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It is well-known tha t  a C0-semigroup T = {T(t)}t>_o on a Hilbert  space is 
uniformly exponent ia l ly  stable, i.e. liT(011 _< M~ - ~ '  for some w > 0 and all 
t > 0, if and only if the  resolvent R(z, A) := (z - A) -1 of its generator  A exists 
and is uniformly bounded  in the right half plane {Re z > 0} [2]. Many different 
proofs of this result exist; see [6] for further  references. 

For semigroups act ing on a Banach space, this result is false (see for instance 
[3], [6, Example  A-IV.1.2(b)]),  and only some weaker s ta tements  are true. Define, 
for n = 0, 1,2, ..., the growth bounds  w , ( T )  as the infimum of all a3 C II{ such 
tha t  

IIZ(t)xll _< M~'IIzlID(A=) 

for al l  x e D(A"), t >_ O, and  some M > 1. Here, IIXIID(A") := Ilxll + IIA"xll 
is the  graph norm in D(A").  It was shown by Slemrod [11] that  co2(T) < 0 
for every semigroup with uniformly bounded resolvent in {Rez  > 0}. In some 
special  cases it was known tha t  even wl (T)  < 0 holds, viz. if the underlying 
Banach space is B-convex [14] or if T is a positive semigroup on a Banach 
la t t ice  [6, Theorem C-IV.1.3]. It was an open question whether  this holds for 
a rb i t r a ry  semigroups with uniformly bounded resolvent in {Re z > 0}. In [5] an 
aff irmative solution is claimed, but  the proof  depends on a lemma tha t  is wrong; 
el. [8] for a counterexample.  Recently, the problem was sett led by Weis and 
Wrobel  [12]. In a nutshell ,  their  argument  is the following: first, using complex 
in te rpola t ion  theory, it  is shown that  the map c, ~-+ w~(T) is convex, hence 
continuous,  as a map  N+ ~ N+. Here, the growth bounds  aJ~(T) are defined 
in terms of the  fract ional  powers of - A .  Then this is combined with the fact [8] 
tha t  wl+~(T) < 0 for all e > 0. 

In this note, we prove an individual  s tabi l i ty  result for elements in D(A) 
t ha t  has the Weis-Wrobel  result as an immedia te  corollary. The proof uses a 
complex inversion formula  for the  Laplace t ransform of T .  The basic idea is to 
deform the pa th  of in tegrat ion to a sui table piecewise-linear pa th  and es t imate  
the  pieces separately.  Thus,  our proof  is e lementary  and uses first principles only. 

L e m m a  1. For all r >0 and t >0,  

Jr ~ e i'kt I 37r 
--2- d~ <_ 2 ~  

P r o o f .  In tegra te  z ~ Z - 1  e i t z  along the closed contour consisting of the semi- 
circle Fr  of radius  r in the upper  half plane, the interval It, R], the semicircle 
FR,  and the interval [ - R ,  - r ] .  By let t ing R ~ er we find that  

f ~ s i n ' k t d A < l j f r e i Z t d z r  z l f o r e - r t s i n ~  - -  - -  < ~  - -  

/~ - -- 2 - 2 r t '  
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in the last estimate using the obvious facts that  sin(Tr - 0) = sin 0 and sin 0 > 2o 
for all 0 < 0 <  ,r We also have ~-. 

eos At d)~ = - 

)~ t r 

71" 71" l 71" 

- -  2 ( r t  ~ -  - -  - - "  
< _ .  + sin(T + d~- < + t T +  ~ rt 

From these two estimates, the lemma follows. �9 

T h e o r e m  2. Let T be a Co-semigroup on a Banach space X ,  with generator 
A.  If, for some xo G X ,  the map z ~ R(z,A)xo admits a bounded analytic 
continuation to the half plane {Rez > 0}, then for each A E ~(A) there exists a 
constant M such that 

HT(t)R(~, A)xo H -< M(1 + t) Vt > 0. 

