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SURVEY 

R e c e n t  D e v e l o p m e n t s  i n  t h e  T h e o r y  o f  S k e w  L a t t i c e s  

J o n a t h a n  Leech 

Communicated by K. It. Itofmann 

0. F r o m  B a n d s  and  La t t i ces  to Skew La t t i ce s  

The study of skew lattices has a pair of origins. Skew lattices were originally con- 
sidered in various at tempts to generalize the concept of a lattice in noncommutative,  
and even nonassociative, directions. More recently, skew lattices have been studied 
as structurally enriched bands possessing a dual multiplication, much as a semilat- 
rice might be a reduct of a lattice; indeed this often happens with bands occurring as 
multiplicative subsemigroups of rings. While this paper surveys recent developments, 
since each approach complements the other we begin by recalling some of the issues 
and results of the "generalized lattice" approach. 

0.1. A lattice is often defined to be an algebra (S; V, A) on a set S having associa- 

tive, commutative binary operations V and A which are related by the absorption 
identities, x A (x V y) -- x and x V (x A y) ---- z. Both operations are necessarily 
idempotent,  for z V x = z V [x A (x V y)] = z,  and similarly, x A z = x. Equivalently, 
a lattice may be defined to be a partially ordered set (S; _>) having suprema and 
infima existing for finite nonempty subsets. For given a lattice algebra, upon defining 
z :> y to hold if x V y = x, and dually x A y = y, one obtains a lattice ordered 
set. Conversely, given a lattice ordered set, then upon setting x V y = sup{z, y} and 
z A y = inf{x, y}, one obtains a lattice algebra. Both processes are clearly reciprocal 
to each other. 

0.2. It was inevitable that at tempts would be made to generalize the concept of a 
lattice. For instance, one could take the algebraic definition above, drop commuta- 
tivity, but  keep associativity and the stated absorption identities, and so define a 
type of skew lattice. What  can be said about such an algebra? To begin, absorption 
still guarantees both V and A to be idempotent. Most surprising, perhaps, is the 
observation that any band can be transformed into this type of skew lattice upon 
setting either x V V = x and x A y = xy, or else setting x V y = xy and x A y = x. 
In either case the two operations are at best minimally related. This seems to in- 
dicate that  without commutativity, the stated absorption identities are not enough. 
Indeed, we may need to consider also their left-right dualizations: (y V x) A a = x 
and (y A x) V x = x. 

0.3. Thus it may prove helpful to begin with a system (S; V,A) where we only 
assume both (S; V) and (S; A) to be bands. In this case each of the four possible ab- 
sorption identities expresses an implication between two of the four cases of algebraic 
absorption as follows: 
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(1) z A (z V y) = z expresses the implication, r V s = s =~ r A s = r ;  

(2) (z V y) A y = y expresses the implication, r V s = r ~ r A s = s; 

(3) z V (z A y) = x expresses the implication, r A s = s ~ r V s = r ;  

(4) (z A y) V y = y expresses the implication, r h s = r :=~ r V s = s. 

The identities (1) and (3) given in our definition of a lattice are thus equivalent to the 
partial dualities, r V s = s ~ r A s = r  and r A s = s ~ r V s = r ,  in which each of 
the four possible types of algebraic absorption occurs exactly once, with each related 
to exactly one other type. It is these partial dualities which provide some connection 
between V and A. We will provisionally call any system (S; V, A) satisfying (1) and 
(3) a "skew lattice of type (1,3)." 

0.4. Suppose that instead we pick identities (1) and (4), and so talk about skew 
lattices of type (1,4) for which the duality, r V s = s ~ r A s = r ,  holds. Examples 
of skew lattices of this type are obtained as follows. Given a quasi-lattice, that is a 
quasi-ordered set (S; C) for which each pair of equivalence classes A and B has both 
a join class J and a meet class M,  one can define a skew lattice operations of type 
(1,4) on S so that z C y if and only if z V y = y, and dually, z h y = x. To begin, 
choose in each equivalence class A a representative A*. For z C y, set z V y = y and 

A y = x ; otherwise let z V y and x A y be the respective representatives of their join 
and meet classes. While every quasi-lattice supports a skew lattice structure of type 
(1,4), not all skew lattices of this type arise this way as may be seen in the following 
simple example: 

On ,5' = {0,1,2} let V be determined by 0 V n  = n = n V 0  and n V r n  = n 
for m , n  ~ 0, and let A be determined by 1 A 2  = 0 = 2 A 1 .  It is easily checked 
that (S; V, A) is a type (1,4) skew lattice for which the quasi-order z C y given by 
z V y = y, and dually z A y = z,  does not form a quasi-lattice structure on S. Notice 
also that in this example the D-relations for the two operations disagree. Indeed for 
V the D-class parti t ion of S is {0 I 1,2}, while for h the D-class partition is given 
by {0 I 1 [2}. Thus for both type (1,3) and type (1,4) skew lattices, no analogue of 
the Clifford-McLean Theorem for bands exists. 

