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Abstract. The minimum dimension needed to represent K(m, n) as a ‘“unit
neighborhood graph” in Euclidean space is considered. Some upper and lower
bounds on this dimension are given, and the exact values of the dimension are
calculated for m=3, n<10.

1. Introduction

Let X be a nonempty subset of Euclidean n-space E". Then the graph having
vertex set X and edge set

{xy:|x—yl=1,xye X x#y}

(where | | denotes the Euclidean norm) is called the unit neighborhood graph on
X. For a (finite simple) graph G, the sphericity of G, sph G, is the minimum
dimension n such that G is isomorphic to a unit neighborhood graph in E"
Concerning sphericity and some other geometric graph dimensions, see, e.g.,
[1]-[4] and [6]-[12]. In this paper we give some bounds on the sphericity of the
complete bipartite graph K(m, n) and derive exact values of sph K(m, n), m=3,
n=10. Since sphericity is a hereditary property (that is, if H is an induced
subgraph of G, then sph H =<sph G), these results will be useful to estimate sph G
for other graphs G.

A nonempty subset X of a Euclidean space is said to be dispersed if the unit
neighborhood graph on X is an edgeless graph, that is, |x —y|> 1 for any two
distinct points x, y of X. The maximum cardinality of a dispersed subset of a set
Y is called the dispersed point number of Y and denoted by dpn Y. For example,
the dispersed point number of a unit circle is 5. Let us denote by S*(r) a
hypersphere of radius r in k-space E* and put

N(k, m)=dpn S*(s(m)),
where s(m)=v(m+1)/(2m).
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Theorem 1. sph K(m, N(k,m))=m-—1+k.

Since the “equator” of the sphere $**'(s(m)) contains N(k, m) dispersed
points, by adding the two *‘poles,” we see that N(k+1, m)= N(k, m)+2. And
since N(1, m) =2 we have

N(k, m)=2k.
Hence the next corollary follows.
Corollary 1 [6]. sph K(m,2n)=m-1+n.
Let us define
d(m,n)=m—1+min{k: N(k, m)=n}.
Then Theorem 1 is written as
sph K(m, n)=d(m, n).
We conjecture that, for m =< n, sph K(m, n)=d(m, n). In fact, this is true for
infinitely many m, n (see Corollary 3 and Theorem 4 below).

Using the results of Schiitte and Van der Waerden [13], the values of d(m, n)

for m=4, n=<10, are calculated in [8], which are given in Table 1.
Theorem 2. Forn=3, sph K(n,n)>n.
This and Theorem 1 give
sph K(4,4)=5.

Let R(m, n) denote the “Ramsey number.”

Theorem 3. Suppose that

m+k=max{n, R(m—1,n)}+1, M =max{m+k, N(k, m)—n+m+k}.

Table 1. The values of d(m, n) for m=4,n=10.

n

m 2 3 4 5 6 7 8 9 10
] 1 2 2 2 3 3 3 3 3
2 2 3 3 3 4 4 4 5 5
3 3 4 4 5 5 5 6 6 6
4 4 5 5 6 6 7 7 7 7
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Then sph K(m, M)=m+k. For m=5, we can replace R(m —1,n) by R(3,n) in
the condition.

Letting n=2, M = N(k,m)+ m+k~2, k=1, we have Corollary 2.
Corollary 2. sph K(m, N(k, m)+m+k—-2)=m+k fork=1.

For m=3, k=m—1, then letting n=m+k—1 and M= N(k, m)+1, the
conditions of Theorem 3 are satisfied (because R(2, n)=n, and N(k, m)=2k).
Hence sph K(m, N(k, m)+1)= m+ k. Combining this result with Theorem 1, we
have the following.

Corollary 3. If m=3, then sph K(m, n)=d(m, n).
Furthermore,

Theorem 4. For any fixed integer m > 1, sph K(m, n) = d(m, n) holds for infinitely
many n.

Since R(3,3)=6and N(2,m)=4, N(3, m)=6 for m=4, letting n=2, m=4,
and k=2 in Theorem 3, we have sph K(4, 8)=6. Similarly, by letting n =3,
m=4 k=3, n=3, m=5k=2;andn=3,m=5,k=3,wehavesph K(4,10)=7,
sph K(5,8)=7, and sph K(5, 11) =8, respectively. Combining these results with
the upper bounds obtained from Corollary 1 and Table 1, we have

6=sph K(4,8)=7=sph K(5,8)=8=<sph K(5, 11),
and another exact value
sph K(4,10)=7.

