

Convex Polytopes Whose Projection Bodies and Difference Sets Are Polars

Horst Martini

Sektion Mathematik, Pödagogische Hochschule, Wigardstrasse 17, DDR-8060 Dresden, German Democratic Republic

Abstract. In a paper by the author and B. Weissbach it was proved that the projection body and the difference set of a d-simplex ($d \ge 2$) are polars. Obviously, for d = 2 a convex domain has this property if and only if its difference set is bounded by a so-called Radon curve. A natural question emerges about further classes of convex bodies in R^d ($d \ge 3$) inducing the mentioned polarity. The aim of this paper is to show that a convex d-polytope ($d \ge 3$) is a simplex if and only if its projection body and its difference set are polars.

1. Definitions and Background Material

Let R^d $(d \ge 3)$ denote the *d*-dimensional Euclidean vector space with scalar product $\langle \cdot, \cdot \rangle$, norm $\|\cdot\|$, and unit sphere $S^{d-1} := \{u \in R^d \mid \langle u, u \rangle = 1\}$. For basic notation the reader is referred to [4], [5], and [7]. In particular, we write P^d for the set of *convex d-polytopes*, i.e., compact, convex subsets of R^d with nonempty interior and a finite number of extreme points (vertices).

For $P \in P^d$ with $n \ge d+1$ facets let a_i denote the outward normal vector of the *i*th (d-1)-face, where $||a_i||$ represents the area of this facet $(i \in \{1, ..., n\})$. Then the vector sum of line segments given by

$$\prod P := \sum_{i=1}^{n} \operatorname{conv}\{o, a_i\} = \frac{1}{2} \sum_{i=1}^{n} \operatorname{conv}\{-a_i, a_i\}$$
 (1)

is called the *projection body* of P (see Section 7 in [4], and [11]). The polytope ΠP is a *d-zonotope* (see [9] and [11]) with center o, i.e., besides the body ΠP itself each face of it has a center of symmetry. Moreover, every segment summand $\operatorname{conv}\{o, a_i\}$ ($i = 1, \ldots, n$) generates a *zone* of facets in $\operatorname{bd} \Pi P$, that is the intersection with the zonotope of supporting hyperplanes with normal vectors orthogonal

to conv $\{o, a_i\}$. For that reason ΠP has exactly m zones, where $m \le n$ is the number of nonoriented facet normals of P. As is well known, a (d-2)-flat corresponds to each zone of the zonotope (and vice versa) in the so-called projective diagram \bar{A}_m^{d-1} of ΠP , which is a dissection of real projective (d-1)-space by (d-2)-flats with no common point into cells of various dimensions. More precisely, assuming these cells to be relatively bounded, every (d-r-1)-cell represents the intersection of S^{d-1} and the closed normal cones of two opposite r-faces of ΠP ($r = 0, \ldots, d-1$). Hence \bar{A}_m^{d-1} is the projective representation of the usual spherical image (see Section I.5 of [1]) of the centrally symmetric polytope ΠP . Further, by

$$(\Pi P)_{\delta}^* := \{ x \in \mathbb{R}^d \mid \langle x, y \rangle \le \delta^2 \quad \text{for all } y \in \Pi P \}$$
 (2)

the polar body of ΠP with respect to $\delta \cdot S^{d-1}$ ($\delta \in R^+$) is defined. This polarity implies (see once more Section I.5 of [1]) that \bar{A}_m^{d-1} coincides with the central projection of $(\Pi P)_{\delta}^*$, i.e., the projection of the (d-2)-skeleton of $(\Pi P)_{\delta}^*$ from the center o onto the hyperplane at infinity belonging to the projective augmentation of R^d . (This way of projecting a polytope onto the real projective (d-1)-space is briefly discussed in Section 23 of [6]. Notice further that the (d-2)-skeleton of a polytope $P \in P^d$ is the union of its faces with dimensions not larger than d-2.)