0.5. The kind of considerations encountered in the above paragraphs typify much of 
what occurred in early studies of skew lattices. The first person to study noncom- 
mutat ive versions of lattice theory was the physicist, Pascual Jordan, who published 
numerous articles on the subject beginning in 1949 and continuing through the early 
1960s. A summary of his research may be found in [9] which includes references 
to nearly all of his publications on the subject. Besides Jordan, others engaged in 
limited publishing at this time, including S. Matsushita [16]. These individuals were 
motivated by the appearance of nonstandard logic in the study of quantum mechan- 
ics and a related interest in the structure of ideals in noncommutative rings. While 
their contributions were largely exploratory in nature and rather fragmented, we may 
identify several themes. (i) There was an early interest in inducing skew lattice oper- 
ations on quasi-ordered sets, as well as defining quasi-orderings on skew lattices. (ii) 
This resulted in an interest in flat skew lattices, where in semigroup parlance "flat" 
meant  that  the Green's relation 7) reduced to either s or 7~ for both operations. 
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An example of this would be the quasi-lattice construction given in 1.4 above. (iii) 
Attention was given to various noncommutative versions of distribution which, like 
absorption, breaks up when commutativity is dropped. For example, even when all 
four absorption identities hold, the two identities, 

xA(yVz)=(xAy)V(xAz) and xV(yAz)=(xVy)A(xVz), 

and their two left-right duals are mutually independent in that no three together 
imply the fourth. (iv) Along with skew lattices there was an interest in bands. In 
particular, what are now termed (left, right) normal bands and (left, right) regular 
bands were recognized. Apparently missing, however, was an awareness of results 
on bands published by semigroup researchers. In particular, a lack of familiarity 
with Kimura's work on regular bands [10] appearing in the latter 1950s may have 
contributed to a continued emphasis on formulations assuming or implying flatness. 
(v) Skew lattices were usually defined so that (partial) dualities occurred between the 
T~-quasi-orders on both (S;V) and (S;A) and between their s This 
was expressed by such identities as x A ( y V x )  = x, or ( x A y )  V x  = z. Indeed 
these were the absorption laws in Jordan's initial definition of a skew lattice. Upon 
replacing V by the operation V* defined by x V* y = y V x, one passes from a skew 
lattice of either approach to the other. Thus Jordan's definition corresponds to our 
type (1,3). 

0.6. Following Jordan, M. D. Gerhardts published a number of articles on skew 
lattices during the latter half of the 1960s through 1970. While in the tradition of 
Jordan, Gerhardts was more focused. In particular he considered the problem of 
determining when a skew lattice factors as the direct product of a nest (a type of 
retangular skew lattice) and a lattice. In [7] he showed that type (1,3) skew lattices 
which could be thus factored were characterized by the identities: (xVyVz)A(yVx)  = 
x V y  and (x A y  h z )  V (y A z )  = z A y .  This followed an earlier paper [6] in 
which skew lattices of both types (1,3) and (1", 3*) and satisfying certain distributive 
identities were shown to decompose as the direct product of a nest and a distributive 
skew lattice. Again, publications about hands by semigroup theorists are never 
referenced in Gerhardts '  papers, even though both volumes of The Algebraic Theory 
of Semigroups by Clifford and Preston had appeared by 1967. 

0.7. Further developments occurred in a 1972 paper of B. M. Schein [22] which 
studied a certain class of skew lattices described in terms of various quasi-orders 
which induced their operations. In this paper Schein became the first to observe that 
a skew lattice S satisfying all four absorption identities (1)-(4) factors as the direct 
product of a lattice and a rectangular skew lattice if and only if both (S, V) and ( S, A) 
are normal bands. (Schein actually used the *-absorption identities, but his result 
immediately translates into the scheme of this paper. A brief discussion of some of 
the ideas in Schein's paper is given in the introductory remarks of [12].) 

0.8. The 1980s witnessed the appearance of articles by Cornish [5] and Schweigert 
[23, 24]. Of particular interest in this survey is [5] in which Cornish considered 
what are here termed "left handed skew Boolean algebras." It was while writing his 
dissertation under Cornish, that Bignall [1], following ideas of Keimal and Werner 
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[10], observed a connection between certain types of skew Boolean algebras and 
discriminator varieties. The work of Bignall and Cornish, as well as Werner and 
Keimal, are but part of a growing body of literature about generalized Boolean 
structures. (A good source in this area, though by now somewhat dated, is the 
fourth chapter of [4].) More recently in [2] Bigna]l used these algebras in a study of 
multiple valued logic. An updated version of Bignall's results forms a major part of 
[3]. 

0.9. The author 's first paper on the subject [12] appeared in 1989. The approach 
taken in a series of papers appearing over the last five years is to consider only skew 
lattices satisfying all four absorption identities, so that both of the following dualities 
hold: r V s = s r  and r V s = r C : ~ r A s = s .  This was motivated in part 
by a study of multiplicative bands of idempotents in.rings, where often a polynomial 
counter-multiplication can be found turning the band into a skew lattice of this type. 
This was also motivated by the extent to which concepts and results from semigroup 
theory about bands prove useful. For full duality implies that the C-classes of either 
(S;V) or (S;A) are precisely the "R-classes of the other. Thus the relation ~) is 
unambiguously defined for this type of skew lattice, in contrast to those encountered 
above. Hence :D is a congruence, and a skew lattice version of the Clifford-McLean 
Theorem for bands must hold. Another consequence of full duality is that both of 
the bands (S; V) and (S; A) must be regular (:cyxzx = x y z z ) .  Thus, in contrast to 
the situation for the (1,3) case, a band can be embedded in a skew lattice of this type 
if and only if it is regular. Thus also, results obtained by N. Kimura about regular 
bands in his 1957 Tulane dissertation written under A. H. Clifford and published in 
[10] are of major  relevance in the study of skew lattices. But a prior motivation in 
the author's mind was the belief that  the study of bands might ultimately lead one to 
consider noncommutative variants of lattices. What appears in the following pages 
is the outgrowth of that belief. 

