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Abstract. Every collection of t > 2n 2 triangles with a total of n vertices in 11~ 3 has 
f~(t*/n 6) crossing pairs. This implies that one of their edges meets t)(t3/n 6) of the 
triangles. From this it follows that n points in ~3 have only O(n s/a) halving planes. 

1. Introduction 

Consider  a set S of  n points  in three-dimensional  Eucl idean space, ~ 3 ,  and a 
collection of  t t r iangles with vertices in S. Clearly, if t is not  too large it could be 
that  any two triangles intersect only in c o m m o n  vertices or  edges, if at all. Indeed,  
this is possible for t a lmost  as large as n 2. Once t exceeds n 2, some of the tr iangles 
s tar t  having c o m m o n  inter ior  points,  no mat te r  how the poin ts  of S are placed in 
space. If t > ~n 2 we start  to see crossin9 pairs,  that  is, pai rs  of vertex dis joint  
tr iangles with c o m m o n  inter ior  points.  This basic fact can be used to show tha t  
for t > 2n 2 the number  of crossing pairs  is at  least some posi t ive cons tant  t imes 
t4/n 6. This extends a result of  I-1] that  for n poin ts  and  t > 4n edges in R 2 there 
are at  least some posit ive cons tan t  t imes t3/n 2 crossing edge pairs. 

Why is this interest ing? A consequence of the lower bound  for crossing tr iangle 
pairs  is that  n points  in R 3 have at most  some posit ive cons tant  t imes n 8/3 k-sets, 
for any fixed k, 0 < k < n. A k-set of S is a subset  S' = S n H ,  where H is a 
half-space and IS'l = k. F o r  three-d imensional  k-sets the first nontr iv ia l  bound  of 
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O(n 3- x/343) was reported in [4]. This was improved to O(n a/3 log 5/3 n) and later 
to O(n 8/3 log 2/3 n) in [3] and [6]. This paper removes the remaining poly- 
logarithmic factor from the upper bound. While the improvement  is not  dramatic, 
we feel the main contr ibution is the introduction of a new and more  direct 
approach  to proving bounds  on k-sets. 

2. Crossing Triangles 

Definitions and Results 

A set V of three noncollinear points in R a defines a triangle crv = conv(V). W e  
say that two triangles have a nontrivial intersection if their intersection is neither 
empty nor  a vertex or edge of both. Two triangles, av and a v, can form three 
different types of nontrivial intersections, as illustrated in Fig. 2.1. If crv c~ av r 
and U n V = ~ ,  then we say that a v and av cross. We also say that an edge 
crosses a triangle if it intersects the triangle without  sharing a vertex with it. A 
finite point set is in oeneral position if any k of the points, 1 < k < 4, are affinely 
independent. A set S of n points in general position in ~3 defines a collection of 

( ~ )  triangles, denoted (~ ) .  For  any 

we write x(S, T) for the number  of crossing triangle pairs in T. Furthermore,  

x(n, t) = rain x(S, T). 
IsL=n. lrL=t 

Similarly, we write y(S, T) for the maximum number  of triangles in T crossed by 
a single edge of  a triangle in T, and we set 

y(n, t) = min y(S, T). 
ISr=n, ITl=t 

The results of  this section are summarized in the following theorem. 

Fig. 2.1. The left two triangles have a nontrivial intersection but they do not cross. The triangles in 
the middle and to the right are vertex disjoint and cross. 
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(2.1) Theorem. 

(i) 

There are positive constants cl, c2, c3, c 4 so that 

t 4 t 3 

cl ~ < x(n, t) < c2 n3 

for 

and 

t 3 t 2 

(ii) ca ~6 < y(n, t) < c 4 n3 

Proof  o f  the Lower Bounds 

We begin with a trivial but most  useful observation.  

(2.2) I f  triangles a and tr' have a nontrivial intersection, then there is an edge of  
one triangle that crosses the other triangle, and if a and a' cross, then there are two 
such edges. 