P r o o f .  By the resolvent identity, it is enough to prove the theorem for one 
C ~(A). Fix w _> 0 large enough such that the semigroup T,,  defined 

by T~(t) :-- e - ' t T ( t )  has negative type w0(T,,) < 0. We shall prove that  
IIT(t)R(w, A)xo tl <- M(1 + t) for some M and all t > 0. 

Put  A~, :=  A - w and let Fo(z) denote the bounded analytic continuation 
of R(z ,A~)xo to {Rez  > - w } .  Choose a constant g such that  sup{llF0(z)ll : 
R e z  > - w }  < KHxoll. Fix t > 0. By [9] (see also [6], p.l16) and the resolvent 
identity, for all ~ > w0(T~) we have 

1 / eZtR(z,A~)A_~lxodz Tw(t)A~l x~ ~- ~ +iR 

= 2~il /+ iR  e~ t z - l (A~lx~176  

By Cauchy's  theorem, we may shift the path of integration to F = F1 U F2 U Fa U 
F4 t_l F5, where 

F l = { z = i T :  ~ < - r } ;  

r~ = {z = ~ + iT: - ~  < ~ < 0, ,7 = - r } ;  

r 3 = { z = ~ + i T :  ~ = - ~ , - r < ~ < r } ;  

r 4 = { z = ~ + i T :  - ~ < ~ < 0 , , l = r } ;  

F h = { z = i T :  ~_>r}.  

Here, - w  < - 6  < 0 is arbi t rary and r > 0 is to be chosen later. We are going 
to estimate the integrals over Fi,  i = 1, ..., 5, separately. 

We start  with the integral over F1. Since w0(T,,) < 0, there is a constant 
N such that  

(/5 I(x*,T,,(t)x)[ 2 dt <_ Nltxl] IIx*ll Vx G X,  x* G X*. 

By the Plancherel theorem, 

( 1  F ) �89 I (~* ,R( i ,7 ,A~)~)I  ~ d,1 <- NII~I[ I[~*11 W ~ X, ~* ~ X*. 
o o  
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Therefore, by the Lemma and H61der's inequality, for all x* E X* we have 

~fFcZtz - l (x* ,Af lxo+Fo(z) )dz  ~ zt--1 * --1 dz = e z (x ,A~ xo+R(z ,A~)xo)  
1 1 

t 
1 _< 2~t 'IA='xo" IIx*ll + NV~ "xoH IIx*H" ( f ~  ~dq) 

= ~--~]lA:'xoi[ Ilx*ll + N~,2~iixoll Nx'll. 
r i  

The same estimate holds for the integral over Fs. Also, we have 

f r  e=tz- ' (A~'xo+ Fo(z))dz < 6r-l([iAS']l + K)llx011, 
2 

and the same estimate holds for the integral over F~. Finally, for the integral 
over F3 we have 

~F zt -- '  --1 Fo(z))dz j ~  1 e z (A~ xo+ < _ e - " ( l l A S l l l + K ) l l x o l l  . 1_6+i,lld0 
3 r 

r 1 

< 2 e - " l n 0  + ~)(IIAS II + ~:)llx011- 

Put t ing  everything together, we find that  for all x* E X*,  

( 1 1 6  _~) 
I(x*,T~(t)A~,'Xo)[ < C ~ + ~ + -,. + e-~tln( 1 + ) I1=oll I1~*11, 

where C is a constant  depending on N ,  K ,  and IIAS 111. Letting b --~ w and 
taking the supremum over all functionals x* of norm < 1, we find that  

HT~(t)A~lxoll < C ( ~  1 w r ) )  + ~ + - + ~-~ '  ln(1 + Ilxoll. 
r i  r 

So far, r > 0 was arbitrary. For fixed t > 0 we now take r = e 2~t. It follows 
that  

