
Top (1994) Vol. 2, No. 2, 175-248 175 

Linear Programming Approaches to the 
Measurement and Analysis of 

Productive Efficiency 

C.A.K. Lovell 
Department of Economics, The University of Georgia 

Athens, GA 30602, USA 

1. I N T R O D U C T I O N  

An important and rapidly growing empirical application of operations 
research techniques involves the measurement and analysis of the effi- 
ciency with which goods are produced and services are provided. The 
production activities whose efficiency has been the subject of investiga- 
tion have varied widely, from profit-oriented industrial manufacturing 
enterprises all the way to public and private service providers operating 
in a not-for-profit environment. A similarly wide variety of operations 
research techniques has been utilized in the measurement and analysis 
of productive efficiency, ranging from stochastic parametric regression- 
based methods to nonstochastic nonparametric mathematical program- 
ming methods. Foremost among the latter is a family of linear pro- 
gramming models collectively referred to as Data Envelopment Analysis 
(DEA). The purpose of this paper is to provide a selective overview of 
some of the most useful DEA models. I analyze these models in terms 
of their ability to accurately reflect the structure of the underlying pro- 
duction technology, their ability to accurately measure the productive 
efficiency of the producers being analyzed, and their data requirements 
and their sensivity to shortcomings in the data that form the basis of 
the analysis. 

The selectivity of the overview reflects my talents and my interests. 
Thus the orientation of the overview is toward the user of existing DEA 
models, not toward the developer of new models. In particular, the 
review is intended to inform practitioners in the fields of management 
science, economics and public administration who want to learn and 
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apply the techniques of DEA to draw inferences concerning producer 
performance, for the ultimate purpose of guiding busines, economic or 
public policy. It is not directed at mathematical  programmers and other 
specialists interested in formal model structure, computational issues, 
and the like. 

The paper unfolds as follows. In Section 2 I begin by describing 
what I mean by productive efficiency. Efficiency can refer to the pro- 
ficiency with which inputs to the production process are converted to 
outputs  of the process, in which case it is referred to as technical effi- 
ciency. Efficiency can also refer to the proficiency with which producers 
achieve their economic objective, such as production at minimum cost, 
generation of maximum revenue, or maximization of profit. In this lat- 
ter case efficiency is referred to as economic efficiency, one component of 
which is technical efficiency. I then provide a brief verbal description of 
how DEA techniques are used to measure productive efficiency, and how 
they differ from other techniques commonly used for the same purpose. 

In Section 3 1 present and discuss the structure of what I consider to 
be the core family of DEA models. Since they are linear programming 
models, they have primal and dual representations, and I pay special 
at tention to the role of duality for the application-oriented operations 
research analyst. In Sections 4-8 I discuss some modifications to the 
basic DEA models. These modifications entail relaxing assumptions on 
the structure of the underlying production technology, moving from the 
measurement of technical efficiency to the measurement of economic 
efficiency, and relaxing restrictions on the types of data used in the 
analysis. 

DEA models are nonstochastic, and inferences drawn from them 
may be sensitive to noise in the underlying data. In Section 9 I describe 
the use of chance-constrained programming techniques in an effort to 
introduce a stochastic element to DEA. 

Section 10 concludes with a summary and evaluation of DEA, a list 
of omit ted topics, and some brief speculation concerning future direc- 
tions of DEA research. 

2. T E C H N O L O G Y ,  E F F I C I E N C Y  A N D  D E A  

Let producers use variable inputs x = ( x l , . . . , X N )  E IRN+ to produce 
variable outputs  y = ( Y l , . . . ,  YM) E ][~I+. A treatment of data sets that 
do not satisfy the strict positivity requirement is deferred to section 8.1. 
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Fixed, or nondiscretionary, variables can be incorporated into the analy- 
sis, but I leave them to section 8.2. Additional variables that are neither 
inputs nor outputs, but which characterize the operating environment in 
which production takes place, can also be incorporated into the analysis, 
and they are considered in section 8.3. 

The technology with which inputs are transformed to outputs is 
represented by the graph 

GR = {(x,y) : x can produce y}. (2.1) 

GR is assumed to be closed and bounded, and to satisfy strong dispos- 
ability. GR satisfies strong disposability if (x, y) E GR =* (x', y') E GR 
for all ( x ' , - y ' )  >_ (x , -y ) .  The graph contains its isoquants 

Isoq GR = {(x,y) : (x,y) E GR, ((~X,t~--ly) ~ G R ,  0 < (~ < 1}, (2.2) 

which in turn contain their efficient subsets 

E f f  G R =  {(x,y):  (x,y) EGR,  (x ' ,y ')q~GR, O<_x' <_x, y'>_y}. 
(2.3) 

Corresponding to the graph of the technology is a family of input 
sets 

L(y) = {x: (x,y) E GR}, y E R~+. (2.4) 

Input sets are assumed to be closed and bounded below, and to satisfy 
the properties of convexity and strong disposability of inputs. Input sets 
contain their isoquants 

I s o q L ( y ) = { x :  x EL(y),  Ox~L(y) ,  0El0,1)} ,  yERM+,  (2.5) 

which in turn contain their efficient subsets 

E f f L(y) = {x : x E L ( y ) ,  x' ~ L(y), x' <_ x}, yElR~+.  (2.6) 

Also corresponding to the graph of the technology is a family of 
output sets 

P(x) = {y: (y,x) E GR), x E R~+. (2.7) 
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Output sets are assumed to be closed and bounded above, and to satisfy 
the properties of convexity and strong disposability of outputs. Output 
sets contain their isoquants 

Isoq P(x) = {y: y �9 P(x), Cy ~ P(x), r �9 (1, +oo)}, x �9 ~N+, (2.8) 

which is turn contain their efficient subsets 

E f f P ( x ) = { y :  y � 9  y ' ~ P ( x ) ,  y'>__y}, x � 9  (2.9) 

Equations (2.1)-(2.9) characterize the production technology rela- 
tive to which efficiency is measured. Additional details appear in F~ire 
(1988). I now provide a formal definition of efficient production, which is 
completely general in the sense that it is neither oriented nor equipropor- 
tionate. I then provide three measures of productive efficiency, which 
are restricted by both orientation and equiproportionality. The three 
measures are structurally similar, differing only in their orientation to- 
ward conserving inputs, expanding outputs, or achieving both objectives 
simultaneously. 

Def in i t ion  1. (Koopmans (1951,1957)) Input-output vector (x,y) 
is technically efficient if, and only if, (x, y) �9 E f f GR. Input vector x 
is technically efficient in the production o] output vector y if, and only 
if, x �9 E f f L(y). Output vector y is technically efficient given input 
vector x if, and only if, y �9 E f f  P(x). 

Defin i t ion  2. (F~ire, Grosskopf and Lovell (1985)) A hyperbolic 
measure of the technical efficiency of input-output vector (x, y) is given 
by 

TEa(x,y)  = min{~ : ((~X,(~-ly) �9 GR}, 

with ~ = 1 indicating hyperbolic technical efficiency and 5 < 1 indicating 
the degree of hyperbolic technical inefficiency. 

Defin i t ion  3. (Debreu (1951), Farrell (1957)) A radial measure 
of the technical efficiency of input vector x in the production of output 
vector y is given by 

TEi(x ,y)  = min{0 : 0x E L(y)}, 



Linear Programming approaches to the measurement.. .  179 

with 0 = 1 indicating radial technical efficiency and ~ < 1 indicating the 
degree of radial technical inefficiency. 

Definit ion 4. (Debreu (1951), Farrell (1957)) A radial measure of 
the technical efficiency of output vector y produced by input vector x is 
given by 

TEo(y,x) = max{r  : r �9 P(x)} ,  

with r = 1 indicating radial technical efficiency and r > 1 indicating the 
degree of radial technical inefficiency. 

It should be clear tha t  

E f f  GR C_ Isoq GR = {(x,y)} : TEa(x ,y)  = 1}, (2.10) 

tha t  

E f f  L(y) C_ Isoq L(y) = {x :  TEi(x ,y)  = 1}, y �9 RM+, (2.11) 

and tha t  

E f f  P(x) C_ Isoq P(x) = {y:  TEo(y,x) = 1}, x �9 RN+.  (2.12) 

Thus  TEe(x ,  y) = 1 is necessary, but  not sufficient, for (x ,y)  �9 E f f  
GR. Similarly, TEi(x ,y)  = 1 is necessary, but  not sufficient, for x �9 
E f f  L(y),  and TEo(y,x) = 1 is necessary, but  not sufficient, for y E 
E f f  P(x). Sufficiency fails because the three efficiency measures are 
equipropor t ionate  (hyperbolic or radial) measures tha t  may leave non- 
propor t ional  inefficiency undetected.  The  inability of the three equipro- 
por t iona te  measures of efficiency to match  Koopmans '  definition of effi- 
ciency has been the subject  of much debate in the l i terature.  Fs and 
Lovell (1978) proposed a nonpropor t iona te  measure of efficiency tha t  co- 
incides with Koopmans '  definition of efficiency, but  Russell (1990) noted  
some flaws in a nonpropor t iona te  measure.  I am currently working with 
one of my discussants,  Phil ippe Vanden Eeckaut,  on an al ternative mea- 
sure tha t  coincides with Koopmans '  definition. This measure is equipro- 
por t ionate ,  but  relative to a t ranslated origin. 

The  three measures do not necessarily provide consistent informa- 
tion on the technical efficiency of a producer.  Three results, proved in 
F~re, Grosskopf and Lovell (1985), are particularly useful. Since two of 
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the three results rely on the nature of scale economies which characterize 
technology, I begin with definitions of two popular restrictions on scale 
economies. 

De f in i t i on  5. Technology is homogenous of degree c~ > 0 if L(Oy) = 
t~X/"L(y), 0 > O, or, equivalently, if P(Ax) = A~P(x), A > O. Returns to 

> 
scale are globally increasing, constant or decreasing according as a s 1. 

C 

Def in i t i on  6. Technology is sub-homogeneous if L(Oy) D OL(y), 0 

1, and super-homogeneous if L(Oy) C ~L(y), 8 ~ 1. Returns to 
scale are non-increasing where technology is sub-homogeneous, and non- 
decreasing where technology is super-homogeneous. 

P r o p o s i t i o n  1. TEG(x, y) > max{TEi(x ,  y), (TEo(y, X))--I}. 

P r o p o s i t i o n  2. (TEc(x ,y))2  = T E i ( x , y )  = (TEo(y,x))  -1 if, and 
only if, technology is homogeneous of degree +1. 

P r o p o s i t i o n  3. If  technology is sub- (super-) homogeneous, then 
T E i ( x , y )  <_ (>)(TEo(y,x))  -1. 

X 
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xC 
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F i g u r e  1. Input-oriented Technical Efficiency Measurement 
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F i g u r e  2. Output-oriented Technical Efficiency Measurement 

The two radial technical efficiency measures are il lustrated in Fig- 
ures 1 and 2. In Figure 1 E l f  L(y) is the line segment xAx B, and 
Isoq L(y) is the line segment xAx B plus the vertical extension above 
x A and the horizontal extension to the right of x B. L(y) is the region 
bounded below by Isoq L(y). TEr(x A, y) = TEI(x  B, y) = 1 because no 
radial contraction of x A or x B is feasible for y. TEi(xC,y)  = ~c < 1, 
and no nonradial inefficiency remains at 8Vx c. TEr(xD,y) = oD < 1, 
and nonradial  slack input x2 in the amount  (oDxD -- x A) remains at 
t?vx D. (The nonradiat projection from x C to OCyxC is discussed in Sec- 
tion 8.2.) In Figure 2 E l f  P(z) is  the line segment yAyB and Isoq P(x) 
is the line segment yAyB plus the horizontal extension to the left of  yA 
and the vertical extension beneath yB. P(x) is the region bounded above 
by Isoq P(x). TEo(yA,x) = TEo(yS,x) = 1 because no radial expan- 
sion of yA or  yB is feasible with x. TEo(y C, x) = r  > 1, and nonradial 
efficiency remains at r TEo(yD,x) = cO > 1, and nonradial slack 
in output  Yl, in the amount (yA _ CDyD) remains at CDyD. 

So far the analysis has concentred on the measurement  of the tech- 
nical efficiency of production. If input prices and output  prices are not 
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observed, or observed but  thought  to be unreliable or distorted by reg- 
ulat ion or market  power, this is all tha t  can be accomplished. However 
if prices are accurately observed, and if a common behavioral objective 
can be a t t r ibu ted  to all producers,  then economic efficiency can be mea- 
sured. Let producers  face input  prices w = ( w l , . . . , W N )  E ]RN+ and 
ou tpu t  prices p = ( P l , . . .  ,PM) E ]R~I+. Then the m i n i m u m  expendi ture  
required to produce ou tpu t  vector y when input  prices are w is given by 
the cost function 

c (y ,w)= min{wTx : x EL(y)} ,  yE  ]R~+. 
5g 

(2.13) 

The m a x i m u m  revenue tha t  can be obtained from input  vector x when 
ou tpu t  prices are p is given by the revenue function 

r(x,p) = max{pTy: y E P(x)} ,  x E IRN+. 
Y 

(2.14) 

The  m a x i m u m  profit that  can be obtained when input  prices are w and 
ou tpu t  prices are p is given by the profit function 

rr(p,w) = max{pTy-- wTx : (x,y) E GR}. 
x , y  

(2.15) 

D e f i n i t i o n  7. The cost efficiency of a producer using input vector 
x to produce output vector y when input prices are w is measured by the 
ratio of minimum cost to actual cost, 

CE(x, y, w) = c(y, w)lw 

with CE(x,  y, w) = 1 indicating cost efficiency and CE(x,  y, w) < 1 
indicating the degree of cost inefficiency. 

D e f i n i t i o n  8. The input allocative efficiency of a producer using 
input vector x to produce output vector y when input prices are w is 
measured by the ratio of cost efficiency to input technical efficiency, 

A E i ( x , y , w )  = CE( x , y ,w ) /TEx (x , y ) ,  

with AEi(x ,  y, w) = 1 indicating input allocative efficiency and 
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AEI(x ,  y, w) < 1 indicating the degree of input allocative inefficiency. 

Def in i t i on  9. The revenue efficiency of a producer producing out- 
put vector y with input vector x when output prices are p is measured by 
the ratio of maximum revenue to actual revenue, 

RE(y ,x ,p )  = r(x,p)/pTy, 

with RE(y ,x ,p )  = 1 indicating revenue efficiency and RE(y ,x ,p )  > 1 
indicating the degree of revenue inefficiency. 

