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Abstract. We extend the notion of k-sets and ( <  k)-sets (see [3], [12], and [19]) to 
arrangements of curves and surfaces. In the case of curves in the plane, we assume that 
each curve is simple and separates the plane. A k-point is an intersection point of a 
pair of the curves which is covered by exactly k interiors of (or half-planes bounded 
by) other curves; the k-set is the set of all k-points in such an arrangement, and the 
(_< k)-set is the union of all j-sets, for j < k. Adapting the probabilistic analysis 
technique of Clarkson and Shor [13], we obtain bounds that relate the maximum size 
of the ( _< k)-set to the maximum size of a 0-set of a sample of the curves. Using known 
bounds on the size of such 0-sets, we obtain asympotically tight bounds for the 
maximum size of the (_< k)-set in the following special cases: (i) If each pair of curves 
intersect at most twice, the maximum size is | (ii) If the curves are unbounded 
arcs and each pair of them intersect at most three times, then the maximum size is 
| (iii) If the curves are x-monotone arcs and each pair of them intersect in 
at most some fixed number s of points, then the maximum size of the ( <  k)-set is 
O(k22s(n/k)), where 2s(m ) is the maximum length of (m, s)-Davenport-Schinzel 
sequences. We also obtain generalizations of these results to certain classes of surfaces 
in three and higher dimensions. Finally, we present various applications of these 
results to arrangements of segments and curves, high-order Voronoi diagrams, partial 
stabbing of disjoint convex sets in the plane, and more. An interesting application 
yields an O(n log n) bound on the expected number of vertically visible features in an 
arrangement of n horizontal discs when they are stacked on top of each other in 
random order. This in turn leads to an efficient randomized preprocessing of n discs in 
the plane so as to allow fast stabbing queries, in which we want to report all discs 
containing a query point. 
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1. Introduction 

Let F = {71 . . . . .  7,} be a collection of n closed Jo rdan  curves, or unbounded  
Jordan  arcs, in the plane. Let K / d e n o t e  any  one of the two open regions into which 
7/separates  the plane; for convenience of notat ion,  we call Ki the interior of 7i- For  
a point p e 9t 2, define the level of p, denoted 2(p), to be the number  of regions K/ 
containing p; if this number  is j, we call p a j-point.  Let  S denote  the set of all 
intersection points  of the curves 7/. For  simplicity of exposition, we assume that  
these curves are in general position, meaning  that  no three of  them meet at the same 
point  and that  no pair  of  them are tangent  (however, our  analysis can be easily 
modified to apply  in degenerate  configurat ions as well). For  an integer 0 _< j _< 
n - 2, define the j-set of S to be 

Sj = ( p ~  SIR(p) = j } ;  

that  is, Sj is the collection of all intersection points of the curves in F, which are 
covered by exactly j interiors of o ther  curves. Similarly, we define the ( < k)-set of S 
to be 

S<_k = {p e S I 2 ( p )  _< k} = U Sj- 
j_<k 

(This is a slight abuse of the s tandard  no ta t ion  [14], where a j-set  is the dual  of a 
single point  of Sfi however,  in our  nota t ion  we prefer not to refer to a single point  as 
a set.) 

The goal of this paper  is to obta in  sharp  bounds  on the m a x i m u m  size of the 
( <_ k)-set. If  we assume that  each pair  of  curves in F intersect in at most  some fixed 
constant  number  s of points, then, trivially, IS<k[ = O(n2). As a mat te r  of  fact, an 
easy grid-like const ruct ion (see Fig. 1) shows that  in the worst  case IS01 = | 
Nevertheless,  in several special cases we can obtain significantly bet ter  bounds.  For  
example,  suppose that  F is a collection of nonvert ical  lines, and that  K/ i s  the upper  
half-plane bounded  by 7/. Then it is easily checked that  Sj is the j-level in the 
a r rangement  d ( F )  (see [14] for more  details). In  this case, it is well known that  
IS_<~l = O(nk) [ 3 ] ,  and that  this bound  is tight in the worst  case. 

Fig. 1. A grid-like arrangement of curves with S O = O(n2) .  
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This paper explores other special cases in which bounds like | or slightly 
larger, can be obtained. We have identified three such cases. The first one, which we 
call the 2-intersection case, is when each pair of curves in F intersect in at most two 
points. We show 

Theorem 1.1. In the 2-intersection case, [S<k[ ~ 26nk, f o r k  >_ 1. 

In contrast, note that in the example shown in Fig. 1 the maximum number of 
intersections between any pair of curves is four, and many pairs do intersect in four 
points. This still leaves one other interesting case, which we call the 3-intersection 
case, where the curves in F are unbounded (and separate the plane), and each pair 
of them intersect in at most three points. Denoting by ~(n) the extremely slow 
growing functional inverse of Ackermann's function, we show 

Theorem 1.2. In the 3-intersection case, the maximum s&e of  S<_k is | 
for k > l. 

Finally, we consider the x-monotone case where the curves in F are all 
unbounded and x-monotone, with the property that each pair of them intersect in 
at most s points (where s, as above, is constant). This is a natural generalization of 
the case of lines. Let 2~(m) denote the maximum length of (m, s)-Davenport-  
Schinzel sequences (see [20] and [2] for details). As shown in [2] and [20], 2s(m ) 
is an almost-linear, slightly super-linear function of m for any fixed s. We show 

Theorem 1.3. In the x-monotone case, the maximum size of S<k is ~)(k2 ).~(n/k )),for 
k>_l .  

Note that the bound in the last theorem is also very close asymptotically to kn. 