0.10. This paper is a survey of recent developments in the study of skew lattices. 
What  follows is divided into five sections, the first of which presents some basic 
definitions and theorems, and shows how results about bands yield fundamental 
theorems about this class of skew lattices. The second section considers conditions 
under which multiplicative bands of idempotents in rings acquire a dual multiplication 
and so become skew lattices, and also introduces common properties of this class of 
skew lattices. The next two sections consider skew lattice versions of normal bands. 
Section Three is about local lattices (S; V, A) for which the band (S; A) is normal. 
Local lattices are of interest because of their connection to skew Boolean algebras. 
Thanks to local lattices, there exists a fundamental link between the normal bands of 
semigroup theory and the study of Boolean structures. The subclass of skew Boolean 
algebras first considered by Bignall in [1], is considered in the fourth section and 
connections with discriminator varieties are indicated. In the final section we return 
to skew lattices proper and show how comparable :D-classes create coset partitions 
of each other, which in turn reveals a sensitivity to order between distinct :D-classes. 
Thus, while every skew lattice satisfying full duality lives on a quasi-lattice (the 
Clifford-McLean Theorem), in contrast with the (1,4) case not every quasi-lattice 
can support a skew lattice structure of this type. Coset partitions are then used 
to design an example of an infinite skew lattice on two generators (in contrast to 
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the situation for either bands or lattices where the free algebra on two generators is 
finite). 

Finally, it should be mentioned that skew lattices form part of a broader area 
of "associative, idempotent algebraic systems." Besides bands, lattices and skew 
lattices, various authors have also studied idempotent semirings ([17], [18]), restrictive 
bisemigroups ([21]), and idempotent right sided quantales (or "non-commutative 
frames"). An introductory treatment of the latter, along with references, is found in 
the fifth chapter of [20]. 

1. Some  Def in i t i ons  and  Basic T h e o r e m s  

1.1. Throughout the remainder of this paper, by a skew lattice is meant an algebra 
(S; V, A) consisting of a pair of associative binary operations A and V satisfying the 
absorption laws: 

As was seen in the introduction, absorption causes both operations to be idempotent, 
and in addition, asserts that the bands Sv = (S; V) and S^ = (S; A) have dualized 
multiplications in that ~ A y = x if[ :c V y = y, and likewise z A y = y iff x V y = x. 
The s on either band is thus dualized by the 7s on the other. 
This allows us to define the natural partial order by letting ~ >_ y in S denote either 
the condition z A y = y = y A x ,  o r i t s d u a l ,  x V y = x = y V x .  

1.2. All lattices are skew lattices. At the other extreme, a rectangular skew lattice is a 
skew lattice S for which both S^ and Sv are rectangular bands whose multiplications 
dualize each other , x A y = y V x. Any rectangular band S can be turned into a 
rectangular skew lattice by setting x A y = xy and x V y = yx.  Conversely, all such 
skew lattices are obtained in this manner. 

1.3. Thanks to duality, the Green's equivalence relations are defined for a skew lattice 
as follows: 7~ = 7s -- s s ---- s  = Try; and /P = T~A = YPv- Here 7-s f ^  and Z)^ 
denote the various Green's re]ations for the band SA, while 7~v,fv and T)v denote 
the corresponding relations for Sv. The Clifford-McLean Theorem on the structure 
of bands ([8] IV.3.1) clearly extends to skew lattices: 

T h e o r e m  1.4. Given any skew lattice S, the relation :D is a congruence. The 
T)-classes of S are its maximal rectangular subalgebras and the quotient algebra S/T) 
forms the maximal lattice image of S.  �9 

1.5. A skew lattice S is right-handed if l)  = Ts or equivalently, if the identity 
z A y A z = y A x and its dual x V y V x = x V y hold on S. Dually, S is left- 
handed if ~ = s and the dual identities hold. There is a sense in which the study of 
arbitrary skew lattices may be reduced to the right-handed case. To begin, any left- 
handed skew lattice can be obtained as the left-right dualization of a right-handed 
skew lattice. What  is more, toward the end of this section it will be shown that for 
any skew lattice S, both S^ and Sv are regular bands, that is, both operations A 
and V satisfy the identity xyxzx  = xyzx .  One m~-V thus apply results of Kimura 
[11] to skew lattices and obtain: 

11 
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T h e o r e m  1.6. The relations s and T~ are both congruences on any skew lattice 
S.  Moreover, 

1) S / ~  is the maximal right-handed image of S .  

2) S / ~  is the maximal left-handed image of S.  

3) The induced epimorphisms S --~ S / s  and S --~ S/7-~ together yield an isomor- 
phism of S with the fibered product X / L  Xs/~ S/7-~. 

Two more elementary results about skew lattices are as follows: 

T h e o r e m  1.7. Given a skew lattice S and x C S,  the following are equivlaent: 

1) The D-class of x is a singleton class: Z)x = Ix} .  

2) x A y = y A x ,  f o r a l l y E S .  

3) x V y = y V x ,  f o r a U y E S .  