Def in i t i on  10. The output allocative efficiency of a producer pro- 
ducing output vector y with input vector x when output prices are p is 
measured by the ratio of revenue efficiency to output technical efficiency, 

AEo(y, x,p) = RE(y,  x ,p)/TEo(y,  x), 

with AEo(y, x,p) = 1 indicating output allocative efficiency and 
AEo(y,x ,p)  > 1 indicating the degree of output allocative inefficiency. 

D e f i n i t i o n  11. The profit efficiency of a producer facing input 
prices w and output prices p is measured by the ratio of maximum profit 
to actual profit, 

= 

provided (pTy_  wTx) > O. 7rE(y,x,p,w) = 1 indicates profit efficiency 
and ~rE(y, x,p, w) > 1 indicates the degree of profit inefficiency. 

D e f i n i t i o n  12. The graph allocative efficiency of a producer using 
input vector x to produce output vector y when input prices are w and 
output prices are p is measured by the ratio of profit efficiency to the 
reciprocal of graph technical efficiency, 

AEG(y, x,p, w) = ~rE(y, x, p, w)/ (TEG(x, y) ) -1, 

with AEG(y, x,p, w) = 1 indicating graph allocative efficiency and 
AEG(y, x,p, w) > 1 indicating the degree of graph allocative inefficiency. 
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Figures 3 and 4 illustrate the concepts of cost efficiency and revenue 
efficiency. In Figure 3, T E I( x s ,  y) = AE  I( x B, y, w) = C E( x B, y, w) = 1 
because it is not possible to produce output  vector y at lower cost, 
given input  prices w. However TEI(xA,  y) = 1 but A E I ( z A , y , w )  = 
C E ( x A , y , w )  < 1 because x A is not an allocatively efficient mix of in- 
puts, given input prices w. In Figure 4 TEo(yA,x)  = AEo(yA, x,p) = 
RE(yA ,x ,p )  = 1 because it is not possible to generate more revenue 
from input  vector x, given output  prices p. However TEo(yB,x)  = 1 
but AEo(yB,x ,p)  = RE(y  B, x,p) > 1 because yB is not an allocatively 
efficient mix of outputs ,  given output  prices p. 

X2 

X A 

~) 
~ j  W 

) Xi 

F i g u r e  3. Cost Efficiency Measurement 

The type of efficiency to be measured depends on what data are 
available, and on what behavioral assumptions are appropriate. If only 
input quantity and output  quantity data are available, only technical 
efficiency can be measured, regardless of what behavioral assumption 
is appropriate. Orientation, i.e., the use of T E a ( x , y ) ,  T E I ( x , y )  or 
TEo(y, x), is at the discretion of the analyst. If input price data  are also 
available, and if cost minimization is a tenable behavioral objective, then 
cost efficiency can be measured and decomposed into its technical and 
input allocative components. If output  price data are also available, 
and if revenue maximization is thought to be an appropriate behavioral 
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objective, then revenue efficiency can be measured and decomposed into 
its technical and output  allocative components. Finally if all four types 
of data  are available, and if profit maximization is considered to be an 
appropriate behavioral objective, profit efficiency can be measured and 
decomposed into its technical and allocative components. 

u 
\ 

P 

u 
i 

F i g u r e  4. Revenue Efficiency Measurement 

The actual measurement  of productive efficiency proceeds as fol- 
lows. First, collect da ta  on (y,x), and perhaps also on (p, w), for a 
collection of producers whose performance is to be evaluated. If tech- 
nical efficiency is to be measured, use the data  (x,y) to construct  the 
graph GR, the input sets L(y) or the output  sets P(x). Then measure 
TEG(x, y), TEl(X, y) or TEo(y, x) for each producer. If cost efficiency 
is to be measured,  use the da ta  (x,y,w) to construct  the cost func- 
tion c(y,w). Then measure CE(x,y,w), AEi(x,y,w) and TEl(x, y) 
for each producer.  If revenue efficiency is to be measured,  use the 
data  (y,x,p) to construct  the revenue function r(x,p). Then measure 
RE(y,x,p), AEo(y,x,p) and TEo(y,x). Finally, if profit efficiency is 
to be measured,  use the da ta  (x, y, w,p) to construct the profit function 
~r(p,w). Then  measure ~rE(y,x,p,w), AEG(y,x,p,w) and TEa(x,y) 
for each producer. 

For details and extensions, see F~re, Grosskopf and Lovell (1985, 
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1994). 

There remains the practical problem of calculating these, and other, 
efficiency measures. Three general approaches have been developed. 
Econometricians have developed parametric stochastic frontiers, because 
they believe in allowing for statistical noise. Estimation is by maximum 
likelihood techniques, and efficiency is inferred from a component of the 
skewed regression residual for each producer. Stochastic frontiers were 
developed simultaneously by three groups on three continents: Aigner, 
Lovell and Schmidt (1977), Battese and Corra (1977) and Meeusen and 
van den Broeck (1977). Details are available in Lovell (1992) and Greene 
(1993). 

Both economists and management scientists have developed para- 
metric nonstochastic frontiers, calculated using either maximum likeli- 
hood or goal programming techniques, after which efficiency is inferred 
from the one-sided deviations from the calculated frontier. Paramet- 
ric nonstochastic frontiers were developed by Aigner and Chu (1968)~ 
and by FCrsund and his colleagues, whose early work is summarized in 
FCrsund and Hjalmarsson (1987). An illustrative example is provided 
by Charnes, Cooper and Sueyoshi (1988). 

Management scientists have developed nonparametric nonstochas- 
tic frontiers, because they prefer not to impose possibly unwarranted 
parametric structure on technology, preferring instead to let the data 
reveal the structure of technology. The frontier is calculated so that it 
envelops the data as tightly as possible, subject to various constraints 
such as monotonicity and convexity. Calculation is by linear program- 
ming methods, which collectively have come to be known as Data Envel- 
opment Analysis (DEA). The DEA literature began at about the same 
time as the stochastic frontier literature, with important early contribu- 
tions by Charnes, Cooper and Rhodes (1978,1981) and Banker, Charnes 
and Cooper (1984). Analysis, illustrative applications and an extensive 
bibliography are provided in Charnes et al. (1994). Interestingly enough, 
DEA was anticipated over a decade earlier in the agricultural economics 
literature. Building on activity analysis models of production developed 
by Koopmans (1951,1957), Boles (1966), Bressler (1966), Seitz (1966) 
and Sitorus (1966) developed and calculated remarkably sophisticated 
DEA-type models. Their work in turn was extended by Afriat (1972) 
and Shephard (1974). Indeed, reading these early contributions provides 
a good introduction to the DEA literature. 



Linear Programming approaches to the measurement... 18"~ 

The three approaches to frontier construction and efficiency mea- 
surement are surveyed, compared and applied empirically in Lewin and 
Lovell (1990), Gulledge and Lovell (1992) and Fried, Lovell and Schmidt 
(1993). 

3. B A S I C  D E A  M O D E L S  

Producers use inputs x i E R~_+ to produce outputs yi E IRM+, i = 
1 , . . . , I  with I indicating the number of producers in the sample. All 
inputs and all outputs are discretionary, in the sense that they are freely 
variable and under the control of management. The analyst's objective 
is to evaluate the technical efficiency of each producer relative to the best 
observed practice in the sample. Designate the producer being evaluated 
as having data (x ~ y0), and consider the problem 

min vT  x 0/]~TyO (3 .1 )  

subject to 
p T x i / ~ T y  i >_ 1, i = 1 , . . . , 0 , . . . , I  

#,u_> 0. 

The problem seeks a set of nonnegative weights (u, #) which, when ap- 
plied to the inputs and outputs of the producer being evaluated, mini- 
mizes the ratio of weighted (or "virtual") input to weighted (or "virtual") 
output, subject to the normalizing constraint that no producer in the 
sample, including the producer being evaluated, have a ratio less than 
unity when weights of the producer being evaluated are applied. 

This nonlinear ratio model can be converted to the linear program- 
ming "multiplier" or "pricing" problem through the Charnes and Cooper 
(1962) change of variables u = t#, v = tu ,  where t = (~uTy0) -1, to obtain 
the problem 

min vT x 0 (3.2) 
U(U 

subject to 
u T y  ~ ---- 1 

vT X - u T y  > 0 

u, v >_ O, 
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the dual to which is the output-oriented linear programming "envelop- 
ment" or "projection" problem 

TEo(y ~ x ~ = max r (3.3) 
r 

subject to 
- x  ~ + XA < 0 

Cy0 _ y)~ _< 0 

~ > 0  

where X is an N • I input matrix with columns x ~, Y is an M • I output 
matrix with columns y', and A is an I • 1 intensity vector. The dual 
linear programming problems (3.2) and (3.3) are a slightly simplified 
output-oriented version of the DEA problem introduced by Charnes, 
Cooper and Rhodes (1978). Consequently they have come to be known 
as the output-oriented CCR DEA model. The multiplier problem (3.2) 
has (M + N) variables and (I + 1) constraints, and the envelopment 
problem (3.3) has (I + 1) variables and (M + N) constraints. Since 
(M + N) < (I + 1), the multiplier problem is computationally simpler. 
It must be solved I times, once for each producer in the sample. 

The technology implied by the constraints to the envelopment prob- 
lem (3.3) is 

P(x)={y: x_>X)% y_<Y A, A>0} ,  y E ~ + ,  (3.4) 

which satisfies strong disposability of inputs and outputs, convexity, and 
homogeneity of degree +1 (or constant returns to scale). Thus problem 
(3.3) provides a linear programming representation of the radial effi- 
ciency measure given in Definition 4. The corresponding graph of the 
technology is thus a convex free disposal polyhedral cone. The interpre- 
tation given to the output-oriented envelopment problem (3.3) is that it 
seeks the maximum feasible radial expansion in all outputs of the pro- 
ducer being evaluated, consistent with the technology generated by the 
sample data. The envelopment problem is illustrated in Figure 5 for the 
M = N = 1 case, and in Figure 6 for the M = 2 case. In both figures 
(x 0,y0) is projected to (x~162176 where Cy0 E Isoq P(x~ The opti- 
mal value of r is the technical efficiency measure for the producer being 
evaluated. The optimal value of A indicates the linear combination of 
technically efficient producers to which the producer being evaluated is 
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compared. Technically efficient role models have a positive entries in 
the optimal value of ~, and other producers, whether or not they are 
technically efficient, have zero entries in the optima] value of A. The 
optima] value of r is unique, although alternative optimal values of )~ 
can exist. 

,ya) 

,#yO ) 

(x ~ ,y~ ) 
) 

GE 

X 

F igure  5. The Output-Oriented CCR DEA Model (M=N=I) 

The interpretation given to the dual multiplier problem (3.2) is 
that it seeks optimal multipliers, or normalized shadow prices, for the 
outputs and inputs of the producer being evaluated. These multipliers 
axe the coefficients of the hyperplane vTx - u T y  = v T x  ~ - -  uTy ~ In 
Figures 5 and 6 ratios of the optimal multipliers describe the slope of a 
supporting hyperplane to the frontier at (x ~ Cy0). The interpretation 
of the optimal multipliers as normalized shadow prices should be clear. 
It should also be clear from Figure 6 that optimal multipliers are not 
necessarily unique. For example, producer B, located at a vertex of 
Isoq P(x~ has optimal multipliers bounded by the multipliers that 
describe the slopes of the adjacent facets. 

From linear programming duality theory, v T x  0 >_ r and, at opti- 
mum, vTx ~ = r >_ 1. Output-oriented radial efficiency requires vTx ~ = 
r = 1. By complementary slackness, vn > 0, n = 1 , . . . , N  and 
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I 
0 . i 

U M ) 0, m = 1, , M  => x n ~ n = ., . . .  = A,xn, 1 , . .  N and r = 
i----1 

I 
A i 0 iYm, m = 1 , . . . , M .  Also by complementary slackness, x n > 

i----1 
I I 

. i . - -  ~,x~, n = 1 , . . . , g  and r < ~,kiyim, m = 1, . .  , M  =~ vn - 
i----1 i = 1  

0, n = 1 , . . . , N  and um = 0, m = 1 , . . . , M .  Thus slack in any of 
M + N variables at the optimal projection is associated with zero nor- 
malized shadow prices, and positive normalized shadow prices are as- 
sociated with zero slack. To summarize, a producer is judged to be 
technically inefficient if at opt imum r > 1, and technically efficient if at 
op t imum r = 1, even though slack in at most ( M  + N - 1) dimensions 
may be present. The allowance for zero multipliers means that  this 
interpretat ion of technical efficiency correponds to the Debreu-Farrell  
measure given in Definition 4 rather than the more demanding Koop- 
mans definition given in Definition 1. I return to this issue in Section 

5.2. 

y C  

P(x~ ) :- I 
) 

Y 

F i g u r e  6. The Output-Oriented CCR DEA Model (M=2) 

The dual linear programming problems (3.2) and (3.3) have an out- 
put  orientation to the measurement of technical efficiency. If in the an- 
alyst 's  judgement  an input conservation approach is more appropriate,  
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it is possible to adopt an input orientation. The ratio model (3.1) can 
equally well be converted to the linear programming multiplier problem 

m a x  uT  y 0 (3.5) 
UlV 

subject to 
vT  x 0 : 1 

u T y  -- v T x  < 0 

U~ V ~_ O, 

the dual to which is the input-oriented linear programming envelopment 
problem 

T E i ( x ~  ~ = min ~ (3.6) 
t~,), 

subject to 
Ox ~ - XA  k 0 

_yO + y A  >_ 0 

A>O. 

The dual linear programming problems (3.5) and (3.6) are slightly sim- 
plified version of the input-oriented CCR DEA Model. 

