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R E S E A R C H  A R T I C L E  

N o r m a l  Skew La t t i ces  

J o n a t h a n  Leech 

Communicated by B. Schein 

Recall  tha t  a band  S is n o r m a l  if each pr incipal  monoid eSe is a 
semilat t ice.  Equivalently, a normal  band  is a band sat isfying the identity,  wxyz = 
wyxz.  Recall  also that  a s k e w  l a t t i c e  is an algebra (S,V,  A) such tha t  V 
and A are associative, idempoten t  b inary  opera t ions  on the set S which are 
connected by the absorpt ion laws, x A (x V y) = x = (y V x) A x,  and their  duals. 
By a n o r m a l  s k e w  l a t t i c e  we mean a skew la t t ice  (S ,V ,A)  such tha t  each 
principal  subalgebra  x A S A x is a sublat t ice  of S .  Skew lat t ices na tura l ly  arise 
as mult ipl icat ive  bands of idempotents  in rings. In par t icular ,  every maximal 
normal band of idempotents in a ring forms a normal skew lattice which is the 
full set of idempoten~ in the subring it generates; and conversely, when the 
idempotents of a ring are closed under multiplication, they form a normal skew 
lattice. (See [6] 2.2.) Upon examinat ion  of the semigroup ring of a normal  band,  
one thus obta ins  tha t  every normal band can be embedded in a normal skew 
lattice. Hence there is a sense in which normal  skew lat t ices form completions of 
normal  bands;  as such, the theory of normal  skew lat t ices may be seen to extend 
the theory of normal  bands  in i t ia ted  in [9], [12], and  [13]. 

This  paper  is divided into three sections, the  first of which is a prelim- 
inary  section giving the skew la t t ice  analogues of some basic  results  of Yamada  
and Kimura .  The  remaining sections focus a t tent ion  on the principal  theme of 
this paper ,  the connection between normal i ty  and dis t r ibut ivi ty .  The  main  result 
of the  middle  section, Theorem 2.8, gives a canonical factor izat ion of a normal  
symmetr ic  skew la t t ice  into the f ibered produc t  of a la t t ice  with a dis t r ibut ive 
skew latt ice;  this effectively reduces the s tudy  of normal  symmetr ic  skew lat-  
tices to the dis t r ibut ive case. The  dis t r ibut ive case is considered in the  final 
section which contains analogues of several fundamenta l  results  about  distr ibu- 
tive lattices.  Finally,  the needed background on bands,  d is t r ibut ive  lat t ices,  and 
universal  algebras may be found in [2], [3], and [8]. 

1. B a s i c  T h e o r y  

1.1.  Recall  tha t  a r e c t a n g u l a r  s k e w  l a t t i c e  is a skew la t t ice  S for 
which (S, A) is a rec tangular  band  and (S, V) is i ts dual  where x V y -- y A z.  
The first impor tan t  theorem on skew lat t ices is the  Clifford-McLean Theorem: the 
maximal rectangular subalgebras of a skew lattice form a congruence partition for 
which the induced quotient algebra is the maximal lattice image. The congruence 
classes are called e q u i v a l e n c e  c l a s s e s  and two members ,  x and y,  of the 
same class are said to be e q u i v a l e n t ,  denoted x - y .  The  n a t u r a l  p a r t i a l  
o r d e r i n g  of a skew la t t ice  is defined by x _ y iff x A y -- y = y A x ,  or dually, 
x V y -- x -- y V x.  Our goal is to show how a normal  skew la t t ice  is constructed 
from its equivalence classes. For normal  bands  there is the  construct ion of 
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Yamada  and Kimura  util izing a system of homomorphisms  between rectangular  
bands  which, in essence, mimics the na tura l  par t ia l  ordering. To extend this 
construct ion to normal  skew latt ices,  the  homomorphisms must be projections.  