If a graph G is isomorphic to a unit neighborhood graph in which any adjacent
points are closer than a prescribed distance 6 <1, then G is said to be §-
embeddable. Then there arises a question: is there a § <1 such that every finite
simple graph is 8-embeddable? The answer is NO.

Theorem 5. If 0<86<1 and n>1/(1—8%), then K(n, n) is not 8-embeddable.

2. Dispersed Set

In this section we recall some results on dispersed sets and then prove Theorem
5 first. The circumsphere (c-sphere) of a nonempty compact set X in Euclidean
n-space E" is the sphere of minimum radius that encloses X; its radius, denoted
by ¢(X), is called the c-radius of X, its center is the c-center of X. If X is the
vertex set of a regular (m — 1)-dimensional simplex of unit side length, then the
c-radius of X, c(X), is denoted by ¢(m). Then it is not difficult to see

c(m)=v(m—=1)/(2m).
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Recall the definition of s(m):
s(m)=v(m+1)/(2m).

Thus we have c¢(m)?+ s(m)?= 1. Similarly, for any nonempty compact set X with
c(X) <1, we define s(X)>0 by

(X)) +s(X)=1.
The following two theorems are proved in {8].
Theorem A. If X is a dispersed set of size m, then c(X)> c(m).

A point set X is said to be c-spherical if all points of X lie on the c-sphere
of the set X. For example, the vertex set of a regular simplex is c-spherical, but
the vertex set of an obtuse triangle is not c-spherical. A point set X is said to be
affinely independent if X is the vertex set of nondegenerate simplex.

Theorem B. If X is a dispersed set with c¢(X) S«/%, then X is affinely independent
and c-spherical.

Now we proceed to the proof of Theorem 4. First we prepare a lemma. For
two nonempty finite sets X and Y in a Euclidean space, we define

dis(X, Y)=max{|x—y|: xe X, ye Y}.
Lemma 1. ¢(X)Y+c(Y) =dis(X, Y)2.

Proof. We may assume that the c-center of X is at the origin O. Let{x,,..., x,,} =
{x € X:|x] = ¢(X)}}. Then the origin O belongs to the convex hull of {x,,..., x,,,},
as is easily seen. Hence O is expressed as a convex combination of x,, ..., x,,:

O=ax,+ +a,Xn (a;+---t+a,=1,a,=0).
For any y of Y,
dis(X, Y)*=|x; —y[* =y + c(X)* = 2y, x),

where ( , ) denotes the inner product. Multiplying both sides by a; and summing
on i, we have

dis(X, Y)’=|y[*+¢(X)%
Hence dis(X, Y)*=max,|y[+c(X) = c(X)?+c(Y)~ a

Proof of Theorem 5. Suppose that K(n, n) is 8-embeddable in a Euclidean
space. Then there exist two dispersed sets X, Y each of size n, such that
dis(X, Y) < 8. By Lemma 1, we have c¢(X)*+c(Y)*=dis(X, Y)’< 8°. Hence we
may assume c(X)>< 8%/2. Since c¢(X)> c(n) by Theorem A, we have c(n)’=
(n—1)/(2n) < 8%/2, i.e., n<1/(1—8%). Thereforé, if n>1/(1—87), then K(n, n)
is not 5-embeddable. O
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3. Focal Set

Let X be a nonempty set in EX. A point y of E* is called a focal point of X if
|y —x|=1 for all points x of X. The set of all focal points of X is called the focal
set of X and it is denoted by F(X). Thus, by definition,

F(X)={ye E*:|y—x|=1 for all x of X}= (1) B(x, 1),

xe X

where B(x, 1) denotes the unit (closed) ball centered at xe E*. Note that
F(X )= if the c-radius ¢(X) is >1.

The operation F is interesting in its own right. For example, if X is a set of
c-radius =1, then the set

M F(X)+ F(F(X))]

is a set of constant width 1 containing X, where +denotes the vector sum of two
sets, see [5] for detail.
The following lemma will be clear.

Lemma 2. There exists a dispersed set X of size m in E* such that dpn F(X)=n
if and only if sph K(m, n)=<k.

Example. For two points x, y (x # y) in E°, the set F({x, y}) is the intersection
of the two unit disks with centers x, y. It is easy to see that if |x —y|> 1, then
dpn F({x, y})=2. Hence sph K(2,3)>2.

By the dimension of a set X in a Euclidean space, we mean the dimension of
the flat (=affine subspace) spanned by X. In the rest of this section we assume
the following:

X is a c-spherical set in E* of dimension j <k with c-center at the
origin O and c-radius ¢(X)<1.

