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Abstract. We prove that for any set S of n points in the plane and n 3-~ triangles 
spanned by the points in S there exists a point (not necessarily in S)-contained in at 
least n3-3~'/(clogSn) of the triangles. This implies that any set of n points in 

three-dimensional space defines at most ~ n  s/3 log 5/3 n halving planes. 

1. Introduction 

Let  S be a set of  n po in t s  in the  p l ane  a n d  let J -  be the set of  ( ~ )  t r iangles  w h o s e  

vert ices  are  in S. B o r o s  and  F i i r ed i  [5] s h o w  tha t  there  is a po in t  x, no t  necessar i ly  

in S, c o n t a i n e d  in at  least  n3/27 t r i angles  and  this b o u n d  is t ight  up  to an  add i t ive  
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quadrat ic  term. The main  result of this paper  is a generalization of this result to 

the case where J - i s  only a subset of  the ( ~ ) t r i a n g l e s .  Specifically, we show that  

if [~--I = n 3 - ' ,  then there exists a point  x conta ined in at least n3-3~/(29 log s n) 
of the triangles. 1 An applicat ion of this result is that  n points in three-dimensional  
space define at most  28/3n 8/3 log 5/3 n halving planes, where a halving plane of a 
three-dimensional  set of  n points  in general posi t ion is a plane passing through 
three of the points  that  has an equal number  of points  on each of its sides (assuming 
n is odd). This improves  the recent O(n 3 - 1/343) upper  bound of Bhr~ny et al. [4]. 

The organizat ion of this paper  is as follows. Section 2 introduces some 
one-dimensional  selection lemmas  proved by applicat ion of the pigeonhole princi- 
ple. These form the p r imary  combinator ia l  tools used to prove the main  result in 
Section 3. Section 4 discusses the appl icat ion to halving planes of a finite point  
set in space. 

2. One-Dimensional Selection Lemmas 

The pr imary  combinator ia l  tools used to prove  the main  result of  this paper  are 
two variants  of  a result for points and intervals on a line. They are formulated as 
parts  (i) and (ii) of L e m m a  2.1. We refer to (i) as the "unweighted selection l emma"  
and to (ii) as the "weighted selection lemma."  The unwcighted selection lcmma 
has also been used in a compan ion  paper  [6];  for the sake of completeness we 
repeat  its p roof  which is not difficult. For  two points  p and q on the real line we 
call I p q  = {xlp < x < q or q < x < p} the interval of the edge {p, q}. 

Lemma2.1 .  Let V be a set o f  n >_ 2 points on the real line and let E be a set or 
multiset o f  m >_ 2n edges, that is, unordered point pairs. For a point x ~ V, let E(x) 
denote any subset or submultiset o f  edges in E whose intervals contain x (E(x) does 
not necessarily contain all such edges), define re(x) = ]E(x)[ and let n(x) be the number 
o f  points o f  V incident to edges in E(x). 

(i) I f  E is a set, then there is a point x and a set E(x) with re(x) >__ m2/(4n2). 
(ii) I f  E is a multiset, then there is a point z and a multiset E(z) with m(z)/n(z) >_ 

m/(2n log n). 

Proof. In order  to show (i) choose k - 1 points, none in V, cutt ing the line into 
k intervals so that  each contains no more  than  In~k] < n/k + 1 points of V. The 
number  of edges (including those not  in E) whose intervals contain none of the 
k - 1 delimiters is therefore at most  

k [n k] < 2k 

1 All logarithms in this paper are to the base 2. 
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The remaining intervals contain at least one of the k - 1 delimiters each and there 
are at least m - (n 2 + nk)/2k such intervals, which is at least m/2 if we choose 
k = [n2/(m - n)-]. By the pigeonhole principle one of the chosen points is contained 
in at least m/(2(k - 1)) > (m 2 - mn)/(2n 2) > m2/(4n z) intervals. 

