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I n t r o d u c t i o n  

The solutions of a non-autonomous linear Cauchy problem on a Banach space X are 
given, under appropriate conditions, by a family (U(t, s))t>, contained in the space 
~(X)  of bounded linear operators on X,  for which the following properties hold: 

(El)  the mapping (t ,s)  ~-* U(t,s) from D := ((t,s) e R ~ t >_ s} into s is 
strongly continuous, 

(E2) U(s,s)  = Idx, U(t,r)U(r,s) : U(t,s) for all t > r > s, 

(E3) there are constants M > 1 and w E R such that IIU(~,s)ll _< Me ~('-') for all 
(4, ~) Z D 

(see e.g. [3], [5], [17], [26]). In the following a family (U(t, s))(t,,)eD in s  satisfying 
(E1)-(E3) is called an evolution family. It has been noticed by several authors 
(see [7], [8], [9], [13], [18], [20], [21], [22], [23] and the references therein) that 
asymptotic properties of the evolution family (U(t, s))(t,,)eD are strongly related to 
the asymptotic behaviour of an associated evolution semigroup (Ts(t))t>0 of operators 
on a Banach space E(X) of X-valued functions (see Section 1). For a large class of 
these function spaces this evolution semigroup is strongly continuous and hence has a 
generator GE. It has been shown by R. Rau [20, Prop. 1.7] and Y. Latushkin and S. 
Montgomery-Smith [7, Thm. 3.1], [8, Thm. 4] that on the function spaces C0(R,X) 
and Lv(R,X) ,  1 <_ p < c~, these semigroups always satisfy the spectral mapping 
theorem 

(SMT) a(Ts(t))  \ {0} = exp(t~r(Gs)), t _ 0. 

As a consequence the asymptotic behaviour of the evolution family is determined by 
the spectrum g(GE) of the generator of the corresponding evolution semigroup. 

In this paper we show that for a large class of X-valued function spaces 
E(X) including Co(~,X) and LP(R,X),  1 _< p < ~ ,  each evolution semigroup 
satisfies (SMT). Moreover, the spectra of the semigroup operators and the generator 
are independent of the space. As a consequence, we obtain a characterization of 
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hyperbolic evolution families through the hyperbolicity of the corresponding evolution 
semigroups on spaces E(X). This improves previous results of R. Rau [22, Thm. 6], 
Y. Latushkin, S. Montgomery-Smith, T.W. Randolph [7, Thin. 3.4], [9, Thin. 3.3] 
and the authors [18, Thm. 1.5]. 

Throughout the following (U(t, s))(t,s)e D always denotes an evolution family 
on the Banach space X.  We use the terminology from [12] and recall some notions 
from spectral theory. Let (A,D(A)) be an operator on the Banach space Y. The 
resolvent set p(A) is the set of all A E C such that R(),, A) :-- (A - A) -1 exists in 
s Its complement a(A) :-- C \ p(A) is called the spectrum of A. A complex 
number ,~ E C belongs to the residual spectrum Ra(A) if (), - A)D(A) is not dense 
in Y and belongs to the approzimate point spectrum Aa(A) if there is a sequence 
(:r,,) in D(A) such that l[x,,][ >_ 1 for all n E N and lim,(A - A)z, = O. 

1. Evo lu t ion  S e m i g r o u p s  

For the investigation of an evolution family (U(t,s))(t,o)eD it is useful to associate 
a semigroup of operators on a space of (equivalence classes of) Banach space valued 
functions (see e.g. [4], [6], [7], [11], [13], [15], [161, [181, [20], [23] and the references 
therein). Here we consider this construction in a more general framework. Denote 
by B the Borel algebra and by A the Lebesgue measure on R. A vector space E of 
real-valued Borel-measurable functions on R (modulo)~-nullfunctions) is called a 
Banach function space (over (l~, B, A))if  

(BFS1) E is an ideal in the space M(]~,B,,~) of measurable functions modulo A- 
nullfunctions, i.e., if ~o E E,  r E M(]~,B,A) and I~(')1 _< Ir A-i.e., then 
C E E ,  

(BFS2) the characteristic functions XA belong to E for all A E B of finite measure, 

(BFS3) each ~ E E is locally integrable, i.e. fA [~[ dA < c~ for all A E B of finite 
measure, 

(BFS4) E is a Banach lattice with respect to a norm I1" liE, i.e. (E, I1' liE) is complete 
and [[r _< ][~[[s for all ~ , r  6 E such that 1r _< 1~(-)] A-i.e.. 

Let E be a Banach function space and X a Banach space. We set 

E(X) := {f:  R --~ X [ f is strongly measurable and Ilf(-)tlx e E} 

(modulo A-nullfunctions). If it causes no confusion we identify elements of E and 
E(X) with functions on /I~. Then E(X) (with the obvious linear operations) is a 
linear space, and for the norm 

IlfllsIx) : :  II IIf(')llx IIs, f E E(X), 

E(X) is a Banach space. If we further assume that E is translation invariant, i.e., 
W ( - - t )  E E  for ~ E E  and t E l R , t h e n  

(E) TE(t)f(.) := U(.,. - t ) f ( . -  t), t > O, f E E(X), 
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defines a semigroup (TE(t)):_>0 of bounded linear operators on E (X) .  (Notice that  
the translation is a positive operator on the Banach lattice E and is therefore bounded 
(see [24, I1.5.3]).) 