The subspace spanned by X is called the tangent space of X, and is denoted by
T(X). Clearly, T(X) contains the origin O and dim T(X)=j. The orthogonal
complement of T(X) in E* is called the normal space of X, which is denoted
by N(X). Then the intersection of the normal space N(X) and the focal set
F(X) is a (k—j)-dimensional disk of radius s(X)=(1—¢(X)*)"?, because |x| =
¢(X) for all x of X. This disk is called the normal disk and its boundary is called
the normal sphere of X. For example, if X ={(—3,0,0), (3,0,0)} in E*, then the
normal sphere of X is {(0, s, t): s*+ t*=3}. Note that the normal sphere of X is
the intersection of all unit hyperspheres S(x, 1) with center x € X,
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Proof of Theorem 1. Let X be the vertex set of an (m —1)-dimensional regular
simplex of side-length 1+¢ in E™ '** Then the c-radius of X is c(X)=
(1+€)c(m), and the normal sphere of X is a k-dimensional sphere with radius
s(X)=(1—c(X)")"?. By the definition of N(k, m), a k-dimensional sphere of
radius s(m) contains a dispersed set of size N (k, m). Hence, if £ > 0 is sufficiently
small, the normal sphere of X also contains a dispersed set of size N(k, m).
Hence dpn F(X)= N(k, m). Then by Lemma 2, we have sph K(m, N(k, m))=
m+k—1. (N

Let

p: E* > T(X),
q: E* > N(X),

be the orthogonal projections. Then for any point z of E¥
z=p(z)+4q(z).

Any noncollinear three points x, y, z determine a circle. By the circular arc xyz,
we mean the arc xyz of the circle determined by x, y, z. The boundary of F(X)
is denoted by dF(X).

Lemma 3. Let z be a point on the boundary 3F(X) such that p(z)#0, q(z)#0.
Let z¥, z7 be the two points where the line Op(z) meets the normal sphere of X.
Then the circular arc M(z)=z"zz" lies entirely on dF(X).

The arc M (z) is called the meridian of 3F(X) passing through the point z.

+

Note that z7 =—-z".

Proof. Since z is a boundary point of F(X), z lies on some sphere S(x;, 1).
And since z*, z~ are two points of the normal sphere of X, z* and z~ lie on
S(x;,1) for all j=1,..., m. Here we note the following fact: if a circle and a
sphere have more than two points in common, then the circle lies entirely on
the sphere. Therefore, if z€ S(x;, 1), then M(z)< S(x;, 1), while if z¢ S(x;, 1),
then, since ze€ B(x;, 1), all points of M(z) other than the two endpoints are
interior points of B(x;, 1). Therefore M(z)< F(X) and M(z)< S(x;,1). Thus
M(z)c3aF(X). W]

4. Dispersed Points in a Focal Set

In this section we prove some lemmas that are useful in the computation of the
dispersed point number of a focal set. Throughout this section, we assume that

X ={x,,...,xn}< E* (m=k)isadispersed set with c-center O( origin)
and c-radius c(X)Ss/%.
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Then by Theorem B, X is affinely independent and c-spherical; the tangent space
T(X) of X is an (m—1)-dimensional subspace of E*, and the normal space
N(X) (the orthogonal complement of T(X) in E*) is (k—m+1)-dimensional.
The projections E*~ T(X), E* > N(X) are denoted by p and g, respectively.
Further, we denote by

f: EF~{0}->3F(X)
the central projection from the origin, i.e., for any z # O, f(z) is the point where
the ray Oz meets the boundary dF(X). (Note that F(X) is a convex body
containing O inside.)
Lemma 4. For any dispersed pair x, y in F(X),

y#0 and |x—f(y)l=|x—yl.
Proof. Since |x] <1 (because |[x—x;|<1fori=1,...,m, and O is contained in
the convex hull of X) and {y| <1, it follows that x # O, y # O, and that the angle
at O is the largest angle in the triangle Oxy. Then the angle £ Oyx is acute, and
hence it follows that |x — f(y)| =|x - y|. g
Let us denote by A(X) the simplex spanned by X,

Lemma 5. Let z be a point of F(X). If |z| = ¢(X), then p(z) e A(X).
Proof. We prove the contraposition. Suppose that z' = p(z) lies outside A(X).
Then, for some 0<r<1, tz’ lies on a face of A(X), say on the face opposite to
the point x,. Then tz’' is expressed as a convex combination of x,,..., Xx,,:

1z =a,x,+ -+ A X,

Since 1 <|x, —x,|*=2¢(X)*>—2(x,, x;) for i = 2, we have 2(x,, x,) <2¢(X)*—1,and

2<xls tZ’>:2<x|, a2x2+' ' .+amxm>

<(ay+- - +a,)(2c(X)*-1)=2c(X)~1<0.
So 2(x,, 2V < 2¢(X)*—1. Since {x;, z) ={(x,, 2",

12 x,—z = e(X)2+]|z)? = 2(x,, 2) > c(X ) +|z]" = 2¢(X )+ 1.
Therefore |z] < ¢(X). O
Lemma 6. c¢(F(X)n T(X))<c(X).