The intersection of the (d-2)-skeleton of $P \in P^d$ and some hyperplane is called a (d-2)-circle of P, if it is homeomorphic to a (d-2)-sphere. A polytope $P \in P^d$ with center o is said to be (d-2)-equatorial if, for each (d-1)-subspace P through a (d-2)-face, the intersection of P and the (d-2)-skeleton of P is a (d-2)-circle. Moreover, such an intersection is called a (d-2)-equator of P. From the described correspondence between P and the central projection of $(\Pi P)^*$ it follows immediately that $(\Pi P)^*$ is a (d-2)-equatorial polytope. (Clearly, the (d-2)-equatoriality is only a necessary property of polars of P-zonotopes (see [2]). For necessary and sufficient conditions we can consult [14], whereas polars of (d-2)-equatorial polytopes are investigated in [3].)

Finally, the difference set of $P \in P^d$ is defined by

$$DP := P + (-1)P$$
= $\{x \in R^d \mid x = x_1 - x_2 \text{ with } x_1, x_2 \in P\}$ (3)

(see Section 7 of [4]). It should be noticed that we use DM in an analogous manner if $M \subseteq R^d$ is an arbitrary point set.

2. Proof of the Result

We shall show the announced characteristic property of d-simplices $(d \ge 3)$ by proving the more general statement that a convex d-polytope P is a simplex if and only if the central projection of DP and the projective diagram of ΠP coincide. To see this, four lemmas are taken into consideration.

Lemma 1. Let $P \in P^d$ $(d \ge 3)$ be a polytope with coincidence between the central projection of DP and the projective diagram of ΠP . Then P is simplicial, i.e., each facet of the polytope is a (d-1)-simplex.

Proof. If F(Q, u) is written for the intersection of a polytope $Q \in P^d$ and its supporting hyperplane with outward normal direction $u \in S^{d-1}$, then for $P \in P^d$ and each $u \in S^{d-1}$ the relation

$$F(DP, u) = F(P, u) + F((-1)P, u)$$
 (4)

holds (see Section 15 of [5]). Further, it is known that every simplex (of dimension d-1) is indecomposable in the sense of vector addition, i.e., it has only positively homothetic summands [5, Section 15]. By the supposition of this lemma the central projection of DP is a projective (d-1)-arrangement of m (d-2)-flats with no common point. As is shown in [12], such an arrangement has (at least) m (d-1)-cells which are projective simplices. Hence DP has (at least) 2m simplices as facets. By their indecomposability they cannot be vector sums of r-faces $(1 \le r \le d-2)$ of P and (-1)P in the sense of (4). Thus each of their m nonoriented facet normals is also a facet normal of P, corresponding to simplex facets of this polytope in each case. Therefore nonsimplices as (d-1)-faces of P are excluded.

Lemma 2. Let P be a convex d-polytope $(d \ge 3)$. For every (d-2)-equator $\overline{M} \subseteq bd$ DP there exists exactly one (d-2)-circle $M \subseteq bd$ P with

$$(x_1-x_2)\in \bar{M} \implies x_1, x_2\in M.$$

Proof. For generating \bar{M} it suffices to use the (d-2)-skeleton of P (see (4) and the definition of \bar{M}). Let us consider the union of all difference sets generated from the intersections of this skeleton with hyperplanes whose normals are orthogonal to $\lim \bar{M}$. Clearly, \bar{M} is exactly the relative boundary of this union. We assume that more than one such difference set meets \bar{M} . Then there would exist a point $x \in \bar{M}$ belonging to the relative boundaries of two such difference sets DP_1 and DP_2 , whose generators P_1 , $P_2 \subset P$ lie in different parallel hyperplanes. Hence

$$x = x_1 - x_2 = y_1 - y_2$$
, $x_1, x_2 \in P_1$, $y_1, y_2 \in P_2$,

would hold. Since $conv\{x_1, x_2, y_1, y_2\}$ is a nondegenerate parallelogram, x would be a relatively interior point of $conv\{y_1 - x_2, x_1 - y_2\} \subset DP$.

By $(y_1 - x_2)$, $(x_1 - y_2) \notin \lim \overline{M}$, x cannot lie in a face of DP which fully belongs to $\lim \overline{M}$. But this contradicts the definition of \overline{M} . Thus \overline{M} is generated by the difference set of exactly one linear (d-1)-cut of the used (d-2)-skeleton. The additivity of faces of convex bodies under vector addition (see (4)) implies that this linear cut is homeomorphic to a (d-2)-sphere, i.e., it is a (d-2)-circle.

