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Recall that a band S is normal if each principal monoid eSe is a
semilattice. Equivalently, a normal band is a band satisfying the identity, wryz =
wyrz. Recall also that a skew lattice is an algebra (S5, V,A) such that V
and A are associative, idempotent binary operations on the set S which are
connected by the absorption laws, z A(zVy) =z = (yVz) Az, and their duals.
By a normal skew lattice we mean a skew lattice (S,V,A) such that each
principal subalgebra z A S Az is a sublattice of S. Skew lattices naturally arise
as multiplicative bands of idempotents in rings. In particular, every mazimal
normal band of idempotents in a ring forms a normal skew lattice which is the
full set of idempotents in the subring it generates; and conversely, when the
idempotents of a ring are closed under multiplication, they form a normal skew
lattice. (See [6] 2.2.) Upon examination of the semigroup ring of a normal band,
one thus obtains that every normal band can be embedded in o normal skew
lattice. Hence there is a sense in which normal skew lattices form completions of
normal bands; as such, the theory of normal skew lattices may be seen to extend
the theory of normal bands initiated in [9], [12], and [13].

This paper is divided into three sections, the first of which is a prelim-
inary section giving the skew lattice analogues of some basic results of Yamada
and Kimura. The remaining sections focus attention on the principal theme of
this paper, the connection between normality and distributivity. The main result
of the middle section, Theorem 2.8, gives a canonical factorization of a normal
symmetric skew lattice into the fibered product of a lattice with a distributive
skew lattice; this effectively reduces the study of normal symmetric skew lat-
tices to the distributive case. The distributive case is considered in the final
section which contains analogues of several fundamental results about distribu-
tive lattices. Finally, the needed background on bands, distributive lattices, and
universal algebras may be found in {2], [3], and [8].

1. Basic Theory

1.1. Recall that a rectangular skew lattice is a skew lattice S for
which (S, A) is a rectangular band and (S,V) is its dual where zVy = y A z.
The first important theorem on skew lattices is the Clifford-McLean Theorem: the
mazimal rectangular subalgebras of a skew lattice form a congruence partition for
whick the induced quotient algebra is the mazimal lattice image. The congruence
classes are called equivalence classes and two members, = and y, of the
same class are said to be equivalent, denoted z = y. The natural partial
ordering of a skew lattice is defined by z > y iff t Ay = y = y A z, or dually,
zVy =gz =yVz. Our goal is to show how a normal skew lattice is constructed
from its equivalence classes. For normal bands there is the construction of
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Yamada and Kimura utilizing a system of homomorphisms between rectangular
bands which, in essence, mimics the natural partial ordering. To extend this
construction to normal skew lattices, the homomorphisms must be projections.

1.2, A projection is a pair (K,k) where K : A — B is an epimor-
phism of rectangular skew lattices and k is a set of monomorphisms k: B — A4
called coprojections such that: (i) there is a factorization J x B & A which
composed with K yields the B-coordinate projection; (i) under this factoriza-
tion the coprojections correspond to the canonical injections, B — {j} x B.
Clearly the coprojections decompose the inverse relation K~'. Any factoriza-
tion for which (i) and (ii) hold is said to be compatible with the projection.
Compatible factorizations are essentially unique: given compatible factorization,
JxB=A4 and J' x B2 A, there is an isomorphism J £ J' that transforms
J'XB = Ainto J x B= A. For each b in B a compatible factorization
K~1b x B = A is given by (u,y) — ky where k is the unique coprojection
for which kb = u. Projections form a category: given projection (L,1) with
L:B — C, one has (L,1)(K,k) = (LK, kl) where kl = {kl | k in k and [ in 1}.
Finally, a projection (K, k) will usually be denoted by K. Specializing {7] 1.3
to the normal case yields:

Proposition 1.3. Let A > B be two classes in a normal skew lattice and
let K = K(A,B): A — B be defined implicitly by £ > Kz. Then all maps
k:B — A of the form ky = yVaVy, for a fized in A, are either equal
or have disjoint images; together they form the coprojections for the projection
K : A — B. (We refer to K and its k& as the natural projection and
coprojections for A and B.)