In the same way (E) yields a semigroup (Too(t))t>o of bounded linear operators 
on the space C0(R, X)  of continuous functions vanishing at +oo (endowed with the 
sup-norm II" IIoo). 

Def in i t i on  1.1. The semigroup (T~(t))t>0, resp. (Too(t)),>0 is called the evolu- 
tion semigroup on E ( X ) ,  resp. C0(R, X)  associated with (U(t, s))(~,~)eD. 

It can be easily verified that  the evolution semigroup (Too(t))t>_o is strongly 
continuous. By (Coo,D(Goo)) we denote its generator. The evolution semigroup 
(Ts(t)),>0 is not always strongly continuous (see e.g. [12, A-I.3.4]). We obtain strong 
continuity for a large class of Banach function spaces which we introduce in the 
following. A Banach function space E is called admissible, if 

(A1) E has order continuous norm, i.e., if (~0~)~eA is a decreasing net of positive 
functions in E with inf=eA ~o~ = 0, then lirn~ I1~o~11 = 0, 

(A2) E is translation-invariant and the group (S(t))te• of translations on E ,  given 
by S(t)~o = ~o(. - t), ~o E E ,  t C R ,  is strongly continuous and uniformly 
bounded. 

Besides the spaces LP(N), 1 <_ p < oo, many other function spaces occuring in 
interpolation theory, e.g. the Lorentz spaces Lp,q(R), 1 < p < c~, 1 <: q < oc, 
(see [2, Thm. 3 and p. 284], [27, 1.18.6, 1.19.3]) and, more general, the class of 
rearrangement invariant function spaces over (R, B, ,~) (see [10, 2.a]) are admissible. 
Our next proposition is a special case of [19, Prop. 2.3]. 

P r o p o s i t i o n  1.2. Let E be an admissible Banach function space. Then every 
evolution semigroup on E ( X )  is strongly continuous. �9 

In case (Ts(t)),_>0 is strongly continuous we denote by (Gs,  D(GE)) its generator. 

The aim of this paper is to show that for an admissible Banach function space 
E every evolution semigroup (Ts(t))~>0 satisfies the spectral mapping theorem 

(1.1) a(TE(t))  \ {0} = e x p ( t a ( a s ) ) ,  t >_ 0, 

and the spectra of the semigroup operators and the generator coincide with the 
spectra of the corresponding operators on C0(R,X) .  In particular, the spectra are 
independent of the space E.  For the spaces LP(R), 1 _< p < cr this has been shown 
first in [7] using completely different methods. 

It is known that for any strongly continuous semigroups certain r 
inclusions' hold. To be more precise, let (T(t)),_>0 be a strongly continuous semigroup 
on the Banach space Y with generator A. Then 

(1.2) exp(ta(A)) C a(T( t ) ) ,  t >_ O, 

and the residual spectra of the semigroup and the generator satisfy 

(1.3) exp( tRa(A) )  = Ra(T( t ) )  \ {0}, t _> 0 
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(see [12, A-III.6.2-6.3]). Notice that a(T(t))  = nc~(T(t)) U Ac~(T(t)) (see [12, A- 
III.2.1]). Hence, by (1.2) and (1.3) the spectral mapping theorem (1.1) holds for 
(T(t))t>o if (and only if) 

(1.4) Acr(T(t)) \ {0} C exp( ta(A)) ,  t > O. 

If we consider an evolution semigroup (T(t))t>o induced by an evolution family 
(U(t, s))(t,o)eo, then (1.4) and hence the spectral mapping theorem is a consequence 
of the following weaker assertion: 

(1.5) if 1 E A a ( T ( t 0 ) )  for some t o > O ,  then 0 E a ( A ) .  

We show how (1.4) follows from (1.5). Let 0 # # E Aa(T(to)) for some to > 
0. Choose a E C such that # = e ~t~ Then 1 ~ Aa(e-=t~ More- 
over, (e-=tT(t)),>o is the evolution semigroup associated with the evolution family 
(e-=(t-~ a))(,,,)eD �9 Now (1.5) applied to (e-~tT(t))t>_o yields 0 E or(A) - a and 
hence  a e a ( A ) .  T h u s .  = e ~'0 e e x p ( t 0 a ( A ) ) .  

In Section 2 we give a direct proof of (1.5) for evolution semigroups on 
C0(R,X)  (Theorem 2.3). In the subsequent sections we show a(Goo) C a(G~) 
(Proposition 3.8) and a(TE(t)) C a(Too(t)) (Proposition 4.3) for every admissible 
Banach function space E.  Together with the spectral inclusion (1.2) this yields the 
spectral mapping theorem (1.1). 

2. T h e  S p e c t r a l  M a p p i n g  T h e o r e m  on C0(R,X) 

Let (U(t, s))(t,,)e D be an evolution family on the Banach space X .  We consider the 
evolution semigroup (Too(t))t>o with generator (Goo, D(Goo)) on the space C0(N, X).  
By CI (R)  we denote the space of continuously differentiable complex-valued functions 
and set U(t ,s)  := 0 for t < s. We start with the following lemma. 