I IT~(t)AS'=ol l  < C ' ( t - '  ~ - ~ '  + ~-~' + ~-"~' + ~-~'(1 + 2~0) l lxo l l ,  

where C'  is a constant  depending only on N ,  K ,  IIA~'II, and w. Since 
T~(t)A~lxo is hounded for 0 < t < 1, it follows that IIT~(t)A~'xoll < M(1 + 
t)e -~t for some M and all t > 0. By scaling back to T ,  we obtain the desired 
result. �9 

In the theorem no assumption whatsoever is made about tile location of 
the spectrum, nor on the growth of the semigroup. One should compare this 
to the following result of Arendt  and Batty [1]: If T is a C0-semigroup with 
generator A, and x0 E X is such that  z H R(z,A)xo admits an analytic 
cont inuat ion to a neighbourhood of {Rez > 0} and t H T(t)xo is bounded,  
then l i m t ~  T(t)A -lxo = 0. The proof is based on a Tauber ian  result for 
Laplace transforms. 

As an immediate  corollary of the theorem, we recover the result of Weis and 
Wrobel [12]: 
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C o r o l l a r y  3. Let T be a Co-semigroup on a Banach space X .  I f  the 
resolvent of the generator of T exists and is uniformly bounded in the right 
half plane, then wl(T)  < 0. 

P r o o f .  The uniform boundedness of the resolvent implies the existence of a 
> 0 such that  the resolvent exists and is unifornlly bounded in {Rex > - 6 } .  

In particular, for each x E X ,  the map z ~-~ R(z ,A)x  is unifornfly bounded in 
{ R e z >  - 6 } .  By Theorem 2, the exponential type of t ~-* T ( t ) A - l x  is at most 
- 6 .  Therefore, by the uniform boundedness theorem, Loa(T) < - ~ .  �9 

Actually, in [121 it is proved that coo+~(T) < s~(A) for all o _> 0, where 
co~(T) denotes the growth bound of elements in D((A~) ~ (which is independent 
of co > co0(T)) and s~(A) denotes the abscissa of polynomial growth of order a 
of the resolvent. By [NSW, Lemma 3.3], for all c~ > 0 and x E X we have 

T( t ) (_A~)_o_ax  = 11_ [ e~t (_z)_OR(z ,A~)AS1xdz  ' 
27ri JRe~=-~ 

where 0 < c < w - w 0 ( T )  is arbitrary. Using this identity, it is easy to modify tile 
proof of Theorem 2 to obtain the corresponding individual stability result for all 
a _> 0. By the uniform boundedness theorem, the inequality co,,+l(T) _< ~ ( A )  
then follows from this. In Hilbert space, the stronger inequalities coo(T ) < so(A) 
hold; see Weiss [13] (for integers a )  and Weis and Wrobel [12]. 

We now turn to an application which says that,  roughly speaking, if the 
improper convergence on the imaginary axis of the Laplace transform of the 
orbit of x0 is uniform with respect to i~ E iN, we can estimate the growth of 
the orbit of R(,k, A)xo. 

T h e o r e m  4. Let T be a Co-semigroup on a Banach space X ,  with generator 
A.  If, for some xo E X ,  

/o I supsup e-i:~*T(t)xo dt < o0, 
XEN: s>O 

then for each A C Q(A) there is a constant M such that 

IIT(t)R(A, A)xo II -< M(1 + t) Vt _> O. 

P r o o f .  We shall prove that  R(z ,A)xo admits a bounded analytic continuation 
to {Re z > 0}. The proof is modelled after [7], Thm. 1.3. 

Choose a constant K such that  

is dt sup sup e-iXtT(t)xo _< h'llxoll. 
AE~ s>o Jo 

Consider the X-valued entire functions Fs(Z) = fo e-ZtT( t)xo dr. By assump- 
tion, each F~ is bounded on the imaginary axis, say with bound K.  Also, a 
simple estimate shows that  each F~ is bounded on vertical lines. Choose con- 
stants N and w _> 0 such that  I lT(t) l  f <_ N e  ~'' for all t > 0, and let ~ = co + 1. 
Then, 

