state 
for carbon dioxide [2, 3]. The relevance of these investigations became 
obvious at the Twelfth Symposium on Thermodynamic Properties in 1994, 
when Pitzer and Sterner [4] presented their concept of an equation of state 
valid from zero to extreme pressures, which coincided with the first interna- 
tional presentation of our results [5]. With parameter sets for carbon 
dioxide and water, the equation of Pitzer and Sterner was subsequently 
published in different journals [6-8], whereas we hesitated to generalize 
the results found for the extrapolation behavior of empirical equations of 
state during our work on carbon dioxide. For the fluid state of pure carbon 
dioxide the temperature and pressure range covered by data measured with 
static apparatuses reaches up to 1076 K and 800 MPa, while the accuracy 
of the data already deteriorates at pressures above 316 MPa. Due to the 
relatively high critical temperature (To ~ 304 K) and the high critical 
pressure (p~ ~ 7.38 MPa) of carbon dioxide, these limits correspond to 
a reduced temperature of only TITs=3.54 and a reduced pressure of 
p/p~= 108.4 and p/p~=42.8 for the accurate data sets, respectively. In 
terms of reduced temperature and pressure, the range covered by reliable 
data is significantly larger for other reference substances. 

In the meantime, the results we obtained for the extrapolation 
behavior of our equation of state for carbon dioxide have been confirmed 
by the more recent equations of state for water [9, 10], argon [11, 12], 
and nitrogen [13] and the investigation of ideal curves has additionally 
been extended to helium, oxygen, methane, and ethane. As long as other 
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substances are chemically stable under the considered conditions, no 
reason became obvious why the results should not be transferable. 

Following this introduction, three short examples are given for the 
representation of primary data at high pressures and temperatures in 
Section 2. In Section 3, comparisons with experimental data at pressures 
and temperatures beyond the range covered by primary data are discussed 
as a widely used opportunity to test the extrapolation behavior of equa- 
tions of state. Starting from observations in Section 3, the influence of the 
mathematical form of an empirical equation of state on its extrapolation 
behavior is analyzed in Section 4. Finally, the question whether predictions 
for universal features of the ideal curves are suitable for an assessment of 
the extrapolation behavior of an equation of state is discussed in Section 5. 
The Appendix gives examples for the plots of the well-known zeroth- and 
first-order ideal curves of the compression factor calculated from accurate 
empirical equations of state. 

Since this paper is not intended as a final report on the extrapolation 
behavior of empirical equations of state but as a summary of current 
developments of this topic, shortcomings are pointed out and some 
proposals for further investigations are made. 

2. R EP R ES ENTATION OF DATA AT HIGH PRESSURES AND 
H I G H  T E M P E R A T U R E S  

Among the accurate thermodynamic data available for pure fluids, 
experimental investigations of the (pressure, density, temperature) relation 
(ppT data) usually cover the largest temperature and pressure range. Since 
empirical multiparameter equations of state are generally valid only in 
the range where they were fitted to data, the range where ppT data are 
available determines the range of validity of reference equations of state? 
Though this fact is widely known, only a few people are aware that 
this range usually reaches up to temperatures of more than 1000 K and 
pressures of more than 1000 MPa for well measured substances. 

As an example, Fig. 1 shows the representation of accurate ppT data 
for argon at high pressures and ambient temperatures. While the functional 
form of the equation of Gosman et al. [21] from 1969 was determined by 
trial and error, optimization algorithms [22-24] were used to establish the 

The expression "reference equation of state" is used for empirical equations of state which 
are able to represent till (or nearly till) data available for the thermodynamic properties of 
a fluid to within their experimental uncertainty; based on the knowledge available at the 
time they were established, such [brmulations aim to yield the best possible description of 
the thermodynamic properties of the corresponding substance. 
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Fig. 1. Percentage deviations of selected ppT data from values 
calculated from the equation of Tegeler et al. [ 11, 12] for argon. Values 
calculated from the equations of Stewart and Jacobsen [20]  and 
Gosman  et al [21 ] are plotted for comparison. 

functional form of the later equations. The use of such algorithms has 
essentially improved the capabilities of empirical equations of state at high 
pressures and high temperatures. 

Besides representing ppT data, equations of state are also expected to 
yield reliable results for derived properties such as heat capacities or the 
speed of sound. Since these properties are related to derivatives of the ppT 
surface and since their relation to the dependent variable of the equation 
of state is nonlinear in most cases, their representation is more sensitive to 
small inaccuracies of the equation and experimental data of these proper- 
ties cannot be used directly in the common linear optimization algorithms. 
Over the last 10 years, improved strategies for the use of nonlinear data in 
the optimization process have been developed (see, e.g., Ref. 25), and very 
recently the first nonlinear optimization algorithm was presented [ 11, 26]. 
If one of these techniques is used, empirical equations of state are able to 
represent even caloric properties up to very high pressures. For nitrogen, 
for example, Fig. 2 shows deviations between speed-of-sound data at high 
pressures and values calculated from the equation of state of Jacobsen and 
Stewart [30], which is the origin of the so-called MBWR form, from the 
equation of Jacobsen et al. [29], which was the first equation with a func- 
tional form optimized for nitrogen, and the new reference equation [ 13], 
which was finalized using the nonlinear optimization algorithm developed 
by Tegeler et al. [11, 26]. 
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Fig. 2. Percentage deviations of selected high-pressure speed-of-sound data 
I'rom values calculated from the equation of Span et al. [13] for nitrogen. 
Values calculated from the equations of Jacobsen et al. [29] and of Jacobsen 
and Stewart [30] are plotted for comparison. 