L e m m a  2.1. Let (U(t,s))(t,,)eD be an evolution family on the Banach space X .  
Let z E X ,  r E R ,  I a compact interval in N, and a E UI(R) such that supp a := 
{ s E R i a ( s ) # 0 } C _ I  and r < s for each s E I .  Then g := a( .)U(. ,r)x E D(Goo) 
and aoo g = - , e ( . ) v ( . , r ) x .  

P r o o f .  Clearly, g E Co(R,X) .  Let s E R and t > 0. If s -  t < r ,  then 

Too(t)g (s) = U ( s ,  s - t ) g ( s  - t )  = 0 = ~ ( s  - t )  U ( s ,  ~ ) ~ .  

For s - t  > r  we have 

Too(t)  g ( ~ )  = U ( , ,  ~ - t )  ~ ( s  - t )  U ( ,  - t,  r ) ~  = ~ ( ~  - t)  U ( ~ ,  ~ )~ .  

Thus 
1 -  )(sl __1 - t / -  oi l / )  

Y 
Hence, lirral0 { (Too(t)g - g) exists in C0(R, X)  and G~o g = limtt0 } (Too(t)g - g) = 
- ~ ' ( . ) u ( . , r ) ~ .  

Now we show that each evolution semigroup on C0(R, X) satisfies (1.5). 
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P r o p o s i t i o n  2.2.  If 1 E As(Too(to)) for some to > O, then 0 E a(G~). 

P r o o f .  Let (U($, s))(t,s)eD be the  evolut ion family  on X corresponding to the 
evolut ion  semigroup (Too(t))t>o. For each n E N there exists f,~ E Co(N,X) such 

1 for all 0 <  k < 2 n ,  k E  N. Then  tha t  IIf~][ = 1 and [If,, - T~(k~o)f,,[[ < 

1 3 
(2 .1)  ~ < sup l lU(s ,  s - k t o ) f . ( s  - kt0)ll < 

8ER 

for 0 < k < 2n. For each n E N choose sn E N such that  

[]U(s,~, s,~ - nto)x,,[[ > 1 where x ,  := fn(s,~ - nto). 
- 2  

Let I~ :=  [sn-nto,  s,~+nto] and g'. := x z . U ( ' , s n - n t o ) z .  Thus IIg'~(s,,)H > 1 �9 _ _  5 o 

On the other  hand,  each s E I,, can be wr i t ten  as s = s,~ + (k + a - n)r where 
0 < k < 2n and a E [0, 1[. Then,  by (E3) and (2.1), 

IIg-,,(s)ll 

= IlU(s,, + (k + o - n)t0,  s., + (k - ,~)t0) U(~,, + (k - nDt0, sn - ,~t0) ~ . l l  

< M~l~*0 IIU(~. + (k - n ) t 0 , ~ .  - nt0)z, , l l  

= M e  I~l'~ Ilg(s,~ + (k - n)to, s .  + (k - n)to - kto)f, ,(s, ,  + (k - n)to - kto)ll 

< 3 Mel,olto" 
- 2 

Thus there  is a posi t ive constant  c such that  

1 
< sup [[g',~(s)[ I _< c for all ~ e m .  

sER 

Now choose a,~ E C~(R) such that  an(s,,) = 1, 0 _< a ( s )  _< 1, supp a,~ C_ I ,  

and I]a~ll~ < m Define g .  :=  an9", = a~(.)U(. ,sn- nto)x,, E Co(E{,X). Then  
-- n~o " 

< Ilg,,lioo < c for all n E N. Moreover,  L e m m a  2.1 implies g ,  E D(Coo) and 

Goo g~ = ' - - ~ . g . .  In part icular ,  we obta in  Ilaoog.l lo~ < ~~ - ~0 ' and hence 0 is an 
approx imate  eigenvalue of Coo. �9 

As explained in Section 1 this proposit ion implies the spectral  mapping theo- 
rem for evolut ion  semigroups on C0(R, X ) .  

T h e o r e m  2.3.  Let (Too(t))t>o be an evolution semigroup on Co(N,X) with gen- 
erator (Coo, D(Goo)). Then a(Too(t)) \ {0} = exp(ta(Goo)) for all t > O. �9 

3 .  T h e  S p e c t r u m  o f  t h e  G e n e r a t o r  

In the following E is an admissible  Banach function space and X a Banach space�9 
Then  Eoo(X) :=  E(X) M C o ( R , X )  endowed with the  norm [[f]] :=  max([If l [E(x)  , 
llf[Io~) is a Banach space. For Banach spaces Y and Z we write Z ~ Y if Z _C_ Y 
and the  ident i ty  map  from Z into Y is continuous. If (A, D(A)) is a linear opera tor  
on Y and Z C_ y ,  we denote  by (AI ,D(AI))  the part  of A in Z ,  i.e. 

D ( A I ) : = { x E D ( A ) M Z I A z E Z }  and Aim := Ax.  
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Obviously, Eoo(X) ~ E(X) and Eoo(X) ~ Co(R,X). Every evolution fam- 
ily (U(t,s))(t,,)eD on X induces a strongly continuous semigroup (TE,oo(t)),>o on 
Eoo(X) which is the restriction of (TE(t))t>o and (Too(t))t>o, respectively. Then 
by [14, Lemma 2.6] the generator (Gg,oo,D(Gg,oo)) of (TE,oo(t))t>o is the part of 
(GE, D(GE)) and (G~o, D(Goo)) in Eoo(X), respectively. In this section we show 

(3.1) ~(aoo)  c ~ ( c E )  = ~ ( o E , ~ )  

for every admissible Banach function space E.  