fo e f[ IIF,(~ 4- irl)]] < e-r dt < Ne-tllxolr dt < Nllxol[. 
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Therefore, by the Phragmen-Lindel6f theorem, each Fs is uniformly bounded in 
the strip S~ :=  {0 _< Rez  _< ~}, with bound max{h',N}ll~01J. Moreover, for 
Rez  > w  we have 

lira F~(z) = R(z,  A)xo. 
s ~ o o  

By Vitali 's theorem [4], Thin. 3.14.1, the limit l i m ~  F~(z) exists for all z �9 S~, 
the convergence being uniformly on compacta. The limit function F is analytic 
in the interior of S~ and coincides with R(z,  A)xo for w < Re z < ~. Moreover, 
F is unifornfly bounded in S~, with bound max{l/ ,  N}llxo [[. This proves that 
R ( z , A ) x o  admits a bounded analytic continuation to the interior of S~. By 
the Hille-Yosida Theorem, R(z,  A)xo is also uniformly bounded in {Re z > ~}. 
Therefore, the analytic continuation F is uniformly bounded in {Re z > 0}. �9 

We recall from [10] (see also [6, Theorem A-IV.1.4]) that  Wl(T) coincides 
with the abscissa of simple convergence of the Laplace transform of T .  The 
following result is a uniform version of this. The proof, which is based on the 
same observation as Corollary 3, is left to the reader. 

C o r o l l a r y  5. Let T be a Co-semigroup on a Banach space X .  If  

~ " dt supsup e- i~ tT( t )x  < oo Vx �9 X ,  
)~EN s>0 

then COl(T ) < 0. 

It, is interesting to compare this result with [7], Cor. 2.3. There, it is shown 
that  cv0(T) < 0 if and only if 

sups>0 Jo/~" T(t)g( t )  dt < oo Vg �9 A P ( R + , X ) ,  

where A P ( N + , X )  denotes the space of X-valued almost periodic functions on 
N+.  Thus, Corollary 5 can be interpreted as saying what happens if instead of 
considering all of A P ( N + , X ) ,  one only considers the dense subspace spanned 
by functions t ~-* e -i'xt @ x. 

As is well-known, for positive C0-selnigroups on Banach lattices the spectral 
bound s(A)  :=  sup{Rez  : z E a(A)} and the growth bound wl(T)  coincide 
[6, Theorem C-IV.1.3]. The following theorem generalizes this to individual 
elements. It says that, for positive x0, the growth bound of t ~-* T(t)R(,~, A)xo 
can be estimated by the local spectral bound of A at x0. 

T h e o r e m  6. Let T be a positive Co-semigroup on a Banach lattice X ,  with 
generator A . If, for some 0 <_ xo E X ,  the map z ~ R( z, A )xo has an analytic 
continuation to {Re z > 0}, then for each ~ E Q(A) the map t H T( t )R(A,  A)xo 
has exponential type le~s than or equal to O. 

P r o o f .  Let w~(A) denote the abscissa of simple convergence of the Laplace 
transform of t ~ T( t )xo .  By the vector-valued Pringsheim-Landau theorem [3], 
Thm. 2.1, a:,(A) is a singular point for the analytic function 

z ~ lim e-~tT(t)xo dt. 
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Therefore, the fact that R(z, A)xo has an analytic extension F(z) to {Re z > 0} 
implies that w,(A) < O. Then it is evident that for all z0, zt C C with 
Rezl _>Rez0 > 0 ,  

Ig (z , ) l  = ~oolim Jof~e-~tT(t)x~ 

F /0" _< lim e-R~tT(t)xodt  <_ lim e-R~~ = F(Rezo). 
s'--+O0 g o  $ ~ o o  

This implies that llF(z)ll ~ tlF(Rez)ll, so that F(z) is uniformly bounded 
in each half plane {Rez > e). It then follows from Theorem 2 that t H 
T(t)R(~, A)xo has exponential type < e for each e > 0. �9 

The proof shows that actually it is enough to have an analytic continuation 
of R(z, A)xo to a neighbourhood of ( 0, oo). 
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