Thus the center of S is the sublattice formed as the union of all its singleton D-  
classes. In particular, S is a lattice i f  either V or A is commutative. �9 

T h e o r e m  1.8. In a skew lattice, the union of all finite D-classes forms a sub- 
algebra. �9 

With the exception of Theorem 1.8, which was stated in [15] 3.6, all of the 
definitions and results appearing thus far were given in the first section of [12]. We 
now introduce a special class of bands about which we will prove several simple 
results from which, in turn, follow the assertion of regularity in 1.5 and the previous 
two theorems. We thus provide verifications that are independent of the orginal 
arguments. 

1.9. A band satisfies the class covering condition (CCC) if for any pair of comparable 
T)-classes X > Y in the band, the restriction of the natural partial ordering is 
surjective: given y E Y, there exists an x E X such that x > y. 

L e m m a  1.10. Given a skew lattice S,  both Sv and S^ satisfy the class covering 
condition. 

P r o o f .  Given~D-classes X > Y  in S w i t h  x E X  and y E Y : x > x A y A x E Y  
and y<< y V x V y  E X .  �9 

(It should not be lost on the reader that whereas bands satisfying the CCC fail 
to form a subvariety of hands, skew lattices do form a variety.) 

T h e o r e m  1.11. In a band S satisfying the class covering condition, the following 
hold: 

1) S is regular ( z yx zx  = xyzz ) ,  and thus E and T~ are congruences. 

12 
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2) A n  e lement  x lies in  the center o f  S i f  and only i f  7~x = {x}. 

3) Given x , y  E S ,  i f  both 7 ~  and :Dv are f inite,  then so is T)~v. 

4) In general, 7)xv = 7)~7)~, where the la t ter  is {uv  I u E 7)~,v E 7)~}. 

P r o o f .  (1) Given x , y , z  E S ,  by the CCC, u , v  E 7)x exist such that  u > zy 
and v > z x .  Since u x v  = uv  in the rectangular class 7)~, we obtain: x y z x  = 

( z y ) u v ( z x )  = ( x y ) u x v ( z x )  = z y x z z .  (2) Clearly 7)x = {x} if z commutes with all 
y E S. So suppose that  T)~ = {x} and that  y E S is given. By the CCC, one must 
have x > zy ,  and so x y  = x y x .  Likewise y x  = x y x ,  and so x y  = y x .  (4) Let 
w E T)~. By the CCC again, u E 7)~ and v E 7)~ exist such that  u > w and v > w. 
Since u v  w E ~x~, a rectangular class, we have w = u v w u v  = uv  and (4) holds. �9 

We conclude this section by stating a result which is not an application of results 
about bands, but instead reveals a sensitivity to order which is atypical of bands. Its 
justification is provided in the final section of the paper. 

T h e o r e m  1.12. Given a pr ime  number  p,  then the un ion  o f  all 7)-classes in a 

skew lattice S having p -power  order (including all s ingleton classes} f o r m s  a subaI- 

gebra. �9 

2. Skew L a t t i c e s  in R ings  

2.1. Given a ring A, set x A y = z y  and x V y = x + y - x y  (the so-called "circle" 
operation). Both A and V are associative. Also, for any s E A, z A x = z holds if 
and only if x V x = z. Upon letting E(A) denote the set of idempotent  elements in 
A, we obtain the following easily checked theorem. 

T h e o r e m  2.2. I f  S C E(A)  is closed under  both V and A, then (S ;V,A)  is a 

skew lattice sat is fy ing the fol lowing properties:  

1) x V y = y V x  i f a n d o n l y i f  x A y = y A x .  

2) xA(yVz)A~=(~AyA~)V(~AzA~) .  

3) x v ( y A z ) v ~  = ( ~ v y v  ~)A (~V ~v ~). 

2.3. A skew lat t ice satisfying (1) is called symmetr ic ,  as all instances of commuta- 
t ivi ty are symmetric  with respect to the two operations. Thus, given a nonempty, 
element-wise A-commuting [or V-commuting] subset X ,  the subalgebra {X / that  is 
generated from X is a sublattice. Symmetric skew lattices form a subvariety jointly 
characterized by the identity, 

~) �9 A y A ( ~ v y v ~ )  = ( ~ V y V ~ ) A y A ~ ,  

and its dual. A pleasing property of symmetric skew lattices is stated in the next 
theorem whose proof is given in [12]. But first, by a lattice cross sect ion is meant a 
sublatt ice of a skew latt ice S intersecting each /)-class of S at a single element. 

13 
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T h e o r e m  2.4. Let S be a symmetric skew lattice for  which the maximal lattice 
image S / D  is at most countably infinite. Then S has a lattice cross section So. �9 

2.5. A skew lattice satisfying both (2) and (3) in 2.2 above is called middle dis- 
tributive. Such skew lattices likewise form a subvariety. Are the identities (2) and 
(3) equivalent for skew lattices, as they are for lattices? At present, the answer is 
unknown to the author; but for local lattices (to be considered in the next section) 
the answer is affirmative. 

How does one find skew lattices in E(A)? Answer: By looking at bands in E(A),  
especially bands that are maximal with respect to some constraint. This is illustrated 
by the following results from [12] and [13]. 