Lemma 3. Let conv M_i (i = 1, 2) be two (d - 1)-simplices whose relative boundaries M_i are (d - 2)-circles of $P \in P^d$. If each M_i generates a (d - 2)-equator $\overline{M}_i \subset bd$ DP (in the sense of the preceding lemma), then the simplices conv M_i coincide in d - 1 pairs of extreme points.

Proof. Since every edge of these simplices is also an edge of P, conv M_i lies in a closed half-space with respect to aff M_j , $\{i, j\} = \{1, 2\}$. Let $v_1, v_2 \in \text{vert } P$ be two extreme points of conv M_2 with $v_1, v_2 \notin \text{conv } M_1$. We now distinguish two subcases regarding the relative position of conv M_1 and conv $\{v_1, v_2\}$.

1. There exists no parallel projection of R^d onto aff M_1 with the property that the image of $conv\{v_1, v_2\}$ is contained in $conv M_1$. Then we choose a parallel projection such that the image of $conv\{v_1, v_2\}$ covers the longest chord of the same direction in $conv M_1$. The following considerations confirm the existence of such a projection.

For aff $\{v_1, v_2\}$ || aff M_1 all possible image lines of aff $\{v_1, v_2\}$ in aff M_1 are parallel. Thus one of them contains the longest chord of conv M_1 with the same direction. By the supposition this chord is contained in an image of conv $\{v_1, v_2\}$ on this line. For aff $\{v_1, v_2\}$ || aff M_1 we use the point $\{p_0\} := \text{aff}\{v_1, v_2\} \cap \text{aff } M_1$. If $\{v_3, \ldots, v_{d+2}\}$ denotes the vertex set of conv M_1 , then

$$p_0 = \lambda_3 v_3 + \cdots + \lambda_{d+2} v_{d+2}, \qquad \sum_{i=3}^{d+2} \lambda_i = 1,$$

is obtained. The assumed projection property implies $p_0 \notin \text{conv } M_1$. Therefore at least one λ_i above has to be negative and at least one positive. Without loss of generality we can write

$$\lambda_3 < 0, \dots, \lambda_k < 0, \quad \lambda_{k+1} \ge 0, \dots, \lambda_{d+2} \ge 0 \quad (3 < k < d+2)$$

and define

$$\tau_1 := \sum_{i=3}^k \lambda_i \neq 0, \qquad \tau_2 := \sum_{i=k+1}^{d+2} \lambda_i \neq 0, \qquad \tau_1 + \tau_2 = 1.$$

Introducing

$$p_1 := \frac{1}{\tau_1} \sum_{i=3}^k \lambda_i v_i \quad \text{and} \quad p_2 := \frac{1}{\tau_2} \sum_{i=k+1}^{d+2} \lambda_i v_i, \tag{5}$$

we see by $p_0 = \tau_1 p_1 + \tau_2 p_2$ $(\tau_1 + \tau_2 = 1)$ that p_0 is a point from aff $\{p_1, p_2\}$. On the other hand, by (5) we have

$$p_1 \in \text{conv}\{v_3, \ldots, v_k\}, \qquad p_2 \in \text{conv}\{v_{k+1}, \ldots, v_{d+2}\}.$$

Hence

$$\operatorname{aff}\{p_1, p_2\} \cap \operatorname{conv} M_1 = \operatorname{conv} \{p_1, p_2\}.$$

Obviously, the sets $\{v_3, \ldots, v_k\}$ and $\{v_{k+1}, \ldots, v_{d+2}\}$ represent a dissection of ext conv M_1 . Since conv M_1 is a (d-1)-simplex, there exist two uniquely determined parallel (d-2)-flats H_1 , H_2 in aff M_1 with

$$\{v_3,\ldots,v_k\}\subset H_1, \quad \{v_{k+1},\ldots,v_{d+2}\}\subset H_2,$$

and $p_1 \in H_1$, $p_2 \in H_2$. Because further conv M_1 is contained in conv $(H_1 \cup H_2)$, no chord of conv M_1 parallel to conv $\{p_1, p_2\}$ can be longer than this segment. Thus, the existence of a parallel projection with the demanded property is confirmed.

Now let us fix the position of the origin relative to conv M_1 and conv $\{v_1, v_2\}$. (Clearly, the presented relations are translation invariant. This determination of o is only taken for the sake of convenience.) We denote by v_1' , v_2' the images of v_1 , v_2 with respect to the introduced parallel projection. Let v_1' coincide with p_1 . Then p_2 (by the supposition a relatively interior point of conv $\{v_1', v_2'\}$) will be the origin.