1.2.  A p r o j e c t i o n  is a pair  ( K , k )  where K : A ~ B is an epimor- 
phism of rec tangular  skew lat t ices and k is a set of monomorphisms k : B --* A 
called c o p r o j e c t i o n s  such tha t :  (i) there  is a factor izat ion J x B --- A which 
composed with K yields the B-coo rd ina t e  projection; (it) under  this factoriza- 
t ion the coproject ions correspond to the canonical injections,  B ---* {j} • B.  
Clearly the  coproject ions decompose the  inverse relat ion K -1 . Any factoriza- 
t ion for which (i) and (it) hold is said to be c o m p a t i b l e  with the projection.  
Compatible factorizations are essentially unique: given compat ib le  faetorizat ion,  
J x B ~ A and J '  x B -~ A,  there is an isomorphism J ---- J~ tha t  transforms 
J '  • B ~- A into J x B ~ A.  For each b in B a compat ib le  factorizat ion 
K - l b  x B ~- A is given by (u ,y )  --* ky where k is the  unique coproject ion 
for which kb = u. Projections form a category: given projec t ion  (L , l )  with 
L :  B -* C ,  one has ( L , l ) ( K , k )  = (LK,  kl)  where k l  = {kl I k in k and l in 1}. 
Finally, a pro jec t ion  (K,  k) will usual ly be denoted by K .  Specializing [7] 1.3 
to the normal  case yields: 

P r o p o s i t i o n  1.3. Let A > B be two classes in a normal skew lattice and 
let K = K ( A , B )  : A --* B be defined implicitly by x >__ K x .  Then all maps 
k : B --* A of the form ky = y V a V y, for a fixed in A,  are either equal 
or have disjoint images; together they form the coprojections for the projection 
K : A --4 B .  (We refer to K and its k as the  n a t u r a l  p r o j e c t i o n  a n d  
c o p r o j e c t i o n s  for A and B . )  

1.4.  A r e c t a n g u l a r  f u n c t o r  on a la t t ice  T is a functor  K from (T, >)  
to the category of rec tangular  skew lat t ices and  project ions  such that  s r t 
implies g ( s )  and K(t)  are disjoint.  For s > t in T ,  the pro jec t ion  from K(s)  to 
K(t)  is denoted by K(s,  t) and its coproject ions are denoted  by k(s, t, i). Given 
T and K ,  let S denote  the union of the  K(t) .  One can use the  K ( s , t )  to define 
a normal  meet opera t ion  on S ;  one would like to  use the  k(s , t , i )  to define a 
join oper t ion on S ,  thus turning it into a normal  skew lat t ice.  This  leads us to 
consider pairs  of inverse relat ions of the  form K(n,  s) -1 and K(n ,  t) -~ where 
n = s V t in T .  We call two such relat ions o r t h o g o n a l  if for each a in K(s) ,  
the i m a g e  of a in K(n)  given by K ( n , s )  - l [ a ]  lies in the  image of a unique 
coproject ion k(n, t , j ) ,  and similarly for each b in K(t)  the image of b in K(n)  
lies in the  image of a unique coproject ion k(n, s, i). Clearly, orthogonality holds 
in each join situation when the lattice is totally ordered; moreover: 

P r o p o s i t i o n  1.5. For a finite chain T,  every rectangular functor K over 
T is isomorphically obtained from a T-indexed family of rectangular algebras 
{x(t)  I t in T}  by setting K(t) = Yi{X(s) I s < t) and letting all projections 
and coprojections be the canonical coordinate projections and injections. 

Specializing [7] 3.10,12, we extend a well known theorem given in [13]. 

T h e o r e m  1.6. Let K be a rectangular functor defined on the lattice T such 
that in each join situation n = sVt the inverse relations K(n ,  s) - I  and K(n , t )  -~ 
are orthogonal. Then S = U{K(t )  I t in T)  becomes a normal skew lattice, with 
K providing the system of natural projections and coprojections, if~or each pair 
a in K(s )  and b in K( t ) ,  the meet and join are defined by 

a A b = K ( s , m ) a  A K ( t ,m)b  and a V b = k(n , s , i )a  V k(n , t , j )b ,  
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where m = s A t ,  n = s V t ,  the image of k(n ,s , i )  contains K(n,t)- l[b] and the 
image of k (n , t , j )  contains K(n,s)- l[a] .  Conversely, every normal skew lattice 
arises in this manner. 

