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Abstract. The minimum dimension needed to represent K(m, n) as a "unit 
neighborhood graph" in Euclidean space is considered. Some upper and lower 
bounds on this dimension are given, and the exact values of the dimension are 
calculated for m _< 3, n <- 10. 

I. Introduction 

Let X be a nonempty subset of Euclidean n-space E". Then the graph having 
vertex set X and edge set 

{xy: [x-  y[<- l ,x,  y e  X, x ~  y} 

(where [ [ denotes the Euclidean norm) is called the unit neighborhood graph on 
X. For a (finite simple) graph G, the sphericity of G, sph G, is the minimum 
dimension n such that G is isomorphic to a unit neighborhood graph in E". 
Concerning sphericity and some other geometric graph dimensions, see, e.g., 
[1]-[4] and [6]-[12]. In this paper we give some bounds on the sphericity of the 
complete bipartite graph K(m, n) and derive exact values o fsph  K(m, n), m <-3, 
n <- 10. Since sphericity is a hereditary property (that is, if H is an induced 
subgraph of G, then sph H <- sph G), these results will be useful to estimate sph G 
for other graphs G. 

A nonempty subset X of a Euclidean space is said to be dispersed if the unit 
neighborhood graph on X is an edgeless graph, that is, I x - y l  > 1 for any two 
distinct points x, y of X. The maximum cardinality of a dispersed subset of a set 
Y is called the dispersed point number of Y and denoted by dpn Y. For example, 
the dispersed point number of a unit circle is 5. Let us denote by Sk(r) a 
hypersphere of radius r in k-space E k, and put 

N(k, m) = dpn Sk(s(m)), 

where s(m) = x/(m + 1)/(2m). 
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Theorem 1. sph K ( m ,  N ( k ,  m))-< m - 1 + k. 

Since the "equa to r"  of the sphere sk+ l ( s (m) )  contains N ( k ,  m)  dispersed 
points,  by add ing  the two "poles ,"  we see that N ( k +  1, m)>- N ( k ,  m ) + 2 .  And 
since N(1 ,  m ) = 2 ,  we have 

N ( k , m ) > - 2 k .  

Hence the next corollary follows. 

sph K ( m ,  2n)-< m -  1 + n. Corollary 1 [6]. 

Let us define 

d(m,  n) = m -  1 + m i n { k :  N ( k ,  m)  >- n}. 

Then Theorem 1 is written as 

sph K ( m ,  n)-< d (m,  n). 

We conjecture  that, for m-< n, sph K ( m ,  n ) =  d(m,  n). In fact, this is true for 
infinitely m a n y  m, n (see Corol lary 3 and Theorem 4 below). 

Using the results of  Schfitte and Van der Waerden  [13], the values of d(m,  n) 
for rn-<4, n -< 10, are calculated in [8], which are given in Table 1. 

Theorem 2. For n -> 3, sph K ( n, n ) > n. 

This and  Theorem 1 give 

sph K (4, 4) = 5. 

Let R(m, n) denote  the "Ramsey  number . "  

Theorem 3. Suppose that 

m + k > - m a x { n , R ( m - l , n ) } + l ,  M > - m a x { m + k , N ( k , m ) - n + m + k } .  

Table 1. The values of d ( m, n ) for m -< 4, n < l O. 

rl 

m 2 3 4 5 6 7 8 9 10 

1 1 2 2 2 3 3 3 3 3 
2 2 3 3 3 4 4 4 5 5 
3 3 4 4 5 5 5 6 6 6 
4 4 5 5 6 6 7 7 7 7 
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Then sph K ( m, M ) >- m + k. For m =5 ,  we can replace R(m - 1 ,  n) by R(3, n) in 
the condition. 

Letting n - - 2 ,  M = N(k ,  m ) + m + k - 2 ,  k>_ 1, we have Corol lary 2. 

Corollary 2. s p h K ( m , N ( k , m ) + m + k - 2 ) > - m + k f o r k ~ l .  

For m-<3,  k > - m - 1 ,  then letting n = m + k - 1  and M = N ( k , m ) + l ,  the 
condit ions of  Theorem 3 are satisfied (because R(2, n ) =  n, and N(k,  m)>_2k).  
Hence sph K(m,  N(k ,  m) + 1) >- m + k. Combining this result with Theorem 1, we 
have the following. 