T h e o r e m  2.6. Every multiplicative band in E(A) that is maximal with respect to 
being right regular (7) = ~ )  is also closed under V and so forms a right handed skew 
lattice. In general, every right regular band in E(A) generates a right handed skew 
lattice in the derived algebra (A; V, A). �9 

We may begin by taking a specified lattice cross section and then proceed as 
follows: 

T h e o r e m  2.7. Given that So C_ E(A) is a lattice under A and V, a right handed 
skew lattice S C_ E(A) exists that is uniquely maximal with respect to having So as 
a lattice cross section. Indeed, S^ is uniquely maximal subject to the joint  condition 
of being right regular and having So as a semiIattice cross section. �9 

2.8. A maximal regular band need not be closed under V as defined. Indeed examples 
are easily found of multiplicative rectangular bands that are not closed under V. Such 
examples, however, are closed under the following cubic variant V of V defined by 

x V y  = x + y + y x -  x y z -  yxy ,  

since in the rectangular case the polynomial expression reduces to yx ,  so that one 
has a rectangular skew lattice. Let us replace the condition that the band be 
regular with the condition that it be normal. (Recall that a band is normal if it 
is middle commutative x y z w  = x zyw .  This is equivalent to asserting that all subsets 
a J. = {u [ u < : }  are element-wise commutative.) For normal bands we have the 
following results. (The adjective "Boolean" appearing in their statements will be 
defined in the next section.) 

T h e o r e m  2.9. Every maximal normal multipIicative band S in E(A) is also 
closed under V and so forms a Boolean skew lattice (S; V, A, 0). �9 

C o r o l l a r y  2.10. I f  the set of  all idempotents E(A) in a ring A is closed under 
multiplication, then E(A) is a normal band and thus (E(A); V, A, 0) is a Boolean 
skew lattice. (For the case where A has a multiplicative identity, the condition that 
E(A) be multiplicatively closed is well-known to imply that E(A) forms a Boolean 
lattice under the operations A and V. )  " 

t4 
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3. L o c a l  L a t t i c e s  a n d  D i s t r i b u t i v i t y  

3.1. A local lattice is a skew latt ice S for which each subalgebra x ~, defined as 
either {x A s A x [ s C S} or {u E S I u ~ ~}, is a lattice under the given operations. 
Since this is equivalent to asserting that S^ is a normal band, local lattices form a 
subvariety of skew lattices. If each principal sublattice x J. is also distributive, then 
S is called a d i s t r i b u t i v e  local lattice. For this class of skew lattices, we have the 
following useful technical result ([14], Theorem 2.5). 

T h e o r e m  3.2. For a local lattice S,  the following conditions are equivalent: 

1) For each x E S,  the sublattice x J, is distributive. 

2) The maximal lattice image S/1~ is distributive. 

5) z~s, ~A(vVz) Aw=(xAVAw)V(xAzA~). 

In particular, (5) characterizes distributive local lattices as a subvariety of skew 
lattices. Moreover, the skew lattice subvariety of local lattices that are both symmetric 
and distributive is characterized by the following identities: 

6) xA(yVz):(~Av)v(xAz);  0Vz)A~=(yA~)V(zA~). 

3.3. A skew latt ice S is called Boolean if: (i) S is symmetric; (ii) S has a zero, that is, 
an element 0 such that  for all x E S, 0Ax = 0 = xA0;  (iii) each principal subalgebra 
x J, forms a Boolean lattice. Given x, y E S,  the difference x - y  is the complement 
of x A y A x in x ~. Upon including the difference and the nullary operation 0 in the 
list of operations, we obtain an enriched algebraic structure (S; V, A , - ,  0) called a 
skew Boolean algebra. Skew Boolean algebras form a variety of algebras characterized 
by the s tandard skew latt ice identities along with the two identities of Theorem 3.2 
(6), and the following identities: 

7) ( ~ - v ) A v : 0 : v ^ ( ~ - y ) .  

8) (~-y)V(~AVA~)=~=(~^VA~)V(~-V) .  

Indeed, 0 A y = 0 = V A 0 follows from (7). Together, (7) and (8) yield z - y as the 
relative complement of :c A y A x with respect to x. 

To obtain insight into the structure of skew Boolean algebras, we consider the 
following noncommutat ive analogue of the Boolean algebra 2 : 

3.4. A Boolean skew lat t ice S is primitive if it is formed by adjoining a zero element 
0 to a rectangular skew lat t ice X, S = X ~ in which case: 

O, when x:Dy, 
z - y = 5, otherwise. 

15 
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The induced algebra will be referred to as a primitive algebra. 

3.5. A skew Boolean algebra that is a direct product of primitive algebras is said to 
be completely reducible. It can be shown that a skew Boolean algebra S is completely 
reducible if and only if (i) S is complete so that under the natural partial ordering 
both sup A and infA exist for every element-wise commuting, nonempty subset A 
of S and (ii) S is atomic so that every nonzero element in S is bounded below by 
some 0-minimal element. Indeed, if S is complete and atomic with indexed 0-minimal 
:D-classes {X~ [ A E A}, then an isomorphism of 1]^ X ~ upon S is given by the map 
(u~ ] ,~ C A) --* sup^ u~. In particular, this occurs if the maximal lattice image 5"/7) 
is finite. In general, every skew Boolean algebra is isomorphic to a subdirect product 
of primitive algebras. 

3.6. E x a m p l e s  

a. Every maximal normal band of idempotents in a ring A forms a skew Boolean 
algebra. In particular, if (E(A), <)  satisfies the finite chain condition, any such 
skew Boolean algebra factors as a direct product of a finite number of primitive 
algebras. (This applies in any ring satisfying either the ACC or the DCC on 
left [right] ideals.) 

b. Given sets A and B,  let P = P ( A , B )  denote the set of all partial functions 
from A to B.  For f ,g  E P having respective domains F,G C A we set: 

f V g = f U ( g ] G - F ) ;  f A g = g l F N G ;  f - g = f l ( F - G ) .  