The proofs of all three theorems are essentially identical. They adapt  the recent 
probabilistic analysis technique of Clarkson [12] and of Clarkson and Shor [13], 
used originally to derive bounds on the size of ( <  k)-sets for point sets in any 
dimension (or, dually, for arrangements of hyperplanes). Clarkson and Shor's 
proof, when transformed into our context, expresses the size of the ( <  k)-set in 
terms of the expected size of the 0-set in a sample of the given curves. (Note that So 
is the set of intersection points of the curves 71 that lie on the boundary of the union 
of their interiors.) Thus the availability of sharp upper bounds on the size of 0-sets 
facilitates the derivation of equally sharp bounds on the size of ( <  k)-sets. In all 
three cases considered in this paper we have good bounds for the size of 0-sets. In 
the 2-intersection case, Kedem et al. 1-22] have shown that I So[ < 6n. This linear 
bound implies the bound asserted in Theorem 1.1. Similarly, the 3-intersection case 
has been studied in [15], where it was shown that ISol -- O(nat(n)) (and that this 
bound is tight in the worst case). Again, this leads to the bound asserted in 
Theorem 1.2. Finally, the proof in the x-monotone case follows from the fact that 
S O is the set of all intersection points that lie on the lower envelope of the given 
curves, assuming that each Ki is the upper half-plane bounded by 7~. The number of 
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such "breakpoints"  is known to be at most 2~(n) [5], [20], which again leads to the 
bound asserted in Theorem 1.3. (The same bound holds even when some Ki's are 
upper half-planes and some are lower half-planes--see below.) 

As a matter of fact, the proof technique can be generalized to higher dimensions, 
as long as we have sharp bounds on the complexity of 0-sets. There are a few cases 
where such bounds have been obtained in three and higher dimensions, and we 
comment  on them in the following section. 

The paper is organized as follows. In Section 2 we present the proofs of 
Theorems 1.1-1.3 and discuss some further generalizations of the problem. In 
Section 3 we present a variety of applications of our bounds to higher-order 
Voronoi diagrams, partial stabbing of disjoint convex sets in the plane, "sparse" 
coverings of the plane, placements of a convex object amidst convex obstacles, and 
more. 

In Section 4 we give another interesting application. We show that, given n discs 
in the plane, if we lift each of them vertically to a random height, then the expected 
number of pairs of discs whose boundaries can "see" each other in the vertical 
direction is O(n log n). In other words, the overall expected size of all vertical 
visibility maps, that represent the vertical views of the discs as seen from points on 
other discs, is only O(n log n). This leads to an efficient randomized preprocessing 
algorithm for n discs in the plane, which runs in expected randomized time 
O(n log 2 n) and uses an expected O(n log n) storage, and which facilitates fast 
answers to stabbin9 queries, each asking for all discs containing a query point to be 
reported. If there are k such discs, the query can be performed in (worst-case) time 
O((1 + k) log n). 

We conclude in Section 5 with a discussion of our results and a few open 
problems. 

2. Upper Bounds on (< k)-Sets 

Proof of Theorem 1.1. We adapt  Clarkson and Shor's probabilistic technique for 
deriving bounds on the number of ( <  k)-sets for point sets [13]. Specifically, for 
any subset R of F, let us denote by Fj(R), for j  > 0, the set of all intersection points 
of pairs of curves in R which are contained in exactlyj interiors of other curves in R. 
(]~n particular, note that Fj(F) = Sj.) 

Without loss of generality, we can assume that k < n/26. Otherwise, the asserted 
bound is immediate, because in this case [S<kl < IS1 < n(n - 1) < 26k(n - 1) < 
26kn. Let r = [_n/kj; thus r can be assumed to be at least 26. 

For each p e S, let Ip denote the random variable, over the choice of a random 
subset R c F of size r, whose value is 1 if p ~ Fo(R ) and 0 otherwise. Clearly, 

E[IFo(R)[] = ~ E[lp] = ~ ~ E[Ip] 
pES j>O p~Sj 

= ~ Z Prob[p~Fo(R)] .  
j~O pESj 



On k-Sets in Arrangements of Curves and Surfaces 597 

The probabili ty that a point  p ~ Sj is in Fo(R ) is obtained as follows (see also 
[13]): Suppose p e 7, n 7b. Then 

(i) both ~,, and 7b should be included in R, and 
(ii) none of the j curves 7c, for which p e Kc, should be chosen in R. 

The number  of subsets R of F of size r that satisfy these conditions is 

( n - j - 2 )  ( n - j - 2 ) / ( 7 )  Thus r - 2 , so the probabili ty that p is in Fo(R ) is r - 2 

k 

EI-IFo(R)I] ~ ~ ISjl. 
j=0  

n - j - 2 )  

r - 2  

But for j < k we have 

n - j - 2 )  
r -  2 _ (n - j -  2)! r! ( n -  r)! 

( r -  2)! (n - - j -  r)! n! 

r(r--  1) n - - r  n - - r - -  1 n - - r - - j +  1 

n ( n - - 1 )  n - - 2  n - - 3  n j 1 

(n-r-k+7. >-n(n 1)' . - k - i  

Since r = Ln/kJ, we easily verify that 

n - r - k + l  1 
> l - -  

n - k - 1  k 

for k _> 1. Thus, for k > 2, 

n S k - i  _> 1 -  _>~. 

On the other  hand, by the result of Kedem et al. [22], we have IFo(R) I < 6r, for 
any subset R c F of size r. Thus, putting everything together,  we obtain 

r ( r -  1) 
6r >_ 4n(n--  i)" tSjl 

j=0  



598 M. Sharir 

o r  

2 4 n ( n -  1) 2 4 n ( n -  1) 
IS<kl-< -< 

r - 1 n/k - 2 

2 4 n k ( n -  1) 
<_ 26nk, 

n - 2k 

since we assume k < n/26. 
In the analysis so far we have assumed k > 2. Fo r  k = 1, we choose r = Fn/27, 

and verify directly that  

6n(n - 1) (n  - 2 )  
IS~_11 < < 26n 

(r - 1)(n -- r) 

for all n. [ ]  

Remark .  For  large k, the constant  of propor t iona l i ty  actually approaches  6e + 
2 < 18.31. Even so, it is not  clear whether  such a constant  can actually be attained. 

Proof of Theorem 1.2. Here  we ignore the constants  of proport ional i ty ,  and note 
that  the preceding analysis can be carried out  a lmost  verbat im in this case as well, 
except that  here we use the fact, p roven  in [15], that  

I Fo(R)I = O(ra(r)). 

Choosing  r = Ln/k] as above,  we readily obtain  

IS <_kl = O(nkc~(n/k)). 