1.7.  Normal  skew lat t ices form a variety of algebras which includes the 
subvariety of r i g h t  n o r m a l  skew latt ices (x A y A z = y A x A z) and the subvariety 
of le f t  n o r m a l  skew lat t ices (x A y A z = x A z A y).  By [5] 1.15, every normal  
skew la t t ice  is the  f ibered product  of its maximal  right normal  image with its 
maximal  left normal  image over its maximal  la t t ice  image. (See also [4], [13].) 

2. S y m m e t r i c  A l g e b r a s  

2.1.  The  simplifications encountered in 1.5 may be extended to a wider 
class of algebras. A skew la t t ice  is s y m m e t r i c  iff commuta t iv i ty  is unambiguous:  
x V y = y V x iff x A y = y A x.  Since normal i ty  insures tha t  x V y = y V x implies 
x A y = y A x ,  it follows tha t  a normal  skew la t t ice  is symmetr ic  whenever 
x A y = y A x implies x V y = y V x.  This implicat ion is equivalent to the identity, 
x V y V (x A y A x) = (x A y A x) V y V x; thus symmetric normal skew lattices 
form a subvariety of the variety of normal skew lattices. Normal  skew latt ices in 
rings are symmetr ic  as are skew latt ices for which the underlying la t t ice  is to ta l ly  
ordered.  

2.2.  We generalize the construct ion of Propos i t ion  1.5. Let T be 
a lat t ice,  let P be a prime filter of T and let X be a rec tangular  algebra. 
Then  T[X, P] is the symmetr ic  normal  skew lat t ice defined as the union of two 
subalgebras ,  P x X and T - P ,  where for (p ,x )  in P x X and t in T - P  
the mixed joins and meets are given by (p, x) V t = (p V t, x) = t V (p, x) and 
(p ,x)  A t  = p A t  = t A ( p , x ) .  Any skew la t t ice  isomorphic with T[X,P] is 
said to be P - p r l m a r y  over T with f i b e r  X .  Pr ime  filters arise as inverse 
images f - l ( 1 )  for la t t ice epimorphisms f : T --* 2, where 2 denotes the 
la t t ice  I o . Thus T[X,P] may be viewed as the fibered product  T x2 X ~ 
ob ta ined  by pulling the surjeetion X ~ --* 2 back along f : T ~ 2. More 
generally, let F(T)  be the family of all pr ime filters of T ,  including T ,  and let 
{ X ( P )  I p in F ( T ) }  be a corresponding family of rec tangular  algebras; then the 
f ibered produc t  over T,  HT T[X(P) ,  P], is symmetr ic  and normal.  I ts  functor  K 
is given by set t ing K(t)  = YI{X(P)  I t  in P}  and using the canonical coordinate  
project ions  and injections. Any skew la t t ice  isomorphic to such a f ibered product  
is said to be d e c o m p o s a b l e  and the fibered product  is said to be its p r i m a r y  
d e c o m p o s i t i o n .  An immedia te  consequence of the  theory to be developed in 
the remainder  of this paper  is the following result.  

T h e o r e m  2.3.  A symmetric normal skew lattice with a finite maximal dis- 
tributive lattice image is decomposable. In particular, a symmetric normal skew 
lattice with a finitely generated maximal lattice image is decomposable. 