First we discuss some properties of admissible Banach function spaces E and 
the induced spaces E(X) which will be used later on. The order continuity of the 
norm of E implies that the dual space E' is again a Banach function space (over 
(]~, 13, A)) where the duality is given by 

(3.2) < r > : =  / ~0r for ~o 6 E and r C E '  

(see [10, p. 29]). Moreover, the translation invariance of E and (3.2) yield that 
E '  is also translation invariant and the adjoint of the translation S(t) is given by 
S( t ) ' r  = r  + t) for all ~b 6 E '  and t 6 JR. In particular, the group (S(t)')teR 
of translations on E '  is uniformly bounded. Our next lemma shows that certain 
exponential functions belong to E ' .  For r C Ii~ let e r :R ~ • be defined by 
~r(s) := e",  s ~ R. 

L e m m a  3.1. Let E be an admissible Banach function space and r 6 R+ \ {0}. 
Then X]-oo,0] ~, 6 E ' .  

P roo f .  Since X]-l,0] 6 E '  and the group of translations on E '  is uniformly 
bounded, we obtain X]-,~,-,~+I] 6 E '  for all n 6 N and sup,,er~ [[X]-,,,-,,+I]t[ < c~. 
Then ~o := ~,,eNe~(-'*+0X]-n--+l] 6 E '  and 0 < X]-~,0]e~ _< ~0. Since E '  is a 
Banach function space, the assertion follows. �9 

The following result is shown in [19, Lemma 2.2]. By C~(II~, X)  we denote the 
space of X-va lued  continuous functions having compact support. 

L e m m a  3.2. Let E be an admissible Banach function space. Then C~(]~,X) is 
dense in E(X) .  �9 

Consider now the evolution semigroup (TE(t))t>o on E(X).  The following 
smoothing property of the resolvent R(A, GE) := (A - Gs)  -1, A 6 p(GE), of the 
generator GE plays a central role (see also [18, Lemma 2.1], [15, Cor. 4.7]). Recall that 
for an operator (A, D(A)) the graph norm on D(A) is defined as [[X[[A := [[x[] + [[Ax[[, 
x 6 D(A). 

P r o p o s i t i o n  3.3. Let E be an admissible Banach function space and A 6 p(GE). 
Then R(A, GE):E(X) --* E~o(X) is continuous. Moreover, (D(Gs), []. [[v,) '--* 
Eoo(X) ~ Co(R,X) and D(GE) is dense in Boo(X) and Co(R,X). 

P r o o f .  Let M > 1 and w 6 R suchthat  [[U(t,s)[[<Me~(t- ')for(t ,s)6D. The 
group (S(t))teR of translations on E is uniformly bounded, i.e., g := supteR [[S(t)]] < 
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c~. Then IITE(t)It ~ Me~'llS(t)ll ~ MNe '~' and IIT~(t)ll ~ Me ~t for t >_ 0, i.e., w 
dominates the growth bounds of (TE(t)),>_o and (T~(t)),>_o. 

Let /z > w. Then /z E p(GE) M p(Goo) and R(l~, dE) = fo  e-"TE(t) dt and 
R(tz, Goo) = fo  e-'tT~(t) dr, where the integrals are defined strongly. If f E E~(X), 
then R(#, Gs)f  = R(/z, G~)f,  and hence R(lz, Gs)Eoo(X) C_ Eoo(X). Moreover, for 
f E Eoo(X) and s E R we have 

tlR(I~, Gs)f  (s)l t = f oo e-"' U(s, s - t)f(s - t) dt 

_< M f ~  e (~-")' Ilf(s - t)ll dt 
,tO /. = M e ("-~)( ' - ' ) l l f( t ) l  Idt 

= M / _ ~  S(-')'(X1-~,0j e . -~)(t)I l f(t) l l  dt 

<_ Mgllx]_~,o]C._~ll~, Ilflls(x) 
-< M Ilfll~(x), 

where the last inequalities follow from Lemma 3.1. Hence, IIR(~, Gs)fII~ <_ M Ilfll~(x) 
for all f E E~(X).  Since E~(X) is dense in E(X), the resolvent R(/z, dE)  maps 
E(X) continuously into C0(R,X)M E(X) = E~(X). 
If A C p(GE) is arbitrary, then the resolvent equation yields 

R(A'G~) [R(tz'GE)- ~--~] = I~R(#'GE)A- # 

where R(#, dE)  - ~ is invertible. Hence, 

1 R(#,G~)[R(#,GE) ~_~]-1  - -  - : E ( X )  - -*  E o o ( X )  R ( ~ ,  G ~ )  = ~ _ 

is continuous. 
Since D(Gs) = R(;~, G~)E(X) C_ E~(X) and (Gs,oo, D(GE,oo)) is the part of 

(Gs, D(Gs))in Eoo(X), the space D(Gs) must be dense in E~o(X) and Co(~,,X). 
Finally, the identity ld: (D(GE), II" ]]G~) --* E~o(X) is the composition of the contin- 
uous operators )~ - dE:  (D(Gs), II' liGB) ~ E(X) and R(~, Gs):  E(X) --* Eoo(X), 
), �9 p(GE). Hence, (D(GE), II' IIGB) ~ E~(X),  whereas E~(X) ~-~ Co(IR,X) is 
obvious. �9 

The following lemma contains a spectral inclusion for certain parts of an 
operator (see also [1, Prop. 1.1], [17, Lemma 4.5.2]). 