Though the representation of data at high pressures is an important 
feature for many applications, it is more important for the extrapolation 
discussion to point out that state-of-the-art equations of state are not 
flexible enough to follow systematically wrong courses of single data sets in 
the high-pressure region. During the optimization of the mathematical 
form strongly correlated pairs of terms are automatically replaced by single 
terms with a similar contribution and steps for the optimization of the 
length of the equation are implied. To achieve a very high accuracy, recent 
reference equations usually contain 30 to 42 terms with one fitted para- 
meter each, but only very view of these terms contribute significantly to the 
behavior in the high-pressure region and the flexibility of the equations in 
this region is therefore very restricted. The other terms are needed for the 
highly accurate description of properties at lower pressures and in the 
critical region 4 (see Section 4). Figure 3 shows a comparison between 
experimental data ['or carbon dioxide and results from our new reference 
equation of state [3],  which is used for the baseline, and from the high- 
pressure equation of Pitzer and Sterner [7]. With 42 fitted coefficients, the 
empirical reference equation represents the accurate data at pressures up to 
60 MPa clearly better than the equation of Pitzer and Sterner with 28 fitted 
coefficients, but at pressures above 100 MPa it yields results similar to 

4 Such a mathematical structure is not always advantageous since it implies a high flexibility 
in the low-pressure region: especially in the critical region an extensive set of accurate date 

is needed to avoid misbehavior. 
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Fig. 3. Percentage deviations of selected ppT data Iu values calculated 
from the equation of Span and Wagner [3]  for carbon dioxide. Values 
calculated from tile equation of Pitzer and Sterner [7]  are plotted Ibr 
comparison. 

those of the high-pressure equation and does not follow the faulty course 
of the data/  

In contradiction to common teachings, empirical equations with a 
carefully optimized mathematical structure are not flexible enough to 
follow incorrect courses of data sets in the high-pressure and -temperature 
region even if these data are the only experimental information which is 
available in this region. Thus, it can be concluded that they will also be 
stable enough to yield a reasonable extrapolation behavior in regions not 
covered by data. Qualitatively this statement agrees with experience made 
during the establishment of several reference equations of state (e.g., Refs. 
3, 10, 11, 13, and 25) but it has not been quantified up to now. It is clear 
that the limits of the range in which an extrapolation is useful depend on 
the considered property, on the demanded accuracy, on features of the data 
set used to establish the equation, and finally, on features of the equation 
itself. Thus, a simple answer cannot be expected; systematic studies on this 
topic are still lacking. 

s For a more detailed discussion on the shortcomings of the date sets of Shmonov and 
Shmulovich [31 ], see Sterner and Pitzer [6].  
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3. COMPARISONS WITH DATA BEYOND THE RANGE OF 
PRIMARY DATA 

At pressures and temperatures beyond the range covered by ppT data, 
additional experimental information on fugacities is available, particularly 
for substances of geological interest. The origin of these data is measure- 
ments of chemical equilibria and their evaluation depends on sets of 
thermodynamic data of the other components involved in the chemical 
equilibrium, The resulting fugacities vary significantly depending on the 
assumptions made for the other components. Geologists are familiar with 
the internally consistent sets of thermodynamic data needed for the 
evaluation of the measured equilibria, but scientists working on reference 
equations of state are usually not. Thus, it would be valuable to set up a 
pure-component database by calculating the corresponding fugacities from 
the equilibrium data published mainly in geological literature. 

For carbon dioxide, only Haselton et al. [33] have published pure- 
component fugacities which are derived from the evaluation of their 
experimental results for the decarbonation of magnesite and calcite. 
Figure 4 compares these data with results calculated from the equations of 
state of Span and Wagner [3] and of Pitzer and Sterner [7]. While Pitzer 

250 
o nook /~///~/f 

T o 1400K 
"O �9 1600 K / / / -  �9 , 7  

,.4 200 

_= 

>, 15o 
.~. 

~1) Span, Wagner [31 
Pitzer, Sterner [7] 

100 ' ' ~ ' ' ' 
1000 2000 3000 4000 

Pressure  p, M P a  

Fig. 4. Fugacities calculated froln the equations of Span and Wagner [3] 
and of Pitzer and Sterner [7] at high temperatures. The corresponding 
experimental results of Hasehon et al. [33] are given as symbols indicating 
the isothenn to which they belong. 
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and Sterner fitted their equation to an extensive set of fugacities calculated 
from published equilibria data by themselves, the data of Haselton et al. 
were used only for an assessment of the extrapolation behavior during the 
development of our equation. Nevertheless, the empirical reference equa- 
tion, which is fitted to data only up to pressures of 800 MPa and tem- 
peratures of 1073 K, yields a slightly better representation of these data up 
to 1600 K and more than 3600 MPa. 

At even higher pressures and temperatures shock-wave measurements 
of the Hugoniot curve are available for some substances. The evaluation of 
the Hugoniot relation 

hl, - h o  = � 8 9  - P o ) ( P ( ;  ] + P)T -) ) ( 1 ) 

o r  

i - i  Uh--uo=~(ph+po)(Po --Ph-') (2) 

yields data for the enthalpy hh or the internal energy u,, as a function of 
pressure Ph and density Ph at shock-wave pressures up to 0.1 GPa and tem- 
peratures of several thousand Kelvin; the index 0 corresponds to the initial 
state prior to release of the shock wave. Consideration of these data in the 
development of reference equations of state, which are usually formulated 
as a function of temperature and density, results in nonlinear relations 
involving iterative solutions for temperature. Any attempt to use these data 
in linear optimization algorithms requires a precorrelation of the tem- 
peratures belonging to the Hugoniot data. Since no ppT data, which could 
verify the precorrelated temperatures are available under these extreme 
conditions, this approach implies the risk of distorting the experimental 
information. 