The proof  that  this is tight in the worst  case is given below. [ ]  

Proof of Theorem 1.3. Again we apply  the same analysis as in Theorem 1.1. 
Suppose first that  each K i is the upper  half-plane bounded  by 7i, i = 1 . . . . .  n. Then 
Fo(R) is the set of  all intersection points of  the curves in R which lie on the lower 
envelope of these curves. As is well known [5], [20], the m a x i m u m  size of Fo(R) is 
2~(r). Choosing  r = Ln/kJ, the assert ion follows. If not  all K~'s are upper  half-planes, 
we can still show that  I Fo(R)I = O(2s(r)). Indeed, take the lower envelope 6 + of all 
curves ~j e R for which Kj is an upper  half-plane, and the upper  envelope 6 -  of all 
the remaining curves. The  points  in Fo(R ) are the intersection points  of curves in R 
which lie on the bounda ry  of the region lying above 6 -  and below 6 + (see Fig. 2), 
and an easy "sweeping"  argument ,  making  use of  the facts that  the complexi ty  of 
each of these two envelopes is O(2s(r)), and that  each pair  of curves intersect in at 
mos t  s points, shows that  the n u m b e r  of such points  is still O(2,(r)). The asserted 
bound  on IS_<kl follows. [ ]  
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~+ 

Fig. 2. The region above 6 and below 6 +, whose boundary contains the points of F0(R); one 
component of this region is shaded. 

Lower Bounds. A lower bound of nk is known for the maximum size of S<_k in an 
arrangement of n lines (see [3] and [19]). It is easy to transform this construction 
to obtain a similar lower bound for the 2-intersection case. For the 3-intersection 
case, we use the following construction. Take n/k segments whose upper envelope 
has combinatorial complexity | such collections of segments are 
constructed by Wiernik and Sharir [30]. Now replace each segment by a collection 
of k parallel segments lying very close to one another. Extend each segment in the 
new collection into an unbounded Jordan arc by two downward-directed rays 
emerging from its endpoints. This yields a collection of n unbounded Jordan arcs 
71, . . . ,  ?n, each pair of which intersect in at most three points. Let K i denote the 
open semi-infinite trapezoidal strip lying below the ith segment (Ki is bounded by 
?~). Each intersection point of a pair of original segments which lies on their upper 
envelope is mapped into a k x k grid of intersection points lying very close to the 
original intersection. This is easily seen to imply that, with an appropriate choice of 
parameters, the total complexity of the (_< k)-set in the final arrangement of the 7i's 
is ~(nk~(n/k)). A similar construction shows that the upper bound of Theorem 1.3 
can also be attained. Thus in all three cases the bounds are asymptotically tight in 
the worst case. 

Remark. The above analysis assumes that the given curves are in general 
position. However, we can easily modify it to apply to degenerate arrangements as 
well. Specifically, suppose F has the 2-intersection property, and consider all points 
p that are incident to more than two curves of F. Let us assume that the curves in F 
can be slightly perturbed so that they lie in general position, they still have the 2- 
intersection property, and, for each such p, at least one pair of them still intersect at 
a point sufficiently close to p. These assumptions hold in practically all applications 
of interest (for example, they hold in the case of circles). It follows that this 
perturbation does not decrease the cardinality of any j-set, so the upper bound of 
Theorem 1.1 continues to hold for degenerate cases as well. A similar kind of 
reasoning can be used to extend Theorems 1.2 and 1.3 to degenerate configura- 
tions. 

We conclude this section with some observations concerning extending the 
results of Theorems 1.1-1.3 to ( <  k)-sets in arrangements of surfaces in three (or 
higher) dimensions. Let I2 = {tr 1 . . . . .  an} be a collection of surfaces in 9t 4 such that 
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each surface a~ is simple and separates 9~ a into two open connected regions; let K i 
denote one of these two regions. The k-set for E is the collection of all intersection 
points of d of the surfaces in E, which are covered by exactly k regions Ki; the 
( <  k)-set is, as usual, the union of all j-sets, for j = 0 . . . . .  k. We again assume 
general position of the surfaces q .  

It is easily checked (see [13] for details) that the proof technique used in 
Theorems 1.1-1.3 continues to apply as long as we have a sharp bound on I F0(R)I, 
and as long as each intersection point is determined by a fixed constant number of 
surfaces (which, in 9t d, under the general position assumption, is d). The general 
bound yielded by this proof technique is easily seen to be O(kdlFo(n/k)l). We list 
below two applications of this general result. 

Theorem 2.1. For a collection of n spheres in Ot a we have IS _<kl = o(nra/2qkLa/2]). 

Proof Schwartz and Sharir 1-28] have shown that in this case [Fo(R)I = O(r a- 1). 
However, the bound can be improved, using the following argument, used, e.g., by 
Aurenhammer 1,6]. Map ~a into ~d+l by lifting each point to the paraboloid P 

d defined by xa+t = ~ i= l  x2. The image of each of the r spheres in R is the 
intersection of P with some hyperplane. For a point z to be outside all spheres it is 
necessary and sufficient that its image lie above all corresponding hyperplanes, i.e., 
above their upper envelope. This is easily seen to imply that IF0(R) I, the number of 
features on the union of the spheres in R, is at most proportional to the 
combinatorial complexity of the upper envelope of r hyperplanes in ~1t ~ + 1, which is 
O(rL(a+ 1)/2j). This completes the proof. [] 

Remark. We do not know whether the bound in Theorem 2.1 for arbitrary d is 
tight in the worst case. However, for d -- 3 the bound is tight, as the following 
example shows. Construct a family of 3n/k balls in 3-space whose union has 
| 2) vertices--for this take 3n/2k large ccongruent balls whose centers lie on a 
line very close to one another, so that the union of these balls has 3n/2k - 1 parallel 
and nearly equatorial circles on its boundary; then add 3n/2k small and mutually 
disjoint balls, each "piercing" through these circles and forming 3n/k - 2 intersec- 
tions with them; see 1-28] for a similar construction. Now, as in the lower bound 
constructions given above, replace each of these 3n/k balls by a family of k/3 
congruent copies, translated from each other by some tiny amounts. It is easily 
checked that these copies can indeed be placed in such a way that each vertex of the 
union of the 3n/k original balls is replaced by (k/3)  3 vertices each of which is 
covered by at most k balls. Thus in this case S_<kl = | proving our claim. 