Corollary 3. I f  m <- 3, then sph K (m, n) = d (m, n). 

Furthermore,  

Theorem 4. Foranyfixedintegerm > 1, sph K(m,  n) = d(m, n) holdsforinfinitely 
many n. 

Since R(3, 3) = 6  and N(2, m) =4 ,  N(3,  m) = 6  for m->4,  letting n = 2, m =4 ,  
and k = 2  in Theorem 3, we have s p h K ( 4 , 8 ) - > 6 .  Similarly, by letting n = 3 ,  
m : 4 ,  k = 3 ;  n = 3 ,  m = 5 ,  k = 2 ;  and n =3 ,  m = 5, k = 3, we have sph K(4,  10)>-7, 
sph K(5,  8) -> 7, and sph K(5,  1 l) >- 8, respectively. Combining these results with 
the upper  bounds  obtained from Corol lary 1 and Table l, we have 

6 < - s p h K ( 4 , 8 ) < 7 < s p h K ( 5 , 8 ) < 8 - < s p h K ( 5 , 1 1 ) ,  

and another  exact value 

sph K(4,  10) = 7. 

If  a graph G is i somorphic  to a unit ne ighborhood  graph in which any adjacent 
points are closer than a prescribed distance 6 < 1 ,  then G is said to be 6- 
embeddable. Then there arises a question: is there a 8 < 1 such that every finite 
simple graph is 6 -embeddable?  The answer is NO. 

Theorem 5. / f 0 < 6 < l  a n d n > l / ( 1 - g 2 ) ,  then K ( n , n )  isnot6-embeddable. 

2. Dispersed Set 

In this section we recall some results on dispersed sets and then prove Theorem 
5 first. The circumsphere (c-sphere) of  a nonempty  compact  set X in Euclidean 
n-space E"  is the sphere o f  minimum radius that encloses X ;  its radius, denoted 
by c(X) ,  is called the c-radius of  X ;  its center is the c-center of  X. If  X is the 
vertex set o f  a regular (m - 1)-dimensional  simplex of  unit side length, then the 
c-radius o f  X, c (X) ,  is denoted  by c(m). Then it is not difficult to see 

c(m)= x / ( m - 1 ) / ( 2 m ) .  
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Recall the definition o f  s (m) :  

s ( m ) =  x/(m+ l ) / (2m) .  

Thus we have c(m)2 + s (m)2 = 1. Similarly, for  any nonempty  compac t  set X with 
c (X)  < 1, we define s ( X ) > O  by 

c(X)2 + s(X) 2= 1. 

The following two theorems are proved in [8]. 

Theorem A. I f  X is a dispersed set of size m, then c ( X ) >  c( m ). 

A point  set X is said to be c-spherical if all points of  X lie on the c-sphere 
o f  the set X. For  example,  the vertex set o f  a regular simplex is c-spherical, but  
the vertex set o f  an obtuse triangle is not c-spherical.  A point  set X is said to be 
affinely independent if X is the vertex set o f  nondegenera te  simplex. 

Theorem B. l f  X is a dispersed set with c( X ) <-x/~, then X is affinely independent 
and c-spherical. 

Now we proceed to the p r o o f  o f  Theorem 4. First we prepare a lemma. For  
two nonempty  finite sets X and Y in a Eucl idean space, we define 

dis(X, Y ) = m a x { ] x - y ] :  x e X ,  y e  Y}. 

Lemma 1. c ( X ) Z + c ( y ) 2 < d i s ( X , y ) 2 .  

Proof W e m a y a s s u m e t h a t t h e c - c e n t e r o f X i s a t t h e o r i g i n O .  L e t { x ~ , . . . , x m } =  
{x e X :  ix] = c(X)}.  Then  the origin O belongs to the convex hull of  { x ~ , . . . ,  xm}, 
as is easily seen. Hence O is expressed as a convex combination of  xl ,  �9 �9 �9 xm: 

0 = alx~ +. �9 �9 + amXm (al +" �9 �9 + a,, = 1, ai --- 0). 