Figure 5 shows plots of the Hugoniot curve of carbon dioxide 
calculated from the recent equations of Span and Wagner [ 3 ] and of Pitzer 
and Sterner [7] and from the older equations of Ely et al. [34] and Ely 
[35, 36]. The relevant experimental data for carbon dioxide reach up to 
pressures of 28550 MPa and temperatures of approximately 4150 K; at 
higher pressures spontaneous disintegration is observed [37]. Iteration of 
the Hugoniot condition from the equation of Ely et al. [34] yields far too 
high pressures and the equation of Ely [35, 36] results in pressures which 
are far too low. Our new equation of state yields pressures which are also 
clearly too low, if the scatter of the data is identified with their uncertainty. 
However, bearing in mind the extreme conditions during a shock-wave 
experiment, we consider this result at least as reasonable. The equation of 
Pitzer and Sterner yields the best representation of the Hugoniot data, but 
again, there is a major difference in the way these data are considered. 



Empirical Equations of State 1423 

30000 

25000 

20000 

15000 

10000 

5OOO 

0 
1200 

- -  Span, Wagner [3] / ~ 
. . . . .  Ely et al. [34] / / n 

Pitzer, Sterner [7] / / / 
....... Ely [35,36] / ~ 1 7 6  / / 

rn Nellis et al. [37] / / / 
o Schott [38] / o / / 

/I g g~l/ 
. /  i 1 . ~  I / ~ ~ .  

1400 1600 1800 2000 2200 2400 2600 

Density p, kg-m -3 

Fig. 5. Plots of the Hugoniot curve of carbon dioxide calculated from the 
equations of Span and Wagner [3], Pitzer and Sterner [7], Ely et al. [34], 
and Ely [35, 36]. The corresponding experimental results o1" Nellis et al. 
[37] and Schott [38] are given as symbols. 

ppT data derived from the Hugoniot data were used with high weights in 
fitting the coefficients of the equation of Pitzer and Sterner, whereas we used 
the Hugoniot data only for an assessment of the extrapolation behavior of 
our equation. 

Figure 6 shows the plot of isotherms calculated from the equations of 
Ely [35, 36] and Ely et al. [34] in the pressure, temperature, and density 
range relevant for the representation of the Hugoniot data. The Hugoniot 
data at the lowest pressures correspond to temperatures of approximately 
1500 K and the data at the highest pressures to temperatures of approxi- 
mately 4150 K. The equation of Ely, which resulted in too low pressures on 
the Hugoniot curve (see Fig. 5), yields a much too steep plot of the ppT 
isotherms and, correspondingly, too high pressures. For the equation of 
Ely et al., too high pressures could be expected from the plot of the 
Hugoniot curve, but Fig. 6 shows an unreasonable plot with intersecting 
ppT isotherms and negative pressures. Obviously, the typical plot of 
the Hugoniot curve given in Fig. 5 is not sufficient for an assessment of 
the extrapolation behavior and has to be supplemented by other criteria, 
whereby conditions regarding the functional form of the equations turned 
out to be very useful (see Section 4). Both the equation of Pitzer and 
Sterner and our new equation yield reasonable plots of the same isotherms, 
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though the predicted pressures differ considerably especially for the 4150 K 
isotherm (see Fig. 7). 

During the development of the new reference equation of state for 
nitrogen [13], Hugoniot data were directly used according to Eq. (2.1) 
as Ah=h(ph,ph)-h(p.,p.) in combination with the new nonlinear 
optimization algorithm of Tegeler et al. [ 11, 26]. This procedure resulted 
in a good representation of the Hugoniot curve, although the Hugoniot 
data were used only with low weights; their contribution to the sum of 
squares was less than 1% of the total sum of squares. Figure 8 shows 
the plot of the Hugoniot curve calculated from the new equation of state 
tbr nitrogen. Obviously, reference equations of state are not necessarily 
inferior to special high-pressure equations with regard to the representation 
of Hugoniot data, but it remains questionable whether this very good 
representation is a kind of overfitting or not, since little is known about the 
accuracy of the data. 

4. THE INFLUENCE OF THE FUNCTIONAL FORM 

Today reference equations of state are usually formulated as empirical 
descriptions of the fundamental equation 

f = f (  T, p), (3) 
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where the specific Helmholtz flee energy f is usually split into a part 
representing the contribution of the hypothetical ideal gas, fo(7,, p), at the 
given values of temperature T and density p and a residual part, f"(T, p). 
Thermal properties of a pure fluid can be described by derivatives of the 
residual part alone; the ideal-gas part is needed only for the description 
of caloric properties and can theoretically be derived at a high accuracy 
from spectroscopic data. Thus, the main problem in the development of 
reference equations of state is the formulation of a suitable empirical 
description of the residual part of the Helmholtz free energy. For this 
purpose, equations of the general form 

.f"(t, p)-  ~br(T ' ~ ) =  
RT 

11'ol 'II ~p 
n,c~a,r ', + ~ nj6'6r',exp(-c~"~) 

i=1 ] = 1  

polynomial terms CXl~onential tel'IllS 

Kcrit 

+ Z 1?l~J~'ri'(6" T) 
k = l  

t 

critical region terms 

(4) 

have been developed from the classical BWR equation of state [41 ], where 
R is the gas constant, ~ the reduced density p/p,, and r the inverse reduced 
temperature T,,/T. Depending on the accuracy of the available data sets 
and the distribution of the data, the number of terms in Eq. (4), with one 
adjustable parameter hi, hi, or nk each, varies between 20 and more than 
50. Exponential terms can be found with density powers p] ranging from 1 
to 8; according to the value of p/these terms are called Ej to Es terms here. 
The critical-region terms in Eq. (4) correspond to different expressions 
which have been developed in order to improve the description of proper- 
ties in the critical region (see, e.g., Refs. 3, 25, and 42), but since these 
terms have no influence on the extrapolation behavior, they are not dis- 
cussed here. In state-of-the-art equations the values of the exponents 
di, ti, d~, t j, and p], the total number of terms and their distribution 
between the different types of terms are determined by optimization 
strategies [ 11, 22-24, 26, 43 ], while the coefficients ni, hi, and nk are deter- 
mined by nonlinear multiproperty fits. 