Remark. The lower bound constructions given so far point out to a general 
principle--any construction of a set S of n curves or surfaces in 91 a with IS 0 [ = F(n), 
for arbitrary values of n, can be transformed into a construction of a set S of n 
curves or surfaces of the same kind with IS_< k l = | enabling us to obtain 
tight bounds on the latter complexity in many cases. 
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Theorem 2.2. For a collection o f  n triangles in ~3, /~1 . . . . .  A n ,  let K i denote the 
semi-infinite vertical triangular prism whose upper boundary is A i, for i = 1 . . . . .  n 
(the corresponding surface t7 i is the union of ~ i  with the three vertical faces of Ki). In 
this case we have ]S<k [ = O(nEkct(n/k)). In particular, the number of triple intersec- 
tions of the given triangles , which lie below no more than k other triangles, is also 
O(nEk~t(n/k)). This bound is tight in the worst case. 

Proof As shown in [24], we have in this case IFo(R)l = O(r2o~(r)), and that this is 
tight in the worst case. The upper bound asserted in the theorem thus follows 
immediately. For the lower bound, we take, as in the lower bound construction of 
Theorem 1.2, a collection of n/k triangles whose upper envelope consists of 
O((n/k)Zot(n/k)) vertices, and replace each triangle by k parallel triangles that are 
very close to each other. Arguing as in the previous construction, the bound 
follows. []  

3. Applications 

In this section we obtain a variety of applications of the preceding results. 

3.1. Sparse Coverings 

Theorem 3.1. I f  no point of the plane is covered by more than k regions K i, then the 
total combinatorial complexity of the arrangement ~ ( F )  is O(nk) in the 2-intersection 
case, and O(nk~t(n/k)) in the 3-intersection case. 

Proof Obvious. []  

Remark. J. Pach has provided the following direct proof of Theorem 3.1 for the 
special case of discs. The proof proceeds by induction on n, starting with n = k, and 
shows that a circle 7 e F having minimum radius cuts at most O(k) other circles. 
Removing 7 from F and applying the induction hypothesis, the theorem follows. 

To establish the above claim, let K denote the disc bounded by y, and let K* 
denote a disc concentric with K and having radius three times larger than that of K. 
If ? c~ ?i :~ ~ ,  then the area of K i c~ K* is greater than or equal to.the area of K. 
Since no point of K* is covered by more than k of the given discs, the number of 
such Ki is at most 9k. 

Similar results can be obtained for arrangements of x-monotone arcs. We state 
them below in the following corollary. 

Corollary 3.2. Let e l , . . . ,  e, be n nonvertical segments in the plane with the property 
that no vertical line cuts more than k of them. Then the total number of intersections of 
these segments is O(nk~t(n/k)). Similarly, let Y l , . . . ,  ?, be n x-monotone bounded arcs 
in the plane, each pair o f  which intersect in at most s points, with the additional 
property that no vertical line cuts more than k o f  these arcs. Then the total number of  
intersections of these arcs is O(kZ2s+ 2(n/k)). 
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However, the bounds stated above can be improved with a direct and simple 
proof, pointed out by J. Pach. Specifically, we claim that in all cases in the above 
corollary the total number of intersections is only O(kn). 

Proof The proof proceeds by induction on n, and asserts that the segment or arc e 
whose left endpoint p is rightmost cannot intersect more than k - I other segments 
or arcs, for otherwise the vertical line passing just to the right of p would have to 
cross more than k segments or arcs. Removing e and applying the induction 
hypothesis (whose base case, n = k, is trivial) completes the proof. [] 

Corollary 3.3. The combinatorial complexity of the arrangement of k x-monotone 
polygonal curves, consisting of a total of n segments, is O(nk). 

Corollary 3.4. Let A 1 , . . . ,  A ,  be n nonvertical triangles in 3-space with the 
property that no vertical line cuts more than k of them. Then the total combinatorial 
complexity of their arrangement is O(n2k~(n/k)). In particular, the combinatorial 
complexity of the arrangement of k piecewise-linear terrains (a terrain is a surface 
meeting each vertical line in exactly one point) in 3-space, having a total of n faces, is 
O( nE kct(n/k ) ). 

Remark. Can Pach's  proof be extended to this case as well? 

The two preceding corollaries can be applied to obtain the following type of 
result. Let a be a piecewise-linear terrain in 3-space, having n faces. Let B be a k- 
legged robot; for simplicity, assume B is a rigid collection of k vertical line segments, 
whose top endpoints all lie on a common horizontal plate (however, the results to 
be stated below can also be obtained for certain types of more general robots). We 
want to find all translations of B at which three of its legs touch cr (at their bot tom 
endpoints), while other legs might "pierce" through tr, or remain above it. 
Assuming general position of B and a, the number of such placements is finite. To 
obtain such placements, we use the standard technique (see 1-17] for details) of 
forming the Minkowski differences a - li, where Ii is the bot tom endpoint of the ith 
leg of B, i = 1 . . . . .  k. Each of these differences is just a translation of a, and the 
placements we seek correspond to vertices of the arrangement of these k copies of a. 
The preceding corollary now yields the following result. We state its two- 
dimensional version as well, which is obtained in a completely analogous manner, 
making use of Corollary 3.3. 

Corollary 3.5. The maximum number of translated placements of triple contact of 
a k-legged robot with a piecewise-linear terrain with n faces, as defined above, is 
O(n2k~(n/k)). In two dimensions, the maximum number of translated placements of 
double contact of a k-legged robot with an x-monotone polygonal curve consisting of 
n segments is O(nk). 

3.2. Placements of Convex Objects 

Theorem 3.6. Let A 1 . . . . .  A, be n convex sets in the plane having pairwise disjoint 
interiors, and let B be another convex set. Assuming general position, the maximum 



On k-Sets in Arrangements of Curves and Surfaces 603 

number of  translated positions of  B, at which it simultaneously touches two of  the sets 
Ai, and otherwise intersecting at most k other such sets, is O(nk). 