L e m m a  3.4. Let Y and Z be Banach spaces such that Z C Y. Moreover, 
let (A,D(A)) be an operator on Y and denote with (AI,D(AI)) its part in Z. If 
D(A) C Z and (AI, D(AI) ) is closed, then a(Ai) C a(A). 

Proof .  Let ,~ E p(A). Obviously, ~ - A I is injective: On the other hand, if z �9 Z 
there exists x �9 D(A) C_ Z such that (~ - A)x = z. Therefore, x �9 D(AI) and 
(), - Ai)x = z. Thus ), - A I is a bijection. Since (AI, D(AI) ) is dosed, this implies 

~ p(G~). �9 
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Now Lemma 3.4 and Proposition 3.3 yield the equality stated in (3.1). 

P r o p o s i t i o n  3.5. Let E be an admissible Banach function space. Then a(GE) --- 
~(OE,oo). 
Proo f .  We mentioned already that Eo~(X) C_ E(X)  and (GE,oo, D(Gr is 
the part of (GE, D(Gs)) in Eoo(X). Thus Lemma 3.4 and Proposition 3.3 imply 
o(a~,~) c o(a~). 

Conversely, let F := D(GE) be endowed with the graph norm and let 
(T~(~))t>0 be the restriction of (TE(t))t>0 to F .  Then (GF, D(GF)) = (GE, D(G~)) 
is the generator of (T~(t))t>0 �9 In addition, (T~(t))t>0 and (Ts(t))t>o are similar in 
the following sense: if A C p(GE), then A - G~:F ~ E(X)  is an isomorphism 
and T~(t) = R(A,G~)TE(t)(A - GE) for all t > 0 (cf. [12, A-I.3.5]). There- 
fore (GF, D(GF)) and (GE, D(GE)) are similar, and hence a(GF) = a(GE). By 
Proposition 3.3 we have F ~ Eoo(X). Furthermore, (T~(t))t>o is the restriction of 
(TE.oo(t))t>0 to F ,  and hence [14, Lemma 2.6] implies that (GF, D(GF)) is the part 
of (GE.oo,D(GE,oo)) in F .  Thus for A �9 p(GE)N p(Gs,~) we obtain 

(A - GE)D(GE,oo) = (A - GE,oo)D(GF~,~o) = Eoo(X) c_ E(X)  = (A - Gs)D(GE), 

and hence D(GE.oo) C_ F. Now Lemma 3.4 yields a(GF) C a(GE.oo) and the proof 
is finished. �9 

It is an immediate consequence of Proposition 3.5 that the residual spectrum 
Ra(G~) is contained in cr(GE). 

C o r o l l a r y  3.6. Let E be an admissible Banach function space. Then Ra(Goo) C 
o(Vs). 

Proo f .  Let A �9 p(Gs) = p(GE,oo). Then 

C~(R,X) C_ Eoo(X) = (A - GE,oo)D(GE,oo) C_ (A - Goo)D(G~) c_ Co(R,X).  

Thus (A - G~c)D(G~) is dense in Co(R,X) and hence A ~ R~(Goo). �9 

For the proof of (3.1) it remains to show Aa(Goo) C a(GE). The following 
lemma is the essential step to that inclusion. 

L e m m a  3.7. Let E be an admissible Banach function space. If 0 �9 Aa(Goo), 
then 0 �9 a(GE). 

P r o o f .  Let 0 �9 Aa(Goo). THe spectral inclusion exp(tAa(Goo)) C As(Too(t)) for 
the approximate point spectrum (see [12, A-III.6.2]) yields 1 �9 Aa(T~o(1)). As in 
the proof of Proposition 2.2 we find intervals I,~ := [sn - n, an + n] C l~, elements 
xn �9 X and a positive constant c such that ~,~ := Xx~ U(.,s,~-n)xn: ~ ---* X satisfies 

1 
(3.3) II~,,(s,~)[[ _> ~ and sup I[.~,,(s)[I < c for all n �9 N. 

8ER 

(Here we set V(~,s) : = 0  for ~ < s.) Let J,, := [ s , , - n + l , s , , + n - 1 ]  C I,, and 
hn := X~, g,~ - Then 

1 
(3.4) ][h,~(sn)[[ _> ~ and sup [[h,,(s)[[ < c for all n �9 N. 

sEl~ 
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Clearly, g - ,  ;t,, E E ( X ) .  The group (S(t)),eR of t ranslat ions on E satisfies N := 
supeeR [[S(t)l I < co. Then  for each n E N we have 

< 

< 

Thus there is a constant  

(3.5) I1~. 

Let ~ : =  I I h - I t ~ ( ~ ) ,  ~ E N. 

First  case: l im inf ~ 
n ~ o o  n 

I Ix[. .-  . . . .  -.+~] ~,,ll~(x) + IIx[..+,,-~,.,.+,.l.~,,ll~(x) 
c ( l lx i . . -  . . . .  -,,+~]11~ + t lxI . .+,.-~,, .+.] l l~) 
2~N IIx[o,llll~. 

such that  

- h.lls(x) <_ AT/ for all n G N. 