2.4.  The  above discussion indicates tha t  upon assuming symmet ry  
there arises a fundamenta l  connection between normal i ty  and distr ibutivi ty.  
Clearly this has no analogue for bands.  The precise connection is spelled out  
in Theorems 2.5 and 2.8. But first recall tha t  a skew la t t ice  is d i s t r i b u t i v e  if 
bo th  the ident i ty  x A (y V z) A x = (x A y A x) V (x A z A x) and its dual  hold; 
it is called m e e t  b i d i s t r i b u t i v e  if the  s ta ted  ident i ty  can be s t rengthened to: 
x A (y V z) A w = (x A y A w) V (x A z A w). Recall  also tha t  in a r i g h t  h a n d e d  
skew la t t ice  (x  A y A x = y A x and x V y V x = x V y )  d is t r ibut iv i ty  reduces 
to ( y V z )  A x = ( y A x ) V ( z h x )  and its dual, x V ( y h z ) = ( x V y ) A ( x V z ) .  
Dis t r ibu t iv i ty  and normal i ty  mix as follows: 
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T h e o r e m  2.5. A skew lattice S is meet bidistributive if and only if it is 
normal and its maximal lattice image T is distributive, in which case S is also 
distributive. Both x A (y V z) = (x A z) V (x A z) and (x V y) A z = (x A z) V (y A z) 
hold in S if and only if S i~ both meet bidistributive and symmetric. 

P r o o f .  By [5] 1.15, we may also assume S is fight handed. First let S be meet 
bidistributive. Then T is distributive. Let x, y, z in S be such that  x >_ y, z 
and y =_ z. Then z = z A ( y V z ) A x  = (z A y A x ) V ( z A x  Ax) = y V z  = y. Thus 
x A S A x is a sublattice for each x is S so that  S is normal. Conversely, given S 
is normal and T is distributive, one has x A (y V z) A w ---- (x A y A w) V (x A z A w) 
with bo th  sides in (x A w) A S A (x A w). By normality, equivalence becomes 
equality and meet bidistributivity follows. Also x V (y A z) ---- (x V y) A (x V z) in 
S with x V z > ( x V y ) A ( x V z ) .  Since x V ( y A z ) V x V z  = x V ( y A z ) V z = x V z ,  
x V z > x V (y A z),  again equivalence becomes quality, and S is distributive. 
Suppose next that  S is also symmetric. Then y meet commutes with both 
z A ( y V z )  and ( x A y ) V ( x A z )  with xAy  being their common meet. By established 
identities, the commuting join of y with either x A (y V z) or (z A y) V (x A z) 
is ( y V x )  A ( y V z )  and thus x A ( y V z ) = ( x A y ) Y ( x A z )  follows. If S i s n o t  
symmetric, then there exist x and y with x A y = y A x, but  x V y r y V x. Thus 
x A ( y V x ) r  but ( x A y )  V ( x A x ) = x .  

2.6.  A skew lattice is b l n o r m a l  if both  of its operations are normal. 
In this case its natural  projections are isomorphisms and the skew lattice factors 
as the product  of a lattice with a rectangular algebra. (This was first observed 
by Schein in [10].) Thus the following are equivalent conditions on a skew lattice: 
it is both meet and join bidistributive; it factors as the product of a distributive 
lattice and a rectangular algebra. (See also [11 and [11].) 

2.7.  Let S be symmetric and normal, having maximal lattice image 
T and rectangular functor of projections K .  If K (A ,  B)  is an isomorphism for 
classes A > B ,  then for any intermediate class, C ,  both K(A,  C) and K(C,  B) 
are also isomorphisms. Elements, x and y, are said to be r e f l ec t ions  in S if 
there exist A > B,  with x and y lying in intermediate classes, such that  (i) 
K(A,  B)  is an isomorphism; and (ii) x and y have the same image both  in A 
and in B .  (This includes the possibility of x or y lying in A or B or even 
being equal.) It is easily seen that  reflection is an equivalence relation. One 
can show that  whenever K(A,  B)  is an isomorphism, then for all classes C both 
K ( A V C, B V C) and K ( A A C, B A C) are isomorphisms. It follows that  reflection 
is a congruence. Indeed, it is the maximal congruence inducing isomorphisms 
between corresponding equivalence classes in S and the induced quotient algebra. 
The quotient algebra induced by reflection is called the r e d u c e d  a l g e b r a  and 
is denoted by S r. Clearly S rr = S r. We say that  S is r e d u c e d  if S ~ = S. 