Older equations of state, e. g., the well-known MBWR-type equation 
[30], are usually formulated for the compression factor z( T, p)= p(T, p)/ 
(pRT) using polynomial terms and E, terms as functional forms. Since the 
exponents d~ and t~ of the polynomial terms do not change when the equa- 
tion for z is integrated to yield ~b r, the results discussed here are valid for 
formulations in both z and ~b r. 
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Generally the terms in Eq. (4) are highly intercorrelated and it is 
assumed that the behavior of an empirical equation of state cannot be 
associated with the behavior of single terms in the equation. This conclu- 
sion is true in most cases, but not for the extrapolation to very high tem- 
peratures and very high pressures, which also correspond to high densities. 
For high densities the behavior of the equation is influenced only by poly- 
nomial terms and by E ~ terms, if the E ~ terms are combined with high den- 
sity powers (d r 1> ~ 5). For high temperatures, which correspond to small 
values of 3, terms with high temperature exponents t i or tj fade away, too. 
Under these conditions, which are typical, for example, for the region 
covered by Hugoniot data, one or a small number of leading terms can be 
identified which determine the behavior of the whole equation. 

For the equations of Ely [35, 36], Ely et al. [34], and Span and 
Wagner [ 3 ], Table I lists the number of polynomial terms I~o~, the values 
of their exponents di and ti, and rounded values of their coefficients ni 
according to the general form given in Eq. (4); the MBWR-type equation 
of Ely et al. [34] was integrated and expressed in reduced variables to 
match with the form of Eq. (4). The pressure calculated from an equation 
for ~b r corresponds to 

p = p~ + pr = R T p  + R T  - -  
p,, \~6), 

(5) 

where p~ is the pressure of the hypothetical ideal gas and pr is the residual 
contribution to the pressure. Thus, along an isotherm the contribution of 
a polynomial term i in Eq. (4) to the residual pressure grows proportional 
to p'/, + ~. 

At high densities and moderate temperatures, the behavior of the 
MBWR-type equation [34] is dominated by the polynomial term with 
I =  19 and d~,~ = 8. The high-density power of this term is responsible for 
the sharp increase in pressure on low-temperature isotherms, which is still 
visible for the 1500 K isotherm in Fig. 6. At higher temperatures, the 
influence of this term decreases due to the inverse temperature exponent 
t~,j = 3.0 and the term with I-- 10, d~o= 3, and t~0=0.0 becomes dominant. 
Since n~ is negative, the whole equation yields intersecting isotherms and 
negative pressures tbr high temperatures. This example is typical for an 
empirical equation of state which describes the available data at high 
densities with many highly intercorrelated polynomial terms; equations like 
this yield an unpredictable and, in most cases, unreasonable extrapolation 

behavior. 
At high temperatures and densities the behavior of the equation of Ely 

[35, 36], which uses the functional form developed by Schmidt and 
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T a b l e  I. 

Span  and W a g n e r  

Parame te r s  of  the Po lynomia l  Te rms  in the Equa t ions  of State  for C a r b o n  Dioxide  
of Ely [35,  36],  Ely et al. [ 34 ] ,  and  Span and W a g n e r  [ 3 ]  

Ely et al." [ 3 4 ]  Ely [35, 36]  Span and  W a g n e r  [ 3 ]  

T ,  t' I K 304.130 K 304.1282 K 

p,, 44.0098 kg .  m - 3 467.824 kg �9 m - a 467.6 kg .  m ~ 

Ip,,i 19 13 7 

i n, d, t, n, d, t, n, d, t, 

1 - -0 .197.  I0 +~ 1 0.0 0.485 

2 0.176- 10 += 1 0.5 - 0 . 1 9 2  

3 - -0 .388-  10 *a 1 1.0 0.452 

4 0 .506 .10  *s 1 2.0 0.838 

5 - - 0 . 5 5 3 . 1 0  +7 1 3.0 0.311 

6 0 .265 .10  --~ 2 0.0 - 0 . 1 8 4  
7 - - 0 . 2 1 4 . 1 0  +l 2 1.0 0.449 

8 0.105. 10 +3 2 2.0 - 0 . 3 6 2  
9 - 0 . 4 1 0 . 1 0  ~7 2 3.0 - 0 . 1 7 0 .  

10 - 0 . 1 2 7 -  10 -3 3 0.0 0.804.  

11 0.140- 10 +" 3 1.0 0.320.  
12 0.206- 10 +l 3 2.0 - 0 . 6 5 9 .  

13 0.120- 10 -2 4 1.0 - 0 . 4 6 2 .  