Our next step is the confirmation of

$$\operatorname{conv}\{v_1' - \delta v_2', \, \delta v_2' - v_1'\} \subset DP \tag{6}$$

for a suitable δ with $0 < \delta < 1$ (and $\delta \neq \frac{1}{2}$). To see this, we consider the parallelogram conv $\{v_1, v_2 - v_1', -v_1, v_1' - v_2\}$. By (3) the vertices of this 4-gon belong to DP, and with $v_1, v_2 \notin \text{aff } M_1$ they do not lie in aff M_1 .

We introduce a Cartesian coordinate system in the 2-plane of the parallelogram by using an \bar{x} - and a \bar{y} -axis. By

$$v_1 = (\bar{x}_1, \bar{y}_1), \quad \bar{x}_1, \bar{y}_1 > 0, \qquad v'_1 = (\bar{x}_1, 0),$$

$$v_2 = (-\bar{x}_2, \bar{y}_2), \qquad \bar{x}_2, \bar{y}_2 > 0, \quad \bar{y}_1 \neq \bar{y}_2, \qquad v'_2 = (-\bar{x}_2, 0),$$

the relations

$$v_2 - v_1' = (-\bar{x}_1 - \bar{x}_2, \bar{y}_2)$$
 and $-v_1 = (-\bar{x}_1, -\bar{y}_1)$

hold. For $p = (\bar{x}, \bar{y})$ from aff $\{v_2 - v_1', -v_1\}$ the equation

$$-\bar{x}_2(\bar{y}+\bar{y}_1)=(\bar{y}_1+\bar{y}_2)(\bar{x}+\bar{x}_1)$$

is observed. The intersection of this line and the \bar{x} -axis is a point $q(\bar{q}, 0)$ with

$$\bar{q} = -\bar{x}_1 - \frac{\bar{y}_1 \bar{x}_2}{\bar{y}_1 + \bar{y}_2}$$
, i.e., $q = -v_1' + \delta v_2'$, $\delta = \frac{\bar{y}_1}{\bar{y}_1 + \bar{y}_2}$.

(Because \bar{y}_1 , $\bar{y}_2 > 0$ the relation $0 < \delta < 1$ is clear, and $\bar{y} \neq \bar{y}_2$ implies $\delta \neq \frac{1}{2}$.)

Thus, by the symmetry of DP with respect to o the inclusion (6) is proved. Since $||p_1-p_2||$ is the maximal chord length of conv M_1 in the direction $v_1'/||v_1'|| \in S^{d-1}$, we have $(v_1'-\delta v_2') \notin DM_1$ $(DM_1=M_1+(-1)M_1)$, although the relation $(v_1'-\delta v_2') \in (DP \cap \text{aff } \bar{M}_1)$ holds. Thus, by Lemma 2 the (d-2)-circle M_1 cannot generate a (d-2)-equator of DP.

2. There exists a parallel projection of the line segment $conv\{v_1, v_2\}$ into the set $conv M_1$. We now use the oppositely oriented projection, namely from $conv\{v_1', v_2'\}$ onto $conv\{v_1, v_2\}$. Since $||v_2-v_1||$ is an edge length of $conv M_2$, we get $\pm (v_1-v_2) \in ext DM_2$ (see [8]). By (3) the points $\pm (v_1-v_2')$, $\pm (v_2-v_1')$ belong to DP. On the other hand, the inclusions

$$\pm (v_1 - v_2) \in \text{relint conv}\{\pm (v_1' - v_2), \pm (v_1 - v_2')\}\$$

hold. Since these line segments are not fully contained in aff M_2 , the relative boundary of $M_2+(-1)M_2$ cannot be a (d-2)-equator of DP.

Lemma 4. For $P \in P^3$, let the central projection of DP and the projective diagram \bar{A}_m^2 of ΠP coincide. Then P is a tetrahedron.

Proof. Clearly, this coincidence implies that P is simplicial (see Lemma 1) and that to each facet of P, there exists a parallel 1-equator in bd DP. Here we distinguish two subcases with respect to 1-circles of P that are generators of 1-equators in bd DP.