Proof  This is an immediate consequence of  the analysis in [22], combined with 
Theorem 1.1. Specifically, we form the Minkowski differences Ki = A ~ -  B, i = 
1 . . . . .  n, and observe, as in [22], that  each of the desired placements of B 
corresponds to an intersection point of the boundaries of two sets K~, which is 
covered by at most  k other such sets. Since, as shown in [22], the boundaries of any 
pair of sets K~ intersect at most  twice (assuming general position), the claim follows 
immediately from Theorem 1.1. []  

3.3. Partial Stabbing 

Let ~ = {Ct . . . . .  C,} be a collection of n pairwise disjoint compact  convex sets in 
the plane. For  each line (, let a(()  denote the sequence of those sets Ci that intersect 
{, ordered in their order along ~ (we will identify a(()  with its reverse sequence). A 
line t is a j-stabber of ~ if la(~)] = j; an n-stabber is also called a common transversal 
of c6;. Edelsbrunner and Sharir [18] have shown that the maximum number  of 
distinct sequences tr((), over all n-stabbers ( of cg, is 2n - 2. We can extend this 
result to show 

T h e o r e m  3.7. The maximum number o f  distinct sequences a((), over all j-stabbers ( 
o f  off, for j = n, n - 1 . . . . .  n - k + l, is O(nk). This is tight in the worst case. 

Proof  Let # be a j-stabber of ~. Arguing as in Lemma 1 of [ 18], we can show that 
{ can be continuously moved to an extreme line #*, such that a(f)  = a(f*)  and f* is 
tangent to two sets C, C' E cg that lie on the same side of E*. Thus it suffices to 
obtain the asserted bound for the total number  of extreme j-stabbers, over al l j  = n, 
n - 1  . . . . .  n - k + l .  

To this end, we use duality, as in [18]. In the dual plane, each Ci is mapped into 
a pair of unbounded x-monotone  curves 77,  7 [ ,  such that  77 is concave, 7 + is 
convex, and 77 lies below 7 + . Moreover,  a point  p lies in the region between 7~- and 
7 + if and only if its dual line p* stabs Ci. Points p e 7~- (resp. 7 +) correspond to lines 
p* that are tangent to Ci and lie below (resp. above) it. Moreover,  as observed in 
[18], for any i r  we have 

I z,7 n 7 j  I, 17~- ~ ~'f I, I~', + n 7 + I ~ 2 

(think of the corresponding property in the primal plane). For  each i, let K 7 denote 
the half-plane below 7F, and let K + denote the half-plane above 7 + . Note  that  an 
extreme j-stabber p* is the dual of an intersection point p between two upper curves 
7 +,  7 ; ,  or between two lower curves 7, , 7b , which lies between 7q- and ~ for at 
least n - k - 1 other indices q. Thus p is covered by at most  2k regions KT,  K + , 
i = 1 , . . . ,  n. This, the 2-intersection property of the curves 7~-, 7 + , and Theorem 1.1 
imply that  the total number  of desired extreme stabbers is O(kn). The asserted 
upper bound  in the theorem is now immediate. Moreover,  in the construct ion given 
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in [18] (originally presented in [21]), the number of j-stabbers, j = n, n -  
1 . . . . .  n - k + 1, is easily seen to be ~(nk),  showing that the asserted bound is tight 
in the worst case. [] 

Remark. It was shown by Wenger [29] that all sequences a(r for any line r are 
subsequences of one of O(n) permutations. However, no sharp bound on the actual 
number of such sequences is given there. 

3.4. High-Order Voronoi Diagrams 

Let P = { Pl . . . . .  p,} be a set of n points in the plane. The j th-order Voronoi 
diagram Vorj{P) of P is a convex subdivision of the plane, each of whose regions is 
associated with a subset T = P of cardinality j, and is denoted as V(T),  such that 

V(T)  = {xe9121d(x ,p )  < d ( x , p ' ) f o r a l l p e  T,p' e P  - T}. 

See [14] for more details concerning high-order Voronoi diagrams. 
It is well known that the overall complexity of the diagrams Vor~(P), 

j = 1 . . . . .  k, is O(k2n) [14]. However, we can obtain a refinement of this bound in 
the following sense. Let e be an edge of the j th-order Voronoi diagram, bounding 
the regions V(T),  V(T').  For  each point x e e, let us define 

Then we have 

dj(x) = max d(x, p) = max d(x, p). 
p~T p e T '  

Theorem 3.8. Let a ~ 9t § be a f i xed  positive number. The maximum number of  
edges e ~ Vorj{P), over all j < k, which contain an interior point x with dj(x) = a, is 
O(kn). 

Proof  For  each pg e P, let D i be the disc of radius a centered at p~. It  is immediate 
from the definitions that a point x e e ~ Vorj(P) with the above properties is 
an intersection point of the bounding circles of two discs D~, Dr which also lies 
in the interior of j - 1  others discs. The assertion is now immediate from 
Theorem 1.1. [] 

Remark. This can be generalized to high-order diagrams defined by an arbitrary 
metric (or even a "convex distance function" [23]), and by an arbitrary collection 
P of closed, convex, and pairwise disjoint objects. 

3.5. Algorithmic Issues 

Finally, we consider the problem of computing efficiently the ( <  k)-set in an 
arrangement of n given curves of one of the types considered above. The following 
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simple divide-and-conquer approach may be used. We describe it for the 2- 
intersection case only, but the technique extends trivially to the 3-intersection and 
the x-monotone cases. In what follows we assume a model of computation in which 
various basic operations on the given curves can be performed in constant time. 
Typical such operations are: finding the intersection points of pairs of the curves, 
breaking each curve into x-monotone portions, and testing whether a given point 
lies above, on, or below a given x-monotone curve portion. 