For  any y o f  Y, 

dis(X, y)2_> ix ̀  _y[2 = [yl2+ c(X)2 - 2 ( y ,  x,), 

where ( , > denotes  the inner product .  Mult iplying both  sides by ai and summing 
on i, we have 

dis(X,  y)2 __ lYl 2 + c(X)2. 

Hence dis(X, y)2> maxyly [ + c ( X ) 2 ~  c ( X ) 2 +  c( y)2. []  

Proof o f  Theorem 5. Suppose  that K(n,  n) is 6 -embeddable  in a Eucl idean 
space. Then there exist two dispersed sets X, Y each of  size n, such that 
dis(X, Y ) <  6. By Lemma 1, we have c(X)2+ c( y )2< dis(X, y ) 2 <  62. Hence we 
may assume c(X)2<62/2 .  Since c ( X ) >  c(n) by Theorem A, we have c(n)  2= 
(n - 1) / (2n)  < 32/2, i.e., n < 1/(1 - 6~). Therefore,  if n > 1/(1 - 62), then K(n,  n) 
is not  6-embeddable .  []  
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3. Focal Set 

Let X be a nonempty  set in E k. A point y o f  E k is called a focal point of  X if 
]y - x I <~ l for all points x of  X. The set o f  all focal points o f  X is called the focal 
set of  X and it is denoted by F(X) .  Thus, by definition, 

F ( X ) = { y e E k : l y - - x ]  <-1 for all x o f  X } =  ~ B(x, 1), 
x e X  

where B(x, 1) denotes the unit (closed) ball centered at X 6 E  k. Note that 
F ( X ) = Q  if the c-radius c(X)  is > l .  

The operat ion F is interesting in its own right. For  example, if X is a set of  
c-radius -< l, then the set 

~ [ F ( X ) + F ( F ( X ) ) ]  

is a set of  constant  width 1 containing X, whe re+  denotes the vector sum of  two 
sets, see [5] for detail. 

The fol lowing lemma will be clear. 

Lemma 2. There exists a dispersed set X of size m in E I' such that dpn F( X ) >- n 
if and only if sph K (m, n) < k. 

Example. For two points x, y (x ~ y)  in E 2, the set F({x, y}) is the intersection 
of  the two unit disks with centers x, y. It is easy to see that if I x - y l  > 1, then 
dpn F({x, y}) -< 2. Hence sph K(2,  3) > 2. 

By the dimension of  a set X in a Eucl idean space, we mean the dimension of  
the flat (=affine subspace)  spanned by X. In the rest o f  this section we assume 
the following: 

X is a c-spherical set in E k of  d imension j < k  with c-center at the 
origin O and c-radius c ( X ) <  1. 

The subspace spanned by X is called the tangent space of  X, and is denoted by 
T(X) .  Clearly, T ( X )  contains the origin O and dim T ( X ) = j .  The or thogonal  
complement  o f  T ( X )  in E k is called the normal space of  X, which is denoted 
by N ( X ) .  Then the intersection o f  the normal  space N ( X )  and the focal set 
F ( X )  is a ( k - j ) - d i m e n s i o n a l  disk o f  radius s ( X ) =  ( 1 -  c(X)2) w2, because [xl = 
c(X)  for all x of  X. This disk is called the normal disk and its bounda ry  is called 
the normal sphere of  X. For  example,  if X = {(-�89 0, 0), (�89 0, 0)} in E 3, then the 
normal  sphere of  X is {(0, s, t): s2+ t 2 =3}. Note  that the normal  sphere of  X is 
the intersection of  all unit hyperspheres S(x, 1) with center x e X. 
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Proof o f  Theorem 1. Let X be the vertex set of  an (m - 1)-dimensional  regular 
simplex of  side-length l + e  in E ..... l+k. Then the c-radius of  X is c ( X ) =  
(1 + e ) c ( m ) ,  and the normal  sphere of  X is a k-dimensional  sphere with radius 
s ( X ) =  ( 1 - c ( X ) 2 )  ~/2. By the definition o f  N ( k ,  m), a k-dimensional  sphere of  
radius s ( m )  contains a dispersed set of  size N ( k ,  m).  Hence, if e > 0 is sufficiently 
small, the normal  sphere o f  X also contains a dispersed set of  size N ( k ,  m). 
Hence dpn F ( X )  > - N ( k ,  m).  Then by Lemma 2, we have sph K ( m ,  N ( k ,  m))  < - 
r e + k - 1 .  [] 

Let 

p: E k ~ T ( X ) ,  

q: E k ~ N ( X ) ,  

be the or thogonal  projections.  Then for any point  z of  E k, 

z = p ( z ) + q ( z ) .  