Notice that  because of (2.2) the lower bound for x(n, t) implies the lower bound 
for y(n, t). To see this, count a crossing between two triangles once for each edge 
crossing the other triangle. Give one unit of credit to each such edge. There are 
two credits per  crossing and at  most  3t edges. Assume the lower bound for x(n, t) 
and use the pigeonhole principle to get an edge with more  than  c3(t3/n 6) credits, 
where c3 = 2cx/3. 

fsk 
(2.3) Let S be a set of  n points in general position in ~ 3 a n d  T c_ t 3  ) .  

(i) I TI < n z if no two triangles in T have a nontrivial intersection. 
(ii) IT[ < ~n 2 if  no two triangles in T cross. 

Proof. Consider  a point  Ple S and all incident triangles in T. Let tSi bo the number  
of edges with endpoint  p~. Clearly, ~ < n - 1 because there are only n - 1 other 
endpoints.  Intersect these triangles with a sphere a round  Pl that  is small enough 
so that  each incident triangle intersects the sphere in a connected great-circle arc. 
Assuming the triangles form no nontrivial  intersection, these arcs form a planar  
graph with 3~ vertices and hence fewer than 33~ arcs. It  follows that pl is incident 
to fewer than  3t51 triangles. Since each triangle is counted three times we have in 

1 n 2 total fewer than  ~ ~,,p,~s 3~5~ < triangles. 
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To prove (ii) assume that  no two triangles in T cross. An edge that crosses a 
triangle a can only belong to triangles that  share a vertex with a. There are at 
most  three such triangles incident to that  edge. Remove  this edge together with 
the at  most  three triangles. Let k be the number  of such edges that  need to be 
removed until no nontrivial  intersection remains. We lose at most  3k triangles 
and decrease the total  vertex degree to ~p,  Es 61 - 2k or less. It follows that  

pjeS  p, e S  

is an upper  bound  on the number  of crossing-free triangles. [ ]  

The  rest of the a rgument  for the lower bound  on x(n, r) is inductive and is 
inspired by the p roof  of a similar result for line segments in [1]. Specifically, we 
prove the following inequality. 

(2.4) There  is a posit ive constant  c so that  

t 4 

Proof.  Notice that  we have n > 15 because 

To  cover  the base case of the induction consider the range 2n 2 ~ t < ~n 2. Because 
of (2.3(ii)), the number  of  crossing pairs is at least t - 3n2. Fur thermore ,  

( ~ )  t f ~ 4  5 4 3 !  4 n s 6 2 5 9  153 n 2 ~n 2 
c < 2  ~ "  6~- 'c ( n -  1) 3 < 16 5 143. cn2 < 2  < t -  

as long as c < (16" 5" 143)/(2 �9 6 2 5 . 9 -  15s). 
The  inductive step assumes t > ~n 2 and x(S,  T)  = x(n, t). For  a point Pi ~ S, let 

T~ ~_ T contain all triangles not incident to pi, and define t~ = I T~I. F o r  each 
crossing pair  in T count  the vertices not incident to either triangle. The sum, over 
all crossing pairs, is (n - 6).x(S, T). Alternatively, we can think of this sum as 
count ing the crossing pairs in T~, for each Pie  S. Therefore,  

(n - 6) .x(n,  t) = (n - 6).x(S, T) = ~ x(S  - {p,}, T~) _> ~ x(n  - 1, tl). 
p~S p, ES 
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n - 1) triangles, we have Since Pl is incident to at most  2 

ti> ~n2--( n -  1) - > 2 ( n  - -  1) 2, 
2 

so we can apply  the induction hypothesis to S - {Pi} and Ti. This yields 

( n - - 6 ) ' x ( n , t ) > c  ~ t/4. 
( n - - l Y  p ' ~ s 3  

Observe that  ~p,~s ti = ( n -  3) t ,  and that  this implies ~,v,~s t4 > n ( ( n -  3)t/n) 4. 
Therefore, 

i)("n3y 
> c  = []  

n - - 6  

3 7 
Recall that  (2.4) holds for c < (16 .5-  143)/(2 �9 6 2 5 . 9 .  153). So c 1 needs to be 

chosen so that  

Cl n6 <- c (~)4 < c 6! n3(n- 1) 3 N c ' ~ ' 1 4  ~ ' n 6 .  

Hence, the lower bounds  of Theorem 2.1 hold for cl -- 8-!0 < 16/(2' 625) and 
c3 = 2cl/3 - 1~o. 