We have to dist inguish two cases. 

0. 

For each n E N choose a ,  E C1(1~, [0, 1]) such that a,~(sn) = 1, supp a,~ C_ In 
a '  2 - n)x,:Ii~ --. X. By Lem m a  2.1 and JI .lloo < - Let g .  : =  ~ . ~ .  = ~ . ( . ) U ( . , s .  

- -  n "  

we have 9 ,  E D(G~o) and  Goog, = - ,~g,~. Obviously, g,~,Go~g,, E Eoo(X) .  Since 
(aE,oo,D(a~,oo)) is the part of (aoo,D(aoo)) in E~(X), we obtain g .  C P(aE,oo)  

! ~ 1 and G~,~g,, = - ~ , , g , .  Now (3 .3 ) impl ies  Hg,*ll~oo(x) >- IIg,~]loo -> Hg,(s,~)llx _> 5" 
Moreover, (3.5) yields 

2c , -  
_< - -  + llW(_~. - h.)ll~(x) + II~,, h,.ll~(x) 

n 

2c 2~/  2c~ < - - + - - +  - -  

n n n 

Hence liminf,,__,~ IIGE,~ g,dE(x) = 0. Thus 0 E A ~ ( G E , ~ )  C_ ~ (GE)  by Proposit ion 
3.5. 
Second case: l i m i n f  ~ > 0. 

n---+oo n 

Then  l im,,~ooc,  = co. We may  assume c,  > 0 for all n 6 N. Choose 
fl,~ E GI (R)  such that  0 < fin < 1 ~ ~ '  fl~lJ~ -- ~ '  supp/3 .  C I .  and []fl~[[oo < 2 

. . . .  c ~  

Let h .  :=  f l .  gn, n E N. As in the first case (for the functions g,,) we obta in  
h,, E D(GE.~ )  c_ D ( G s )  and Gs,~h. = -~:~. = a s h ~ .  Now (lh~ltE(x) > 

1 ~ ~llh,,llEcx) = 1. In addit ion,  

2 
llaEh,,lls(x) _< ~ (llxI,~- .... -,,+~I #,,ll~(x) + llxI,.+.-~,,.+-l.~,,il~cx)) 

4c 
< --Nll• 

an 

Hence li~ llVsh,,ll~(x) = 0. 
In bo th  cases 0 E AG(Gs)  and the proof is finished. �9 

From the previous results we can deduce (3.1) easily using the same argument  
as in  the proof tha t  (1.5) implies (1.4). 

P r o p o s i t i o n  3.8.  Let E be an admissible Banach funct ion space. Then a(Goo) C_ 
~(a~)  = ~(a~,~) .  �9 
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4. The Spectral Mapping T h e o r e m  on B a n a c h  Func t ion  Spaces  

Throughout this section let E be an admissible Banach function space. Our aim is to 
show the spectral mapping theorem for evolution semigroups on E(X)  and that  the 
spectra of the semigroup operators and the generator are independent of the space. 
In the following we exploit the strong symmetry  properties of the spectrum of an 
evolution semigroup and its generator. This has been observed e.g. on Co(R, X)  by 
Rau [22, Prop. 2]. Precisely, if F := {A 6 C I IAI = 1} is the unit circle, then 

(4.1) a(T~(t)) = rG(T~(t)) for t > 0 and a(G~) = G(G~) +ii~. 

The analogous result with the same proof holds for evolution semigroups on E(X) .  

L e m m a  4.1. Let E be an admissible Banach space. Then 

(a) a(Ts(t))  = ra(Ts( t ) )  for t > O. 

(b) a(aE) = a(G~) + iR. 

Let Cb(lt{, f , ( X ) )  be the space of all bounded, strongly continuous, operator-  
valued functions Y on R,  i.e., V: IR --. s is bounded and Y(-)x: R --* X is 
continuous for every x 6 X .  Each Y 6 Cb(It{,s induces a bounded, linear 
'multiplication'  operator Id on Co(R,X) defined by ]df := Y(.) f ( . )  with [[)2[[ = 
sup,oR I[V(s)[[. For f �9 E ( Z )  we have Y(.) f ( . )  C E(X)  and 

IIY(')f(')lls(x) = 11 IIY(.)f(.)IIx IIe, <_ sup IIy(s)li llfll~(x). 
s6R 

Therefore 12f := V(.) f ( . )  defines a bounded linear operator on E(X) .  It can be 
easily seen that  its norm equals suP,e~ IIY(s)ll. Thus Cb(R,s endowed with 
the sup-norm can be identified with a closed linear subspace of f(C0(I~, X))  and 
C( E( X)  ), respectively. 

Our next lemma connects the spectra of Too(t) and TE(t). With D := {A E 
C IIA [ < 1} we denote the unit disc. 

L e m m a  4.2. Let E be an admissible Banach function space and to > O. 

(a) / f  F C p(Too(to)), then F C_ p(Ts(to)). 

(b) I f  D C p(Too(to)), then D C_ p(TE(to)). 

P r o o f .  Let (U(t,s))(t.,)cD be the evolution family that  induces (Ts(t)),>o and 
( T~o( t ) ),>o , respectively. 