1. Let us assume that every such 1-circle is the relative boundary of a facet of P. Since P has only triangles as facets, we can identify the sets conv M_i and the points v_i (i=1,2) from the proof of Lemma 3 with facets and vertices of P. Each nonsimplex $P \in P^3$ has two vertices not contained in one of its facets. (For the dual version of this statement see [13].) Thus, assuming that nonsimplices P have no parallel 2-faces, Lemma 3 implies the existence of facets of these polytopes not parallel to 1-equators in bd DP. On the other hand, if a nonsimplex $P \in P^3$ has a pair $\{\text{conv } M_1, \text{ conv } M_2\}$ of parallel 2-faces, then by Lemma 2 (and suitable notation)

$$(M_1 + (-1)M_1) \subseteq \text{relint}(M_2 + (-1)M_2)$$
 (7)

must hold. Then let us consider the three facets having edges in common with conv M_1 . Obviously, their longest chords in the directions of these edges are the edges themselves. Hence by (7) the relative boundaries of these three triangles cannot generate 1-equators in bd DP, too. We can continue this process of crossing over to further neighboring facets through all the boundary of P. But this contradicts the assumed existence of 2-faces in bd P whose relative boundaries generate 1-equators in bd DP. Thus a nonsimplex $P \in P^3$ cannot have only relative facet boundaries as 1-circles which generate the 1-equators of DP.

2. Therefore we have to assume the existence of such a generating 1-circle $L \subset \operatorname{bd} P$ which is not a relative facet boundary of the nonsimplex $P \in P^3$. We denote by \overline{G} the projective line representing L+(-1)L in the central projection \overline{A}_m^2 of DP. Then each 0-cell from \overline{G} is contained in (at least) three lines of this projective 2-arrangement. Namely, by the connection of \overline{A}_m^2 with ΠP the line \overline{G} must represent a zone of this zonohedron, i.e., a facet normal of P which is orthogonal to aff L. Further, every edge of P in L belongs to two facets of the

polyhedron whose normals are different and, additionally, different from the facet normal described above. Thus, arbitrarily oriented directions of these three normals form a linearly dependent system, whose representatives are pairwise linearly independent. Such a system corresponds to a triplet of projective lines through one 0-cell from \bar{G} in \bar{A}_m^2 . In general, for a projective 2-arrangement \bar{A}_m^2 of m lines with no common point the following relations are known or can be derived without difficulty (see Section 18 of [5]).

If f_i ($i \in \{0, 1, 2\}$) denotes the number of i-cells, p_i ($j \ge 3$) the number of j-sided 2-cells, and w_k ($k \ge 3$) the number of 0-cells which belong to k projective lines of \bar{A}_m^2 , then with $c := \sum_{k\ge 3} (k-2)w_k$ we obtain $f_0 - f_1 + f_2 = 1$ (Euler's relation for \bar{A}_m^2), $\sum_{j\ge 3} p_j = f_2$, $\sum_{j\ge 3} jp_j = 2f_1$, and $f_1 = 2f_0 + c$. It is obvious, that the first lemma implies $p_3 = m$ and $p_j = 0$ (j > 4). A suitable combination of these equations leads to 2c = m - 4. But since (at least) three projective lines of \bar{A}_m^2 are incident with every 0-cell from \bar{G} , 2c cannot be smaller than m-1. Hence we finish, as in the first case, with a contradiction.

These lemmas allow the formulation of

Theorem 1. For a convex d-polytope $P(d \ge 3)$ the projective diagram of ΠP and the central projection of DP coincide if and only if P is a simplex.