Divide the given collection F into two subsets F 1, F 2 of roughly equal size. 
Recursively compute the ( <  k)-sets for F1, F2, respectively. More precisely, the 
output of the recursive processing of F1 is the planar map J/~ formed by all the 
faces of the arrangement ~r 1), which are covered by at most k interiors of curves 
in that set; we also assume that each face of J /~  is labeled with the number of 
interiors covering it. The output of processing F 2 is a similar map ./t2, defined in an 
analogous manner. 

Next we merge ~r and Jr '  2 using a standard plane-sweeping technique. It  is 
easily checked that each face in the desired output map ~ for the whole set F must 
be obtained as a connected component of the intersection of a face of J-/~ and a face 
of J//2. Moreover, every intersection between an edge of J11 and an edge of Jg2 
must belong to the ( <  2k)-set of F. Since this set has size O(kn), it follows that the 
merging of J//1 and Jr '  2 to produce J / c a n  be done in time O(kn log n). We stop the 
recursion when n < k, in which case we compute the entire arrangement ~r in 
time O(k 2 log k). It follows that the overall time complexity of this algorithm is 
O(nk log n log (n/k)). We thus summarize 

Theorem 3.9. In the 2-intersection case, we can calculate the (<_ k)-set in an 
arrangement of  n curves in time O(nk log n log(n/k)). In the 3-intersection case, this 
takes time O(nk~(n/k) log nlog(n/k)).  In the x-monotone case, this takes time 
O(kE2s(n/k) log n log(n/k)). 

Remark. If k is very close to n a slightly faster algorithm can be obtained by 
constructing the entire arrangement of the given curves and selecting the desired 
portion thereof. For example, in the case of unit circles we can use Chazelle and 
Lee's algorithm [10] which runs in time O(n2). For the general case, we can use 
Edelsbrunner et al.'s algorithm [16] which runs in time O(n2,+2(n)). 

4. Application to Disc Stabbing 

Let ~ = {D1 . . . . .  Dn} be a collection of n (possibly intersecting) discs in the plane. 
We wish to preprocess them so that, given any query point x, we can quickly report 
all the discs containing x. This problem is a special case of the general point 
containment problem, also known as inverse range searching, in which we are 
given a collection of objects in the plane (or in higher dimension), and we wish to 
preprocess it so as to be able to report or count the objects containing any query 
point. There exist efficient solutions when the objects are rectilinear rectangles, but 
for nonrectlinear objects the problem is more difficult. Of course, if we are allowed 
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quadratic preprocessing time and storage, then the problem is easy to solve-- 
simply construct the entire arrangement of the given objects, store with each of its 
faces the number of objects containing it (or the list of all such objects), and 
preprocess the arrangement for fast point location (as in [27]). A stabbing query is 
then easy to answer in time O(log n) for counting the number of stabbed objects, or 
in time O(log n + k) for reporting all k such objects. (Using persistent data 
structures, we can store all the lists associated with the arrangement faces in overall 
quadratic storage.) The challenge is to obtain fast query performance when allowed 
only linear, or close to linear, storage. This however is difficult to achieve. For 
example, if we want to count the number of stabbed objects, then the best solutions 

that use only roughly linear storage have query time roughly O ( x ~  ) [1]. Chazelle 

[7] has proven a lower bound of ~(x/n)  for some related problems. 
However, if the goal is to report the stabbed objects, then there is some hope of 

improvement. Intuitively, if the output size of query is large, then we can afford to 
spend more time in answering the query, because this time will be subsumed by the 
time needed to report the stabbed objects. This has indeed been exploited by 
Chazelle et al. [9] in the special case of stabbing a collection of half-planes. 
Actually, they considered the dual problem of reporting all points lying below a 
query line. Their solution requires O(n) storage, O(n log n) preprocessing, and has 
query time O(log n + k); see also [1 I] for similar techniques in three dimensions. 
However, no similar result is known for more general kinds of objects. 

In this section we obtain an efficient solution to the reporting problem for a 
collection of n discs in the plane (and also for a few additional cases--see below). 
Our solution uses randomization, and achieves expected O(nlog n) storage, 
expected O(n log 2 n) preprocessing, and O(log n + k log n) query time. 

The idea behind our solution is to transform the discs into three-dimensional 
space, by lifting each disc to a different height, and by computing the manner in 
which the discs are vertically visible from each other. Then, given a query point x, 
we take the vertical line 2 x passing through x and pierce with it all the discs (in the 
lifted three-dimensional arrangement) lying above x, in increasing height. Each 
subsequent disc is found by determining which disc lies immediately above the 
point through which 2x has pierced the current disc. We show below the surprising 
property that if the heights to which the discs are lifted are chosen at random, then 
the total expected combinatorial complexity of the pattern of vertical visibility 
between the discs is only O(n log n). This allows us, using only O(n log n) storage, to 
obtain all discs containing x in O(log n) time per disc. 

4.1. Random Lifting of Discs to Three Dimensions 

We now describe and analyze the lifting process in more detail. Each disc Di is lifted 
vertically to lie on the plane z = hi, where (hi . . . . .  h,) is a random permutation of 
(1 . . . . .  n). The vertical visibility map M of this arrangement of discs is defined as a 
collection of planar subdivisions Mi, where Mi is a subdivision of Di such that each 
region R of M i is associated with another disc D(R) (or with no disc at all), so that 
D(R) is the disc lying immediately above every point of R (or no disc lies above R). 
For  the sake of completeness of representation, we extend the map M by adding to 
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our collection a virtual disc D o which lies below all other discs and is big enough to 
contain all other  discs. The m a p  M will have an addit ional  por t ion Mo describing 
the vertical visibility from D 0. (Intuitively, M 0 is the result of hidden surface 
removal  when viewing the given discs from a point  lying at z = - oe.) Clearly, the 
edges of each M i are vertical projections onto Di of port ions of boundaries  of other  
discs lying above Di; vertices of Mi are points where two such projected boundaries  
meet, with one of the corresponding discs lying below the other and partially hiding 
it f rom M~. 

L e m m a  4.1. The expected combinatorial complexity of M is O(n log n). 

Proof Let S denote the set of all intersection points of . the boundar ies  of the 
original collection of discs (in the xy-plane). For  j = 0, 1 , . . . ,  n - 2, let Sj denote 
the j th  set in this arrangement ,  as defined in the introduction. 