1.4. A rectangular functor on a lattice T is a functor K from (T, >)
to the category of rectangular skew lattices and projections such that s # t
implies K(s) and K(t) are disjoint. For s > ¢ in T, the projection from K(s) to
K(t) is denoted by K(s,t) and its coprojections are denoted by k(s,t,z). Given
T and K, let S denote the union of the K(). One can use the K(s,t) to define
a normal meet operation on S; one would like to use the k(s,,7) to define a
join opertion on S, thus turmng it into a normal skew lattice. This leads us to
consider pairs of inverse relations of the form K(n, s)™! and K(n,t)~! where
n=sVtin T. We call two such relations orthogonal if for each a in K{(s),
the image of a in K(n) given by K(n,s) ![a] lies in the image of a unique
coprojection k(n,t,j), and similarly for each b in K(¢) the image of b in K(n)
lies in the image of a unique coprojection k(n,s,?). Clearly, orthogonality holds
in each join situation when the lattice is totally ordered; moreover:

Proposition 1.5.  For a finite chain T, every rectangular functor K over
T s isomorphically obtained from a T -indezed family of rectangular algebras
{X(t) | t in T} by setting K(t) = [[{X(3) | s <t} and letting all projections
and coprojections be the canonical coordinate projections and injections.

Specializing [7] 3.10,12, we extend a well known theorem given in [13].

Theorem 1.6. Let K be a rectangular functor defined on the lattice T such
that in each join situation n = sVt the inverse relations K(n,s)™! and K(n,t)™"
are orthogonal. Then S =U{K(t)|t in T} becomes a normal skew lattice, with
K providing the system of natural projections and coprojections, if for cach pasr
a in K(s) and b in K(t), the meet and join are defined by

aANb=K(s,m)aAK(t,m)b and aVb=k(n,s,i)aV k(n,t,j)b,
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where m = sAt, n = sVt, the image of k(n,s,1) contains K(n,t)"'[b] and the
. . . - 1 .
image of k(n,t,j) contains K(n,s) " '[a]. Conversely, every normal skew lattice
arises in this manner.

1.7. Normal skew lattices form a variety of algebras which includes the
subvariety of right normal skew lattices (zAyAz = y/\z/\zf and the subvariety
of left normal skew lattices (z Ay Az =z A zAy). By [5] 1.15, every normal
skew lattice is the fibered product of its maximal right normal image with its
maximal left normal image over its maximal lattice image. (See also [4], [13].)

2. Symmetric Algebras

2.1. The simplifications encountered in 1.5 may be extended to a wider
class of algebras. A skew lattice is symmetric iff commutativity is unambiguous:
zVy=yVz iff z Ay = yAz. Since normality insures that zVy = y Vz implies
z ANy = y Az, it follows that a normal skew lattice is symmetric whenever
z Ay = yAz implies zVy = yV«. This implication is equivalent to the identity,
zVyV(zAyAz)=(xAyAz)VyV; thus symmetric normal skew lattices
form a subvariety of the variety of normal skew lattices. Normal skew lattices in
rings are symmetric as are skew lattices for which the underlying lattice is totally
ordered.

2.2. We generalize the construction of Proposition 1.5. Let T be
a lattice, let P be a prime filter of T and let X be a rectangular algebra.
Then T[X, P] is the symmetric normal skew lattice defined as the union of two
subalgebras, P x X and T — P, where for (p,z) in Px X and t in T — P
the mixed joins and meets are given by (p,z)Vt = (pVt,z) =tV (p,2) and
(p,z) ANt = pAt =1tA(p,z). Any skew lattice isomorphic with T[X, P] is
said to be P-primary over T with fiber X. Prime filters arise as inverse
images f~1(1) for lattice epimorphisms f : T — 2, where 2 denotes the
lattice 1°. Thus T[X,P] may be viewed as the fibered product T x X°
obtained by pulling the surjection X° — 2 back along f : T — 2. More
generally, let F(T) be the family of all prime filters of T, including T, and let
{X(P)|Pin F ET)} be a corresponding family of rectangular algebras; then the
fibered product over T, [[; T[X(P), P], is symmetric and normal. Its functor K
is given by setting K (t) = [[{X(P) |t in P} and using the canonical coordinate
projections and injections. Any skew lattice isomorphic to such a fibered product
is said to be decomposable and the fibered product is said to be its primary
decomposition. An immediate consequence of the theory to be developed in
the remainder of this paper is the following result.