Because each simplex has this property (see [8]), only the converse implication remains to be verified. By means of Lemma 4 we may assume that in P^{d-1} ($d \ge 4$) the simplices are characterized by such a coincidence. Further, we also assume that for $P \in P^d$ the projective arrangement \bar{A}_m^{d-1} has this double meaning. We shall show that P is then a d-simplex. Let \bar{Q} be an arbitrary (d-2)-equator from bd DP. Obviously, the (d-1)-polytope conv \bar{Q} is then (d-3)-equatorial. By Lemma 2 there exists a uniquely determined (d-2)-circle $Q \subset \operatorname{bd} P$ with conv $\overline{Q} = Q + (-1)Q$. We write $\overline{A}_p^{d-2}(p < m)$ for the relative central projection of DQ = Q + (-1)Q in the (d-2)-plane at infinity with respect to the projective augmentation of lin DQ. Now let us show that the assumed correspondence of \bar{A}_m^{d-1} , ΠP , and DP implies an analogous connection between \bar{A}_p^{d-2} , DQ, and the relative projection body $\Pi \hat{Q}$ of conv $Q =: \hat{Q}$. Clearly, an arbitrary relative facet of \hat{Q} equals just a (d-2)-face of P. Thus such a face R is the intersection of exactly two facets of P, whose normals span a 2-subspace totally orthogonal to aff R. Therefore the set of the relative facet normals of \hat{Q} is contained in the set of orthogonal images of facet normals of P in lin DQ. If q is the number of the relative facet normals of \hat{Q} , this means $q \le p$. On the other hand, we have $p \le q$. This follows by Shannon's result that \bar{A}_p^{d-2} contains (at least) p projective (d-1)-simplices, necessarily corresponding here to (at least) p relative facet normals of Q (see Lemma 1). Hence ΠQ and DQ have the same (d-2)arrangement as the relative projective diagram (resp. relative central projection). Hence, by the induction hypothesis $\hat{Q} \in P^{d-1}$ is a (d-1)-simplex.

Now let C denote the complex of all (d-1)-simplices \hat{Q}_i which generate (d-2)-equators of DP $(i=1,\ldots,m)$. From a statement in [13] it follows that each nonsimplex $P \in P^d$ has a facet not containing two vertices of P. This and

Lemma 3 imply that conv C is a d-simplex, say S. If ΠP has less than d+1 zones, then P is necessarily a d-parallelotope, whose difference set is not (d-2)-equatorial. Thus m=d+1 and DS=DP. Finally, we confirm that this equality implies S=P.

We have $S \subseteq P$. For $\{e_0, \ldots, e_d\} := \text{vert } S$ in [8] the relation

vert
$$DS = \{e_i - e_j\}, \quad i, j \in \{0, \dots, d\}, \quad i \neq j,$$
 (8)

was shown. If there exists an extreme point z of P with $z \notin S$, then $\pm (z - z') \in$ vert DS holds, where z' denotes a suitable point from vert P. For $z' \in$ vert S this relation contradicts (8), and $z' \notin$ vert S implies the existence of a pair k, l from $\{0, \ldots, d\}$ with $\pm (e_k - e_l) = \pm (z - z')$. But then $e_k - e_l$ would be from the relative interior of conv $\{e_k - z', z - e_l\} \subset DP$, contradictory to $(e_k - e_l) \in$ vert DP.

3. Formulation of the Result and Its Equivalents

For assertions which are equivalent to the announced polarity property we introduce some additional notions. Let $\underline{V}_1(P, u)$ denote the inner 1-quermass of $P \in P^d$ at $u \in S^{d-1}$, i.e., the length of the longest chord of this polytope in direction u. On the other hand, by $\overline{V}_{d-1}(P, u)$ we define the outer (d-1)-quermass (brightness) of P at u, i.e., the area of the orthogonal image of P in $\{x \in R^d \mid \langle x, u \rangle = 0\}$ (see Section 7 of [4]). A (compact) d-prism D_u with generators in direction u is, by definition, the nondegenerate vector sum of a polytope from P^{d-1} and a line segment with this direction. If under the condition $P \subseteq D_u$ the volume $V(D_u)$ is minimal, then this prism is said to be optimally circumscribed about $P \in P^d$. Now we are ready for

Theorem 2. The following properties of a convex d-polytope P $(d \ge 3)$ are equivalent:

- (A) The polytope P is a d-simplex.
- (B) The difference set DP and the projection body ΠP are polars with respect to a sphere $\delta \cdot S^{d-1}$ for some $\delta \in R^+$.
- (C) The inner 1-quermass and the brightness of P satisfy

$$\underline{V}_1(P, u) \cdot \overline{V}_{d-1}(P, u) = \delta^2$$

for each $u \in S^{d-1}$ and some $\delta \in \mathbb{R}^+$.

(D) For P all optimally circumscribed d-prisms have the same volume.