Then (P; V, A , - , 0 )  is a completely reducible, right handed skew Boolean al- 
gebra which is isomorphic to the right handed power algebra (B~ A. A ring 
theoretic analogue of P is given as follows: 

c. (Cornish [5]) Let A be a C - r i n g .  Thus for each x C A, a central idempotent 
cover exists, that  is, a central idempotent C(z) that is minimal with respect to 
the condition: C(z)x = z. For z ,y  C A set: 

v y = �9 + y - �9 A y = �9 - y = �9 -  c(y) 

Then (A; V, A , - ,  0) is a right handed skew Boolean algebra. (C-rings abound. 
Semisimple Artinian rings and, more generally, biregular rings are C-rings.) 

We conclude this section with some results taken from [14] indicating the con- 
nections between the types of skew lattices considered in this section. 

T h e o r e m  3.7. The skew lattice subvariety of symmetric local lattices is the join of 
the subvariety of lattices with the subvariety of distributive, symmetric local lattices; 
the latter subvariety is generated from the class of all [primitive] Boolean skew lattices. 

The above "join" assertion is a consequence of: 

T h e o r e m  3.8. Let S be a symmetric local lattice with T its mazimal distributive 
image. Then the natural epimorphisms S ---* S / ~  and S ---* T induce a fibered 
product factorization: S ~ S/7) XT/9 T.  �9 
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Every distributive, symmetric local lattice S can be embedded in a product of 
primitive algebras. For S/Z) finite, this can be done in a precise way. 

3.9. C o n s t r u c t i o n  
Suppose we are given (i) a family {Xx [ A E A} of rectangular skew lattices 

and (ii) a r ing  ~ of subsets of the indexing set A closed under U and D. Then 
{ X~ I A E A} is an induced family of primitive algebras. Let I]~ X~ denote the subset 
of 1-IA X ~ consisting of all (m~)A having support in N, that is {A E A[m~ ~ 0} E N. 
l-Is X~ forms a distributive, symmetric local lattice under the skew lattice operations 
inherited from YIA X~ and is called a full ring of functions. 

T h e o r e m  3.10. Every distributive, symmetric local lattice S for which S/Z) is 
finite is isomorphic to a full ring of functions over a ring of subsets of a finite set. �9 

While the details of the proof are given in [14], suffice it to say that our choice 
for A is familiar: the set of all V-irreducible elements of S/T). For N we pick the 
ring of all subsets of A having the form {), E A ] A < x} for some x E S/T). 

4. In t e r sec t ions  

A significant subclass of skew Boolean algebras possess another natural operation. 
While this operation merges with the meet in the commutative case, in the general 
case it is necessary that we take it into account. 

4.1. In a skew lattice S,  the infimum (relative to _>) of nonempty subset A, if it 
exists, is called its intersection, denoted V1A. If DA exists for all [finite] nonempty 
subsets, S is said to have [finite] intersections. A prime source for skew lattices 
having intersections is the class of local lattices. Indeed, any local lattice with a 
zero (S; V, A,0) has intersections if either (i) S is complete, or (ii) each principal 
sublattice m I is finite. In general, since the induced natural partial orderings for A 
and V1 agree, it follows that skew lattices having finite intersections (S; V, A, gl) form 
a variety of algebras. Even more is true: 

T h e o r e m  4.2. ([3], Theorem 2.8.) The variety of skew lattices having finite 
intersections is congruence distributive. 

Proof .  Upon setting m ( z , y , z )  = (x D y) V (y D z) V (x D z), a majority term 
satisfying re(z, x, y) = re(z, y, x) = re(y, x, x) = z is obtained. But this suffices to 
guarantee that the congruence lattice of S is distributive. (See [4], Theorem 12.3.) 

4.3. A skew Boolean G-algebra is a skew Boolean algebra with finite intersections 
(S; V, A, F1, --, 0). Such algebras clearly form a variety, Moreover, many examples of 
skew Boolean algebras have finite intersections. These include complete algebras, 
and in particular algebras constructed from maximal normal bands in rings satisfy- 
ing the FCC on idempotents. Algebras constructed from C-rings also have finite 
intersections: z V] y turns out to be (1 - C(x - y))x.  

4.4. The presence of finite intersections permits a useful alternative to the standard 
difference called the BOK-difference (after "BCK algebras") and defined by: x/y  = 
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x - (x n y) .  Given a primitive algebra S = X ~ the interseciton and BOK-difference 
are as follows: 

x, i f x = y ,  and z / y  ~ O, i f x = y ,  
x n y =  0 i f x ~ y ,  = l  x, i f z ~ y .  

Skew Boolean N-algebras were just defined to be algebras having four binary 
operations and a single nullary operations. Identities such as �9 N y = x / ( x / y )  and 

- y  = x / ( x  A y A x) enable us to replace both " - "  and "n"  by " / "  and so reduce 
the number of binary operations from four to three. Thus this class of algebras may 
be described as algebras of the form (S; V, A , / ,  0). (This is how these algebras were 
originally considered by Bignall in his dissertation, [1].) The simplifying role of the 
BCK-difference is i l lustrated by the remaining results in this section, all of which are 
taken from [3]. 