Theorem 2.3. A symmetric normal skew lattice with a finite mazimal dis-
tributive lattice image 18 decomposable. In particular, a symmetric normal skew
lattice with a finitely generated mazimal lattice tmage 13 decomposable.

2.4. The above discussion indicates that upon assuming symmetry
there arises a fundamental connection between normality and distributivity.
Clearly this has no analogue for bands. The precise connection is spelled out
in Theorems 2.5 and 2.8. But first recall that a skew lattice is distributive if
both the identity  A(y Vz)Az = (z AyAz)V(z AzAz) and its dual hold;
it is called meet bidistributive if the stated identity can be strengthened to:
cA(yVz)Aw=(zAyAw)V (zAzAw). Recall also that in a right handed
skew lattice (rAyAz =y Az and zVyVz = zVy) distributivity reduces
to (yVz)Az=(yAz)V(zAz)andits dual, zV(yAz)=(zVy)A(zV2).
Distributivity and normality mix as follows:
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Theorem 2.5. A skew lattice S is meet bidistributive if and only if it is
normal and its mazimal lattice image T is distributive, in which case S is also
distributive. Both s A(yVz)=(zAz)V{(zAz) and (zVy)Az=(zA2)V(yAz)
hold in S if and only if S 1s both meet bidisiributive and symmetric.

Proof. By [5] 1.15, we may also assume S is right handed. First let S be meet
bidistributive. Then T is distributive. Let z,y,z in S be such that z > y, 2
and y = 2. Then z =2zA(yV2)Az=(2AyAz)V(zAzAz)=yVz=y. Thus
z A S Az is a sublattice for each z is S so that S is normal. Conversely, given S
is normal and T is distributive, one has z A{yV2)Aw = (z AyAw)V(zAzAw)
with both sides in (z A w) A S A (¢ A w). By normality, equivalence becomes
equality and meet bidistributivity follows. Also zV(yAz)=(zVy)A(zVz)in
S with zVz > (zVy)A(zVz). Since gV(yAz)VaVz=zV(yAz)Vz=2zVz,
zVz2>zV (y A z), aga.m equivalence becomes quality, and S is distributive,
Suppose next that S is also symmetric. Then y meet commutes with both
zA(yVz) and (zAy)V(zAz) with Ay being their common meet. By established
identities, the commuting join of y with either z A(yVz) or (z Ay)V(z Az)
is(yVz)A(yVz) and thus s A(yVz)=(z Ay)V{(z Az) follows. If S is not
symmetric, then there exist 2 and y with Ay =yAz,but zVy #yVvez. Thus
zA{yVz)#z,but (zAy)V(zAz)==z.

2.68. A skew lattice is binormal if both of its operations are normal.
In this case its natural projections are isomorphisms and the skew lattice factors
as the product of a lattice with a rectangular algebra. (This was first observed
by Schein in [10].) Thus the following are equivalent conditions on a skew lattice:
1t 13 both meet and join bidistributive; it factors as the product of a distributive
lattice and a rectangular algebra. (See also [1] and [11].)

2.7. Let S be symmetric and normal, having maximal lattice image
T and rectangular functor of projections K. If K(A, B) is an isomorphism for
classes A > B, then for any intermediate class, C, both K(A,C) and K(C, B)
are also isomorphisms. Elements, ¢ and y, are said to be reflections in S if
there exist A > B, with z and y lying in intermediate classes, such that (i)
K(A,B) is an isomorphism; and (ii) z and y have the same image both in A
and in B. (This includes the possibility of = or y lying in A or B or even
being equal.) It is easily seen that reflection is an equivalence relation. One
can show that whenever K(A, B) is an isomorphism, then for all classes C both
K(AvC,BVvC) and K(AAC,BAC) are isomorphisms. It follows that reflection
i8 a congruence. Indeed, it is the maximal congruence inducing isomorphisms
between corresponding equivalence classes in S and the induced quotient algebra.
The quotient algebra induced by reflection is called the reduced algebra and
is denoted by S7. Clearly S™ = S7. We say that S is reduced if S™" = §.