(a) Assume P C p(Too(to)). Then P C p(Too(1)) (see [12, pp. 71-72]). Let 
"P �9 s  be the spectral projection of Too(l) with respect to {A �9 a(Too(1)) [ 
]A[ < 1}. By a result of Rau [21, Lemma 14], [22, Lemma 5] the projection P admits 
a representation as a strongly continuous, projection-valued multiplication operator, 
i.e., 7~ = p(.)  �9 C~(R,s  Moreover, P(-)  satisfies the following properties (see 
[18, Thm. 1.5], [22, Thm. 6]): 

(H1) P(t)U(t ,s)  = U(t ,s)P(s)  for all (t ,s) �9 D, 
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there exist constants N > 1 and a > 0 such that 

(H2) IIU(t, s)xll _< Ne -~(~-') Ilxll 

for all ( t ,s)  e D and x E P ( s ) X  and 

(H3) HU(t,s)xH _> g -1 e ~'(~-*) Ilxl[ 

for all (f, s) E D and x C Q ( s ) X  := ( I d -  P ( s ) ) X .  Finally, the operator 

(H4) Ul(t,s) : Q ( s ) x  -* Q ( t ) x  b x ~ U( t , s ) z  

is a bijection for all (t, s) C D. 
Clearly, 7 ) = P(-) defines a bounded linear projection on E ( X ) .  We set 

E(X)"  := 7)E(X)  and E ( X )  u := (Id - 7) )E(X) .  By (H1) the projection 7) and 
(TE(t))~>_o commute. Hence, T s ( t ) E ( X )  s C E(X)"  and TE( t )E(X)  ~ C E ( X )  ~ for 
t _> 0. Denote by (T~(t)),>_o and (T~(t))t>_o the restrictions of (TE(t)),>o to E(X)"  
and E ( X )  ~, respectively. Let C := supte~ Ils(t)ll where (S(t))~R is the group of 
translations on E.  If f C E ( X ) ' ,  then (H2)implies 

HT~(t ) f l IE(x)  = ]IU(-,. - t )P(.  - t ) f ( .  - t) l ls(x ) 

<- ge-~ '  I l f (  - t)l[~(x) 
<- CNe-~t  tlfll~(xl. 

Thus the spectral  radius of T}(~0) is less than 1, and hence r c_ p(T}(to)). 
If f E E ( X )  ~, then (H3) yields 

IIT~(t)fl[~cx) -- l l U ( - , -  t ) ( I d -  P( .  - t ) )  f ( .  - ~)ll~(x) 
-> N-1 e~' IIf(" - t)ll~(x) 

(4.2) >- C-1  g - ~  e=' Il f l iE(X).  

Therefore T~(t) has closed range and is injective for each f _> O. 
On the other hand, (Id - P)C~(/I~, X) is dense in E ( X )  ~ and for f E (Id - 

79)Cr C_ C~(R ,X)  we have To~(t)f = T~( t ) f .  /,From (H4) it follows that 
f C ( Id  - P)C0(II~,X) has compact support if and only if Too(t)"f has compact 
support. Hence, by the invertibility of T~(t)  , 

T~( t ) ( Id  - 7))C~(R,X)  = T s  7))C~(R,X) = (Id - 79)C~(K,X). 

In particular, T~(t) has dense range for every t _ 0. Hence, T~(t) is invertible ~nd 
(4.2) yields IlT~(t)-~tl <_ e W e  - ~  for t > 0. Thus the spectral radius of T~(to) ~ -1 is 
less than 1, and hence F C D C p(T~(to)). 

(b) Let ID _ p(Too(to)). Then D C_ p(Too(1)) (see [12, pp. 71-72]) and the 
spectral projection 7) mentioned above is 0. Therefore E ( X )  = E ( X )  ~ and Ts( t )  = 
T~(t) for t > 0. In part (a), however, we have shown D C_ p(T~(to)) = p(TE(to)). �9 

From (4.1) and Lemma 4.2 we obtain the following spectral inclusion. 

P r o p o s i t i o n  4.3. Let E be an admissible Banach function space. Then 
a(TE(t)) C a(Too(t)) for all t > O. 
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P r o o f .  Let (U(t,s))(t,,)eD be the evolution family corresponding to (To~(t))t>o 
and (TE(t))t>o. Fix to > 0. 

(a) Let 0 ~ A E p(Too(to)). Choose r E N and 11 E r such that I = 11 e ~t~ . 
Then 11 E p(e-'t~ Moreover, (e-~tToo(t))t>0 is the evolution semigroup on 
C0(R, X)  induced by the evolution family (e-r(~-')V(t, s))(t,,)eD. By (4.1) we obtain 
F C p(e-'toToo(to)) and Lemma4.2 implies r C p(e- ' toTs(to)) .  Thus I C p(T~(to)). 

(b) Let 0 6 p(Too(to)). Choose r _> 0 such that D C_ p(e~oToo(to)). Then 
Lemma 4.2 implies D C_ p(er~OTE(to)), and hence 0 E p(TE(to)). �9 

The spectral mapping theorem is now an easy consequence of the previous results. 

T h e o r e m  4.4. Let E be an admissible Banach function space. Then 

cr(TE(t)) \ {0} = exp(ta(GE)) = exp(tG(aoo)) = a(Too(t)) \ {0} 

for all t >_ O. 