4.5. To begin, all skew latt ice congruences on skew Boolean algebras are in fact 
congruences of skew Boolean algebras; but while such congruences preserve the 
standard difference, they need not preserve finite intersections or BCK-differences. 
Moreover, Cornish has shown in [5] that  the latt ice of such congruences need not 
satisfy any lat t ice identity. Congruences preserving the operation N are termed N- 
congruences. Given a skew Boolean N-algebra, its latt ice of N-congruences is at least 
distributive. In fact it has a familiar description. But first: 

4.6. An ideal in a skew latt ice S is a nonempty subset I such that  (i) given x E I ,  
it follows that  u A x A v E I for all u, v C S ,  and (ii) I is closed under V. Under the 
map S --* S/Z),  every ideal of S arises as the inverse image of some ideal in S/Z). 

T h e o r e m  4.7. Let ~) be an N-congruence on a skew Boolean N-algebra S with 
Io being the congruence class of O. Then: 

1) lo is an ideal, and 

2) For all x,y ~ S, xOy if and only if (~/y Vy/~) ~ Io. 

Conversely, i f  I is an ideal, then @I, defined as in (2), is a N-congruence on S .  
Moreover, the maps (9 --* ire and I ---* ~)I are mutual inverses. �9 

C o r o l l a r y  4.8. The congruence lattice of a skew Boolean N-algebra S is isomor- 
phic to the lattice of ideals of its maximal lattice image S/79 (in the variety of skew 
lattices). In particular, finitely generated congruences correspond to principal ideals 
in S/Z) and thus form a relatively complemented sublattice in the congruence lattice 
orS. �9 

C o r o l l a r y  4.9. Primitive skew Boolean N-algebras are simple (the only congru- 
ences are the two trivial ones) and thus are subdirectIy irreducible. �9 

4.10.  The spectrum of a nonzero skew Boolean N-algebra S is the set E of all 
maximal  ideals of S.  For each M E E, S/OM is a primitive algebra. From the 
case for S/:D it follows that  the intersection NE of all maximal  ideals is the minimal 
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ideal {0}. Thus the induced projections I~M : S --4 S / O  M together yield S to be a 
subdirect product  of primitive algebras: 

~ : S-~ H S/OM. 
ME~ 

In fact, # represents S as a Boolean product. Thus a Boolean space topology on E 
exists such that  for any z , y  E S: (i) the equalizer {M E E I /tM(x) = ~M(Y)} is 
clopen in E, and (ii) for any clopen subset U of E, an element z E S exists such that  
for M E U, #M(Z) = #M(X), but for M • U, #M(Z) = ~M(Y). Indeed [4] IV.8.14 
implies: 

T h e o r e m  4.11.  The map # is a Boolean product representation of S with respect 
to the Boolean space topology on E generated from the subbasis of clopen sets having 
either the form E= = { M  E E ] x E M }  or its complement F= = { M  E E I x r M }  
for some x E S .  In particular, given x , y  E S,  the equalizer { M  [ ttM(X) = #M(Y)} 
is the clopen subset E=luv~l= of E. �9 

Since it is easily verified that  a Boolean product of primitive algebras has finite 
intersections, we have: 

C o r o l l a r y  4.12. Among skew Boolean algebras, those having finite intersections 
are characterized by being isomorphic to Boolean products of primitive algebras. �9 

4.13. These results fit into a larger picture. The discriminator on a set A is the 
function d : A s ~ A given by: 

d(~,y,z) = { ~' i f ~ y ,  
z, otherwise. 

An algebra A in a variety of algebras is a discriminator algebra if the discriminator 
d on its underlying set is a term in the algebra, that is, d is obtained from the basis 
operations by a sequence of compositions. A variety V is a discriminator variety if it 
is generated from a class of discriminator algebras whose discriminators are instances 
of a common term. Such varieties are always congruence distributive and congruence 
permutable;  moreover, they have been described as being " . . .  the most successful 
generalization of Boolean algebras to date, successful because we obtain Boolean 
product representations (which can be used to provide a deep insight into algebraic 
and logical properties) [4, p.164]." In contrast to the case of skew Boolean algebras, 
we have: 

T h e o r e m  4.14.  Skew Boolean R-algebras form a discriminator variety. 

P r o o f .  The term (x /y )  V [z - ( x /y  V y/x)] V (x /y )  represents d on any primitive 
algebra. �9 

Conversely, algebras in a discriminator variety for which a nullary term 0 is 
defined possess an induced skew Boolean f3-algebra structure. This may be seen by 
appropriately modifying the following remarks. 

4.15. Let P D o  denote the variety generated by the class of all pointed discriminator 
algebras (A; d, 0) where d is the discriminator on A and 0 is a nullary operation. 
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T h e o r e m  4.16.  PD0 is term equivalent to the variety of right handed skew 
Boolean M-algebras. In particular, the operations V, A and / can be defined as 
terms in PD0 as follows: 

x V y = d ( z . , O , y ) ;  x A y = d ( x ,  x V y , y ) ;  x / y = d ( x , y , O ) .  �9 

The use of the discriminator to define Boolean-like operations goes back to a 
1974 study ([10]) of quasi-primal algebras by Keimel and Werner. 

5. / : ) -Classes  a n d  C a r d i n a l i t y  

5.1. A primitive skew lattice is a skew latt ice P consisting of exactly two/:)-classes,  
A > B.  By a coset of B in A is meant a subset of A of the form B V a V B  for some 
a E A; likewise a coset of A in B is any subset of B of the form A A b A A for some 
b E B.  All cosets in either /:)-class form rectangular subalgebras of their respective 
classes. The following fundamental  result describes the extent to which the natural  
part ia l  ordering > determines the behavior of V and A. 