Any noncol l inear  three points x, y, z determine a circle. By the circular arc xyz, 
we mean the arc xyz of  the circle determined by x, y, z. The boundary  of  F ( X )  
is denoted  by OF(X) .  

Lemma 3. Let z be a point on the boundary O F ( X )  such that p(  z ) ~ 0, q( z ) ~ O. 
Let  z +, z-- be the two points where the line Op(z )  meets the normal sphere o f  X. 
Then the circular arc M ( z )  = z+zz  lies entirely on OF(X) .  

The arc M ( z )  is called the meridian of  o F ( X )  passing through the point  z. 
Note that z - = - z  +. 

Proof  Since z is a b o u n d a r y  point  of  F ( X ) ,  z lies on some sphere S(xi,  1). 
And since z +, z are two points o f  the normal  sphere o f  X, z + and z lie on 
S(xj ,  1) for all j =  1 , . . . ,  m. Here we note the fol lowing fact: if a circle and a 
sphere have more than two points in common ,  then the circle lies entirely on 
the sphere. Therefore,  if z c S(xj ,  1), then M ( z ) c  S(xj ,  1), while if z r  S(xj ,  1), 
then, since z e B ( x j ,  1), all points o f  M ( z )  other  than the two endpoints  are 
interior points of  B(xj ,  1). Therefore M ( z ) c  F ( X )  and M ( z ) =  S ( x ,  1). Thus 
M(z )  c aF(X) .  [] 

4. Dispersed Points in a Focal Set 

In this section we prove some lemmas that are useful in the computa t ion  o f  the 
dispersed point  number  o f  a focal set. Th roughou t  this section, we assume that 

X = {xl ,  �9 . . ,  xm} c Ekr(m <_ k)  is a dispersed set with c-center O(o r ig in )  
and c-radius c ( X )  <- ~/�89 
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Then by Theorem B, X is affinely i n d e p e n d e n t  and  c-spher ica l ;  the tangent  space 
T ( X )  of  X is an ( m - 1 ) - d i m e n s i o n a l  subspace  of  E k, and the normal  space 
N ( X )  (the or thogona l  comp lemen t  of  T ( X )  in E k) is ( k -  m + 1) -d imens iona l .  
The pro jec t ions  E k--> T ( X ) ,  E k -~ N ( X )  are de no t e d  by p and q, respect ively.  
Fur ther ,  we denote  by 

f :  E k - { O } - > a F ( X )  

the central  p ro jec t ion  f rom the origin,  i.e., for  any z # O, f ( z )  is the po in t  where 
the ray Oz meets the b o u n d a r y  a F ( X ) .  (No te  that  F ( X )  is a convex body  
conta in ing  O inside.)  

Lemma 4. For any dispersed pair x, y in F ( X ) ,  

y # O  and I x - f ( y ) l > - I x - y [ .  

Proof  Since I x ] < l  (because  I x - x i l ~ l  for i = l , . . . , m ,  and  O is con ta ined  in 
the convex hull of  X )  and  ]Yl < 1, it fol lows that  x # O, y # O, and  that  the angle  
at O is the largest  angle  in the t r iangle  Oxy. Then the angle  •  is acute,  and  
hence it fol lows that  I x -  f ( y ) l  >- [ x -  y I. [] 

Let us deno te  by A ( X )  the s implex  spanned  by X. 

L e m m a S .  L e t z b e a p o i n t o f F ( X ) .  l f l z l > - c ( X ) ,  t h e n p ( z ) e A ( X ) .  