The technology implied by the constraints to the envelopment prob- 
lem (3.6) is 

L(y) = i x :  x > XA, y < YA, A > 0}, x e IR N (3.7) 
_ _ _ ++ ,  

which is precisely the same as that described in (3.4). Thus problem 
(3.6) provides a linear programming representation of the radial effi- 
ciency measure given in Definition 3. However the input orientation 
of problem (3.6) leads to a different optimal projection. The interpre- 
tation of the input-oriented envelopment problem (3.6) is that it seeks 
the minimum feasible radial scaling of all inputs of the producer being 
evaluated, consistent with the technology generated by the sample data. 
The envelopment problem is illustrated in Figure 7 for the M = N --- 1 
case, and in Figure 8 for the N = 2 case. In both figures (x~  ~ is 
projected to (~x~176 where 0x ~ E Isoq L(y~ The optimal value of 

provides a technical efficiency measure for the producer being evalu- 
ated. The non-zero entries in the optimal value of A identify the tech- 
nically efficient role models for the producer being evaluated. As in 
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the output-oriented envelopment model (3.3), the optimal value of 0 is 
unique, although alternate optimal values of )~ can exist. The inter- 
pretation given to the dual multiplier problem is that  it seeks optimal 
multipliers, or normalized shadow prices, for the inputs and outputs of 
the producer being evaluated. These multipliers are the coefficients of 
the hyperplane uTy  -- vTx  = uTy  ~ -- v T x  ~ and their ratios describe the 
slope of a supporting hyperplane to the frontier at (Ox ~ yO). As in the 
CCR multiplier problem (3.2), the optimal multipliers in problem (3.5) 
are not necessarily unique, as should be clear form Figure 8. 

Y 

(ox o,yo) ~ o  @E 

[ / ~  xj 'Y J ) 

X 

F i g u r e  7. The Input-Oriented CCR DEA Model ( M = N = I )  

Again from hnear programming duality theory, uTy  0 <_ 0 and, 
at opt imum, uTy ~ = 0 _< 1. Input-oriented radial efficiency requires 
uTy ~ = 0 = 1. By complementary slackness, u m >  0, m = 1 , . . . , M  

I 
and vn > 0, n = 1 , . . . , N  => yO = ~Aiyim,  m = 1 , . . . , M  and 

i = 1  
I I 

0x~ E = ~ x n ,  n = 1 , . . . , N .  Also yO < ~ A i y i ,  m = 1 , . . . , M  
i----1 i = 1  

I 

and Ox ~ > ~ )~ix~, n = 1 , . . . , N  ~ um = O, m = 1 , . . . , M  and 
i----1 

v~ = 0, n = 1 , . . . , N .  A producer is judged to be technically ineffi- 
cient if at opt imum 0 < 1, and technically efficient if at opt imum 0 = 1, 
even though positive slack may be present in at most (M + N - 1) di- 
mensions. As before, positive slack is associated with zero normalized 
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shadow prices, which are allowed by the nonnegativity constraints on 
(u, v ) in  problem (3.5). 

X 2 
\ 

y••X• x c  o 

X 

A 
L(y o) 

i i l  

) X  
1 

Figure  8. The Input-Oriented CCR DEA Model (N=2) 

The dual problems (3.2) and (3.3) have an output orientation, while 
the dual problems (3.5) and (3.6) have an input orientation. It is also 
possible to convert the ratio problem (3.1) to a pair of dual problems that 
have both an output-expanding and an input-conserving orientation. 
The ratio problem (3.1) can be converted to the multiplier problem. 

max uT y 0 -- vT x ~ (3.8) 

subject to 
--vTx ~ < --1 

uT y ~ <_ 1 

u T y  - v T x  < 0 

u ,  v ~> O, 

the dual to which is the nonlinear programming envelopment problem 

T E c ( x ~  ~ = rain/f (3.9) 
6,), 
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subject to 
6x ~ - X)~ >_ 0 

--6-1y ~ ~ 0 

~_>0. 

The technology implied by the constraints to the envelopment problem 
(3.9) is 

GR = {(x,y) : x > X),, y <_ Y),, ), >_ 0}, (3.10) 

which is the same as those in (3.4) and (3.7). Thus problem (3.9) 
provides a nonlinear programming representation of the hyperbolic ef- 
ficiency measure given in Definition 2. The interpretation given to the 
envelopment problem (3.9) is that it seeks the maximum equipropor- 
tionate contraction in inputs and expansion of outputs for the producer 
being evaluated, consistent with the technology generated by the sample 
data as described in (3.10). The hyperbolic technical efficiency score is 
given by the optimal value of 6, and the technically efficient role models 
are identified by the non-zero entries in the optimal value of A. The 
optimal values of the multipliers (u, v) in the multiplier problem (3.8) 
describe normalized shadow prices of outputs and inputs at the optimal 
projection (6x ~ , 6-1 y0 ). 

The envelopment problem (3.9) is a nonlinear programming prob- 
lem. However Fs Grosskopf and Lovell (1985) showed that it can be 
converted to a linear programming problem by means of the transfor- 
mations A = ~2, A = 6A. The transformed linear programming envel- 
opment problem is identical to the input-oriented envelopment problem 
(3.6), although TEa(x~ ~ -- 6 = A 1/2 _ A in keeping with Proposi- 
tion 1, and A = A/6 _> A. 

How are the solutions to the output-oriented model (3.2)-(3.3), the 
input-oriented model (3.5)-(3.6) and the graph model (3.8)-(3.9) related? 
First, optimal values of the objectives in the three envelopmet problems 
satisfy r = 0 = 62 by virtue of Proposition 2. Second, optimal values 
of A in the three envelopment problems can differ, both in terms of 
the identity of the technically efficient role models and in terms of the 
magnitudes of the non-zero elements of A. This is because the different 
orientation of the three models generates role models of different size. 
Third, optimal values of (u, v) in the three multiplier models can also 
differ, again due to the different optimal projections to the frontier. 
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4. R E L A X I N G  C O N S T A N T  R E T U R N S  TO S C A L E  

The output-oriented CCR DEA model (3.2)-(3.3), the input-oriented 
CCR DEA model (3.5)-(3.6) and the graph DEA model (3.8)-(3.9) each 
incorporate the assumption of constant returns to scale in production. 
In many instances this assumption may be unwarranted. Consequently 
Banker, Charnes and Cooper (BCC) (1984) generalized the CCR formu- 
lation to allow for variable returns to scale. The BCC model envelops 
the data  al least as lightly as does the CCR model, and more tightly if 
returns to scale are not everywhere constant. 

The constant returns to scale ratio problem (3.1) can be converted 
to a variable returns to scale ratio problem by adding a free variable v, 
to obtain 

min (pT xO + p , ) /#T  yO (4.1) 

subject to 

(vT x i + V . ) /#Ty  i ~_ 1 

v,#>_O 

v, free. 

i = l , . . . , 0 , . . . , I  

The same change of variables that  was used to convert (3.1) to (3.2) can 
be applied to the variable returns to scale ratio problem (4.1) to obtain 
the BCC multiplier problem 

min vTx ~ + v, (4.2) 
U ~V y r .  

subject to 
uT y 0 = 1 

vT X - -  u T y  + v, > 0 

u,v>__O 

v, free, 

the dual to which is the BCC variable returns to scale output-oriented 
linear programming envelopment problem 

TEo(y ~ x ~ = max r (4.3) 
~,~ 
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subject to 
- x  ~ + XA _< 0 

r _ Y A _< 0 

e T A  = 1 

A>_0, 

where e T is an I x 1 row vector of ones. The technology implied by the 
constraints to the envelopment problem (4.3) is 

P ( x ) = { y :  x>_XA, y<_YA, A>_O, eTA=l} ,  (4.4) 

which satisfies strong disposability and convexity, but not homogeneity. 
The corresponding graph of the technology is thus a polyhedral convex 
free disposal hull. 

The BCC models (4.2)-(4.3) are structurally similar to the CCR 
models (3.2)-(3.3). However the BCC envelopment problem contains an 
additional equality constraint ( e T A  = 1), which restricts the elements 
of the intensity vector to sum to one. Thus only convex combinations 
of sample producers are allowed to be created in forming the produc- 
tion frontier; radial expansions and contractions of sample producers are 
no longer allowed. This convexification process shrinks the set of fea- 
sible production possibilities, and converts a constant returns to scale 
technology to a variable returns to scale technology. 

Adding an equality constraint to the envelopment problem requires 
adding a free variable (v.) to the dual multiplier problem. The additional 
variable allows the supporting hyperplane vTx - u T y  -= v T x  ~ --  uTy ~ n t- v ,  

to the production frontier to have non-zero intercept. The multipliers 
(u, v) are interpreted as before, as normalized shadow prices at the opti- 
mal projection. The additional variable v. in the multiplier problem pro- 
vides information on whether returns to scale are increasing, constant, 
or decreasing at the optimal projection (x~162176 Figure 9 illustrates, 
for the case M -- N = 1. Inefficient observation (x ~176 is projected 
to (x ~ r on the variable returns to scale frontier. At that  projection 
the supporting hyperplane has slope (u/v) and output  intercept v. > 0, 
and decreasing returns prevail at (x ~ , Cy0). 

Optimal solutions to the multiplier problem are not necessarily 
unique, however, as for producers (x A, yA) and (z C, yC). However since 
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all optimal solutions for (x A, yA)  have v, > 0, production is character- 
ized by decreasing returns to scale at (x A, yA).  Since all optimal solu- 
tions for (x C, yC) have v, < 0, production is characterized by increasing 
returns to scale at (x c, yC). Production is characterized by constant re- 
turns to scale at (x B, yB) since there exists at least one optimal solution 
having v, = 0. I return to this issue below. 

Y 

l / o cRs 

~ B  ) X  

Figure 9. The Output-Oriented BCC DEA Model (M=N=I) 

A different BCC multiplier problem can also be obtained from the 
ratio model (4.1), and is expressed as 

m a x  uTy  0 ~- u ,  (4.5) 
U~V~U. 

subject to 
vT x 0 ~ 1 

uTy -- vT x + u. <_ 0 

u ~ v ~ O  

u, free, 
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the dual to which is the input-oriented BCC linear programming envel- 
opment problem 

TEi(x~ ~ = min0 (4.6) 
0,A 

subject to 
Ox ~ - X A  >_ 0 

_yO + YA >_ 0 

eTA:- 1 

A>_0. 

The BCC models (4.5)-(4.6) are structurally similar to the CCR mod- 
els (3.5)-(3.6), with an equality restriction on A added in (4.6) and an 
additional free variable (u.)  added to (4.5). 

Y 

S j 

CRS 
GR 

GR vas 

,yO) (xo ,yo) 

-" >X v 

U, 

F i g u r e  10. The Input-Oriented BCC DEA Model (M=N=I) 

The technology implied by (4.6) is the same as the technology im- 
plied by (4.3), but the orientation is different. Hence the optimal pro- 
jection is different. Figure 10 illustrates, for the M = N = 1 case. 
Inefficient producer (z~ ~ is projected to (Ox~176 Since the input 
intercept u. < 0, decreasing returns prevail at (Ox~176 The remarks 
concerning non-uniqueness of optimal multipliers made above hold for 
the input-oriented model as well. 
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Problems (4.2), (4.3) are output-oriented, and problems (4.5), (4.6) 
are input-oriented. A problem that seeks to expand outputs and contract 
inputs by the same proportion can be formulated from problems (3.8), 
(3.9) by adding the free variable u, to the maximand of (3.8), adding 
the equality constraint (eTA = 1) to the constraint set of (3.9), and 
converting to a linear programming problem as before. 

For future reference, I also note that there exists a non-increasing 
returns to scale DEA model. To form a non-increasing returns to scale 
output-oriented DEA model, add to the minimand of (3.2) the con- 
strained variable v, > 0, and add to the constraint set of (3.3) the con- 
dition eTA _< 1. To form the same non-increasing returns to scale input- 
oriented DEA model, add to the maximand of (3.5) the constrained 
variable u, < 0, and add to the constraint set of (3.6) the condition 
eTA _< 1. Solving all three DEA models (the CCR constant returns 
to scale model, the BCC variable returns to scale model and the non- 
increasing returns to scale model) with either output orientation or input 
orientation yields the following result. 

P r o p o s i t i o n  4. (F/s Grosskopf and Lovell (1985)) For the out- 
put-oriented models, technology exhibits the following scale characteric- 
tics at the optimal projection: 

increasing returns to scale r 1 < ev i l s  < e N I R S  = r  

constant returns to scale r 1 < evRs  = e N I R S  .~ (~CRS 

decreasing returns to scale r 1 < e r r s  = e N I R S  < r  

For the input-oriented models, technology exhibits the following scale 
characteristics at the optimal projection: 

increasing returns to scale r 1 > 0 VIes > 0 Ntns = 0 cRs 
constant returns to scale ~ 1 > 0 T M  = 0 NIRS  = 0 CRS 

decreasing returns to scale r 1 > O T M  = ~NIRS > ~CRS 

The above proposition requires solving three DEA problems in order 
to determine the value of scale economies at the optimal projection. The 
next proposition requires solving only the variable returns to scale BCC 
model. 

P r o p o s i t i o n  5. (Banker and Thrall (1992)) For the output-orient- 
ed BCC model, technology exhibits the following scale characteristics at 
the optimal projection: 

increasing returns to scale r max{v.} < 0 
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constant returns to scale r162 min{v,} < 0 < max{v,} 
decreasing returns to scale r162 min{v,} > 0. 

For the input-oriented B C C  model, technology exhibits the following scale 
characteristics at the optimal projection: 

increasing returns to scale r rain{u,} > 0 
constant returns to scale r162 min{u,}  < 0 < max{u,}  
decreasing returns to scale r162 max{u,} < 0. 

I conclude this section with two observations on the use of DEA 
to draw inferences on scale economies. First, orientation matters.  An 
output-oriented model generates a different optimal projection than an 
input-oriented model does, and different optimal projections can gener- 
ate qualitatively different inferences on the nature of scale economies. 
For example, output-oriented projections are more likely to occur on the 
decreasing returns to scale portion of the production frontier, whereas 
input-oriented projections are more likely to accur in the increasing re- 
turns to scale portion of the production frontier. Second, Propositions 
4 and 5 can lead to different inferences concerning the nature of scale 
economies. In particular, Proposition 5 typically generates a larger re- 
gion of the production set for which constant returns to scale are inferred 
than does Proposition 4. 

5. M O D I F Y I N G  S T R O N G  D I S P O S A B I L I T Y  

Thus far I have maintained the assumption of strong, or free, dispos- 
ability of inputs and outputs.  This assumption can be relaxated to one 
of weak, or costly, disposability of a subvector of inputs and/or  outputs.  
Weak disposability is appropriate when, for example, it is costly to dis- 
pose of, i.e., abate, undesirable outputs such as pollutants generated as 
by-products of the production of desirable outputs such as electricity. 
Alternatively, the assumption can be strengthened so as to eliminate 
the possibility of slacks in envelopment problems. Strengthening strong 
disposability is appropriate when, for example, expert judgment  sug- 
gests that  normalized shadow prices should be positive. I consider these 
modifications in turn, using for simplicity the output-oriented variable 
returns to scale BCC model. 