2.8. The Reduction Theorem. Let S be a symmetric normal skew lattice,
let T be its mazimal lattice image, let S™ be ils reduced algebra, and let D be
the mazimal lattice tmage of ST. Then the canonical epimorphisms, S — T and
S — 87, induce an isomorphism of S with the fibered product over D of T with
ST: 52T xp S"; moreover, the reduced algebra ST is distributive.

Proof.  We need only show that when S is reduced, then it is distributive.
We do so by showing that neither of the following types of subalgebras can arise
in §, where A, B, C, J, and M are distinct equivalence classes in S.
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Suppose that M is trivial, say M = {m}, so that in both diagrams each
element of C' commutes with every element in either A or B. In the left diagram,
each element of C commutes with all elements in J so that C is trivial; likewise,
A, B, and finally J are trivial classes. In the right diagram, each element in J
has unique factorization a V¢ = bV ¢, with (a,¢) in A x C, (b,¢) in Bx C,
and a > b. As a consequence, K(A, B) is an isomorphism. Even when M is
not trivial, the general case may be reduced to the special case upon intersecting
all classes with the principal subalgebra m V SV m for any m in M. Thus, in
general, K(J, M) is an isomorphism in the left diagram, while K(A,B) is an
1somorphism in the right diagram. But S is assumed reduced. Hence neither
type of subalgebra can arise. Thus the lattice T is distributive, and by Theorem
2.5,s0is S.

3. Distributive Symmetric Algebras

3.1. Our goal is to obtain noncommutative analogues of the following
basic facts about distributive lattices: every distributive lattice can be embedded
into a power of the lattice 2; when the lattice is finite, then each element is
a unique irredundant join of join-irreducible elements. We begin by examining
subdirect decomposition. In the case of normal bands, the subdirectly irreducible
algebras consist of isomorphic copies of the following bands: R, the right normal
band on {1,2} with multiplication given by the rule zy =y, L, its left normal
dual; 2, the semilattice 1°; 3, the band RY; and 3*, its left normal dual.
(This was shown by Schein in [9].) All five bands become subdirectly irreducible
skew lattices (which are necessarily distributive, normal, and symmetric) upon
letting the meet be the given multiplication, and letting the join dualize the meet:
zVy = yAc, if neither are zero, and zV0 = ¢ = 0V z, otherwise. The following
theorem extends some basic results given for the case of right normal bands by

Schein in [9] and Wagner in [12]; in its statement 5 denotes the fibered product
3 Xa 3*.

Theorem 3.2.  The only subdirectly irreducible distributive, symmetric normal
skew lattices are copies of 2, Ry, Lo, 3, or 3*. Every distributive, symmetric
normal skew lattice is thus a subdirect product of these algebras and hence can be
embedded in a power of 5.

Proof. Let S be subdirectly irreducible. We show that it is a copy of one
of the five algebras. Since S is subdirectly irreducible, it must have distinct
elements a and b which are congruent under all nonidentity congruences. If a
and b are not equivalent, then equivalence is the identity congruence. Thus S
is a lattice which must be a copy of 2. So suppose a = b in class A. Define the
congruence ~ (rel a) by £ ~ y(rel a) iff a Az = a Ay, and let ~* (rel a) be
its left-right dual. Then either ~ (rel a) or ~* (rel a) separates a from b and
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is thus the identity. This forces the class A to be maximal. If this classs is all
of S, then S must be a copy of either Ry or Lz. So suppose that a > ¢. If
b # c, then either ~ (rel ¢) or ~* (rel ¢) are nonidentity congruences separating
a and b. Thus for all ¢ in S, a > ¢ iff b > ¢. Together with symmetry, this
implies that the class A is join irreducible in the underlying lattice. If S’ denotes
S — A and T’ denotes the sublattice a A S’ Aa = bA S’ Ab, then define the
congruence ~ (rel T') by z ~ y(rel T") iff tVz Vit =tV y V1t for some ¢ in
T'. This congruence clearly separates a and b, and thus is the identity. Since
S’ is a single congruence class it must reduce to the zero of S and thus § = A°.
Applying subdirect irreducibility again, S must be a copy of either 3 or 3*.