Proof  We prove the con t rapos i t ion .  Suppose  that  z '=  p ( z )  lies ou ts ide  A(X) .  
Then,  for  some 0 <  t <  1, tz' lies on a face o f  A ( X ) ,  say on the face oppos i t e  to 
the poin t  x~. Then tz' is expressed  as a convex combina t ion  of  X 2 , . . . , X m :  

tZ r --_ a2x2 + �9 . . Jr- amX m. 

Since 1 < Ix~ - x,[ 2 = 2 c ( X )  2 - 2(xl ,  x~) for i -> 2, we have 2(x l ,  x,) < 2 c ( X )  2 - 1, and  

2(xl ,  tz ' )= 2(x , ,  a2x2 +" �9 "+ amxm) 

< (a2+"  �9 �9 + a, , , ) (2c(X) 2 - 1) = 2 c ( X )  2 -  1 < O. 

So 2(x, ,  z') < 2 c ( X )  2 - 1. Since (x , ,  z) = (x , ,  z'), 

1 -> Ix, - z] 2 = c ( X )  2 + ]z] 2 -  2(x, ,  z) > c ( X )  2 + [z] 2 -  2 c ( X )  2 + 1. 

There fore  [z I < c ( X ) .  [] 

L e m m a 6 .  c ( F ( X ) n T ( X ) ) < c ( X ) .  

Proof  Firs t  note  that  xi ~ F ( X ) ,  i = 1 , . . . ,  m, for  X is d i spersed .  Let z c F ( X )  c~ 
T ( X ) .  Then  z = p ( z ) .  I f  z c A(X) ,  then since z # &, i = 1 . . . .  , m, Izl < e(X). If  

z ~  A ( X ) ,  then,  by  L e m m a  5, [ z l < c ( X ) .  [] 



64 H. Maehara 

For a point  z of  F ( X ) ,  let us define 

zo={f(op(Z)) if p ( z ) ~ O ,  + { f o ( q ( z ) ) i f  q ( z ) ~ O ,  
if p ( z ) = O ,  z = if q ( z ) = O .  

I f p ( z )  ~ O and q(z) ~ O, then the circular arc z+z~ ~) is the meridian M ( f ( z ) )  
passing through the point  f ( z )  (cf. Lemma 3). In this case, z ~ bisects the meridian 
M ( f ( z ) ) ,  and z lies on the angular  region/_z~ § Note also that if z ~ O, then 
z + = f ( z )  + and z ~  ~ 

L e m m a  7. Let x, y be a dispersed pair on OF(X)  such that (x, q ( y ) ) ~  O. I f  
[yl < c( X ), then Ix - y~ >- Ix - yl, while if lyl >_ c( X ), then [x - y+l >_ [x - yl . 

Proof If  p (y )  = O, then [Yl = [Y+] = s ( X )  > c(X) ,  and Ix - y + [  = Ix - y [ .  If  q(y) = 
O, then [Yl --ly~ < c(X) ,  and  Ix -Y~ = Ix - y [ .  Assume p(y)  ~ 0 and q(y) ~ O. Let 
M ( y )  be the meridian o f  OF(X) passing through y, and let P be the plane 
determined by M ( y )  (i.e., P is determined by O, p(y) ,  q(y)). Let w be the center 
o f  the circle C determined by M(y) .  Then since the circle C passes through y+ 
and y - : =  - y + ,  the center w must lie on the line Oy ~ Since ly~ < c ( x )  < s ( X )  = 
[y+l, the origin lies between w and y~ and hence there is a unique point z on 
the subarc y+y~ of  M ( y )  such that [z[ = c(X) .  The point y lies on the arc y+z or 
on the arc zy ~ of  M ( y )  accordingly as lyl-> c ( X )  or ly[ < c ( X ) .  Let x'  be the 
projection o f  the point  x on the plane P determined by C. 