To  prove  (ii) replace the k - 1 delimiters by n - 1 points, one between any two 
adjacent  points of V, and build a min imum height binary tree whose nodes are 
the n -  1 chosen points, so that  the inorder sequence coincides with the left-to- 
right order  of the points. The height of the tree is [log(n - 1)J < log n. For  a node 
z define E(z) as the set of edges in E whose intervals contain z but no ancestors 
of z. In this way each edge is counted at exactly one node which implies 
~z  m(z) = m. Because each point  of V can be incident to edges associated with at 
most  one node per level we also have ~ z  n(z) < n(1 + log n). N o w  assume that  
m(z)/n(z) < m/(n(1 + log n)) for each node z. But then 

m 

z re(z) < n(1 + logn) ~ n(z) < m, 

a contradiction.  This implies that  there is a point  z with 

re(z) m m 
> > [] 

n(z) - n(1 + log n) - 2n log n" 

Remark .  It is easy to see that  (i) is tight up to a multiplicative constant  in the 
worst  case. In [6] we also show that  a set variant  of (ii) is tight (up to a 
multiplicative constant)  in the worst  case. 

3. Selecting a Point  in a Set of  Triangles 

This section studies the prob lem of finding a point  that  lies in m a n y  members  of 
a given collection of t (open) triangles in the plane. This p rob lem is not  interesting 
in general because all triangles can be disjoint. However ,  if t is much  larger than 
n, the total  numbe r  of distinct vertices of the triangles, then we can prove  that  
there mus t  be a point  (not necessarily a vertex) contained in many  of the triangles. 
Our  result is a general izat ion of a theorem of Boros and Fiiredi [5] who prove 

that  the set of all ( ~ )  triangles defined by any set of n points in the plane has a 

subset of  size at least n3/27 with nonempty  c o m m o n  intersection. Our  result is 
also a general izat ion of the unweighted selection l emma to two dimensions;  other 
such generalizations can be found in [-6]. The theorem and its p roof  constitute the 
remainder  of this section. 

Theorem 3.1. Let S be a set o f  n points in the plane and let g be a set o f t  = n 3-~ 
open triangles spanned by the points o f  S. Then there exists a point contained in at 
least t3/(29n 6 log 5 n) = n a -  3~/(29 log 5 n) of the triangles. 
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Remark. In the case c~ = 0 (or, more precisely, when t = ~(n3)) our techniques 
can be slightly modified to prove a lower bound of c n  3 for the number of triangles 
with nonempty common intersection, thus reproducing (albeit with a smaller 
constant of proportionality) and extending the result of [5]. 

All steps of the proof  of Theorem 3.1 are elementary and make use of the two 
selection lemmas presented in the preceding section. 

Proof. The first step associates each triangle in ~-- with one of its edges as follows. 
Choose a direction in the plane with the property that no line in this direction 
passes through more than one point of S. Without loss of generality assume this 
to be the y-direction. For each triangle in ~-- define its base to be the edge with 
the longest orthogonal x-projection. Each triangle in J -  is associated with its base. 
For each segment ab connecting a pair of points in S define its multiplicity #ab to 
be the number of triangles that have ab as a base. Clearly, ~ab ~ab = t. 

We next choose an integer 4 > 2 with the property that 

t 
Z #ab  ~--- . . . .  

r 2~ log n " 

The existence of such a 4 can be established if we assume that t > n z which is no 
loss of generality as Theorem 3.1 is void otherwise. Cover the interval [2, n - 2] 
of integers with [ l o g ( n -  2)] - 1 < log n subintervals of the form [2 j, 2~+1], for 
j = 1 . . . . .  [log(n - 2)] - 1, and consider for each subinterval the subset of edges 
whose multiplicities it contains. By the pigeonhole principle, there must be one 
subinterval [U, 2 j+ 1] so that ~ = 2 j satisfies the above condition. 