5.1. Weak Disposability 

Partit ion the output  vector y E ~M+ into a strongly disposable sub- 
vector ys C k s +  and its complement, a weakly disposable subvector 
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Yw E IRM+ s. Then the variable returns to scale output-oriented BCC 
envelopment problem is expressed as 

0 0 TEo(Ys ,Yw,  X ~ = max r (5.1) 
r  

subject to 

- x  ~ + XA < 0 

CyO _ YsA < o 

Cy~ - #Yw A = 0 

A>_O 

eTA = 1 

1>_#_>0.  

Y s  \ 

/ . P (x~  -~ 

F i g u r e  11. The Output-Oriented BCC DEA Model with Weak 
Disposability of a Subset of Outputs (M=2) 

The equality constraints ( r  - #Yws  = 0), together with (1 >_ 
# > 0), guarantee that  yw is weakly, but not strongly, disposable. These 
constraints make problem (5.1) a nonlinear programming problem. How- 
ever it can be converted to a linear program by setting # = 1; such a 
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transformation leaves the optimal values of (r A) unchanged. The prob- 
lem is illustrated in Figure 11. Notice that at the optimal projection 
(r176162176 the normalized shadow price of yw is negative, indicat- 
ing the cost of disposing of, or abating, the undesirable output yw. 

Problem (5.1) generates technical efficiency scores and identifies 
technically efficient role models, and the dual multiplier problem gen- 
erates normalized shadow prices of all variables, including the weakly 
disposable outputs. However when the weakly disposable outputs are 
undesirable, the orientation of problem (5.1) toward expanding all out- 
puts, desirable and undesirable, may be considered inappropriate. At 
least three alternative orientations rr~available. Perhaps a more suit- 
able measure of performance is provided by a technical efficiency measure 
that measures the ability to expand all desirable outputs and reduce all 
undesirable outputs. In this case a modified version of the hyperbolic 
technical efficiency measure given in Definition 2 is appropriate, and the 
envelopment problem (5.1) is converted to 

T E o ( y ~ 1 7 6  ~ = max r (5.2) 
r 

subject to 
- x  ~ + XA _< 0 

r _ YsA <_ 0 

r  _ i t y w  A -~ 0 

A_>0 

eTA = 1 

1 > ~ > 0 .  

This is also nonlinear programming problem, although it can be con- 
verted to a linear programming problem using the same techniques as 
used in problems (5.1) and (3.9). The problem seeks the maximum 
equiproportinate expansion of desirable outputs, and contraction of un- 
desirable outputs, consistent with best practice technology. As Figure 
11 illustrates, the optimal projection ( r 1 6 2  ~  z ~ differs from the 
optimal projection (r r x 0) obtained from problem (5.1), and the 
optimal normalized shadow prices differ as well. 

The degree of the deviation of the weakly disposable technology 
from the strongly disposable technology provides an indication of the 
costliness of disposing of the undesirable outputs. Abatement costs can 
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be inferred in either of two ways: (i) from the magnitudes of the normal- 
ized shadow prices associated with y w  in the multiplier dual to problem 
(5.1) or problem (5.2), or (ii) by comparing the solutions to the pair of 
envelopment problems (5.1), (4.3) or (5.2) and the corresponding prob- 
lem with strong disposability of all variables. Other orientations are 
easily obtained; see Fs et al. (1989) for details. The entire analysis 
can also be applied to the case in which a subvector of inputs is weakly, 
but not strongly, disposable. 

5.2. Constraining  Normal i zed  Shadow Prices  

In Figure 1 producer 2 ~ receives a radial efficiency score of 0D < 1, 
which overstates its true efficiency since slack in input x2 remains at the 
optimal projection ODxD. In the dual multiplier program, the optimal 
multiplier v2 = 0. A similar result appears in Figure 2, where r  
understates the true inefficiency of producer yD, since slack in output Yl 
remains at the optimal projection CDyD. In both cases the possibility 
of positive slack at an optimal solution to the envelopment problem can 
be eliminated by enforcing strict positivity of the multipliers in the dual 
multiplier problem. In either case the property of strong disposability is 
strengthened, by an amount to be determined by the analyst, perhaps 
guided by expert judgment. 

Consider, for example, the output-oriented variable returns to scale 
BCC problems (4.2)-(4.3), and suppose that it is desired to restrict mul- 
tipliers to be strictly positive. Then, following Cook, Kazakov and Roll 
(1989), the BCC multiplier problem (4.2) becomes 

min vT z 0 "~ V, (5.3) 
UlVlV* 

subject to 
uT y 0 : 1 

vT X -- u T y  + v,  ~_ 0 

V - - V L  ~_O 

U - - U L  ~_O 

u ,v>_O 

v. free, 

where VL and UL are N • 1 and M • 1 column vectors of strictly positive 
lower bounds on input and output multipliers, respectively. Adding 
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N + M constraints to the multiplier problem requires adding N + M 
variables (zn, zm) to the dual envelopment problem, which becomes 

T E o ( y ~ 1 7 6  max r (5.4) 
r ,ZM 

subject to 
- - X  0 "-~ X / ~  - Z N V  L ~ 0 

r _ y ~  _ Z M U L  ~ 0 

)~>0 

eTA = 1, 

where ZN and ZM are diagonal matrices with nonzero elements Zn and 
Zm , respectively. 

Constraining the multipliers in problem (5.3) to be strictly positive 
leads to an expansion of the graph of the technology described by the 
constraints in problem (5.4). Consequently technical efficiency scores 
obtained from problem (5.4) are no better than those obtained from 
problem (4.2). 

The  strictly positive multiplier restrictions imposed on problem 
(5.3) are intended merely to eliminate slacks from the optimal solution to 
the envelopment problem (5.4). However multiplier restrictions can take 
many forms to serve many purposes. A much more flexible formulation 
of problems (5.3) and (5.4) is provided by the dual programs 

min vTx ~ + v. (5.5) 
U~V ~V. 

subject to 

and 

uTy ~ = 1 

vT X -- u T y  T v. >_ 0 

vTA  + u T B  >_ 0 

U ~ v ~ O  

v. free 

T E o ( y ~  ~ = m a x r  (5.6) 
r 
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subject to 
- x  ~ + X A  - A z  < 0 

Cy0 _ Y A -  B z  <_ 0 

A > 0  

eTA = 1, 

where A is an N x K matrix of coefficients for the multipliers v and B 
is an M • K matrix of coefficients for the multipliers u, there being K 
constraints imposed on the multipliers. Adding K inequality constraints 
to the multiplier problem (5.5) requires adding the same number of vari- 
ables z to the envelopment problem (5.6). The constraints can take the 
form of restrictions on multipliers or on their ratios. Extensions are pro- 
vided by Thompson et al. (1986,1990), who develop assurance regions 
for multipliers, and by Charnes et al. (1990), who require multipliers to 
belong to closed cones. 

6. R E L A X I N G  C O N V E X I T Y  

Thus far all DEA models have had convexity as a maintained hypothe- 
sis. This means that  inefficient producers are compared not to efficient 
producers, but to non-existent convex (or linear) combinations of effi- 
cient producers. Moreover, an inefficient producer can be compared to 
a convex combination of efficient producers, none of which dominate it. 
Both possibilities can be avoided if the convexity assumption is relaxed. 
I now show how to build a non-convex variable returns to scale DEA 
model that  imposes only strong disposability. The model was introduced 
by Deprins, Simar and Tulkens (1984), who coined the model FDH, be- 
cause the production frontier is the (non-convex) free disposal hull of 
the data generated by the sample producers. 

The output-oriented FDH envelopment problem is expressed as 

T E o ( f  , x ~ = max  r (6.1) 

subject to 
- x  ~ + XA < 0 

Cy0 _ YA < 0 

eTA = 1 

A > 0  

A e {0, 1}. 
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This problem is identical to the BCC variable returns to scale envelop- 
ment problem (4.3), with the additional constraint A C {0, 1} on the 
intensity vector. Together with the restriction eT,~ = 1,  the added re- 
striction implies that exactly one element of ~ has a value of unity, the 
remaining ( I -  1) elements being zero. This in turn implies that the 
technical efficiency of the producer being eveluated is calculated rela- 
tive to exactly one undominated producer, that producer being the one 
assigned the only non-zero value of ~ in the envelopment problem. 

Y 

C 

A 

GE 

(x~ ~ 

(• ,yo) 

) X  

Figure 12. The Output-Oriented FDH Model (M=N=I) 

The output-oriented FDH problem is illustrated in Figures 12 and 
13. In Figure 12 producer (y~176 is dominated by producers A, B and 
C, and perhaps by others as well, but the output orientation of the 
problem identifies producer C as the role model for producer (y~176 
The optimal projection ( r  x 0) leaves input slack in the amount (x ~ - 
xC). In Figure 13 producer (y~176 is dominated by producers A, B 
and C, and producer C remains the role model for producer (y~176 
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Here the optimal projection (r x 0) leaves output slack in the amount 
- r o). 

y 

A 

, C 

yO 

p(•176 _- 
)Y1 

F igu re  13. The Output-Oriented FDH Model (M=2) 

The FDH envelopment problem (6.1) has a dual multiplier problem, 
but it is uninformative, since it is clear from Figures 12 and 13 that all 
multipliers are either zero or infinite. A statement of the FDH multi- 
plier problem is given in Lovell and Vanden Eeckaut (1993). The FDH 
envelopment problem is a mixed integer programming problem, unlike 
DEA problems, which are (or can be converted to) linear programming 
problems. Nonetheless the FDH problem is easier to solve, since it in- 
volves only a series of vector comparisons. For the producer (y~176 
being evaluated, it is a straightforward exercise to identify the set Do 

y0 
of dominating producers, that is, producers for which (__Y~) > (_x0). If 
this set is empty, the producer being evaluated is undominated, and so 
r = 1, no slacks exist, and the exercise is over. If Do is nonempty, the 
second set of functional constraints in the FDH envelopment program is 
transformed to 

AkYkm 
r <_ k~D0 

y o  
, m : 1 , . . . , M ,  ( 6 . 2 )  
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from which it follows that, at optimum, 

m i .  k6.Do m = l  . . . . .  M ~m J ' k : 1 , . . .  , I .  (6.3) 

From this maximin procedure an optimal radial efficiency score r is 
obtained for each producer. The "max" part of the algorithm identi- 
fies the most dominant producer relative to which producer (y~176 is 
compared. Once the most dominant producer is identified, slacks are 
calculated from the "min" part of the algorithm. 

An extensive discussion of FDH, a comparison of FDH and DEA, 
and a detailed analysis of the use of FDH with time-series or panel data, 
is provided by Tulkens and Vanden Eeckaut (1993). 

7. E C O N O M I C  E F F I C I E N C Y  

Thus far all models considered have been directed toward the measure- 
ment of technical efficiency. However if output prices p E RM+ and/or 
imput prices w E R~_+ are available, economic efficiency can be calcu- 
lated, and decomposed into its technical and allocative components. In 
this section I show how to use the linear programming techniques of 
DEA to calculate and decompose cost efficiency. 

Cost efficiency is defined in Definition 7 as the ratio of minimum 
cost to actual cost. It can be calculated for producer (y~176176 by 
solving the linear programming problem 

c(y  ~ , w ~ = rain w ~  (7.1)  
x 

subject to 
x -X)~>_O 

_yO + y)~ >_ 0 

eT/~ = 1 

) ,>0 .  

The constraint set in this problem is the same as that of the strong 
disposal variable returns to scale BCC envelopment problem given in 
(4.6). Solving this problem identifies the cost minimizing input vector, 
say x*, for the producer being evaluated. Once x* is known, Definition 
7 can be used to calculate the cost efficiency of the producer being 
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evaluated as C E ( x  ~ yO w o) = c(yO, wO)/wOTx o = wOTx./wOTxO" Then 

solving problem (4.6) provides the input-oriented technical efficiency 
of the producer being evaluated as T E i ( x ~  ~ = weTOx~ ~ = O. 
Finally, using Definition 8, the input allocative efficiency of the producer 
being evaluated is obtained as AEI (x  ~ y0 w o) = wOTx*/wOTOxO. 

Similar exercises can be undertaken to measure and decompose rev- 
enue efficiency and profit efficiency. See F ~ e ,  Grosskopf and Lovell 
(1994) for details. 

8. DATA ISSUES 

In this section I consider three issues concerning the input-output  data 
used in DEA. The first issue conserns the ability of DEA to accommodate 
nonnegative, rather than strictly positive, input vectors and output  vec- 
tors when measuring technical or economic efficiency. The second issue 
concerns the possibility that  some inputs or outputs may be nondiscre- 
tionary, beyond the control of management.  The third issue concerns 
the ability of DEA to accommodate environmental variables that  cate- 
gorize producers, but which are neither inputs nor outputs.  I address 
each of these data  issues in turn. 

8.1. Re lax ing  Strict Pos i t iv i ty  of  Variables 

Thus far every producer has been assumed to use strictly positive amo- 
unts of every input to produce strictly positive amounts of every output .  
This rules out specialization in the use of inputs and in the production 
of outputs.  Under what conditions can this assumption be relaxed to 
x E ~t N , y E A M+ , where every producer uses a positive amount of at 
least one input  to produce a positive amount of at least one output? 

Karlin (1959) required that the data matrices X and Y each have 
strictly positive row sums and strictly positive column sums, in a lin- 
ear programming problem similar to DEA. Karlin's condition thus M- 
lows x C ~ .  , y E ~ .  More recently Charnes, Cooper and Thrall 
(1986,1991) provided a rigorous demonstration that  DEA models can 
be applied to data  matrices satisfying Karlin's condition. 

In the vast majority of empirical applications the data matrices 
satisfy Karlin's condition, and it is appropriate to use any of the DEA 
models discussed above, and others as well. But in some applications 
some producers may use negative amounts of at least one input,  or 
may produce negative amounts of at least one output .  Examples of the 
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la t ter  case include Lovell (1994) and Pastor (1993c). Wha t  can be done 
in these circumstances? 