Proof of the Upper Bounds 

The upper  bound  for y(n, t) in (ii) of Theorem (2.1) implies the upper  bound for 
x(n, t) in (i). T o  see this assume no edge crosses c4(t2/n 3) or more  triangles. Since 
there are at mos t  3t edges the total credit accumulated is less than 3c4(ta/n3). Each 
crossing pair of  triangles generates two credits which implies that  there are fewer 
than c2(t3/n 3) such pairs, where c2 = 3c4/2. 

T o  prove the upper  bound on y(n, t) we choose the points of S on the momen t  
curve M ( z ) =  (z, T 2, z3) defined for all r e  R. For  two points a = M(zl) and 
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b = M('c2) we wri te  a ~( b if z 1 < z 2. I t  is easy to establish that  M intersects any 
plane in at  most  three points.  

(2.5) Let a < b < c and p ~ q be f ive different points on the moment curve in ff~3. 
The edge pq crosses the triangle abc if f  a ~ p ~ b ~ q ~ c. 

Proof  We first show that  if the five poin ts  do  not  lie in the sequence 
a ~( p ~( b -< q ~( c, then pq does not  cross abc. Assume wi thout  loss of general i ty 
that  nei ther  p nor  q lie between a and b and  suppose  pq crosses abc. Move  b 
cont inuous ly  on M toward  a. At  some momen t  before abc shrinks to a line 
segment,  pq intersects an edge of  abc. At this moment ,  the four endpoin ts  of the 
two edges are coplanar ,  which cont rad ic t s  the fact that  M intersects every plane 
in at most  three points.  

Next,  we prove  that  if a -.< p -< b < q < c, then pq crosses abc. By Randon ' s  
theorem [8] the set U = {a, b, c, p, q} can be par t i t ioned  into U = V ~ W so that  
conv(V) ~ conv(W) r ~ .  Since all five points  are vertices of  conv(U), the par t i t ion  
must  be into two and  three points.  All  cases o ther  than  V = {p, q} and  W = {a, b, c} 
are excluded by the above  argument .  [ ]  

Cons ider  the set S = {Pi = M(i)I 1 < i < n}, with n > 15. Define the width of a 
t r iangle  tr = PiPjPk, with i < j  < k, equal  to min{ j  - i, k - j } .  F o r  an integer w, 
let Tw be the collect ion of tr iangles of  width w or  less. The  number  of tr iangles in 
T~ can be counted  by tak ing  all index pairs i, j ,  with j - i < w, and  jo in ing  them 
with an a rb i t r a ry  third index. Each tr iplet  is coun ted  at  most  three times. Therefore, 

n-1  

I T w l > ~ ( n - - 2 )  ~ g 
~ = n - - w  

n - - 2  
- (2nw - w(w + 1)). 

6 

13 We use n > w + 1 and (n - 2)/n > ~ ,  and then w > (w + 1)/2 to get 

13 
I Twl > - -  n2w 

6-15  

> An2tw + 1). 

The t r iangle  tr = PiPjPk crosses a fixed edge PtPm, with E < m, iff i < E < j < m < k. 
The number  of  such tr iangles tr e Tw is less than  
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For  a given t, choose w so that I Tw- 11 < t < I Zwl and let T ___ Tw be arbitrary with 
I TI = t. Then 

(Anew)  ~ I T~_ ~ I ~ t: 
y(n,t)_<y(S, T ) < w 2 n -  ~96n3 < 196 n ~ <  196n~. 

This establishes the upper bounds of Theorem (2.1) with c 4 = 196 and c2 = 294. 

Remark.  Let us compare  the upper bound in (i) of Theorem (2.1) with the 
corresponding lower bound. Both bounds are valid for 

For  t = I TII = (n - 2) 2 we can find n points and t triangles, namely, the set T 1, so 
that no two triangles have a nontrivial intersection. Hence, x(n, ( n -  2) 2) = 0 
al though x(n, 2n 2) > cl((2n2)4/n6) > �89 2. So as t increases from (n - 2) 2 to 2n 2, the 
minimum number  of crossing pairs goes up from 0 to quadratic in n. The upper 
bound for t = 2n 2 is cz((2n2)3/n 3) = 2352n 3. This suggests the possibility that x(n, t) 
is indeed cubic in n for this choice of t. Suppose this is indeed the case. Using the 
same induction as in the proof  of (2.4), we could then prove that x(n, t) is 
proport ional  to t3/n 3, for all 

As explained in Section 3, this would imply that n points in R 3 have only O(n s/2) 
halving planes. 