14 - 0 . 1 6 2 . 1 0  *~ 5 2.0 

15 0 .217 .10  ~3 5 3.0 

16 0 .522 .10  -" 6 2.0 

17 - 0 . 4 7 8 -  l0  -4 7 2.0 

18 - 0 . 2 5 5  �9 10 ~" 7 3.0 

19 0.383- 10-- '  8 3.0 

I0 ,o  I 0.0 

I 0 '  ' I 1.5 
10 ~') I 2.5 
I0 ~ 2 2 - 0 . 5  

I0 *" 2 1.5 

I0 ~" 2 2.0 
I 0 I 3 0.0 

10 ' 3 1.0 
l0  i 3 2.5 

10- ~ 6 0.0 

10-~ 7 2.0 
10 5 7 5.0 

I0 -  4 8 2.0 

0.389.  I0 '(' I 0.00 

0.294.  10 + I I 0.75 
- 0 . 5 5 9 .  I() ' I I 1.00 

- ( I . 7 6 8 .  10 '( '  [ 2.0(I 
0.317. 10 '() 2 0.75 

0.548 �9 10 ~ () 2 2.00 

0 .123 .10  ") 3 0.75 

" T h e  equa t ion  of  Ely et al. was  in tegra ted  to ma tch  with Eq. (4k  the high number s  of  the 

coefficients of this equa t ion  are due  ma in ly  to the reduct ion  wi th  T,, = 1 K. 
6The  equa t ions  of Ely and  Ely et al. are val id  for t empera tu re s  accord ing  to IPTS-68 [ 4 4 ] ,  

while  our  new equa t ion  is va l id  for t empera tu re s  accord ing  to ITS-90 [45 ] .  However ,  the 

difference between the t e m p e r a t u r e  scales is negl igible  for the ex t r apo l a t i on  discussion.  

Wagner [46] for oxygen, is dominated by the term with I =  10, dm = 6, 
and t,o = 0.0. The polynomial terms with higher density powers are theore- 
tically dominant in the high-density limit, but since they are combined with 
higher values of ti, this influence becomes visible only at low temperatures, 
where carbon dioxide is already in the solid state for the corresponding 
densities. Though for this equation intersections of isotherms are avoided 
in the fluid region, extrapolation of the oxygen-type equation does not 
yield reasonable results. Figure 6 shows that the exponent d , )=  6 results in 
a very sharp increase in pressure. 
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Based on these and similar observations for other equations of state, an 
attempt was made to formulate demands on the mathematical form of an 
empirical equation of state in order to ensure a more reasonable extrapola- 
tion behavior. These demands can be summarized in the following way: 

�9 The number of polynomial terms in the equation should be small; if 
possible, less than 10. 

Intercorrelations between the polynomial terms affecting the extra- 
polation to high densities cannot be avoided completely this way, but they 
are reduced considerably. At the same time an increased number of E~ 
terms has to be used to guarantee the necessary flexibility of the equation 
in the range of intermediate densities. For functional forms like this, 
usually only one or two terms determine the behavior of the equation in 
the range of very high temperatures and densities. The term which is domi- 
nant at high densities (high values of 6) and high temperatures (small 
values of ~) is the polynomial term with the smallest temperature exponent 
t, among the terms with the highest density exponents d i. For this term the 
following requirements can be formulated: 

�9 The coefficient ni has to be positive to yield a positive contribution 
to the residual pressure. 

�9 The temperature exponent should fulfill the condition 0 < ti < 1 since 
the pressure should increase on an isochore with increasing tempera- 
ture but the compression factor should decrease. 

�9 The density exponent d i has to be an integer value and should be 
equal to three or four. 

These conditions were considered during the development of the new 
reference equations of state for carbon dioxide [3], water [9~ 10], argon 
[11, 12], and nitrogen [ 13]. For our new equation of state for carbon 
dioxide, Fig. 9 shows the relative contributions of all polynomial terms, of 
all E~ terms, and of the leading polynomial term to the residual pressure 
pr; the plotted lines correspond to isotherms. In the region where the 
available Hugoniot data indicate that carbon dioxide is still chemically 
stable roughly for reduced densities 4.5 <pipe<5.5 and reduced tem- 
peratures 5<T/T~<15, the polynomial term with d7=3 and t7=0.75 
dominates the behavior of the equation with a contribution of more than 
70 % of the total residual pressure. Since this dominant term fulfills the 
requirements given above, the whole equation behaves reasonably in the 
high-density limit. The negative contribution of the E~ terms in the range 
of intermediate densities was not desired with respect to extrapolation but 
unavoidable for the representation of accurate data at lower temperatures; 
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Fig. 9. Contr ibution to tile residual pressure p" according to Eq. (5) of all 
polynomial terms, all E, terms, and the leading polynomial term of tile equation 
of Span and Wagner  [3]  Ibr carbon dioxide. 

at least with respect to basic properties such as pressure, enthalpy, and 
fugacity, it does not affect the extrapolation up to the limits where 
spontaneous disintegration occurs. 

Similar to carbon dioxide, the mathematical form has finally been a 
compromise between requirements for representing the data set and the 
extrapolation behavior for the other reference equations [9-13] as well. 
But nevertheless, the extrapolation behavior of an empirical equation of 
state becomes predictable from its mathematical structure by such investi- 
gations and unreasonable behavior can be avoided. The new equations of 
state for carbon dioxide, water, argon, and nitrogen yield reasonable 
results up to extreme temperatures and pressures. 

The condition given for the density power of the leading term, 
3 ~< di~< 4, results from experiences with the slope of isotherms calculated 
from different preliminary equations and is completely empirical. This 
condition seems to be inconsistent with the results of Pitzer and Sterner 
[4, 6-8], who claim that the isothermal slope of the residual part of the 
Helmholtz free energy becomes linear for high temperatures and pressures. 
Based on these theoretical considerations it seems incomprehensible why 
the equation of Pitzer and Sterner and our new equation of state for 
carbon dioxide yield at least similar results up to the limits of the chemi- 
cally stable region (see Figs. 4, 5, and 7). A more detailed investigation of 
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the numerical behavior of the formulation of Pitzer and Sterner shows that 
its behavior at high densities is determined by a strong intercorrelation 
between the positive contribution of the polynomial term, which is linear 
in density, and the negative contribution of the fractional terms in the 
equation. The leading linear term becomes dominant only for densities far 
beyond the densities accessible by shock-wave measurements, which reach 
up to P/Pc ~ 5.5 for nondisintegrated carbon dioxide. In the region covered 
by Hugoniot  data the equation of Pitzer and Sterner mimics a slope of ~b r, 
which implies a density dependence with exponents between 2.6 for 4150 K 
and 2.9 for 1500 K. Thus, the results of Pitzer and Sterner indeed support  
leading density powers of dr = 3 for the polynomial terms in an empirical 
equation of state. 