For  each p e S define a r andom variable lp, over  the r andom choice of the 
p e r m u t a t i o n  (hi)i>_l , so that  Ip = 1 if p appears  as a vertex of the visibility map  M, 
and 0 otherwise. Clearly, 

E [ I M I ]  = ~ El-/v] = ~ ~ E[Ip]  
peS  j>_ O pESj 

= y, ~, P rob [p  appears  as a vertex of M].  
j>_O pffSj 

Let p E Sj be an intersection of OD,, c3D b. It  is easily verified that  p appears  as a 
vertex of M if and only if none of the j discs containing p is assigned a height 
between h, and h b. Let us consider only the set of j  + 2 discs, containing D,, D b, and 
the j discs covering p. It follows that  all (j  + 2)! permuta t ions  of these j + 2 discs 
are equally likely to arise in our  three-dimensional  lifting. Of  these, the number  of 
permuta t ions  in which D, and D b are adjacent is only 2(j  + 1)!. Hence the 
probabil i ty  that  p will arise as a vertex of M is 

2(j  + 1)! 2 

( j  + 2)! j + 2" 

Hence, applying Theorem 1.1, we obtain  

. - 2  ISkl 
E [ I M [ ] _ < 2 2  k + 2  

k=O 

n - 2  ~'~k 
= 2 2 /_.j=o ISj l  - ~ _ - - o  ~ ISjl 

k=O k + 2  

= 21S-<.-21 + 2 _ _ _  
n k k + }  

n - 3  1 

G 2 n + 2  2 ( k + 2 ) ( k + 3 )  
k=O (( 1)) 

= 0  n. 1 + k +  2 = O(n log n). 
k= 

1) 
k + 3 [S~R[ 

IS_<~I = O(n) + 0 (k ~-2)  2 
k 

[] 
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Lemma 4.2. The expected combinatorial complexity of M o is O(n). 

Proof The proof is very similar to that of the preceding lemma, except that now 
we have to estimate the probability that a point p = t3D a c~ ODb ~ Sj appears as a 
vertex of M o. Here, focusing on thej  + 2 discs as in the preceding proof, we require 
that Da and Db appear as the first two elements in the induced permutation of these 
j + 2 discs. The probability of this happening is 

2fl 2 

( j + 2 ) !  ( j +  1 ) ( j + 2 ) "  

This in turn implies 

tUIMol] = 0 IS~I 
\k=O (k + 1)(k + 2 

= O 1 4- (/~ 4- 1) 3 IS<k I 
k= 

( 1) 
= 0  1 4-n .k  ( k - ~ l )  2- =O(n) '  [] 

4.2. Efficient Disc-Stabbin9 by Points 

Using the three-dimensional lifting mechanism, we now solve our original stabbing 
problem. The algorithm proceeds as follows. It draws a random permutation of 
heights hi to be assigned to the discs Di, and then computes the vertical visibility 
map M, using the following divide-and-conquer technique. The set ~ of discs is 
sorted by height, and is split into two subsets ~ 1 , 9 2  of roughly equal size, with the 
discs in ~1 lying lower than the discs in ~2.  We then compute recursively the 
vertical visibility maps M ~), M ~2) for the two subcollections ~ ,  ~2.  We next 
collect all regions R of M ~) for which no other disc of ~1 lies above R, and form 
from them a single planar map N ~1). Let N ~2) denote the "bo t tom"  portion M o 
of M c2), as defined above. It is easily checked that Lemma 4.2 implies that 
the expected combinatorial complexity of both maps N ~1), N ~2~ is O(n). Note that 
any vertical visibility between a point on a lower disc and a point on an upper disc 
must correspond to an overlapping between a region of N ~1) and a region of N ~2~. 
Thus, to obtain the overall visibility map M we need to merge the two maps 
N ~ ,  N ~2). This can be easily accomplished by a plane sweep, whose complexity is 
O((IN~I~I + IN~2)I + K) log n), where K is the number of intersections between 
edges of N ~) and edges of N ~2~. But each such intersection becomes a vertex of the 
overall visibility map, and no such vertex is obtained in more than one sweep (over 
the entire recursive execution of the algorithm). Hence, applying Lemmas 4.1 and 
4.2, and noting that the lower or upper half of a random permutation is also a 
random permutation of the corresponding subset of discs, we easily deduce that the 
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expected time needed to compute M is O(n log 2 n). We complete the preprocessing 
by processing each of the submaps M~ of M for fast point location, using, e.g., the 
algorithm of [27]. This step also takes O(n log 2 n) expected time. 

To answer a stabbing query we proceed as follows. Let x be the query point. We 
first locate x in M o. If x lies outside Do, or no disc is found to lie above x, we stop 
and report that x does not stab 9.  Otherwise, let Dg, be the disc found to lie directly 
above x. We then locate x in the corresponding map M~,, thereby obtaining the 
next higher disc D a containing x. We continue in this manner until we obtain all k 
discs containing x, in time O(log n + k log n). We thus conclude 

Theorem 4.3. Given a collection ~ of n discs in the plane, we can preprocess it in 
randomized expected time O(n log 2 n) into a data structure of expected size 
O(n log n), so that, for any query point x, the k discs of ~ containing x can be 
reported in time O(log n + k log n). 

4.3. Generalizations 

The proofs of Lemmas 4.1 and 4.2 are fairly general, and rely only on the property 
that IS< k] = O(nk). Thus the results derived earlier in the paper imply the following 
extensions. 

Theorem 4.4. Given a collection ~ of n simply-connected regions in the plane with 
the property that each pair of their boundaries intersect at most twice, we can pre- 
process ~ in randomized expected time O(n log 2 n) into a data structure of expected 
size O(n log n), so that, for any query point x, the k regions of  ~ containing x can be 
reported in time O(log n + k log n). 

Remark. The preceding theorem, as well as the two following ones, assumes a 
model of computation that allows various basic operations on the given objects to 
be carried out in constant time. Typical such operations are: computing the 
intersection points between any pair of boundaries of the given objects, breaking 
each boundary into x-monotone parts, and testing a point for lying above, on, or 
below any x-monotone boundary portion. 