3. Halving Planes 

Let S be a set of n points in •3. Assume that n is odd and that no four points are 
coplanar. For  three points a, b, c e S let a = abe be the corresponding triangle and 
let h be the plane that contains a, b, c. We call h a halving plane, and a a halving 
triangle, if there are (n - 3)/2 points on each side of  h. The following extension of  
the two-dimensional Lovfisz lemma [7] has been used in [3] and [4]. We say a 
line crosses a triangle if it intersects the triangle but not any of its edges. 

(3.1) A line crosses less than n2/8 halving triangles. 

Proof. Consider a plane that  contains no point of S, and let I 0 and I t be two 
parallel lines in this plane so that It n conv(S) = ~ .  For  each 0 < z < 1 define 
I, = zl o + (1 - z)ll. As z increases from 0 to 1, l, translates from I t to lo. The 
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number of halving triangles crossed by l~ changes only when l~ translates through 
an edge, 

A simple rotation argument shows that the number increases or decreases by at 
most one. Given lo we can choose 11 so that l~ translates through fewer than ~n 2 
edges as follows. Choose the plane through lo so that there are ( n -  1)/2 and 
(n + 1)/2 points on the two sides. There are (n 2 - 1)/4 edges ab that cross the plane 
and thus there is one side of l 0 with fewer than n2/8 edges. It follows that lo crosses 
at most n2/8 halving triangles. [] 

We prove an upper bound on the number of halving planes by selecting a line 
that crosses many triangles. Suppose there are t halving triangles. Condition (ii) of 
Theorem (2.1) implies that there is a line that crosses more than c3(t3/n 6) of them, 
with c 3 = r ~ .  Because of (3.1), s 6) < n2/8 which implies the main result of 
this section. 

(3.2) Theorem. The number of  halving planes defined by n points in •3 is less 
than csn 8/3. 

The constant, c 5, can be chosen equal t o  1/(8c3) 1/3 = 151/3 < 3. 

Remarks. A subset S' of S is a k-set if [S'[ = k and S' = S n H for some half-space 
H. The number of halving planes is closely related to the number of k-sets of S. 
Indeed, the number of k-sets, for k = (n - 1)/2, does not exceed three times the 
number of halving planes, see [5]. For other values of k consider the planes 
spanned by three points of S so that k - 1 points lie on one and n - k - 2 points 
lie on the other side. Again, the number of such planes is proportional to the 
number of k-sets. Furthermore, the same arguments imply the same upper bound 
as in Theorem (3.2) for any fixed k. 

The bound in Theorem (3.2) slightly improves the ones in 1-3] and [6]. Besides 
this improvement, the main contribution of the new proof is the uncovering of 
the close relationship between k-sets and the combinatorics of crossings between 
edges and triangles in R 3. 

4. Discussion 

Maybe the most interesting extension of the methods in this paper is to four and 
higher dimensions. It is possible to generalize all results of Section 2 to crossing 
pairs of (d - 1)-simplices in R d. Specifically, we can show that t > cn d- 1 (d - 1)- 
simplices defined by n points in R d form at least c'(d§ dtd-l~) crossing pairs. 
However, to prove a nontrivial upper bound on the number of halving hyper- 
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planes, we need a nontrivial lower bound on the number  of ( d -  1)-tuples of 
(d - 1)-simplices that have a common  point in their interiors. While the main part 
of the induction in (2.4) generalizes to this situation, we have no good extensions 
of the base case in (2.3). 

We should be more accurate. Recent results obtained with methods from 
algebraic topology I-9] do imply a nontrivial base case, and induction can be used 
to get nontrivial bounds for (d - 1)-tuples of  (d - 1)-simplices and for halving 
hyperplanes. These bounds come out very similar to those derived in [2] and are 
therefore omitted. An interesting question is whether the elementary methods of 
this paper suffice to derive such nontrivial bounds. 
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