To answer this question I use the not ion of translation invariance, 
which I use to summarize  the results of Ali and Seiford (1990) and Pastor  
(1993a,b). By t ranslat ion I refer to affine displacements of the input  and 
o u t p u t  vectors by means of ~i = xi + a,  a >_ O, and ~i = yi + ~, /3 >_ 
0, i = 1 , . . . ,  I ,  so as to el iminate zero or negative values tha t  may exist 
in x i and yi. Thus  ~,i �9 ~ +  , yi �9 ~M+ , i = 1 , . . . , I .  

Proposition 6. The constant returns to scale CCR envelopment 
models (3.3) and (3.6) are not translation invariant. Producers judged 
technically efficient using (x, y) data can be judged technically inefficient 
using (~, ~) data, and vice versa. Rankings of  producers are not invariant 
to the transformation. 

Proof. The  input-or iented CCR envelopment  model  (3.6) with 
t ransla ted da ta  (~, ~) has functional  constraints 

Ox O - X ~  - (eT )~ - O)a > 0 

_yO + y ~  + (eTA _ 1)/~ > 0, 

which differs from the constraint  set in (3.6) unless eT/~ = 1 and 0 = 1. 
The  same procedure can be used to show tha t  the output -or iented  CCR 
envelopment  model  (3.3) with da ta  (2, ~) has a different constraint  set 
than  tha t  in (3.3). �9 

P r o p o s i t i o n  7. The variable returns to scale B C C  and FDH en- 
velopment models (4.3), (4.6) and (6.1) are translation invariant in a 
limited sense. Input- (output-) oriented models are invariant to output 
5nput)  translation. Input (output) translation in an input- (output-) 
oriented model generates the same classification of  producers as efficient 
or inefficient, but the ranking of inefficient producers is not invariant 
to the translation. The first part of the second condition also requires 
nonnegative inputs (outputs) and at least one positive input (output). 

Proof. The  input-or iented BCC and FDH envelopment  models with 
t ransla ted da ta  (2, .~) have functional  constraints 

Oz ~ - X,~ - (1 - O)a >_ 0 

_yO + y)~ >_ O. 
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Thus these models are output  translation-invariant, but  not input  tran- 
slation-invariant. The classification of producers as efficient or inefficient 
is invariant to input  translation, but the ranking of inefficient producers 
is sensitive to the translation. The proof for output-oriented models is 
similar. �9 

The conclusion is that  if data must be translated to eliminate zeros 
or negative values in the data matrices, the constant returns to scale 
CCR models are inappropriate. The variable returns to scale BCC and 
FDH models are invariant to translation of either inputs or outputs ,  de- 
pending on the orientation, but if both inputs and outputs  are translated 
the invariance property is restricted to the classification of the producers 
as efficient or inefficient. The ranking of inefficient producers is invariant 
to output  (but not input) translation in input-oriented models, and to 
input  (but not output)  translation in output-oriented models. 

8.2. Incorporat ing  N o n - D i s c r e t i o n a r y  Variables  

Thus far I have assumed that  all N inputs and all M outputs  are freely 
variable, and I have measured technical efficiency in terms of the ability 
of producers to adjust all inputs, or all outputs ,  or all variables, equipro- 
portionately. However in practice some inputs or some outputs  may be 
temporarily fixed, or non-discretionary. I now follow Banker and Morey 
(1986) to show how to incorporate non-discretionary variables into a 
DEA analysis. Extensions of this approach are provided by Golany and 
Roll (1993). 

Suppose that  all M outputs  are freely variable, and partition the 
N inputs into V variable inputs x v  E IRv+ and N - V = F fixed inputs 
XF E ]RN+ v. Then the input-oriented variable returns to scale BCC 
envelopment problem becomes 

0 0 T E I ( x v , x F ,  y ~ = min0 (8.1) 
6,), 

subject to 
Oz~ - X v  ~ > o 

z~ - XF,~ > 0 

_yO + y )~ >_ 0 

A > 0  

eTA = 1, 
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which should be compared to problem (4.6), in which all N inputs are 
discretionary. In problem (8.1) the objective is to radially contract only 
discretionary inputs, while maintaining the constraints that fixed inputs 
not fall short of a convex combination of fixed input usage in the sample. 
Thus in the envelopment problem (8.1) fixed inputs continue to play a 
role in the analysis, although a somewhat diminished role since they are 
no longer discretionary. 

Since the optimal solution for problem (4.6) is necessarily feasible 
for problem (8.1), but the optimal solution for problem (8.1) is not 
necessarily feasible for problem (4.6), it follows that at optimum 8(8.1) _< 
8(4.6) _< 1. This can be seen in Figure 1, where 8 C < 8 C < 1 if input Xl 
is treated as discretionary and input x2 is treated as non-discretionary. 

The inclusion of non-discretionary outputs in the input-oriented 
BCC envelopment model (4.6) is straightforward. The problem requires 
no alteration whatsoever, although any slacks in nondiscretionary out- 
puts (or inputs, for that matter) must be interpreted differently since 
they no longer constitute a component of overall inefficiency. 

8.3.  E n v i r o n m e n t a l  Variables  

I now consider how to incorporate variables that are neither inputs to, 
nor outputs of, the production process. Nonetheless they are thought 
to influence performance, and should be incorporated into the analysis. 
Such variables are exogenous, and they can be either continuous or cate- 
gorical. An example of the former is population density. An example of 
the latter is type of ownership, public or private. There are several ways 
of incorporating these environmental variables into a DEA analysis. 

Let z i E It+ , i = 1 , . . . ,  I be a discrete or continuous environmental 
variable, and assume that larger values of z i are preferred to smaller 
values. If it is desired to evaluate the productive efficiency of a producer 
relative to the subset of producers having no more (no less) favorable 
environments, then all that is required is to restrict the comparison set 
to those producers having no more (no less) favorable environments. 
The comparison set then consists of the set of producers indexed by 
j0 = {i = 1 , . . . , I  : z i _< (>)z~ The size of the comparison set j0 
generally differs for each producer being evaluated. This procedure can 
be applied to any of the DEA models proviously discussed. For example, 
the output-oriented variable returns to scale BCC envelopment problem 
becomes 

T E o ( y  ~ , x ~ z ~ = maxr  (8.2) 
~,~J 
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subject to 
- x  ~ + X j ) ~ j  <_ 0 

CyO _ y j ) , j  < 0 

�9 ) ~ j > O  

e T  ) t j  ~- 1, 

where Aj is (j0 x 1), j0 being the number of producers with no more (no 
less) favorable environments than that of the producer being evaluated. 
Similarly, X j  is (N x j0)  and Y j  is (M x j o ) .  The reduced dimensionality 
of the problem reflects the restricted comparison sets relative to which 
producers are evaluated. 

In the above formulation there is a natural ordering of the vari- 
able characterizing the operating environment. This is not always the 
case. Suppose that z i = (private, public), i = 1 , . . .  , I .  Since it is not 
clear which type of ownership is more conducive to operating efficiency, 
the approach outlined above cannot be implemented. The following 
approach, developed by Charnes, Cooper and Rhodes (1981), is appro- 
priate when the effect of a categorical environmental variable is to be 
determined rather than known in advance. (1) Partition the data set 
into two mutually exclusive and exhaustive subsets by type of owner- 
ship. (2) Solve two DEA problems separately, one for private producers 
and the other for public producers. (3) Project all private producers to 
the private production frontier, and do likewise for all public producers. 
This step eliminates managerial inefficiency in both sectors. (4) Solve a 
DEA problem on the merged, managerially efficient, data set consisting 
of all producers, public and private. The effect of ownership on per- 
formance is determined by the efficiency scores of private and public 
producers in this second stage. 

An alternative approach to the incorporation of environmental vari- 
ables, the direction of whose impact is unknown in advance, has been 
developed by Grifell, Prior and Salas (1992). If z i E ~ +  , i = 1 , . . .  ,I, 
is an environmental variable whose influence on productive efficiency 
is to be determined, the output-oriented variable returns to scale BCC 
envelopment problem becomes 

T E o ( y  ~ , x ~ , z ~ = max r (8.3) 
4~,), 
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subject to 
- x  ~ + X ~  < 0 

Cy0 _ yA < 0 

z ~ - zT~  = 0 

~>_0 

eT,,~ = 1, 

the multiplier dual to which is 

min v T x  0 + w z  0 + v .  (8.4) 
UlVlWlV* 

subject to 
u r  y ~ = 1 

vT x -- u T y  + wT z + v ,  >_ 0 

u , v >  0 

w, v,free. 

The envelopment problem (8.3) has (N + M + 2) constraints and ( I +  1) 
variables, while the multiplier problem (8.4) has ( I  + 1) constraints and 
(N + M + 2) variables. The sign of the free multiplier w associated with 
the added equality constraint (z ~ - zTA = 0) determines whether the 
environmental variable enhances or inhibits the performance of the pro- 
ducer being evaluated. The impact may be positive for some producers 
and negative for others, suggesting that the magnitude of z may be too 
small for the former and too large for the latter. 

A potential difficulty with the approach embodied in the envelop- 
ment problem (8.2) is that restricting the comparison set may generate 
an undesirably large number of producers being judged efficient. This 
problem is likely to be much more serious in the approach embodied in 
the envelopment problem (8.3). One way of circumventing this prob- 
lem is to adopt a two-stage approach. In the first stage efficiencies are 
calculated using a DEA model in which the environmental variables 
are ignored. In the second stage variation in calculated efficiencies is 
attributed to variation in operating environments by means of a regres- 
sion model of general form 0 i = f ( z  ~) + e i, i = 1 , . . .  , I .  Dimensionality 
is not reduced in this approach, and estimated regression coefficients 
provide information on the direction and magnitude of the effects of the 
environmental variables on productive efficiency. Details and extensions 
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of this two-stage approach appear in Fried, Lovell and Vanden Eeckaut 
(1993). 

9. C H A N C E - C O N S T R A I N E D  D E A  

DEA is non-stochastic, and relies heavily on the accuracy of the underly- 
ing data. Although conventional linear programming sensitivity analysis 
is available for testing the sensitivity of DEA results to perturbations in 
the data, it is desirable to have a stochastic DEA technique. The appli- 
cation of chance-constrained programming techniques to DEA models 
represents one strand of research directed to this end. Initial efforts to 
build a chance-constrained DEA are reported in Land, Lovell and Thore 
(1993) and Olesen and Petersen (1993). Here I outline the former model, 
but it should be noted that the Olesen and Petersen model is quite dif- 
ferent, and joint work is underway seeking to reconcile the two different 
formulations. 

The following developments are based on the input-oriented variable 
returns to scale BCC model, but they can equally well be based on the 
other DEA models. Suppose that the evaluator is uncertain about the 
accuracy of the data used to measure the efficiency of the producers 
in the sample. This uncertainty suggests the use of chance-constrained 
programming techniques, in which case the envelopment problem (4.6) 
can be rewritten as 

T E i ( x ~  ~ = min~ (9.1) 
0,), 

subject to 
Pr((Ox ~ - XA) >_ O) >_ PN 

P r ( ( - y  ~ Jr YA) >_ O) ~_ PM 

A > 0  

eTA = 1, 

where PM and PN are (M • 1) and (N • 1) vectors of probability lev- 
els. The interpretation of problem (9.1) is as follows. The evaluator's 
objective is to radially contract x ~ as much as possible, subject to the 
constraint that the technically efficient projection (Ox ~ y0) "probably" 
be feasible relative to the best practice frontier constructed from the 
sample data. Because of uncertainty about the accuracy of the sample 
data, however, the evaluator is uncertain about the exact placement of 
the frontier. Consequently the prudent evaluator allows for the possibil- 
ity that the best practice feasibility constraints might be violated some 
(small) percentage of the time. 
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Next, assume tha t  yi m is a randomly dis tr ibuted normal  variable 
with expecta t ion Eyim and covariance matr ix  C O V ( y ~ , y J ) ,  and tha t  

i is a randomly distr ibuted normal  variable with expectat ion Exim X n 

and covariance matr ix  COV(z~ ,xJ ) .  Note tha t  covariances are among 
producers.  Following Charnes and Cooper (1963), problem (9.1) can be 
converted to certainty-equivalent form 

TEi(x~ ~ = rain0 (9.2) 
0,)~ 

subject  to 

Ox ~ - X)~ >_ (EX - X)A + F- ' (PN)ZX 

_yO + y s  >_ - ( E Y  - Y)A + F-I(pM)P,y 

~>_0 

eT)~ = 1, 

yhe re  F( . )  is the distr ibut ion function of the s tandard  normal  distribu- 
t ion and [•177 ( ,:)]1/2 

E x  = c~iajCOV x~,x 
" i = l  j = l  

Ey = aiajCOV(yim,y 
i = l  j = l  

with c~i = hi for all i ~ 0, and ai  = (A0 - 1) for i = 0. The  constraint  
set in (9.2) is convex only if PN ~ 0.5, PM >_ 0.5. 

Problem (9.2) is a chance-constrained formulat ion of the input-  
oriented BCC envelopment problem. Problem (9.2) modifies best prac- 
tice technology in two ways. It adjusts best practice s tandards  by intro- 
ducing N + M two-sidedterms, ( E X - X )  and - ( E Y - Y )  respectively, to 
reflect the fact tha t  observed values of X and Y might  depart  f rom their  
respective expected values. These terms vanish i f X  = E X  and Y = EY. 
It also relaxes best practice s tandards  by int roducing N + M one-sided 
contingency terms,  F-I(PN)EX and F-I (pM)Ey  respectively. These 
terms reflect the variation, and the covariation across producers,  of in- 
puts  and outputs .  They vanish if either E x  = 0, E y  = 0 or PN = 
0.5, PM = 0.5. Otherwise, for PN > 0.5, PM > 0.5, F-I(pN)EX >_ 0 
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and F - I ( P M ) E y  >>_ 0, and these two contingency terms relax best prac- 
tice standards. Thus the chance-constrained formulation (9.2) collapses 
to the BCC DEA model (4.6) under either of two sets of conditions: (i) 
X = E X ,  Y = E Y  and E x  = O, E Y  = O, or (ii) X = E X ,  Y = E Y  
and PN = 0.5, PM ---- 0.5. 

The chance-constrained problem (9.2) is a nonlinear programming 
problem; that  is part of the price to be paid for introducing a stochastic 
element into the efficiency measurement exercise. Another price to be 
paid is the extra information that  must be supplied by the evaluator. 
In addition to information on (X, Y), the evaluator must provide infor- 
mation on E X ,  EY ,  E x ,  Ey,  PN and PM. This information can be 
deduced from previous data generated by the producers in the sample, 
or from expert judgement supplied by inside sources. 