Corollary 3.3.  Distributive, symmetric normal skew lattices form the subva-
riety of skew lattices generated by 5. Symmetric normal skew lattices form the
subvariety of skew lattices generated from the variety of lattices and 5.

3.4. When the underlying lattice is also finite, the skew lattice is de-
composable. To see this, let § be such an algebra,let T be its maximal lattice
image, and let # = 7(T) be the set of all join-irreducible elements of T, in-
cluding the minimal element 0. The class of prime filters of T is given by
F(T)={pVv T |pin n}. Recall that the center of S, denoted by Z(S), coin-
cides with the union of all singleton classes of S. Since S is normal, its center
correspponds to a (possibly empty) ideal in T'; in particular, Z(S) is empty
precisely when the minimal class of S is nontrivial; however, all classes minimal
in the complement of Z(S) correspond to join-irreducible elements in = .

Lemma 3.5. Let X be a minimal equivalence class in the complement of Z(S5),
let = be fized in X, and let P be the prime filter in T induced by the image of
XinT. Set '=(S-SvaeVvS)UzV SV andlet T[X, P| be the P-primary
algebra induced by X and P. Then S' is a subalgebra which 1s also mapped onto
T by the canonical epimorphism from S. Moreover, there i3 an isomorphism 6
decomposing S into a fibered product, 6 : S = S’ x1 T[X, P], which is given by
dy)=(zVyVz,yAzAy) foraly in SVz VS, and 6(y) = y otherwise.
Finally, upon comparison in T the center of S' is properly larger than the center
of S.

Proof. S’ isasubalgebra since ¢ commutes with elements in the complement
of SVzVS. 8 is at least an isomorphism off of SV2V S and by Theorem 1.6, the
complementary restriction is at least a bijection of SV &V S with the subalgebra
of the fibered product lying over the same filter. We leave it to the reader to
show that the latter is also an isomorphism between subalgebras. Suppose that
u liesin SVzV S, while w lies in the complement. Then 8(uV w) = 6(u)V 6(w)
is equivalent to zVuVwVz =zVuVzVw and (uVw)AzA(uVw) =uAzAu.
Since z commutes with w, the first identity holds. Because z A w lies in Z(S),
zAu>zAwand z A(uVw)==zAu. Similarly, (u Vw)Az = u Az and
the second identity also holds. Finally, 8(u A w) = 6(u) A 6(w) is equivalent to
uAw=(zVuVz)Aw, which is clear.

3.6. The Primary Decomposition Theorem. Let S be a distributive,
symmetric normal skew lattice with finite mazimal lattice image T and let F(T)
be the set of prime filters of T, including T. Then each P in F(T) corresponds
to a rectangular algebra X(P), which is unique to within isomorphism, such that
the X (P) induce an isomorphism of S with the fibered product [[ T[X(P), P].
S is reduced if and only if X(P) is nontrivial for each proper prime filter P.

Proof. Repeated applications of the previous lemma enable one to pass

through the prime filters of T and successfully strip primary factors off of S
to obtain the decomposition. To see uniqueness, let X be a join irreducible class
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of S corresponding to the prime filter P. If P =T, then X is the minimal class
of S and X(P) = X. Otherwise, there is a maximal class lying beneath X, call
it Y. Upon applying the lemma to the subalgebra X UY , X must factor as
X(P) x Y, where to within isomorphism X(P) is given as y VX Vy for any y
in Y. The final assertion about S being reduced now follows. If X(P) is trivial
for P not T, then K(X,Y) is an isomorphism; but if no X(P) is trivial, except
possibly for P = T, then no K(A, B) with A > B can be an isomorphism.