Proo f .  The spectral inclusion (1.2), Proposition 4.3, Theorem 2.3 and Proposition 
3.8 lead to the inclusions 

exp(ta(GE)) C_ a(TE(t))  \ {0} C_ a(Too(t)) \ {0} = exp(tcr(aoo)) C exp(ta(GE)) 

proving the theorem. �9 

Recall that an evolution family (U(t, s))(t,s)E D is called hyperbolic if there is a 
projection-valued function P(.) E Cb(N,s and constants Y > 1 and a > 0 
such that (H1)-(H4) holds. We refer to [2], [3], [25] for the relevance of this concept 
in the theory of differential equations. A strongly continuous semigroup (T(t))t>o on 
a Banach Y is called hyperbolic if a(T( t ) )  M F = O for one (and hence all) t > 0. 

The previous theorem allows a characterization of hyperbolic evolution families 
through the hyperbolicity of the induced evolution semigroup (Ts(t))t>o on E ( X )  
(see [20], [7], [8], [9], [18] for special cases). 

C o r o l l a r y  4.5. Let (U( t ,  s))(t,8)E D be an evolution family on the Banach space X 
and let E be an admissible Banach function space. Then the following assertions are 
equivalent: 

(1) (u(t,~))(,.,)Eo is hyperbolic. 

(2) (T~(t)h>_o i~ hyperbolic. 

(3) p(V~) n i• r e .  

(4) (Ts(t)),>_o is hyperbolic. 

(5) p(VE) n iR r 0 .  

P r o o f .  The equivalence of (1) and (2) is essentially due to Rau [22, Thm. 6] (see 
also [18, Whm. 1.5]). The remaining equivalences follow from Theorem 4.4, (4.1) and 
Lemma 4.1. �9 
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From exp(ta(GE)) = exp(ta(G.o)) for t _> 0, the identity (4.1) and Lemma 
4.1 we obtain the following improvement of Proposition 3.8. 

C o r o l l a r y  4.6. Let E be an admissible Banach function space. Then a(GE) = 

In addition, we obtain equality of the spectra for the operators belonging to 
the evolution semigroup. In the proof we make use of the following lemma (see [19, 
Lemma 3.1]). 

L e m m a  4.7. Let E be an admissible Banach function space. Then 

1 
I[f(s)ll = l i m  [IX[,,,+,] filE(x) 

.,0 IIx[~,,+~IIIE 

for every f �9 C0(R,X) and every s �9 R .  �9 

P r o p o s i t i o n  4.8. Let E be an admissible Banach function space. 
a(Ts( t ) )  = a(T~( t ) )  for all t > O. 

Then 

Proof .  Theorem 4.4 yields cr(TE(t))\{0} = a(Too(t))\{0} C_ a(Too(t)). It remains 
to show that 0 C p(TE(to)) for some to > 0 implies 0 E p(Too(to)). 

Since TE(to) is invertible, (TE(t))t>o can be extended to a strongly continuous 
group (cf. [17, 1.6.5]). In particular, there are constants M1 _> 1 and wl �9 lt~ such 
that HTE(t)f[IE(X) > M (  1 e -~'t [If[Is(x) for f �9 E ( X )  and t > 0. Since the group 
(S(t))teR of translations on E is uniformly bounded, there is a constant c > 0 such 
that c [[X[~,b][]E < []X[~-t,b--t]nE for every compact interval [a, b] C R and all t �9 N. 

If t _> 0 and f C C~(II{,X), then T ~ ( t ) f  = TE(t ) f  �9 C~(N,X) .  Moreover, 
Lemma 4.7 and the above-mentioned inequality yield 

IlToo(t)f(s)[I = I I T ~ ( t ) f ( s ) l t  
1 

= lim [[X[.,.+.] TE(t)f[[s(x) 
~0 IIxE.,.§ 

1 
= lim HTE(t) (X[.-t,.-,+~] f)[[E(x) 

o~0 IIXE.,.§ 
1 

> c M ;  1 e -~It lim [[X[.-t,.-t+.] filE(x) 
- ,,0 IIxE,-,,,-,+~llls 
= cM~* e -''~t Ilf(s - t)ll 

for each s e R.  Thus I lT~(t) f l l~  > c M (  1 e - ' i t  [Iflb~ for f c C 0 ( R , x )  and t > 0. 
In particular, T~(t )  has closed range and is injective for all t > 0. On the other 
hand, if A e p(GE), then Proposition 3.3 implies R(A, G E ) E ( X )  c Co(N,X)  and 
R(A, G E ) E ( X )  is dense in Co(R ,X) .  Since 

R(A, G s ) E ( X )  = R(A, G E ) T E ( t ) E ( X ) =  Too(t)R(A, GE)E(X)  C_ T~( t )Co(R ,X)  

it follows that Too(t) has dense image for all t > 0. Thus T~o(t) is invertible for all 
t > O .  �9 
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R e m a r k  4.9. There is an example due to Arendt [1, 3.4] of an evolution semigroup 
on Ep : LP(R,e~ds), 1 < p < oe, such that the spectra of the generator and the 
semigroup operators depend on p and hence on the space Ep . Therefore in Theorem 
4.4 (and its consequences) the uniform boundedness of the translation group on the 
Banach function space E cannot be omitted. 
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