Suppose  first [y[ < c(X) .  Since (x, q(y))>-O, the points x '  and y+ lie on the 
same side o f  the line Oy ~ in the plane P. In this case one of  the angles / x ' w z ,  
/_x'wy ~ is greater than Z.x'wy. And hence one of  [x '-z[ ,  I x ' - y ~  is greater than 
Ix ' -y[ ,  f rom which we can deduce that one o f  Ix-z l ,  [ x - y ~  is greater than 
Ix - y [ .  Thus  i fwe  prove Ix - z[ <- 1, then we have Ix -Y~ >-- I x -Y].  Since Izl = c(X) ,  
p(z )  is conta ined in A(X)  by Lemma 5. Hence p(z)  is expressed as a convex 
combina t ion  o f  x l , . . . ,  x,, : 

p ( z ) = a l x l + ' ' ' + a m x m  ( a l + ' "  " + a m = l ,  ai>-O). 

For each xi, 

1 ~ I x - x , I  = = Ixl=+ [xil 2 -  2(x, x~). 

Multiplying both sides by a~ and summing on i =  1 . . . .  , m, we have 

1 ~ Ixl2+ e(Xy-2<x, p(z)> = Ix[Z+ IzlZ- 2<x, p(z)>. 

But since (x, z ) = ( x , p ( z ) ) + ( x ,  q(z)),  we have 

Ix-  zl ~= Ix[2 + lz[2- 2(x, p ( z ) ) -  2(x, q(z))  < - 1 - 2 ( x ,  q(z))  < _ 1. 

Thus Ix - z[-< 1. 
Similarly, if [y[ >- c(X) ,  then we have [x - y + [ - >  [x - y [ .  []  
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Lemma 8. Let x, y be a dispersed pair in F(X).  Then Ix + - y+[ > 1 or Ix ~  y~ > 1 
holds. If  lyl -> c (X) ,  then [x ~ -Y+I is always greater than 1. 

Proof We may assume that x, y lie on the boundary  OF(X) (otherwise, by 
Lemma 4, we can replace x, y by f (x) ,  f(y)).  If  (x, q ( y ) ) < 0 ,  then ( x + , y + ) < 0 ,  
and hence Ix + _y+12> ix+12+ ]y+12 = 2 s ( X ) 2 >  1. Suppose now (x, q(y))>-O. Then, 
by the above lemma, I x - y + ] >  1 or ] x - y ~  1 accordingly as lyl>-c(X) or 
]Yl < c(X). Since (y~ q(x))= 0 and (y+, q(x))>-O, applying Lemma 7 again, and 
noting that Ix ~  y+], Ix + -Y~ -< 1, we have ]x ~  Y~ > 1 or Ix + -Y+I > 1. I f  IT]-> c(X), 
then Ix + - y + [  is always greater than 1. []  

5. Proof of Theorems 2 - 4  

Proof of Theorem 2. Suppose that sph K (n, n) -< n for some n -> 3. Then there 
exist two dispersed sets X, Y, each of  size n in E"  such that dis(X, Y)-< 1. We 
may assume c ( X ) ~  c(Y)  and the c-center of  X is at the origin O. Then, by 
Lemma 1, c(X)<-,J~, and hence the tangent space T(X)  of  X is ( n - 1 ) -  
dimensional  by Theorem B. Hence the normal space of  X is one-dimensional ,  
and the normal  sphere of  X consists of  only two points. Since c(X) <- c(Y), there 
is at least one point y in Y such that [Yl -> c(X). Then, since Y is a dispersed 
set in F(X),  applying Lemma 8, we have IT+ - w+l > 1 for all w of  Y - { y } .  Hence, 
all points w + must coincide with each other. Then,  again by Lemma 8, we must  
have Iv~176 1 for v,w~ Y - { y } .  This implies that X and {w~ w e  Y , w ~ y }  
together  induce a unit ne ighborhood  graph isomorphic  to K (n, n - 1), and hence 
s p h K ( n , n - 1 ) < - n - 1 .  Thus s p h K ( n - l , n - 1 ) - < n - 1 .  Repeating the same 
argument,  we finally reach sph K ( 2 , 3 ) < 2 ,  which is a contradict ion (see the 
example after Lemma 2). []  

Proof of Theorem 3. Suppose that sph K ( m, M ) < - m -  1 + k. Then there exist 
two dispersed sets X, Y of  size m and M in E " - ' + k  such that  F ( X ) ~  Y. I f  
c ( Y ) < c ( X ) ,  then c(Y)<',/~2' by Lemma 1, and Y is affinely independent  and 
c-spherical by Theorem B. In this case, Y spans E "  ,+k, and since X c  F(Y) ,  
we must  have c(X)< c(F(Y))  < c(Y) by Lemma 6, which is a contradict ion.  
Hence c(X)<-c(Y).  Therefore X is affinely independent  and c-spherical. We 
may assume that  the c-center of  X is at the origin O. Let 

W = ( w e  Y: Iwl<c(X)}. 