10. C O N C L U D I N G  R E M A R K S  

As public and private organizations face increasingly competitive envi- 
ronments,  and as all levels of government encounter growing fiscal diffi- 
culties, the at tainment  of high degrees of productive efficiency becomes 
increasingly imperative. The objective of this paper has been to discuss 
the measurement of productive efficiency, and to survey one of several 
approaches to the empirical implementation of efficiency measurement. 
The basic ideas are laid out in section 2, where I analyzed technical, 
allocative and economic efficiency, and the conditions under which each 
type of efficiency is an appropriate yardstick against which to measure 
producer performance. 

One operations research technique that  has been developed for this 
purpose is DEA, which since its inception in 1978 has envolved from a 
single linear programming model to a large and still growing family of 
mathematical  programming models. In section 3 I analyzed the basic 
DEA model, which consists of a dual pair of linear programs, a multiplier 
problem and an envelopment problem. The solutions to these problems 
provide, for each producer, a measure of technical efficiency, the identity 
of all technically efficient role models, and normalized shadow prices of 
all inputs and outputs.  

The basic DEA model of section 3 imposes restrictive conditions 
on the structure of technology. In sections 4-6 I showed how the basic 
DEA model can be generalized to allow for variable returns to scale, 
weak disposability of some inputs or some outputs,  restrictions on nor- 
malized shadow prices, and non-convexities in production. In section 7 
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I analyzed translation invariance of some DEA models, and I showed 
how DEA models can be modified to incorporate non-discretionary in- 
puts and outputs  and environmental variables that  are neither inputs 
nor outputs ,  but which may influence producer performance. Finally, in 
section 9 I outlined a chance-constrained DEA model whose objective is 
to incorporate a stochastic element into what is essentially a determin- 
istic evaluation methodology. 

My overview of DEA has been brief, and selective. I have a t tempted  
to offset some of the brevity with references to the relevant literature, 
where the topics I have explored are covered in more detail. I now 
address the selectivity of my survey, by way of reference to some omitted 
topics. 

I have not discussed additive DEA models, preferring instead to 
concentrate on oriented models. Additive DEA models were introduced 
by Charnes et al. (1985a), and are discussed in detail in Charnes et 
al. (1994). I have ignored approaches other than chance-constrained 
programming to the problem of noise in the underlying data. The use 
of sensitivity analysis is discussed by Charnes et al. (1985b), and by 
Charnes and Neralic (1989a, 1989b,1992). The use of bootstrapping 
techniques to develop confidence regions for efficiency scores is discussed 
by Simar (1992) and Wilson (1994). I have not discussed the use of DEA 
and FDH in a panel data context. One approach to the use of DEA in 
this context is "window analysis", which is discussed in Charnes et al. 
(1994). Another approach to the use of DEA in this context is to con- 
struct a Malmquist productivity index, which can be decomposed into 
separate measures of technical change, technical efficiency change, the 
bias of technical change, and scale economies. This literature began 
with Fs et al. (1989), and has been extended by Grifell and Lovell 
(1993a,1993b). I have not mentioned any of the myriad of empirical 
applications of DEA that have appeared in management  science, eco- 
nomics and other fields. DEA is a family of techniques whose use has 
spread to virtually all applied areas in these disciplines and any effort 
to summarize the empirical DEA literature would require a separate 
survey. An extensive but incomplete bibliography appears in Charnes 
et al. (1994); complementary bibliographies appear in Fs Grosskopf 
and Lovell (1994) and Fried, Lovell and Schmidt (1993). Finally, I have 
not discussed software. In addition to such general purpose software 
as LINDO, SAS and GAMS, several specialized DEA software packages 
have appeared in recent years. 
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I conclude this survey with some brief conjectures on where future 
research effort might pay large dividends. In my judgement three ar- 
eas are relatively underdeveloped, and warrant greater attention. One 
problem to which I have already alluded is the development of a stochas- 
tic DEA, which can incorporate measurement error and other sources of 
noise that  inevitably contaminate the data used to implement DEA. Un- 
til a stochastic DEA is developed, statisticians and econometricians will 
remain skeptical of the managerial and policy implications drawn from 
DEA. A second problem concerns the development of a second-stage re- 
gression model designed to associate DEA efficiency scores with other 
measurable variables that  are either under the control of management 
or exogenous at the level of observation. Better yet would be a simulta- 
neous system of second-stage regression equations designed to associate 
DEA slacks (radial plus non-radial) with explanatory variables. Initial 
efforts in this direction seem promising: see Fried, Lovell and Vanden 
Eeckaut (1993). A third area in which additional effort would pay divi- 
dends concerns the nature of the relationship between DEA practitioners 
and their subjects. Too often producers are narrowly viewed as sources 
of the data  upon which their performance is to be evaluated. Too rarely 
are producers viewed more broadly as sources of post-analysis informa- 
tion, which might lead to a modified DEA model and to a more reliable 
performance analysis. There are examples of such post-analysis inter- 
action, of course, but an increase in the utilization of such interaction 
would surely enhance the acceptance of DEA as a valuable policy and 
management  performance evaluation technique. 
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DISCUSSION 

Shawna Grosskopf 
Southern Illinois University 

Knox Lovell's overview of linear programming approaches to measur- 
ing and analyzing performance was intentionally selective, focusing on 
those models which have proved most useful in operations research ap- 
plications. These were then presented in light of their (1) accuracy in 
representing the structure of the underlying technology, (2) accuracy in 
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guaging performance, (3) sensitivity to imperfect data, and (4) data re- 
quirements. He has succeeded admirably in making accesible what has 
become a very large, and increasingly technically demanding literature. 

Since the author has succeeded so admirably at his task, it leaves the 
discussant with little to discuss. That being the case, I have decided to 
take a different slant. Since I came to the efficiency measurement world 
as an economist rather than from the world of operations research, I 
propose to add a brief selective guide to some of the economics literature 
that relates to efficiency measurement 1. In fact, one could argue that 
the intellectual property rights to this topic could very well be shared 
between economics and operations research. 

Obviously, economists have been concerned with various notions of 
efficiency for a very long time. As mentioned in the overview, Koop- 
marts provides one widely accepted definition, which is also attributed 
to Pareto. Those associated with the operations research approach to 
efficiency measurement using DEA have spent a great deal of effort try- 
ing to modify the standard "radial" problems as summarized in (3.2) 
and (3.3) to identify as efficient only those observations that satisfy 
Pareto-Koopmans efficiency. This has proved to be difficult in the lin- 
ear programming framework because of the likelihood of projections to 
"flat spots", i.e., segments of the reference technology in which there 
remains output or input "slack". Economists can provide several solu- 
tions to this problem. One is to ignore the technical efficiency notion and 
introduce (strictly positive) prices and compute minimum cost (or max- 
imum revenue). Here prices serve the same purpose as the restrictions 
on normalized shadow prices discussed in section 5.2. Another alterna- 
tive is to calculate a "Russell efficiency measure", due to F/ire and Lovell 
(1978), which, in contrast to a radial technical efficiency measure, allows 
for nonradial contraction (expansion) of individual inputs (outputs), yet 
maintains independence of unit of measurement 2. 

An alternative to the Pareto-Koopmans definition of efficiency was 
credited to Debreu (1951) and Farrell (1957). These latter names were 
associated with the "radial" definition of technical efficiency which is 

1This brief s u m m a r y  borrows from several  jo int ly  authored works including Fhre, 

Grosskopf and Lovell (1985,1994), Fhre and Grosskopf (1993), and Chambers, F/~re and 

Grosskopf (1994) 

2The input-oriented Russell measure may be written as R i ( y ,  x )  = min{EN=l 
An~N: e L ( y ) ) ,  where �9 positive. 
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most commonly used in DEA. We could also add several more names 
here, including Shephard (1953) and Malmquist (1953), Debreu, Shep- 
hard and Malmquist all employed "distance functions": Debreu to mea- 
sure welfare loss of economic waste, Shephard to represent technology in 
an axiomatic production theoretic framework, and Malmquist to develop 
quantly indexes. As it turns out, these distance functions are equivalent 
to Farrell's measure of technical efficiency 3. To see this, consider the 
definition of Shephard's input distance function: 

D,(y ,x)  = sup{A: x/A e L(y)}, (1) 

which is the reciprocal of TEl (x ,  y) in Definition 3. 4 

Since 

Di(y,x)  >_ 1 ~ x e L(y) 

Di(y ,x)  = 1 r x e Isoq L(y), 

(2) 
(3) 

it follows that the distance function completely describes technology, 
and simultaneously provides a very useful measure of deviations from 
frontier performance or technical efficiency. 5 

The distance function has even more to offer the analyst. One of 
Shephard's fundamental contributions to economics and operations re- 
search is his explication of the duality between cost and input distance 
functions. 6 This provides theoretical underpinning for the Farrell decom- 
position of cost efficiency. The various derivative properties (Shephard- 
type lemmas) also provide convenient ways of retrieving shadow prices, 
input demands, etc., when such information is not available directly. 

In his 1970 book, Shephard also showed how activity analysis could 
be used as a computational tool. Following von Neumann (1938,1945) 

3Distance functions have long proved useful in mathemat ics ,  where they are known 

also as gauge functions,  see Newman (1987). 

4The Shephard (1974) output  distance function is similarly reciprocal to TEo(y, x) 
in Definition 4. 

5Distance functions have also proved useful in applications to consumer  behavior, 

and public finance, see Deaton (1979). 

6He also later developed the duality between revenue and output  distance func- 

tions, as well as introducing restricted (cost and revenue constrained) variations on these 

functions.  
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and Karlin (1959) he specified "piecewise linear" representations of tech- 
nology, which are identical to the "envelopment" problem constraints 
used in DEA today/  

Others recognized the usefulness of these approaches. To my knowl- 
edge, Boles (1966) was the first to use linear programming to solve the 
Farrell technical efficiency problem. Afriat (1972) showed how to al- 
low for variable returns to scale in the activity analysis approach. He 
also pioneered what I would call the "regularity test" literature, which 
employs linear programming tests of consistency of data which clas- 
sical production and demand functions. Afriat clearly recognized the 
link to efficiency measurement. Related work on the production side 
includes Vaxian (1984), Diewert and Parkan (1983), and Hanoch and 
Rothschild (1972). More recent applications include work by Chavas 
and Cox (1990). Of course, the link between the fractional program- 
ming formulation of performance to the linear programming problem a 
la Farrell was provided by Charnes, Cooper and Rhodes (1978). 

Returning to the distance function we note that the mathematical 
properties of the distance function make it extremely useful as an ag- 
gregator function and therefore building block for index numbers, s This 
brings us back to Malmquist, who recognized that the distance function 
could serve to construct "nice" quantity indexes. This idea was later ex- 
ploited by Caves, Christensen and Diewert (1982) to construct the "the- 
oretical" Malmquist productivity index as ratios of distance functions. 9 
Fs Grosskopf, Lindgren and Roos (1992) recognized that the "the- 
oretical" index proposed by Caves, Christensen and Diewert could be 
calculated by exploiting the equivalence between distance functions and 
Farrell technical efficiency measures, i.e. they used linear programming 
techniques to calculate the component distance functions. TM Since dis- 
tance functions require only data on input and output quantities, the 

7The pr imal  and dual linear p rog ramming  formulat ions  of the revenue maximiza t ion  

and cost minimizat ion problems were included in his 1970 book. He also exploited resul ts  

by Morgens te rn  and T h o m p s o n  which allowed for inclusion of zeros in the data. Zeros 

are allowed as long as there is at least one nonzero in each row and column of the da ta  

matr ix .  For the envelopment  problem this implies tha t  each input  (ou tpu t )  must  be used 

(produced)  by at least one decisionmaking unit,  and each decisionmaking unit  uses at least 

one input  to produce at least one output .  
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Malmquist index allows calculation of productivity even in the absence 
of information on input and output price or share data. 

I have ended up back where those in operations research began-with 
the problem of evaluating performance even without the economist's 
measuring sticks derived from prices: profit, cost, revenue. That is 
probably the most fundamental contribution of the efficiency measure- 
ment literature. Nevertheless, it is useful to keep in mind the notions of 
optimization to inform us in choosing a sensible setup of the efficiency 
measurement problem, whether input or output oriented, primal or dual. 
Also, we owe a great debt to Shephard (whom I claim as an economist at 
heart, but who spent many years leading Berkeley's operations research 
department), who provided us with a rigorous axiomatic framework to 
production theory which informs us as to the properties we are imposing 
on technology and also allows us to exploit his duality theory to reveal 
the structure of technology. 

References  

Afriat, S. (1972). Efficiency Estimation of Production Functions. 
International Economic Review, 13,568-98. 

Boles, J.N. (1966). Efficiency Squared-Efficient Computation of 
Efficiency Indexes. Proceedings of the Thirthy-Ninth Annual Meeting 
of the Western Farm Economics Association. 

Caves, D., L. Christensen and E. Diewert (1982). The Economic 
Theory of Index Numbers and the Measurement of Input, Output 
and Productivity. Econometrica 50, 1393-1414. 

Chambers, R., R. Fs and S. Grosskopf (1994). Efficiency, Quantity 
Indexes and Productivity Indexes: A Synthesis. Bulletin of 
Economic Research 46:1, 1-22. 

8For the input distance function some of these properties include homogeneity of 

degree plus one in inputs,  quasiconvexity in outputs ,  concavity in inputs.  See F~re (1988) 

for a discussion of properties of both input and output  distance functions.  See F~re and 

Grosskopf (1994) for a discussion of indirect distance functions and their properties. 

9Following the terminology of Diewert (1976), distance functions are perfect aggre- 

gator functions yielding index numbers  tha t  are "exact".  

10Some progress has been made on employing econometric techniques to es t imate  

distance functions.  F~re, Fukuyama and Pr imont  (1985) were the first to my knowledge 

to show how one may exploit the homogeneity of the distance function in order to easily 

es t imate  it using OLS. Others,  including Grosskopf and Hayes (1993) have used composed 

error models to es t imate  distance functions.  



Linear  Programming approaches to the measurement . . .  229 

Chaxnes, A., W. Cooper and E. Rhodes (1978). Measuring the Efficiency 
of Decision Making Units. European Journal of Operational 
Research, 429-44. 

Chavas, J.P. and T.L. Cox (1990). A Nonparametric Analysis of 
Productivity: the Case of U.S. and Japanese Manufacturing. 
American Economic Review 80, 450-64. 