Proof. Firstnotethat x; 2 F(X),i=1,..., m, for X is dispersed. Let ze F(X)n

T(X). Then z=p(z). If ze A(X), then since z#x;, i=1,...,m, |z|<c(X). If
z# A(X), then, by Lemma 5, |z] < c(X). O
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For a point z of F(X), let us define

zo:{f(P(Z)) if p(z)# 0, z+:{f(‘1(2)) if q(z)# O,
o if p(z)=0, O if gq(z)=0.

If p(z) # O and q(z) # O, then the circular arc z"z°(~z") is the meridian M (f(z))
passing through the point f(z) (cf. Lemma 3). In this case, z° bisects the meridian
M({f(z)), and z lies on the angular region £z°0Oz". Note also that if z # O, then
z'=f(z)" and z°=f(z)°.

‘Lemma 7. Let x, y be a dispersed pair on dF(X) such that (x,q(y))=O. If
[y <e(X), then |x—y°|=|x —y|, while if |y|=c(X), then |x - y™|=|x -y,

Proof. 1 p(y) = O, then |y| =|y"| = s(X)> ¢(X), and |x — y*| =[x — y]. If g(y) =
O, then |y| = |y°| < ¢(X), and |x — y°| =[x — y|. Assume p(y) # O and q(y) # O. Let
M(y) be the meridian of 3F(X) passing through y, and let P be the plane
determined by M(y) (i.e., P is determined by O, p(¥), q(»)). Let w be the center
of the circle C determined by M(y). Then since the circle C passes through y*
and y~:=—y", the center w must lie on the line Oy°. Since |y <c(X)<s(X)=
|y™|, the origin lies between w and y°, and hence there is a unique point z on
the subarc y"y° of M(y) such that |z| = ¢(X). The point y lies on the arc y*z or
on the arc zy° of M(y) accordingly as |y|=c(X) or |y|<c(X). Let x' be the
projection of the point x on the plane P determined by C.

Suppose first |y| <c(X). Since (x, g(y))=0, the points x' and y* lie on the
same side of the line Oy° in the plane P. In this case one of the angles Zx'wz,
Zx'wy® is greater than Zx'wy. And hence one of |[x'—z|, |[x'—y°| is greater than
[x'—y|, from which we can deduce that one of |x—z|, |x —y°| is greater than
|x — y|. Thus if we prove |x ~ z| < 1, then we have |x — y°| =|x — y|. Since |z] = ¢( X},
p(z) is contained in A(X) by Lemma 5. Hence p(z) is expressed as a convex
combination of xi,..., X,,:

p(z)=ax;+- - -+a,x, (a,+--+a,=1,a,=0).
For each x;,
1=|x —x? = |x]?+|x|* - 2(x, x;).
Multiplying both sides by a; and summing on i=1,..., m, we have
1= [x[*+e(X)? = 2x, p(2)) = |xI*+]2] = 2x, p(2)).
But since (x, z) =(x, p(2))+{x, q(z)), we have
|x =z = |x]* +]2]* = 20x, p(2)) = 2Ax, q(2)) < 1 -2x, q(z)) =< 1.

Thus [x—z|<1.
Similarly, if [y| = ¢(X), then we have |x—y*'|=|x—y|. O
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Lemma 8. Let x, y be a dispersed pair in F(X). Then |x"—y"|>1 or |x°—y°|>1
holds. If |y| = c(X), then |x* —y*]| is always greater than 1.

Proof. We may assume that x, y lie on the boundary 6F(X) (otherwise, by
Lemma 4, we can replace x, y by f(x), f(y)). If (x, g(y))<0, then (x*, y") <0,
and hence |x* — y*|>> |x*]?+ |y "> = 2s(X)*> 1. Suppose now (x, g(y))= 0. Then,
by the above lemma, |x—y"|>1 or |x—y°>1 accordingly as |y|=c(X) or
ly| < ¢(X). Since (¥°, g(x)})=0 and (y", g(x)) =0, applying Lemma 7 again, and
noting that [x°—y™|,|x" = y°| =1, we have |x°—y°| > lor|x" —y*|> 1. If |y| = ¢( X)),
then |x* —y™| is always greater than 1. O