5. T H E  R E P R E S E N T A T I O N  OF IDEAL CURVES AS A C R I T E R I O N  
F O R  R E A S O N A B L E  E X T R A P O L A T I O N  B E H A V I O R  

Ideal curves are curves along which one property of a real fluid is 
equal to the corresponding property of the hypothetical ideal gas at the 
same temperature and density. Based on this very general definition, ideal 
curves can be defined for almost every property, but usually the discussion 
is focused on the ideal curves of the compression factor and its first 
derivatives; these curves are given in Table II together with their defini- 
tions. In the 1960s, there was an intensive investigation of ideal curves in 

Table II. The Zeroth- and First-Order Ideal Curves of the Compression Factor and 
Their Definition in Terms of the Compression Factor, zl 7", pl, and of the Residual 

Part of the Reduced Helmholtz Energy, ~hr(r, ~$) 

Designation 

Definition in terms of the 

Compression factor Residual Helmholtz energy 

I Classical } ideal curve 

Boyle curve 

Joule Thomson inversion curve 

Joule inversion curve 

: =  l \~<~)=o 

\ e,~/3 \ <~'- 1, 

@: 0 =0 

=0 

,";40 18 6-7 
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order to specify criteria for a generalized behavior of pure fluids. Well- 
known results are those of Brown [47], which were summarized by 
Rowlinson [48], and the results ofGunn et al. [49] and Miller [50], espe- 
cially on the Joule-Thomson inversion curve. Less well-known are the very 
detailed studies by Morsy [51], Straub [52], and Schaber [53], which 
have been published only in German. More recently, Angus [54] and de 
Reuck [ I ]  gave short summaries of the known characteristics of ideal 
curves. Although various authors have stated that the representation of 
ideal curves is a sensitive test for the extrapolation behavior of equations 
of state, systematic investigations have always dealt with results for simple 
model fluids, with simple equations of state, or with values derived directly 
from experimental data or from compression factors tabulated for corre- 
sponding states approaches. In order to see whether ideal curves are really 
useful for an assessment of the extrapolation behavior of empirical equa- 
tions of state, we compared the ideal curves calculated from equations of 
state for argon [11, 12], nitrogen [13, 29, 30], oxygen [46], methane 
[25], ethane [55], carbon dioxide [3, 7], water [9, 10], and helium [56] 
with each other and with the "theoretical" predictions. 

Figure 10 shows a typical plot of the ideal curves discussed here in a 
reduced (pressure, temperature) diagram with logarithmic axes. The dashed 
lines indicate the limits of the regions, where primary data (usually ppT 
data) are available for the corresponding substance. For reference sub- 
stances with low critical temperatures and pressures such as nitrogen and 
argon, the Boyle, the ideal, and the Joule-Thomson inversion curve lie 
completely within the range covered by primary data; for helium even 
the Joule inversion curve lies within this range. The situation changes if 
substances with higher values for the critical temperature and the critical 
pressure or with a more restricted data set are investigated. For carbon 
dioxide and methane the Joule-Thomson inversion curve reaches into the 
extrapolation region; for water, oxygen, and ethane the Boyle and the ideal 
curve exceed the temperature range and the Joule inversion curve also 
exceeds the pressure range covered by data. 

When considering results of earlier investigations, certain features of 
the ideal curves should be universal at least for simple substances [49, 50, 
53]. Table III summarizes the results of a comparison of these "theoretical 
predictions" with the corresponding values calculated from the equations of 
state considered here. For nitrogen and carbon dioxide, the results of 
different equations are given for comparison. 

The best agreement among the results calculated from the different 
equations of state can be found for the densities on the ideal and the Boyle 
curve at T=  T~. Since simple corresponding-states approaches yield good 
results in the extended critical region of simple fluids, this good agreement 
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Fig. 10. A typical plot of tile zeroth- and first-order ideal curves of the compression 
factor in a reduced double-logarithmic (pressure, temperature) diagram. The 
dashed lines indicate the regions where primary data are axailable for the substan- 
ces considered in this paper. 

could be expected. The results lbr carbon dioxide, water, and helium differ 
considerably. 

For argon, methane, oxygen, and nitrogen the position of the pressure 
maximum of the Joule-Thomson inversion curve varies only within -I-2 % 
in terms of reduced pressure and reduced temperature. Due to its location 
at reasonably high pressures and more than twice the critical temperature, 
the position of this maximum could be an interesting extrapolation 
criterion, lbr example, for equations of state for refrigerants, but untbr- 
tunately the results differ significantly from the expected values lbr more 
complex fluids. The same is true lbr the reduced temperatures at the end 
points of the Boyle, the ideal, and the Joule-Thomson inversion curve, 
which agree within +_4% for argon, methane, oxygen, and nitrogen, while 
significantly different results were found tbr the other substances. 