Deaton, A. (1979). The distance Function in Consumer Behaviour with 
Applications to Index Numbers and Optimal Taxation. Review of 
Economic Studies 46, 391-405. 

Debreu, G. (1951). The Coefficient of Resource Utilization. Economet- 
rica 19, 273-292. 

Diewert, E. (1976). Exact and Superlative Index Numbers. Journal of 
Econometrics 4, 115-45. 

Diewert, E. and C. Parkan (1983). Linear Programming Tests of 
Regularity Conditions for Production Functions. Quantitative 
Studies on Production and Prices, ed. W. Eichhorn, R. Henn, K. 
Neumann and R.W. Shephard, Wiirzburg: Physica Verlag, 131-58. 

F~re, R. (1988). Fundamentals of Production Theory, Berlin: Springer- 
Verlag. 

Fs R., H. Fukuyama and D. Primont (1987). Estimating Returns 
to Scale via Shephard's Input Distance Function, mimeo, Southern 
Illinois University, Carbondale, IL. 

F~re, R. and S. Grosskopf (1994). Cost and Revenue Constrained 
Production, Bilkent University Lecture Series, Heidelberg: Springer- 
Verlag. 

Fs R., S. Grosskopf, B. Lindgren and P. Roos (1992). Productivity 
Changes in Swedish Pharmacies 1980-1989: A Nonparametric 
Malmquist Approach. Journal of Productivity Analysis 3:1/2, 85- 
102. 

F~re, R., S. Grosskopf and C.A.K. Lovell (1985). The Measurement of 
Efficiency of Production. Boston: Kluwer-Nijhoff Publishing. 

F~re, R., S. Grosskopf and C.A.K Lovell (1994). Production Frontiers. 
Cambridge: Cambridge University Press. 

F~re, R. and C.A.K. Lovell (1978). Measuring the Technical Efficiency 
of Production. Journal of Economic Theory 19:1,150-62. 

Farrell, M.J. (1957). The Measurement of Productive Efficiency. 
Journal of the Royal Statistical Society, Series A, General 120:3, 
253-81. 

Grosskopf, S. and K. Hayes (1993). Local Public Sector Bureaucrats 
and Their Input Choices. Journal of Urban Economics 33, 151-166. 



230 C.A .K .  Lovell 

Hanoch, G. and M. Rothschild (1972). Testing the Assumptions 
of Production Theory: A Nonparametric Approach. Journal of 
Political Economy 80, 256-75. 

Karlin, S. (1959). Mathematical Methods and Theory in Games, 
Programming and Economics, Reading, MA: Addison-Wesley. 

Malmquist, S. (1953). Index Numbers and Indifference Surfaces. 
Trabajos de Estadlstica 4, 209-241. 

Newman, P. (1987). Gauge Functions, in Atwell, J., M. Milgate and 
P. Newman eds. The New Palgrave: A Dictionary of Economics. 
London: MacMillan Press, 484-488. 

Shephard, R.W. (1953). Cost and Production Functions. Princeton: 
Princeton University Press. 

Shephard, R.W. (1970). Theory of Cost and Production Functions. 
Princeton: Princeton University Press. 

Shephard, R.W. (1974). Indirect Production Functions. Meisenheim am 
Glan; Verlag Anton Hain. 

Varian, H. (1984). The Nonparametric Approach to Production 
Analysis. Econometrica 52,579-99. 

Von Neumann, a. (1938-1945). Uber ein 5konomisches Gleischungssys- 
tern und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes, 
in K. Menger, ed. Ergebnisse eines Mathematischen Kolloquiums. 
Reprinted as "A Model of General Economic Equilibrium". Review 
of Economic Studies 13:1, 1-9. 

Eduardo Ley 
Universidad Carlos III de Madrid, University of Michigan 

It is both a great honour and pleasure to discuss this excellent survey 
of linear-programming efficiency measurement methods by one of the 
significant contributors to the literature. The author provides us with 
an enjoyable guided tour of the different methods and techniques used to 
assess the relative efficiency of decision units. This is a most important 
paper which I hope that will prompt many rigorous theoretical and 
applied work in this area in Southern Europe. 

Little can be added to the masterful review of the linear-program- 
ming methods. Therefore, I will take here the Econometrician's stand 
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usual disclaimer applies. 
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and focus on two issues which I believe are of crucial importance and 
should attract more research effort in the future. Namely, (i) accomodat- 
ing stochastic error, and (ii) the relationship between virtual multipliers 
and prices. 

1. S t o c h a s t i c  Error 

As Professor Lovell notes, the parametric approach to efficiency estima- 
tion assumes particular parametric form for, e.g., the production func- 
tion, adds a onesided random error reflecting the presence of technical 
inefficiency in the production process, and, in the case of a stochastic 
frontier, a second random component reflecting the effects of noise, mea- 
surement error, mode1 misspecification and exogenous shocks. 1 On the 
other hand, the nonparametric approach -which is the focus of Lovell's 
paper- doesn't  assume any specific form for the production function but 
envelops the sample data by the smallest convex strong-disposal hull that  
satisfies a list of conditions. Since very little structure is imposed on the 
data this approach is unable to accommodate stochastic elements in a 
satisfactory way. This inability to accommodate random noise makes its 
results very sensitive to measurement error and model misspecification. 
There have been various at tempts to combine the functional flexibility 
of the nonparametric approach with the ability of handling statistical 
noise. 

Banker and Maindiratta (1992) and Banker (1993) have a t tempted  
to lay some statistical foundations for DEA. Assuming a monotonically 
decreasing density function for the deviation between actual and effi- 
cient level of output ,  Banker proves that  the DEA estimates of the best- 
practice monotone-increasing and concave production function are also 
maximum likelihood estimates. Since the number of incidental parame- 
ters to be estimated by DEA methods grows with the sample size, the 
usual statistical properties of the maximum likelihood estimators do not 
apply there. However, Banker manages to prove the consistency of the 
DEA estimates from first principles. Nevertheless, other properties of 
these estimators are uncertain and no estimates for their standard errors 
axe derived. Land, Lovell and Thore (1988,1993) use chance-constrained 
programing techniques to allow for uncertainty about the structure of 
the efficient production technology. They appeng the methods of chance- 
constrained programminng to the nonparametric deterministic frontier 

1This is an act ive field of research today (e.g., Lee (1993)) with a very i m p o r t a n t  

recent  con t r ibu t ion  f rom a Bayesian perspec t ive  by Broeck et el. (1994). 
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model. In addition to the usual input-output data, evaluator-supplied 
information concerning accuracy of the data and willingness to take 
risk are required. Furthermore, chance-constrained efficiency measure- 
ment continues to be deterministic: efficiency is calculated by means 
of nonlinear programming techniques and no parameters are actually 
estimated in the process. Ley (1992) presents an approach based on a 
stochastic specification in a linear activities context which allows the use 
of statistical techniques to estimate technological parameters. Minimal 
functional constraints are imposed, as in the DEA approach. At the 
same time, a composed-error specification is borrowed from the econo- 
metric approach to frontier estimation. While Ley's model might be 
useful to better understand the relationship between DEA and econo- 
metric stochastic frontier models it doesn't seem to offer yet a feasible 
alternative to practitioners. 

More research is needed in this area -the recent developments sur- 
veyed by Lovell where bootstrapping are used seem especially promising. 

2. Economic  Efficiency 

It is well known that one of the advantages of DEA is that no price 
data is needed. Should price data be available to the researcher, then 
appropriate frontiers (profit or cost) can be specified. For example, cost 
effiency for unit 0 is defined as 2 

c(Y~176 (1) CE(x o,yo,w o)_ w~ ~ 

that is, minimum feasible cost over actual cost (see section 7 in Lovell's 
paper). The problem is what to do when no price data is available. 

It is economic efficiency, in my opinion, which is the ultimate objec- 
tive of any policy-oriented efficiency-measurement study. I am using the 
term economic in a broad general sense, without restricting to profit- 
maximizing situations where market prices accurately reflect social op- 
portunity costs. I am aware that in many situations of interest there are 
no markets for some of the inputs or outputs, or when the markets exist, 
they might be distorted and the prices do not reflect social opportunity 
costs. Nonetheless, should the study be of any help in the design of 

2I will drop "T" superscr ipt  i n d i c a t i n g  transpose  in Lovell's  paper.  I will ins tead 

assume that  the  vectors  are of the  required d imens ions  -i.e., row or column- ~s needed.  



Linear Programming approaches to the measurement.. .  2 3 3  

public policy then the analyst must make an effort to provide answers 
with economic content. 

A firm might seem to be very inefficient as measured by, say, a non- 
radial input-reducing measure of technical efficiency but it might be 
in fact close to being economically efficient when prices are taken into 
account (for a similar point see Varian (1990)). In practical situations, 
it is unlikely that  we will be able to discover such "missclassifications". 
However, one should pay more attention to the values of the virtual 
multipliers. When an economist sees equation (3.1), 

/iX 0 
min - -  ~,~ #yO 

s.t. vx~/#y  ~ > 1, 

#, v > 0; 

Vi 

the first reaction is to relate v to the vector of input prices and # to the 
vector of output  prices. Even when these are not observable, still the 
analyst might be ready to postulate admissible regions for those vectors 
-e.g., the prices of one unit of input i shouldn't  be more than twice the 
price of input j-  or even a joint statistical distribution which would allow 
the analyst to get a distribution of the efficiency measures. 

Suppose that  you rank a number of firms using one of the measures 
of technical efficiency discussed in Lovell's survey. Assume further,  that  
price data  are not available or prices don't  reflect social opportuni ty 
costs. The analyst could specify a joint statistical distribution on social 
prices and sampling from it then re-evaluate the firms' ranking in the 
light of the economic efficiency measure. (For example, we might not 
be able to observe medical doctor's salaries at each individual hospital 
but we might be able to consult some national statistics, probably even 
broken by geographical region. We might also be willing to postulate 
that  nurses' salaries are, on average, say, 45% lower than MD's.) Ley 
and Varian are exploring along these lines with Spanish hospital data. 
Equation (1) becomes 

CE( O 
' wdoxO 

(2) 
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where the do superscript means that w has been drawn from the distri- 
bution of input prices specified for firm 0. One could look at the distri- 
bution of CE(x ~ y0, wdo) or simply focus on some descriptive statistics. 
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Jesfis T.  P a s t o r  
Universidad de Alicante, Spain 

When I asked Prof. Knox Lovell, on behalf of the Spanish Statistical 
and Operations Research Society (SEIO), to write an invited paper for 
our new born "Top" journal I was almost sure that he was going to 
accept our invitation. And he did. (My guess was an easy one; just 
have a look at his passport.) I am very much obliged to Prof. Lovell 
not only for undertaking our proposal but for the high standard of his 
paper. And this is not only mine but a general opinion: I am writing 
these lines after receiving the remaining "discussions". The quality of 
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his paper is reflected both in his capacity of synthesis and in his clarity 
for transmitting us his huge knowledge. In this way he has been able 
to expose the guidelines and the future trends of DEA, an operations 
research technique mainly based on linear programming with which the 
productive efficiency of decision making units can be measured. 

As host of Prof. Lovell in Alicante (Spain), where he presented the 
first version of his paper, I had the opportunity to discuss it directly with 
him. I have to recognize, with pleasure, that most of my suggestions are 
now incorporated in his final version. Some definitions have been added 
for making easier the reading for non-economists (such as the notions of 
strong disposability or of technologies homogeneous of degree a) as well 
as some needed references. 

It was delightful to hear Prof. Lovell talking about the origins of 
DEA, anticipating the seminal paper of Charnes, Cooper and Rhodes 
(1978)* by more than a decade in a paper written by an agricultural 
economist (Boles (1966)*), and this too now appears in his paper. 
No te .  The * accompanying a paper indicates that it will not be refer- 
enced here because it is already referenced in Lovell's paper or in our 
introductory paper. 

The paper presents some nonlinear programming problems, such 
as the one numbered (3.9) for measuring the hyperbolic technical ef- 
ficiency or the one numbered (5.2) for reducing undesirable outputs. 
In each case Prof. Love]] proposes a change of variables in order to 
transform the nonlinear program to a linear one. The reader must be 
aware that the transformed problems are not equivalent to the nonlinear 
ones, in the sense that they afford different optimal solutions. Generally 
speaking we have to be very cautious when changing variables. On the 
other hand, problem (3.9) can easily be solved if we resort to Proposi- 
tion 2 of Lovell's paper: first evaluate 0* by means of the CCR-input 
oriented model; then calculate 6" as the square root of 8" and substi- 
tute it in problem (3.9); finally, replace its objective function by the 
sum of slack and excess variables after changing their sign, and solve 
this new problem. The solution gives us the projected point as well as 
the values of excess and slack variables. (By the way, the last built up 
problem is an additive DEA model which has been mentioned in Section 
10.) Although, for the sake of brevity, Lovell does not mention it, the 
corresponding evaluation of the hyperbolic measure for the BCC model 
is not as easy as for the CCR model, and the corresponding nonlinear 



236 C . A . K .  Lovell  

problem can only be replaced by an iterative procedure which solves 
several linear programming problems. 

My last point is about a general comment I made to Prof. Lovell 
in Alicante and which, due to the scope of his paper, remains to be sat- 
isfied. I will try to do it now. As Prof. Lovell writes in his introduction 
"...the review is intended to inform practitioners in the field of manage- 
ment science, economics and public administration ...to draw inferences 
concerning producer performance, for the ultimate purpose of guiding 
business, economic or public policy". My feeling was (and remains to 
be) that a brief look at some published applications could shed some 
fight to the non-specialist reader about the ability of DEA to handle 
rather different problems. Here are some interesting applications I have 
selected; they are supposed to be among the initial contributions in their 
respective fields. 

1. Publ ic  and Pr ivate  Services  

1.1. Education 

The first paper which appeared within the DEA framework was the one 
by Bessent and Bessent (1980), in which they examined the relative 
efficiency of schools in the school district of Houston, Texas, resorting 
to the CCR model. It is worth mentioning the paper by Charnes et al. 
(1981)* in which they succeeded in comparing, at the secondary school 
level, two types of educational programs. (See Subsection 8.3 of Lovell's 
paper, devoted to environmental variables, for further comments.) Many 
more papers have appeared since then related to all educational levels. 

1.2. Health Care 

Sherman (1984) was the first to apply DEA for evaluating the perfor- 
mance of hospitals. The recent papers in this area deal not only with 
hospitals but with related health care areas (nursing homes, child-care, 
etc) and attempt to incorporate quality factors. 