3.7. For right handed algebras, the results of this section can be recast
in terms analogous to rings of sets. Let A and B be nonempty sets and let
‘P(A, B) denote the set of all partial functions from A to B. P(A, B) becomes a
skew lattice which is easily seen to be distributive, symmetric, and right normal
upon setting fVg = fU(g| G—F) and fAg =g | (FNG), where F
and G denote the functional domains of f and g, respectively. By a ring of
partial functions is meant any subalgebra of P(A, B) for some A and B. Since
the power algebra 34 is an isomorphic copy of P(A4,{1,2}), we can state the
following variation of Theorem 3.2: every distributive, symmetric right normal
skew lattice 13 isomorphic with a ring of partial functions. To recast Theorem 3.6,
we first refine the ring concept to allow partial functions with variable codomains,
B = {B(a) | a in A}; that is, partial functions that are restrictions of functions
in the Cartesian product [[B. This class of partial functions is denoted by
P(A,B). If B = UB, then this class forms a subalgebra of P(A4, B) and is
thus a ring of partial functions. If R is a ring of subsets of A, then the full
ring of partial functions over R, P(R,B), is the ring of all partial functions
which have their domain in R. This leads to the following variation of the
Primary Decomposition Theorem: every distributive, symmetric right normal
skew lattice with a finite mazimal lattice image 1s isomorphic with a full ring of
partial functions over a ring of subseis of a finite set. Forif T, F(T), P, and
X(P) are as in 3.6, then just set A = F(T), B = {X(P) | P in F(T)} and
R ={F(z) |z in T} where F(z) = {P |z in P}.

3.8. We conclude with yet another analogy with distributive lattices.
Recall that a symmetric skew lattice S with zero 0 is said to be quasi-Boolean
if for each z in S the subalgebra £ A SAz forms a Boolean lattice; in this case S
has a difference operation defined by setting z —y equal to the complement of
zAyAz in e ASAz. Thus one may define a skew quasi-Boolean algebra to be
an algebra (B, V, A, —,0), where — is a binary operation and 0 is a distinguished
constant, such that: (B, V,A,0) is a distributive, symmetric, and normal skew
lattice with a zero element, 0; (x—y)V(zAyAz) =z and (z—y)A(zAyAz) =0.
The P(A, B) above, along with maximal normal bands in rings, from examples
of such algebras. If a maximal class exists, the algebra is called a skew Boolean
algebra. Clearly 5 becomes a skew Boolean algebra and by [6] 1.14, every skew
Boolean algebra can be embedded in a power of the algebra 5. Thus, a skew
lattice can be embedded in a skew Boolean algebra if and only if it is distributive,
symmeric, and normal.

References
11 Gerhardts, M. D., Zur Characterisierung distributiver Schiefverbande,
Math. Ann. 161 (1965), 231-240.
[2] Gratzer, G., “Lattice Theory, First Concepts and Distributive Lattices,”
W. H. Freeman and Co., San Francisco, 1971.
13] Howie, J., “An Introduction to Semigroup Theory,” Academic Press,

London, 1976.



(4]
(5}
(6]
7]
(8]
[9]
[10]
[11]
[12]

13]

LEECH

Kimura, N., The Structure of Idempotent Semigroups I, Pacific J. Math.
8 (1958), 257-275.

Leech, J., Skew Lattices in Rings, A. Universalis 26 (1989), 48-72.
Leech, J., Skew Boolean Algebras, A. Universalis 27 (1990), 497-506.

Leech, J., The Geometric Structure of Skew Lattices, Trans. Amer. Math.
Soc., to appear.

Petrich, M., “Lectures on Semigroups,” John Wiley and Sons, New York,
1977.

Schein, B. M., On the Theory of Restrictive Semigroups, lzv. Vyss.
Ucebn. Zav. Mat. 33 (1963) (2), 152-154 (Russian).

Schein, B. M., Pseudosemilattices and Pseudolattices, Amer. Math. Soc.
Transl. (2) 119 (1983), 1-16.

Schweigert, D., Distributive Associative Near Lattices, Math. Slovaca 35
(1985), 313-317.

Vagner, V. V., Restrictive Semigroups, Izv. Vyss. Ucebn. Zav. Mat. 31
(1962) (6), 19-27 (Russian).

Yamada, M. and N. Kimura, Note on Idempotent Semigroups II, Proc.
Japan Acad. 34 (1958), 110-112.

Department of Mathematics
Westmont College

955 La Paz Road

Santa Barbara, CA 93108

USA

Received September 21, 1987
and in final form October 14, 1991