Thus, the numerical results for the characteristic points of the different 
ideal curves are useful as criteria for an assessment of the extrapolation 
behavior only for simple substances with limited data sets. A comparison 
between the different equations of state for nitrogen and carbon dioxide 
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Tab le  I l l .  C h a r a c t c r i s t i c  Values  o f  the Ideal Curves  o f  Heliuna. A r g o n ,  M e t h a n e .  O x y g e n ,  

N i t r o g e n .  E thane ,  C a r b o n  Dioxide,  a n d  W a t e r  C a l c u l a t e d  f rom A c c u r a t e  E q u a t i o n s  of  

S ta te  in C o m p a r i s o n  with " T h e o r e t i c a l l y "  Pred ic ted  Values 

Substance Equation ~'~ ( l l t . ~ l t  '' I111 I' ()1' (Jltl/ I "1 ~)llt / '" 'r/ ...... II {It 

I.~ . . . .  Predicted values (I.1)(1 2.66 5,0[1 19.5 1.435 2.235 ' " "~ 

Helium Sychcv c ta l .  [56]  0.39 4.67 9.03 20.0 1.4117 

Argon Tcgclcr ct al. [ II. 12] 0.110 2.71 5.1~7 20.3 1.425 

Methane Sctzmann & Wagner [251 o.ol 2.67 5.14 ~ 1.42S 

Oxygen Schmidl & Wagner [46]  0.02 2.62 4.90 " 1.425 

Nitrogen Span c ta l .  [ 13] 0.04 2.59 4.82 17.4 1.425 

Jacobscr~ c ta l .  [29]  11.114 2.60 4.83 16.6 1.423 

Jacobsen & Stcwarl [30] 0.114 2.58 4.76 16.1 1.429 

l~thanc I'ricnd el al. [55]  0.1(I 2.45 4.57 1.428 

Carbon dioxide Span & Wagner [3]  0.23" 2.37 4.45 26.t~ 1.441 

Pitzcr& Slcrncr [7 ]  0.23" 2.36 4.29 23.8 1.448 

Water Prul3 & Wagncr [t~. 10] I).34 2.35 3.93 7.7 1.5411 

2.201 7.5 4.48 

2.201 1.6 2.31~ 

22o3 I.,~ 2.2g 

2.201 1.7 2.25 

2.193 1.6 2.2o 

2.1t)l 1.6 2.2o 

2.1 ~)5 1.6 2.21 

2.196 12.1 2.14 

2.232 12.5 I,~;4 

2.242 13.4 1.tin 

2.638 18.7 1.96 

" Reduced  t e m p e r a t u r e  O = T T , .  at  wh ich  tile Boyle  a n d  the  ideal  cu rve  end  lbr  p = 0: at  this 

t e m p e r a t u r e  the c o n d i t i o n  BI TI = 0 ho lds  Ibr the second  virial coell lcient.  

;' Reduced  t e m p e r a t u r e  0 = T T~, at  wh ich  tile Jou l c - -Thon l son  inversion curve  ends  lbr  p = (1: 

at  this t e m p e r a t u r e  the c o n d i t i o n  d B d T =  B T holds  for  the second  virial coell]cient.  

' Reduced  t e m p e r a t u r e  0 =  T~T~, at  wh ich  the Jotfle invers ion  curxe  ends  Ibr p = 0 :  at  this 

t e m p e r a t u r e  the  c o n d i t i o n  d B d T =  0 holds  Ibr the s econd  virial coell]cient.  

a Reduced  dens i ly  ff = p p , ;  on  the Boyle curve  [or T =  T~. 

'" Reduced  dens i ty  6 = pp~.  on  the ideal  curve  for  T =  7",. 

t Reduced  p res su re  rc = p p~ a n d  t e m p e r a t u r e  0 = T T, at  the pressure  n lax ln lunl  of  the 

Jou le  T h o m s o n  invers ion  curve.  

E q u a t i o n s  w i t h o u t  a maxim[m1 in B ( T I  yield no  in te rsec t ion  be tween the Joule  invers ion  

cu rve  a n d  the axis  p = 0. 

h C a l c u l a t e d  f rom a n  e x t r a p o l a t i o n  o f  the v a p o r  p ressure  e q u a t i o n  given in Rel~ 3. 

supports this thesis. Although the accuracy of reference equations of 
state for nitrogen in the high-temperature, high-pressure region has been 
improved substantially since 1973 [13, 29, 30], the three investigated 
equations yield very similar results for the characteristic points of the ideal 
curves; based on these results, no assessment of the equations is possible. 
For carbon dioxide, the differences between the equation of Span and 
Wagner [ 3 ] and that of Pitzer and Sterner [ 7 ] are larger, but since carbon 
dioxide does not belong to the group of simple substances, the differences 
are not yet significant enough for an assessment. 
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Fig. ! I. Plots of tile zeroth- and first-order ideal curves of the compression 
lacier calcuhlted from three reference equations of state for nitrogen [ 13, 29. 30 ]. 

Nevertheless, the plot of the ideal curves 6 contains important infor- 
mation on the behavior in the high-temperature, high-pressure region. To 
demonstrate the sensitivity of this graphical criterion, Fig. 11 shows the 
plot of the ideal curves of nitrogen calculated from three different equations 
ot" state. For the Boyle, the ideal, and the Joule-Thomson inversion curve 
all three equations yield very similar plots. Based on the level of accuracy 
achieved by empirical reference equations of state, no problems in the 
representation of ideal curves should occur in the range where accurate 
data are available. For the Joule inversion curve calculated from the equa- 
tion of Jacobsen and Stewart [30] ,  an inflection point can be seen at about 
T/T~ "~ 3.5 and p/p~. ~ 100. At this point the differences between densities 
calculated from the equations of Jacobsen and Stewart and Span et al. 
[13 ]  are still within A p / p ~  +_0.1% but with an increasing tendency 
toward higher temperatures and pressures where they exceed the limit of 

" Plots of the ideal curves, tile Boyle curves, tile Joule Thonlson inversion curves, and the 
Joule inversion curves of till considered substances tire given in tile Appendix. For helium, 
tile results of a t ranslbrmat ion by effective critical parameters [57]  tire also shown in tile 
Appendix. 
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+ 1%. Thus, the plot of the Joule inversion curve seems to be a reasonably 
sensitive indication for incorrect behavior of an equation of state at high 
temperatures and pressures. 