1.3. Banking 

Sherman and Gold (1985) applied DEA for evaluating the operating 
efficiency of bank branches. The first paper comparing banks (Rangan 
et al. (1988)) and resorting to DEA appeared three years later. This area 
is nowadays a very active research field, where nonparametric techniques 
compete with parametric ones. 
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1.4. Administrative Units 

Lewin et al. (1982) were the first to study the efficiency of administra- 
tive units within courts in the U.S.. Marchand et al. (1984) published 
a book in which the first municipalities efficiency evaluation appeared 
(Belgium), resorting to non-convex DEA. Three years later, Thanas- 
sou]is et al. (1987) did the efficiency evaluation at rates departments in 
Great Britain. 

1.5. Transport and Related 

In the above mentioned Belgian book, the first paper devoted to urban 
transit can be found. Several years later, Adolphson et al. (1989) made 
a railroad property evaluation in the U.S., while Cook et al. (1990) 
studied the performance of highway maintenence patrols in Canada. 
Very recently Forsund (1992) studied the case of Norwegian ferries and 
Chang and Kao (1992) studied the five bus companies competing in 
Taipei city. 

1.6. Electric Utilities 

Thomas et al. (1985)*, studied the efficiency of regulated electric distri- 
bution utilities in Texas, U.S.; a subsequent study is due to Charnes et 
al. (1989)*. For further references, see [Lovell and Pastor (1994)]. 

1.7. Location 

A startling study was developed by Thompson et al. (1986) for eval- 
uating six possible locations for building a high energy supercollider. 
Recently, Kao and Yang (1992) apphed DEA in order to reorganize 
forest districts in Taiwan. Finally, Desai et al. (1994) evaluated the 
performance of the public liquor outlets in the state of Ohio, U.S.. 

2. Industrial Applications 

Byrnes et al. (1984) were the first to study the productive efficiency 
of the Illinois strip mines. A second study (Byrnes et al. (1988)) eval- 
uated the U.S. surface mining of coal and the effects of unions on it. 
Recently, Ray and Kim (1991) evaluated the cost efficiency of the U.S. 
steel industry. 

Ferrantino and Ferrier (1991) were the first to study the activity of 
Indian sugar plants, while Thompson et al. (1992) evaluated the U.S. 
independent oil/gas producers over time. 
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In Great Britain, Smith (1990) evaluated the financial performance 
of a sample of pharmaceutical firms, while Norman et al. (1991) studied 
the branch performance of the Anglia Building Society. 

An interesting study from the consumer point of view is the one by 
Doyle and Green (1991), where they evaluate the quality of 27 computer 
printers. Another interesting study is the one by Thompson and Criswell 
(1993) where they compared five electric power technologies (considering 
undesirable outputs).  

3. M a c r o e c o n o m i c  P e r f o r m a n c e  

Lovell (1994)* was the first to make a non-convex DEA macroeconomic 
analysis, comparing 10 Asian countries. Fs et al. (1994) evaluate the 
productivity growth and the efficiency change over a set of 17 OECD 
countries with panel data for a 10 year period. 

4. Spanish Contr ibut ions  

The still modest Spanish contribution in the DEA field is experiencing 
a considerable growth in the last few years. The paper by Ley (1991), 
devoted to the evaluation of the Spanish hospitals during a five year 
period, may be considered as our starting point. Other papers, ones by 
Grifell-Tatj6 and others by myself are referenced in Lovell's paper. Of 
course, there are more papers coming up; my wish is that  we are able to 
make an effort in order to reinforce our presence within the international 
scientific community. 

The above list of papers is by no means exhaustive, nor does it cover 
all the fields where DEA has been applied. For instance, a considerable 
number of papers already have been published in Education, Health Care 
and Banking. Nevertheless, we hope our list is illustrative enough of the 
power of this new technique. The interested reader may consult the 
books of Charnes et al. (1994)* and of Fried et al. (1993)* where many 
more references are listed and where several applications are shown. 

Last I would like to acknowledge the moral and financial support 
I received both from the SEIO and from the Editors of Top, which 
made possible the invitation to such an outstanding scholar and the 
publication of his DEA paper. 
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Diego P r i o r  
Departament de Economia de la Empresa, 
Universitat Autonoma de Barcelona, Spain 

Over the last fifty years or so, considerable intellectual resources have 
been invested in the measurement and analysis of efficiency. In this 
field, both the methodology of efficiency measurement and the numerous 
applications that have been made using Data Envelopment Analysis 
(DEA) includes approximately four hundred items in a bibliography 
compiled by Seiford (1992); Professor Lovell accounts the existence of a 
myriad of empirical applications of DEA. This is because it is possible 
to generalize and expand the traditional partial productivity measures 
(Output/Input) ,  adding the multidimensional aspect of both the outputs 
and inputs of different firms or other productive organizations. On the 
other hand, it can be said that DEA is really becoming a useful tool 
integrated in a managerial system for periodic assessment. 

The existent literature requires periodically an important task of 
compilation t h e  s t a t e  of  t h e  a r t  of this field. At the moment, we 
have suggestive landmarks such as the following works: Fgre, Grosskopf 
and Lovell (1985)*, Lewin and Lovell (1990)* and more recently Fried, 
Lovell and Schmidt (1993)* and FS~re, Grosskopf and Lovell (1994)*. 
Obviously, Professor Lovell plays an important role in the advancement 
of production efficiency analysis. 
No te .  The * accompanying a paper indicates that it will not be refer- 
enced here because it is already referenced in Lovell's paper. 

In this paper, Professor Lovell presents a stimulating overview of 
DEA models, as well as the different notions of efficiency and the de- 
composition into their allocative and technical components. The reader 
will find a comprehensive explanation of linear programming models and 
their primal dual representations; after this he offers some extensions of 
basic formulations: weak disposability, constrained multiplier weights, 
non-convex technology, translation invariance, non-discretionary and en- 
vironmental variables, concluding with the introduction of stochastic 



242 C . A . K .  Love l l  

DEA models (a fertile area of future research). Professor Lovell says 
that his overview is brief and selective, and it can be added that it is 
correctly and adequately organized. 

It is obvious that research in frontier analysis has been fruitful and 
has raised the technical level of evaluation in public and private orga- 
nizations, but the needs of future research in the field of management 
science and economics are evident. Qualified opinions have indicated, 
among others, the following future objectives: 

"Today, efficiency measures do not yet adequately account for qual- 
ity changes, nor are they well suited to evaluate effectiveness (i.e. the 
adequacy between the output achieved and the needs to be satisfied). 
These shortcomings introduce biases either in the efficiency measure- 
ment themselves or in their interpretation, that need to be corrected. I 
am confident that they will gradually be circumvented" Henry Tulkens 
(1992). 

"The efficiency literature contains two broad themes. On the one 
hand, there is a focus on measurement, in which some enormous ad- 
vances in technique have been made recently. On the other hand, there 
is the explanation of cause and effect for which Harvey Leibenstein was 
the pioneering spirit. What is missing at the present, is a serious effort 
by investigators of efficiency measurement to relate their choice of sam- 
ple or experimental design to tackling the issues raised by Leibenstein. 
We have measurement and we have theory; but at present the two are 
not being related systematically. We have discovered weak but sugges- 
tive evidence that this would be a fruitful exercise. Perhaps this will be 
a major challenge for the next 25 years of X-efficiency theory" Kenneth 
J.Button and Thomas G.Weyman-Jones (1992). 

We can sure that Professor Lovell will continue exploring the pro- 
duction economics with the same level of efficiency that he has until 
n o w .  
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P h i l i p p e  V a n d e n  E e c k a u t  
CORE, Universit6 Catholique de Louvain 

This short note is intended for practitioners interested in applying these 
linear programming techniques. The objective of this note is not to 
complete the presentation proposed by Lovell (1994). This overview is 
already an exhaustive catalogue of all the techniques currently used in 
this field. This note emphasizes the flexibility and also the constraints 
inherent in an empirical non parametric deterministic analysis. 

Flexibility means that  any objectives can be easily modelled and 
that very few restrictions are imposed on the choice of inputs and out- 
puts. Furthermore, these techniques are simple to use and to explain, 
and this allows a real interaction between on one hand experts in the 
field and on the other hand the analyst. This advantage of relying on 
data  is also the major constraint of these models. Indeed, when we are 
using econometric techniques we have simple tools or tests that allow 
us to validate or not a model or an assumption. In this non parametric 
framework such tools either do not exist or are difficult to use. The 
analyst has to decide if the data used allow a valid interpretation or not. 
This is not an easy task. What  are the factors influencing the efficiency 
score? Suppose we have an efficiency score for a unit k on the interval 
[0 , . . . ,  1], a value of 1 representing an efficient observation, then these 
factors defining efficiency may be given by the following representation: 

Ef  f(k) = ( N ( - ) ,  V(+) ,  ip, rt, e:) 

The efficiency score is negatively related to the number of observations 
(N), positively related the number of input(s) and output(s)  (V), related 
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to the improvement path (ip) or stated differently the choice of the 
measurement (radial or non radial), the reference technology (all the 
assumptions about convexity, returns to scale, congestion,...) and finally 
all the factors leading to inefficiency (lack of ability, lack of effort,...). 

We are mainly interested in capturing the last set of factors, namely 
the inefficiency (el). We are able to control for the improvement path 
and the reference technology but are uncertain about the influence of 
dimensionality. 

a. The  D i l e m m a  o f  D i m e n s i o n a l i t y  

If we add a dimension (an additional input or output) ,  the impact on the 
efficiency measure is unambiguous, the efficiency score cannot decrease. 
This consequence, already pointed out by Nunamaker (1985) and Thrall 
(1989), is often neglected or hidden. It raises two comments. 

First, the inclusion or not of inputs or outputs should be motivated 
by the economic analysis and not driven (ex-post!) by the plausibility 
of the results obtained. Secondly, this problem is not a feature of the 
non parametric technique but instead a feature of the choice of radial 
measurement of efficiency. 1 It is possible to obtain an unpredicted effect 
by using non radial measurement. A discussion about the interest of 
non radial measurement is presented below at section c. 

If we need to test for the inclusion of a variable or the aggregation 
of a set of variable, a procedure has been developed. A test has been 
proposed by Banker (1989) and later extended by Kittelsen (1993). The 
null hypothesis tests if two models (with or without the added variable) 
are drawn from an identical distribution. If this hypothesis is rejected, 
then the variable is included in the model. This test is close to a sensi- 
tivity test. 

b. E x o g e n o u s  or not? 

The objective of the analysis is clearly to provide a "fair" representation 
of the performance of a unit. By using input(output)  efficiency, we 
implicity assume that  outputs(inputs)  are non-discretionary. This is 
very often a simplified view of the reality. Labor is for instance nearly 
never considered as non-discretionary, but it is well known that  any 
change in the demand for labor is most of the time closely restricted (due 
to regulation, union,...). There is no technical difficulty in computing 
this kind of model. (see section 8.2.). 2 
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The use of environmental  variables (see section 8.3.) is often needed 
in empirical analysis. Adding these variables is equivalent to the cre- 
ation of a parti t ion of the sample (we reduce N).  The consequence for 
the value of the efficiency score may be dramatic.  3 There are two fun- 
damental  criticisms about the use of these variables. First, we need to 
decide on an orientation for these variables 4 (the environment is favor- 
able or not) and this choice is not an easy one. The approach proposed 
by Grifell, Prior and Salas (1992) is already a step forward by looking at 
the incidence of this environment variable on the efficiency score before 
imposing an orientation. Secondly, we have no idea if this variable has 
"real" impact on efficiency (the ef component).  A partial solution to 
this problem is to use a combined one step and two step approach. We 
first regress (in Tobit setting) the efficiency score obtained without the 
environmental  variables: next we incorporate the variable in the model 
depending on the results of the first step. McCarty and Yaisawarng 
(1993) propose a simple illustration of his procedure. 

This remark is also indirectly an encouragement to use graph effi- 
ciency or more generally any measure that  allows variation in a subset 
of inputs and outputs.  

c. The equiproportionate standard 

Most of the empirical l i terature on efficiency measurement  is based on 
the radial or equiproportionate measure developed by Debreu (1951) and 
Farrell (1957). The merit  of the radial measurement  is its simplicity and 
its straightforward cost interpretation. 

The non radial measurement  goes back to the definition of efficiency 
proposed by Koopmans. 5 This definition of efficiency does not indicate 
how to measure efficiency but instead when a unit will be efficient. The 
condition for being efficient is to belong on the efficient subset (see sec- 
tion 2). Different definitions of non radial measurement  have been pro- 
posed in the literature. 6 Note also that  non radial measurement  may 
also be a practical solution to the problem of slacks mentioned by Lovell 
(section 5.2.). 7 

d. About  reference technologies and economic assumptions 

When est imating efficiency, we have to make economic assumptions. 
These assumptions will define the observations tha t  we consider as "fea- 
sible" or realizable. We start with the assumption that  only an observed 
unit is realizable. 
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We add three sorts of assumptions. First, we have assumptions 
about the disposability (see section 5.1.). Next, we have assumptions 
about returns to scale (see section 4). Finally, we have an assumption 
on convexity (section 6). 

The choice between weak and strong disposability is important for 
explaining the origin of inefficiency. Indeed, in the two cases, the ef- 
ficient subset is identical but the use of weak disposability may reveal 
congestion in one of the variables. This test is not regularly done in 
empirical application and should not be forgotten. 

The convexity assumed by DEA models is in most cases too rigid. 
Furthermore, this assumption is not independent of the assumption 
about returns to scale. In order, for example, to allow for global in- 
creasing returns to scale we need to relax the convexity assumption. 
This can be done by dropping the convexity assumption as with FDH or 
by dropping the convexity on the graph (GR in section 2) while keeping 
this assumption for the input and output sets (L(y) and P(x) in section 
2). This approach has been initiated by Bogetoft (1992). 

Nearly all these assumptions can be combined and tested. In the 
case when we have no strong prior on the reference technology, it may 
be worthwhile to test different assumptions and to report the results. 

This short note has emphasized some aspects of the use of linear 
programming approaches for efficiency measurement. These methods 
rely strongly on the choice of data and the justification of the model. A 
good knowledge of the consequence of the model for the efficiency score 
may help in the interpretation. If possible, efficiency scores should be 
confronted with reality s for validation. Another way to add consistency 
to a model is to propose different alternatives (models or techniques). 9 
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