5. Proof of Theorems 2-4

Proof of Theorem 2. Suppose that sph K(n, n) =< n for some n=3. Then there
exist two dispersed sets X, Y, each of size n in E” such that dis(X, Y)<1. We
may assume c¢(X)=<c(Y) and the c-center of X is at the origin O. Then, by
Lemma 1, c(X)S\/g, and hence the tangent space T(X) of X is (n—1)-
dimensional by Theorem B. Hence the normal space of X is one-dimensional,
and the normal sphere of X consists of only two points. Since ¢(X) = c(Y), there
is at least one point y in Y such that |y| = c¢(X ). Then, since Y is a dispersed
setin F(X), applying Lemma 8, we have |y" —w™|> 1 for all w of Y —{y}. Hence,
all points w' must coincide with each other. Then, again by Lemma 8, we must
have |v°—w° >1 for v, we Y —{y}. This implies that X and {w*: we Y, w# y}
together induce a unit neighborhood graph isomorphic to K(n, n —1), and hence
sph K(n,n—1)=n—1. Thus sph K(n~1,n—1)<n-—1. Repeating the same
argument, we finally reach sph K(2,3)=2, which is a contradiction (see the
example after Lemma 2). Od

Proof of Theorem 3. Suppose that sph K(m, M)=<m—1+k. Then there exist
two dispersed sets X, Y of size m and M in E™ ' such that F(X)> Y. If
¢(Y)<c¢(X), then c(Y)<\/g by Lemma 1, and Y is affinely independent and
c-spherical by Theorem B. In this case, Y spans E™ '" and since X < F(Y),
we must have ¢(X)<c(F(Y))<c(Y) by Lemma 6, which is a contradiction.
Hence ¢(X)=c(Y). Therefore X is affinely independent and c-spherical. We
may assume that the c-center of X is at the origin O. Let

W={weY:|w| <e(X)}

Then |W|= m+ k. However, |W|=m+k is impossible, because if |W|=m+k,
then W spans E™ '*¥, and since X < F(W), we must have c(X) < c(W)<c(X),
a contradiction. Thus | W|=< m —1+ k. Therefore, there are at least

N(k,m)-n+1
points y;, i=1,..., N(k, m}—n-+1, in Y such that |y,]= ¢(X). Let

U= Y—{y,-: i=1,...,N(k,m)—-n+1}.
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Let G° be the graph with vertex set U and edge set
{uv:u,ve U and |u°—0v°|=1}.

Thensince {U|=m — 1+ k = max{n, R(m —1, n)} and since n = R(2, n), the graph
G° contains either an independent set of size max{2, m —1} or a clique of size
n. We show that G° must contain a clique of size n. If m =<3, then since

sphK(1,2)=1, sphK(2,2)=2, and sphK(3,2)>2,

F(X)n T(X) cannot contain two dispersed points, and hence G° is a complete
graph. Suppose that for m >3, G° contains an independent set of size m—1.
Then the set {u°: u e U} contains m — 1 dispersed points, and hence T(X ) contains
a unit neighborhood graph isomorphic to K(m, m —1). But since

sph K(m—-1, m)>m-1

by Theorem 2, this is impossible. Thus, in either case, G° must contain a clique
of size n. Let {u;: i=1,..., n} be a clique of G°. Then, by Lemma 8, the set

{ufri=1,...,n}u{yi=1,..., N(k,m)—n+1}

is a dispersed set of size N(k, m)+1 on the normal sphere of X. However, since
the normal sphere of X is a k-dimensional sphere of radius s(X)<s(m), it
cannot contain more than N (k, m) dispersed points. Thus we have a contradiction.
Therefore, sph K(m, M)=m+k,

Now assume m =5. By Corollary 3, and Table 1, we have sph K(3,5)=S5
(note that to derive Corollary 3, we used only the case m =<3 of Theorem 3).
Hence we have dpn (F(X)n T(X))=2. Therefore we may replace R(m—1, n)
by R(3, n) in the condition of the theorem O

Proof of Theorem 4. We proved in Theorem 3 of [3] that, for any fixed m >0,
N(k, m) is exponentially large in k, that is,

N(k,m)>(k~2)/(k=1)""?exp{(k-2)B’/2},
where B =sin"'{1/(m+1)}. Hence, for infinitely many k, N(k+1,m)—
N(k,m)>k+m holds (for otherwise, N(k, m)<k?/2+ O(k), which is not
exponentially large). Then, by Corollary 2 and Theorem 1,

m+k=sph K(m, N(k, m)+ m+k—-2)<sph K(m, N(k+1,m))=m+k

holds for infinitely many k. For each of such k, let n =n(k)= N(k+1, m). Then
d(m,n)=m+k and sph K(m,n)=d(m, n). O
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