Then I W[-< m + k. However ,  I W[ = m + k is impossible, because if I WI = m + k, 
then W spans E m-'§ and since X c F ( W ) ,  we must  have c(X) < c(W) < c(X), 
a contradict ion.  Thus [ W]-< m - 1 + k. Therefore,  there are at least 

N ( k , m ) - n + l  

points y~, i =  1 , . . . ,  N(k, m ) -  n + 1, in Y such that [Y~I >- c(X). Let 

U = Y-{y , :  i =  1 , . . . ,  N(k, m ) - n +  1}. 
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Let G ~ be the graph with vertex set U and edge set 

{uv:u, v c U  and l u~176  

Then since [ UI-> m - 1 + k -> max{n, R(m - 1, n)} and since n = R(2, n), the graph 
G ~ contains either an independent  set o f  size max{2, m - 1} or a clique of  size 
n. We show that G ~ must  contain a clique of  size n. If  m -< 3, then since 

s p h K ( 1 , 2 ) = l ,  s p h K ( 2 , 2 ) = 2 ,  and s p h K ( 3 , 2 ) > 2 ,  

F ( X )  n T ( X )  cannot  contain two dispersed points, and hence G ~ is a complete 
graph. Suppose that for m > 3, G ~ contains an independent  set o f  size m -  1. 
Then the set {u~ u ~ U} contains m - 1 dispersed points, and hence T ( X )  contains 
a unit ne ighborhood  graph  isomorphic  to K(m,  m - 1). But since 

sph K ( m - 1 ,  m ) >  m - 1  

by Theorem 2, this is impossible. Thus, in either case, G ~ must contain a clique 
o f  size n. Let {ui: i = 1 , . . . ,  n} be a clique of  G ~ Then, by Lemma 8, the set 

{u~: i =  1 . . . .  , n } u  {y+: i =  1 , . . . ,  N(k ,  m ) - n +  1} 

is a dispersed set o f  size N(k ,  m ) +  1 on the normal sphere of  X. However,  since 
the normal  sphere o f  X is a k-dimensional  sphere o f  radius s ( X ) < s ( m ) ,  it 
cannot  contain more than N(k ,  m) dispersed points. Thus we have a contradict ion.  
Therefore,  sph K (m, M)  >- m + k. 

Now assume m = 5 .  By Corol lary  3, and Table 1, we have sph K ( 3 , 5 ) = 5  
(note that to derive Corol lary  3, we used only the case m-<3 of  Theorem 3). 
Hence we have dpn ( F ( X ) n  T(X))-< 2. Therefore we may replace R ( m -  1, n) 
by R(3, n) in the condi t ion o f  the theorem [] 

Proof of Theorem 4. We proved in Theorem 3 of  [3] that, for any fixed m > 0, 
N(k ,  m) is exponential ly large in k, that is, 

N(k,  m) > (k - 2 ) / (k  - 1) ~/2 exp{(k - 2)]32/2}, 

where / 3 = s i n - 1 { 1 / ( m + l ) } .  Hence, for  infinitely many  k, N ( k + l , m ) -  
N ( k , m ) > k + m  holds (for otherwise, N(k ,  r n ) < k Z / 2 + O ( k ) ,  which is not 
exponent ia l ly  large). Then,  by Corol lary 2 and Theorem 1, 

rn + k-< sph K(m,  N(k ,  m)+ m+ k - 2 ) - < s p h  K(m,  N ( k  + 1, m ) ) <  m+ k 

holds for infinitely many  k. For  each of  such k, let n = n(k)  = N ( k +  1, m). Then 
d(m, n) = m + k and sph K (m, n) = d(m, n). [] 
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