2.8. T h e  R e d u c t i o n  T h e o r e m .  Let S be a symmetric normal skew lattice, 
let T be its maximal lattice image, let S ~ be its reduced algebra, and let D be 
the maximal lattice image of S r . Then the canonical epimorphisms, S ---, T and 
S --* S ~, induce an isomorphism of S with the fibered product over D of T with 
S ~ : S ~ T XD S t ;  moreover, the reduced algebra S ~ is distributive. 

P r o o f .  We need only show that  when S is reduced, then it is distributive. 
We do so by showing that  neither of the following types of subalgebras can arise 
in S,  where A, B ,  C ,  J ,  and M are distinct equivalence classes in S. 
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J J ./, \ 
l B C I C 

M M 

Suppose that M is trivial, say M = {m}, so that  in both  diagrams each 
element of C commutes with every element in either A or B.  In the left diagram, 
each element of C commutes with all elements in J so that  C is trivial; likewise, 
A, B ,  and finally J are trivial classes. In the right diagram, each element in J 
has unique factorization a V c = b V c, with (a,c) in A x C, (b,c) in B x C,  
and a > b. As a consequence, K(A,  B) is an isomorphism. Even when M is 
not trivial, the general case may be reduced to the special case upon intersecting 
all classes with the principal subalgebra rn V S V m for any m in M.  Thus, in 
general, K ( J , M )  is an isomorphism in the left diagram, while K ( A , B )  is an 
isomorphism in the right diagram. But S is assumed reduced. Hence neither 
type of subalgebra can arise. Thus the lattice T is distributive, and by Theorem 
2.5, so is S.  

3. D i s t r i b u t i v e  S y m m e t r i c  A l g e b r a s  

3.1.  Our goal is to obtain noncommutative analogues of the following 
basic facts about  distributive lattices: every distributive lattice can be embedded 
into a power of the lattice 2; when the lattice is finite, then each element is 
a unique irredundant join of join-irreducible elements. We begin by examining 
subdirect decomposition. In the ease of normal bands, the subdirectly irreducible 
algebras consist of isomorphic copies of the following bands: R2,  the right normal 
band on {1,2} with multiplication given by the rule xy = y, L2, its left normal 
dual; 2, the semilattice 1~ 3, the band R~  and 3" ,  its left normal dual. 
(This was shown by Schein in [9].) All five bands become subdirectly irreducible 
skew lattices (which are necessarily distributive, normal, and symmetric) upon 
letting the meet be the given multiplication, and letting the join dualize the meet: 
x V y -- y A x ,  if neither are zero, and x V 0 = x = 0 V x, otherwise. The following 
theorem extends some basic results given for the case of right normal bands by 
Schein in [9] and Wagner in [12]; in its statement 5 denotes the fibered product 
3 x2  3*. 

T h e o r e m  3.2.  The only subdirec~ly irreducible distributive, symmetric normal 
skew lattices are copies of 2, R2, L2, 3, or 3".  Every distributive, symmetric 
normal skew lattice is thus a subdirect product of these algebras and hence can be 
embedded in a power of 5. 

P r o o f ,  Let S be subdirectly irreducible. We show that  it is a copy of one 
of the five algebras. Since S is subdirectly irreducible, it must have distinct 
elements a and b which are congruent under all nonidentity congruences. If a 
and b are not equivalent, then equivalence is the identity congruence. Thus S 
is a lattice which must be a copy of 2. So suppose a - b in class A. Define the 
congruence ,~ (rel a) by z ,-~ y (rel a) iff a A x = a A y, and let ,,~* (rel a) be 
its left-right dual. Then either ~ (rel a) or ,,~* (rel a) separates a from b and 
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is thus the  identity.  This  forces the class A to be maximal .  If this classs is all 
of S ,  then  S must  be a copy of ei ther R2 or L2. So suppose tha t  a > c. If 
b ~t c, then  ei ther  ..~ (rel c) or ~* (rel c) are nonident i ty  congruences separat ing 
a and b. Thus for all c in S ,  a > c iff b > c. Together  with symmetry,  this 
implies tha t  the class A is join irreducible in the  underlying lattice.  If S '  denotes 
S - A and T'  denotes the subla t t ice  a A S t A a = b A S '  A b, then define the 
congruence ,-~ (rel T ' )  by x ~ y ( re l  T ' )  iff t V x V t = t V y V t for some t in 
T ' .  This  congruence clearly separates  a and b, and thus is the identity.  Since 
S '  is a single congruence class it must  reduce to the  zero of S and thus S = A ~ . 
Apply ing  subdirect  i r reducibi l i ty  again, S must be a copy of ei ther  3 or 3*. 