Let ~0 denote the collection of triangles in J whose bases have multiplicity 
in [4, 24]. The number of such triangles is to > t/(log n). Since to is also bounded 

2 ( n )  i t fo l lows tha t  from above by 4 2 ' 

t 
4 _ > - -  

n 2 log n" 

From now on we consider only the triangles in 3-- o. 
In the second step of the proof we orthogonally project all points of S onto 

the x-axis, and define a multiset of intervals delimited by the projected points as 
follows. For each base ab whose multiplicity is in [4, 24] we take every pair of 
distinct triangles abc, abd in .r associated with ab and obtain the corresponding 
interval c'd', where c' and d' are the projections of the "inner" points c and d. See 
Fig. 3.1 for an illustration. The number of resulting intervals, counted with 
multiplicity, is mo > to(4 - 1)/2 > to4/4, since each triangle of ~0 is paired with 
at least 4 - 1 triangles, and each such pair arises twice. 

We can thus apply the weighted selection lemma (Lemma 2.1(ii)) to deduce that 
there exists a point z o on the x-axis contained in m 1 intervals (counted with 
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i l  
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C 

c' d' 

Fig. 3.1. Pairing two triangles with a common base. 

multiplicity), which are delimited by at most  nl distinct endpoints,  such that  

m l  mo to~  
> > 

n I - 2 n l o g n - 8 n l o g n "  

Each of the m I resulting intervals c'd' corresponds  to a quadruple t  Q = {a, b, c, d}, 
as in Fig. 3.1. Let l denote  the vertical line x = z o. Note  that  1 intersects both  
segments ab and cd, and that  the interval IQ = (l c~ ad, l c~ bc) is contained in the 
union of the two corresponding triangles abc, abd of @o. 

In the third step of the p roof  we consider the system of intervals along I as just 
defined. We have m 2 = m~ such intevals. By how m a n y  endpoints  are they 
delimited? Each such endpoint  is the intersection of l with a segment ad so that  
a is an endpoint  of some base while d is one of the at most  n~ " inner"  points 
obta ined in the previous step. It follows that  the number  n 2 of endpoints  along 1 
is at most  nn~. 

We now apply the unweighted selection l emma (Lemma 2.1(i)) to this system 
of intervals and points. Note  that  no two distinct quadruplets  can give rise to the 
same interval (assuming I is chosen so that  no two segments connecting points in 
S meet l at the same point), because the endpoints  of the interval uniquely 
determine the four points a, b, c, d forming the quadruplet .  Thus  the unweighted 
selection l emma is indeed applicable,  and it yields a point  x 0 ~ 1 that  is contained 
in at least 

1( 
4nZ - 4n=n~ >- - -  - -  4n 2 \ ~ J  28n  4 l o g  2 

intervals. Since each interval IQ is contained in the union of the two triangles 
forming Q, it follows that  Xo must  lie in at least this m a n y  triangles of J - ,  where 
each triangle is now counted with multiplicity, which for tunately is at most  2~ 
(recall that  a triangle abc can be coupled with at mos t  2~ points  d to form a 
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quadruple  of the type we consider). It follows that  x o lies in at least 

t2~ t 3 n 3 3~ 

29n '~ log 2 n -> 29n 6 log 5 n - 29 log 5 n 

distinct triangles, where the last expression is obta ined by substi tuting the lower 
bounds  on to, ~ that  were noted above. [ ]  

Remark .  Not ice  that  Theorem 3.1 is reasonably s t rong only as long as ~ is small; 
in part icular,  it is void if ~t > 1. We can prove that  there is a point contained in 
at least t/2n = �89 2-"  triangles, which imporves  Theorem 3.1 if ct _> �89 For  each 
point  p e S take the sum of the angles at p covered by the incident triangles. Since 
the sum of angles of any triangle is 7~, there must  be a point p whose sum of angles 
is at least t~/n. The full angle at p is 2~ which implies that  there is a point  near 
p covered by at least t/2n of the angles. This point  lies in at least t/2n = �89 2-~ 
triangles. 