Theorem 4.5. Given a collection ~ of n half-planes with the property that each pair 
of their boundaries intersect at most three times, we can preprocess ~ in randomized 
expected time O(n~(n) log 2 n) into a data structure of  expected size O(mt(n) log n), so 
that,for any query point x, the k half-planes of ~ containing x can be reported in time 
O(log n + k log n). 

Theorem 4.6. Given a collection ~ of half-planes bounded by x-monotone curves 
with the property that each pair of these curves intersect in at most a constant number 
s of  points, we can preprocess ~ in randomized expected time O().s(n ) log 2 n) into a 
data structure of expected size O(2s(n) log n), so that, for any query point x, the k 
half-planes of  ~ containing x can be reported in time O(log n + k log n). 
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An interesting appl icat ion of Theorem 4.4 is 

Theorem 4.7. Let A ~ . . . . .  A, be n convex bodies in the plane having pairwise disjoint 
interiors, and let B be another convex object. Assuming an appropriate model of 
computation, we can preprocess these sets in randomized expected time O(n log 2 n) 
into a data structure of expected size O(n log n), so that given any query translated 
placement of B, we can report all k sets A~ that B intersects at that placement, in time 
O(log n + k log n). 

Proof. Using a s tandard  technique, we form the Minkowski  (vector) differences 
K~ = A i - B, for i = 1 . . . . .  n. As shown in [22], each pair  of  boundar ies  ~3Ki, 0Kj 
intersect in at most  two points (assuming general posit ion of the objects A~ and B). 
Moreover ,  a t ranslated placement  z + B of B intersects an object Ai if and only if 
z e K~. Applying Theorem 4.4 to the collection 3ff = {K t . . . . .  K,}, the result 
follows. []  

A Lower Bound. It is possible to construct  an example  involving n discs in the 
plane with the proper ty  that,  no mat te r  how we lift them to 3-space, there will 

always exist one disc that  sees at least x//n discs directly above it. Compar ing  this 
with L e m m a  4.1, we see that, while the expected average size of the submaps  Mi is 
O(log n), we cannot  obta in  a similar s ta tement  for their m a x i m u m  size. 

The construct ion proceeds inductively on n. Fo r  n = 1 we construct  a disc D I 
that  lies to the right of the y-axis and is tangent  to it. Suppose we have already 
constructed D 1 . . . . .  D,_  1. The next disc D n is constructed so as to satisfy the 
following properties:  

(i) D, lies to the right of the y-axis and is tangent  to it at a point  that  is distinct 
from the points  of tangency of all other  discs. 

(ii) For  each Di, j < n, c~Dn intersects aDj in two points  that  lie outside 

Ui<n,i~:j Di. 

To construct  D,,  take any point  z on the y-axis, disjoint f rom U~<, Di, and 
construct  a disc touching the y-axis at z, whose radius is chosen sufficiently large so 
as to satisfy (ii). See Fig. 3 for an il lustration of this construction.  

Fig. 3. Constructing discs with a large individual visibility map. 
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We claim that, no matter how we lift these discs into 3-space, there always exists 

a disc that sees at least x/n other discs directly above it. The proof again proceeds 
by induction on n, starting at n -- 3, a case for which the claim is easy to verify. 

Consider the hmght h, of the last disc D., and distinguish between two cases: 

1. h. _< n - x/-n. In this case there are at least x/n discs lying higher than D,, and 
it is easy to verify that each such disc Dj is seen from D, (for example, near 
the two intersection points of 0D, c~ ~D~). Thus the claim holds for D, in this 
case. 

2. h, > n - .,~n. In this case each of the n - v /n  lowest discs, D~, can see D. 
(again, near the two points of ~?D. c~ ODj). By induction hypothesis, one of 

these discs D~ sees above it at least x/n - x/~ discs from among the n - x//n 
lowest ones. Thus, together with D., the disc Di sees at least 

discs above it. This completes the inductive proof of our claim. 

An interesting open problem suggested by this construction is: Given n discs in 
the plane, does there always exist a lifting of them into 3-space such that no disc 

sees more than O(x~)  other discs above it? 

5. Conclusion 

In this paper we have made the simple observation that Clarkson and Shot 's  
probabilistic analysis technique can be adapted to yield sharp bounds on the size of 
(_< k)-sets in arrangements of curves and surfaces, and have applied it to a variety 
of problems. 

We expect that our results will have many more applications, and leave it as a 
general challenge to find other interesting applications. 

A main remaining open problem is to obtain sharp upper bounds on the size of 

k-sets in such arrangements. For example, can the bound O(nx/~), which is known 
for arrangements of lines (see [14]; a slightly improved bound has been recently 
obtained in [25]), be established in the other cases studied in this paper? 

Another interesting problem is to identify cases in which we do not have a sharp 
uniform bound on the size of IF0(R)I, but can still apply the probabilistic proof 
technique by obtaining a sharp bound on the expected size of Fo(R ). This might be 
possible, for instance, in the case of arbitrary arrangements of curves such that the 
total number of intersections between them is small. Another case in which this 
should be possible is for sets of curves chosen at random from some favorable 
distribution; for example, this should apply to sets of hyperplanes dual to points 
chosen uniformly from some simple convex region, because the expected number of 
vertices on the convex hull of such a random set of points is very small--see [26] 
for details. 



612 M. Sharir 

Recently, there has been some work that derives linear, or close to linear, upper 
bounds  on the complexity of the un ion  of certain geometric figures [4]. Such results 
can of course be "plugged in"  directly into our  machinery to yield sharp bounds  on 
the size of the ( <  k)-set, on  the expected size of the visibility map arising from 
random lifting of such objects to 3-space, etc. 

Finally,  the s tatements of some of the results obta ined here seem to be 
sufficiently simple to warrant  a direct, nonprobabil is t ic ,  proof, such as Pach 's  
proofs of the special case of Theorem 3.1 and of Corol lary 3.2. It would be nice to 
obta in  similar direct proofs of other results obta ined in this paper. 
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