C o r o l l a r y  3.3.  Distributive, symmetric normal skew lattices form the subva- 
riety of skew lattices generated by 5. Symmetric normal skew lattices form the 
subvariety of skew lattices generated from the variety of lattices and 5. 

3.4.  When  the underlying la t t ice  is also finite, the  skew la t t ice  is de- 
composable.  To see this,  let S be such an algebra, let  T be its maximal  la t t ice  
image, and let 7r = ~r(T) be the  set of all jo in- i r reducible  elements of T ,  in- 
cluding the minimal  element 0. The class of prime filters of T is given by 
F(T)  = {p V T I P in 7r}. Recall  that  the  c e n t e r  of S ,  denoted  by Z(S) ,  coin- 
cides wi th  the union of all singleton classes of S .  Since S is normal,  i ts  center 
correspponds to a (possibly empty)  ideal  in T;  in par t icular ,  Z(S)  is empty  
precisely when the minimal  class of S is nontrivial;  however, all classes minimal  
in the complement  of Z(S)  correspond to join-irreducible elements in r .  

L e m m a  3.5.  Let X be a minimal equivalence class in the complement of Z(S) ,  
let x be fixed in X ,  and let P be the prime filter in T induced by the image of 
X in T.  Set S' = ( S - S V x V S ) U x V S V x  and let T[X,P] be the P-primary 
algebra induced by X and P.  Then S I is a subalgebra which is also mapped onto 
T by the canonical epimorphism from S.  Moreover, there is an isomorphism 8 
decomposing S into a fibered product, 0 : S ~- S' • T[X,P] ,  which is given by 
o(y)  = ( z  v y v z ,  y ^ z ^ y) for all y in S V z V S ,  and O(y) = y otherwise. 
Finally, upon comparison in T the center of S' is properly larger than the center 
orS .  
P r o o f .  S ~ is a subalgebra  since x commutes  wi th  elements in the complement  
of S V x V S .  8 is at least an isomorphism offof  S V x V S  and by Theorem 1.6, the 
complementary  res t r ic t ion is a t  least a bi ject ion of S V x V S with the  subalgebra 
of the  f ibered produc t  lying over the same filter. We leave it to the reader  to 
show tha t  the  l a t t e r  is also an isomorphism between subalgebras.  Suppose tha t  
u lies in S V x V S ,  while w lies in the complement .  Then 8(u V w) = 8(u) V 8(w) 
is equivalent to x V u V w V x  = x V u V x V w  and (uVw)  A x A ( u V w )  = u A x h u .  
Since x commutes  with w, the  first ident i ty  holds. Because x A w lies in Z(S) ,  
x A u  > x A w  and x A ( u V w )  = x A u .  Similarly, ( u V w )  A x  = u A x  and 
the second ident i ty  also holds. Finally, 0(u A w) = O(u) A ~(w) is equivalent to 
u ^ w = (x V u V x) A w,  which is clear. 

3 .6.  T h e  P r i m a r y  D e c o m p o s i t i o n  T h e o r e m .  Let S be a distributive, 
symmetric normal skew lattice with finite maximal lattice image T and let F(T)  
be the set of prime filters of T ,  including T.  Then each P in F(T)  corresponds 
to a rectangular algebra X ( P ) ,  which is unique to within isomorphism, such that 
the X ( P )  induce an isomorphism of S with the fibered product [IT T[X(P) ,  P]. 
S is reduced if and only if X ( P )  is nontrivial for each proper prime filter P .  