4. An Application to Halving Planes in Space 

Let S be a set of n points  in d-dimensional  space. A k-set of S is a subset T __ S 
with [T I = k and T =  S c~ h for some half-space h. We define fd.k(n) as the 
m a x i m u m  number  of  k-sets realized by any set of  n points  in d dimensions. 
Obta in ing  sharp  bounds  o n  fd,k(n) has remained an elusive task for a lmost  20 
years. In the plane the known bounds  are fE.k(n)= fft(n log k) [9], [-10] and 

f2,k(n) = O(nx//k/log*k) [12]. The  problem of count ing the total  number  of j-sets 
for 1 < j _< k is much  better  understood.  The  m a x i m u m  number  of such j-sets for 
n points  in d dimensions is | ~d/2~) [1], [-7], I11]. 

The most  difficult case in the analysis of fd.k(n) seems to be when k is abou t  
half of  n. In three dimensions call a triangle abc, a, b, c ~ S, a halving triangle if 
the plane through these points  has at most  (n - 3)/2 points of  S on each side; call 
the plane th rough  a, b, and c a halvin9 plane. A recent result of Bfir/my et al. [4] 
shows that  the number  of halving planes of n points  in three dimensions is 
O(n 3 -  1/343); this is the first nontr ivial  upper  bound  on this quantity.  The best 
lower bound is [)(n 2 log n) [8]. 

Using Theorem 3.1 we can improve  the upper  bound  on the number  of halving 
planes. 

Theorem 4.1. The number of  halving planes of  a set of  n points in three dimensions 
is less than 28/3n s/a log 5/3 n. 

Proof. We make  use of  the fact, established in [4], that  no line in space can 

interesect more  than ( ~ )  halving triangles of S. Project  the points  and all halving 

triangles onto  a plane so that  no two points  have coinciding projections. Theorem 



Points and Triangles in the Plane and Halving Planes in Space 441 

3.l implies that if S has more than t halving triangles, then there is a point Xo in 
this plane contained in the projections of more than ta/(29n 6 log 5 n) halving 
triangles. This implies that the line orthogonal to the projection plane through Xo 
intersects that many halving triangles. Hence, by the result of [4], this number 
must be smaller than n2/2, which implies t < 28/3n s/3 log 5/3 n. [] 

Remark. The above bound also serves as an upper bound for the number of 
k-triangles spanned by a set S of n points, where a k-triangle is a triangle whose 
vettices belong to S and the plane containing it contains exactly k points of S in 
one of its open half-spaces. In other words, the above bound is also an upper 
bound on the number of k-sets of a set of n points in three-dimensional space, for 
any k. Of  course, if k is very small, then better bounds are known (see [7]). 

The maximum number of halving planes of a set of n points in space is 
proportional to the maximum number of facets of the so-called median level in 
an arrangement of n planes in space, see [8]. If we project the facets of a median 
level vertically onto the xy-plane we get a subdivision known as a higher-order 
power diagram of a set of n circles in the plane, see [2]. Thus, Theorem 4.1 implies 
that the number of facets of the median level in space and the number of regions 
in a higher-order power diagram is O(n s/3 log 5/3 n). 

5. Discussion 

This paper proves that for any set of n 3-" triangles with a total of n vertices in 
the plane there exists a point contained in at least n 3 3a/(29 log 5 n) of the triangles. 
A corollary of this result is that any set of n points in three-dimensional space 
defines at most 28/3n s/3 log 5/3 n halving triangles. An interesting open problem is 
the extension of these results to higher dimensions. In view of a result of Bfirfiny 

) simplices by n points 
N 

/ I  

[3], who shows that the set of d +  1 defined in d 
/ 

dimensions always contains a constant fraction of simplices with nonempty 
common intersection, it seems likely that the result on triangles can be generalized 
to dimensions d > 3. Such a generalization would then imply new upper bounds 
on the number of halving hyperplanes in d + 1 dimensions. 

Another promising line of research is to find other applications of the combina- 
torial selection lemmas of Section 2. Indeed, these lemmas can be generalized to 
hyperrectangular boxes and spheres in higher dimensions [6]. 
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