The same can be shown from a comparison between the two equations 
[3, 7] for carbon dioxide. Figure 3 shows that the equation of Pitzer and 
Sterner [7]  deviates from the data of Vukalovich and Altunin [32] by 
up to 3pip ~ 1% for T/Tr <~ 3.5 and P/Pc ~ 8; in Fig. 12, these deviations 
result in visible deformations of the Boyle and the ideal curve. At higher 
temperatures stronger deformations of the Joule-Thomson and the Joule 
inversion curve occur. 

Since the equation of Pitzer and Sterner was fitted to second virial 
coefficients resulting from a corresponding-states approach, the end tem- 
peratures for all ideal curves are constrained to values within the expected 
limits (see the footnotes to Table III). But obviously inconsistencies 
between the second viriai coefficients and other data in the high-tem- 
perature region resulted in "'overhanging" plots of all ideal curves. If corre- 
sponding-states approaches are used to improve the extrapolation behavior, 
a transformation ofppT data seems to be advantageous (see, e.g., Ref. 58)_ 

300 ~ ' ~ / "  e~i'o_n cu~e - 

,oo J . . . . . . .  

V !pan' W~ agner [3] . 
'~ 30 l Pitzer, Sterner [7] 

3 

0.3 

0. I . . . . . . .  
0.7 I 2 3 5 

Reduced temperature T/7", 
10 20 30 

Fig. 12. Plots of the zeroth- and first-order ideal curves of the compression 
lactor calculaled from the equation of Span and Wagner [3] and Pitzer and 
Sterner [7] tbr carbon dioxide. 
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6. SUMMARY AND CONCLUSION 

It has been shown that state-of-the-art multiparameter equations 
of state are able to represent thermal and caloric data up to very high 
pressures and temperatures and that they are nevertheless not flexible 
enough to follow systematically deviant plots of experimental data in 
this region. Comparisons with fugacities and Hugoniot data at very high 
pressures and temperatures have been shown as examples for an assessment 
of the extrapolation behavior. 

At very high temperatures and pressures, the extrapolation behavior of 
an equation of state can be explained by certain features of its functional 
form. The investigation of these relations resulted in demands on the func- 
tional form of an empirical equation of state, which make it possible to 
achieve a reasonable extrapolation behavior up to extreme conditions of 
temperature and pressure. 

Finally, ideal curves have been investigated as an extrapolation 
criterion for the region of high temperatures and high pressures. Numerical 
values for reduced variables at characteristic points of the ideal curves are 
sufficiently universal only for simple substances, but the plots given in the 
Appendix show common features for all investigated substances. Deforma- 
tions of the ideal curves turned out to be a suitable criterion for the detec- 
tion of faulty behavior. 

Considering these results, empirical equations of state can be designed 
to behave reasonably far beyond the pressure and temperature range where 
accurate experimental data are available, if intended even up to the limits 
of chemical stability of the respective substance. 

Though this statement is very encouraging, it also contains the major 
shortcoming of current findings on the extrapolation behavior of empirical 
equations of state. While different criteria can be used to test whether the 
extrapolation behavior of an equation of state is reasonable, only little 
is known about uncertainties beyond the range covered by reliable 
experimental data. A systematic investigation of this problem is lacking. 

Furthermore, corresponding-states approaches (see e.g., Refs. 58 and 
59) and molecular dynamics calculations (see e.g., Ref. 60) can be very use- 
ful both for tests regarding the extrapolation behavior of empirical equa- 
tions of state and for establishing equations of state for substances with 
restricted data sets. Though several publications on these techniques exist, 
their potential for the development of reference equations of state has never 
been investigated to a level where clear rules tbr their use, their limitations, 
and the resulting uncertainties could be given. 

Finally, there is still no common agreement about the importance 
of the extrapolation behavior. While thermodynamic data at very high 
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temperatures and pressures are regarded as important, for example, for 
substances such as argon, nitrogen, and carbon dioxide, they are probably 
of purely academic interest tbr refrigerants which disintegrate at tem- 
peratures below twice their critical temperature. Finally, since there is 
always a compromise among the complexity of an equation of state, the 
expenditure for its establishment, its quality in the regions where 
experimental data are available, its extrapolation behavior, and various 
other criteria, it is not useful to formulate extreme requirements on the 
extrapolation behavior under all circumstances. As long as there is no com- 
mon agreement on this topic, the most important conclusion is that 
authors should indicate limitations of their equations of state. 

APPENDIX 

The plots of the Boyle curves, the classical ideal curves, the Joule- 
Thomson inversion curves, and the Joule inversion curves of all considered 
substances are given in Figs. A1 to A4. The general shape of the curves is 
very similar except for water and helium; conclusions drawn tbr the Joule 
inversion curve remain vague, since the plots of this curve reflect the 
extrapolation behavior of the equations of state rather than features of the 
considered substances. Only the Joule inversion curve of helium lies 
completely within the range covered by primary data, but the shape of the 
ideal curves of the quantum gas helium is too different to allow well- 
founded conclusions for other substances. The ideal and the Boyle curve of 
helium can be scaled to the corresponding curves of simple substances by 
the effective critical parameters proposed by Gunn et al. [57],  but for the 
Joule-Thomson inversion and the Joule inversion curve this approach fails 
(see Fig. A5I. Thus, the Joule inversion curves of argon and nitrogen are 
probably the best approximations of the general shape of the Joule inver- 
sion curve of simple fluids. 
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