P r o o f .  Repea ted  appl icat ions  of the  previous lemma enable one to pass 
through the prime filters of T and successfully s t r ip  p r imary  factors off of S 
to ob ta in  the decomposit ion.  To see uniqueness, let X be a join i rreducible class 
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of S corresponding to the prime filter P .  If P = T ,  then X is the minimal class 
of S and X ( P )  = X .  Otherwise, there is a maximal class lying beneath X ,  call 
it Y.  Upon applying the lamina to the subalgebra X U Y,  X must factor as 
X ( P )  x Y ,  where to within isomorphism X ( P )  is given as y V X V y for any y 
in Y.  The final assertion about S being reduced now follows. If X ( P )  is trivial 
for P not T,  then K(X ,  Y)  is an isomorphism; but if no X ( P )  is trivial, except 
possibly for P = T,  then no K ( A , B )  with A > B can be an isomorphism. 

3.7.  For right handed algebras, the results of this section can be recast 
in terms analogous to rings of sets. Let A and B be nonempty sets and let 
"P(A, B) denote the set of all partial functions from A to B.  T~(A, B) becomes a 
skew lattice which is easily seen to be distributive, symmetric, and right normal 
upon setting f V g  = I U  (g I G -  F)  and f A g  = g I ( F n G ) ,  where F 
and G denote the functional domains of f and g, respectively. By a r ing  o f  
p a r t i a l  f u n c t i o n s  is meant any subalgebra of ~(A,  B) for some A and B.  Since 
the power algebra 3 A is an isomorphic copy of "P(A, {1,2}), we can state the 
following variation of Theorem 3.2: every distributive, symmetric right normal 
skew lattice is isomorphic with a ring of partial functions. To recast Theorem 3.6, 
we first refine the ring concept to allow partial functions with variable codomains, 
B = {B(a)  I a in A}; that  is, partial functions that  are restrictions of functions 
in the Cartesian product  I-[ B.  This class of partial functions is denoted by 
P ( A , B ) .  If B = UB, then this class forms a subalgebra of P ( A , B )  and is 
thus a ring of partial functions. If 7~ is a ring of subsets of A, then the full 
r i n g  o f  p a r t i a l  f u n c t i o n s  over 7~, P (R ,  B) ,  is the ring of all partial functions 
which have their domain in T~. This leads to the following variation of the 
Pr imary Decomposition Theorem: every distributive, symmetric right normal 
skew lattice with a finite maximal lattice image is isomorphic with a full ring of 
partial functions over a ring of subsets of a finite set. For if T, F(T) ,  P ,  and 
X ( P )  are as in 3.6, then just set A = F(T) ,  B = { X ( P )  I P in F(T)}  and 
7~ = {F(x)  Ix  in T} where r ( x )  = {P Ix  in P} .  

3.8.  We conclude with yet another analogy with distributive lattices. 
Recall that  a symmetric skew lattice S with zero 0 is said to be q u a s i - B o o l e a n  
if for each x in S the subalgebra x A S A x forms a Boolean lattice; in this case S 
has a d i f f e r ence  o p e r a t i o n  defined by setting x - y equal to the complement of 
x A y A x  in x A S A x .  Thus one may define a skew q u a s i - B o o l e a n  a l g e b r a  to be 
an algebra (B, V, A, - ,  0), where - is a binary operation and 0 is a distinguished 
constant, such that: (B, V, A, 0) is a distributive, symmetric, and normal skew 
lattice with a zero element, 0; ( z - y ) V ( x A y A x ) =  z and ( x - - y ) A ( x A y A x ) =  O. 
The ~P(A, B) above, along with maximal normal bands in rings, from examples 
of such algebras. If a maximal class exists, the algebra is called a skew B o o l e a n  
a lgebra .  Clearly 5 becomes a skew Boolean algebra and by [6] 1.14, every skew 
Boolean algebra can be embedded in a power of the algebra 5. Thus, a skew 
lattice can be embedded in a skew Boolean algebra if and only if it is distributive, 
symmeric, and normal. 
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