Proof. Since the introduced correspondence of ΠP , \bar{A}_m^{d-1} , and DP is a necessary condition for the polarity of ΠP and DP with respect to $\delta \cdot S^{d-1}$, by [8] and the first theorem, $(A) \Leftrightarrow (B)$ is confirmed. From the definitions of ΠP and DP it follows that $\underline{V}_1(P,u)$, $u \in S^{d-1}$, is reciprocal to the restriction $g(DK,u) := \min\{\rho > 0 \mid u \in \rho DK\}$ to S^{d-1} of the distance function of DP, whereas $\overline{V}_{d-1}(P,u)$

represents the correspondingly restricted support function $h(\Pi P, u) := \max\{\langle u, y \rangle | y \in \Pi P\}$ of ΠP . Since polarity of ΠP and DP with respect to $\delta \cdot S^{d-1}$ ($\delta \in R^+$) is equivalent to $h(\Pi P, u)/g(DK, u) = \delta^2$ for all $u \in S^{d-1}$ [7, Section 12], (B) \Leftrightarrow (C) is verified. Let T_u denote a chord from $P \in P^d$ of maximal length in direction u. Then both endpoints of T_u lie in parallel supporting hyperplanes of P [4, Section 7]. Therefore $\min\{V(D_u)|P \subseteq D_u\} = \overline{V}_{d-1}(P, u) \cdot \underline{V}_1(P, u)$ for each $u \in S^{d-1}$ and (C) \Leftrightarrow (D) are obtained.

4. Concluding Remarks

Obviously, by Theorem 2 the polarity of ΠP and the central symmetrization $\frac{1}{2}DP$ [7, Section 20], [4, Section 9] is also a characteristic property of simplices in P^d $(d \ge 3)$. We might extend the investigations to the set K^d of convex bodies (compact, convex sets with interior points) in R^d and ask whether the polarity of ΠK and DK implies that $K \in (K^d \setminus P^d)$ is a d-ellipsoid $(d \ge 3)$. For d = 2, Theorem 2 remains true if K^d is written instead of P^d and if simplices are replaced by convex domains whose difference sets are bounded by Radon curves [7, Section 13]. Assuming polarity of ΠK and DK, we can estimate the constant δ^2 (see Theorem 2) in terms of the volume V(K) of $K \in K^d$ for $d \ge 2$. Namely, by [8] and a result from [10] we have

$$\frac{2\omega_{d-1}}{\omega_d} V(K) \leq \delta^2 \leq dV(K), \qquad \omega_d := \frac{\pi^{d/2}}{\Gamma(1+d/2)}, \quad d \geq 2.$$

References

- 1. A. D. Aleksandrov, Konvexe Polyeder, Akademie-Verlag, Berlin, 1958.
- 2. E. D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145 (1969), 323-345.
- E. D. Bolker, Centrally symmetric polytopes, in Proc. 12th Bienn. Internat. Seminar Canad. Math. Soc. Congr. (Vancouver, B.C., 1969), 255-263, Canadian Mathematical Society, Montreal, 1970.
- 4. T. Bonnesen and W. Fenchel, Theorie der konvexon Körper, Springer-Verlag, Berlin, 1974 (reprint).
- 5. B. Grünbaum, Convex Polytopes, Wiley, New York, 1967.
- 6. D. Hilbert and S. Cohn-Vossen, Anschauliche Geometrie, Springer-Verlag, Berlin, 1932.
- 7. K. Leichtweiss, Konvexe Mengen, Deutscher Verlag der Wissenschaften, Berlin, 1980.
- 8. H. Martini and B. Weissbach, On quermasses of simplices (submitted).
- 9. P. McMullen, On zonotopes, Trans. Amer. Math. Soc. 159 (1971), 91-109.
- C. A. Rogers and G. C. Shephard, Some extremal problems for convex bodies, Mathematika 5 (1958), 93-102.
- 11. R. Schneider and W. Weil, Zonoids and related topics, in *Convexity and Its Applications*, edited by P. Gruber and J. M. Wills, 296-317, Birkhäuser-Verlag, Basel, 1983.
- 12. R. W. Shannon, Simplicial cells in arrangements of hyperplanes, Geom. Dedicata 8 (1979), 179-187.
- 13. H. Tverberg, How to cut a convex polytope into simplices? Geom. Dedicata 8 (1979), 239-240.
- 14. H. S. Witsenhausen, A support characterization of zonotopes, Mathematika 25 (1978), 13-16.

Received February 2, 1988, and in revised form June 9, 1988.