L e m m a  5.2. Given a primitive skew lattice with T)-classes A > B ,  the cosets 
of B in A partition A,  and likewise, the cosets of A in B partition B .  Moreover, 
any coset X of B in A is isomorphic to any coset Y of A in B ,  under the map 
qaxy : X --~ Y defined implicitly for x E X and y C Y by ~ x r ( x )  = y iff x > y. 

A ~ ~ ~  

Finally, for all x E X and all y E Y :  

x V y = x V ~ x ~ ( y  ) and y V x = ~ x l y ( y )  V x  i n A ,  

x ^ y = x ^ ~ x r ( y )  and yA~=~xy(y )  A~inB.  

5.3. Isomorphisms between cosets of the form ~xY will be called coset bijections. 
Lemma 5.2 suggests the following construction which, together with duali ty and 
fibered products (Theorem 1.6), provides a general description of primit ive skew 
lattices. 

C o n s t r u c t i o n  5.4. Let A and B be disjoint, nonempty sets, with each part i t ioned,  
A = UIAi  and B = UJ Bj ,  so that  all subsets in either part i t ion have a common 
cardinality. For each pair of indices i E I, ix J ,  let ~ij : A, --* Bj be a fixed bijection. 
Define operations V and A on P = A U B as follows: 

x, i f e i t h e r x E A o r x , y E B ,  
z V y  -- qo~l(z), for z E  Bj a n d y E A i .  

f 

Y, if either y C B or x , y  E A, 
~ij(Y), f o r z E B j  a n d y E A ~ .  [ 
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T h e o r e m  5.5. As constructed, P is a right handed, primitive skew lattice with 
:D-classes A > B ,  with coset partitions being the given partitions of A and B ,  and 
with coset bijections being the given family of bijections. Moreover, every right handed 
primitive skew lattice arises in this manner. �9 

5.6. As a consequence of the above results, a primitive skew lattice on three genera- 
tors is necessarily finite, with order at most nine in the right-handed case, and at most 
forty-five in the general case. An example of an infinite right handed, primitive skew 
lattice on four generators is constructed as follows. Let A and B both be copies of the 
set of integers with elements denoted by n A  and n B  respectively. Let A -- AoUA1 and 
B -- B0UB1 partition A and B into even and odd integers, with the even integers de- 
noted by A0 and B0. Set ~00(2nA) = 2riB, ~om(2nA) = 2 n +  1B, ~10(2n+ 1A) = 2riB 
and ~11(2n + 1A) = 2n + 3B. Let P be the infinite skew lattice constructed on 
A U B using the ~ii. Due to the shift on the odds given by ~11, P is generated from 

0A, 0B, 1A and lB. 

5.7. A trivial way of constructing a primitive skew lattice is to take two rectangular 
skew lattices A and B and then extend their separate operations as follows: x V y = 
x - -  y V x  and x A y  = y = y A x ,  for x C A, y E B. If A and B are both finite 
with relatively prime orders, then since the order of any coset is a common divisor 
the orders of A and B, this construction is the only way to extend the operations 
and so form a primitive skew lattice with :D-classes A > B. 

Cosets and their bijections reveal a sensitivity to order in :D-classes that does 
not occur with regular bands, even those satisfying the CCC. This is born out further 
in the following result, where we are given a pair of incomparable 7)-classes A and 
B in an arbitrary skew lattice S, together with their join :D-class J .  One thus has 
a pair of primitive skew lattices, J U A and J U B, overlapping at J .  (As stated, the 
result even makes sense for A and B comparable, so that J = A or J = B, provided 
we understand a coset of any :D-class in itself to mean the entire D-class.) 

T h e o r e m  5.8. Let :D-classes A and B have join-class J in a skew lattice S.  Let 
J = U1 jA  __ (.jj j ~  be respective partitions of J into A-cosets and B-cosets. Then 
all possible intersections jA  A LIB have a common cardinality. In particular, if for 
any pair of indices j A  and J~ are both finite, then so is J ,  with 

I J I -  J2n J~ ' 

Similar remarks hold for the cosets of A and B in the meet-class M.  

An immediate application is the following upgrading of Theorem 1.8 and conse- 
quent verification of Theorem 1.12. 

Co ro l l a ry  5.9. I f  A and B are both finite, then so are J and M,  with each of 
their orders dividing the product of the orders of A and B .  In particular, if both A 
and B have p-power order for a common prime p, then J and M also have p-power 
order. �9 
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Does the par t i t ion of J by AB-coset  intersections turn out to be precisely its 
par t i t ion by M-cosets,  for M = A A B? All that  can be said in general is that  
M-cosets  in J are just  subsets of AB-coset  intersections. We have, however, the 
following geometric interpretat ion of the symmetry  condition. 

T h e o r e m  5.10. If  the skew lattice is symmetric, then the partition of J by A B -  
coset intersections is precisely the M-coset partition of J .  Dually, the J-coset 
partition of M is the partition of M by AB-coset  intersections in M.  Conversely, 
when these coset relationships hold in J = A V B and M = A A B for all pairs of 
79-classes, A and B ,  then the skew lattice S is symmetric. �9 

This "coset geometry" proves useful in designing an example proving: 

T h e o r e m  5.11. There exists an infinite skew lattice with just two generators. 

P r o o f .  Consider the following symmetric  right handed skew latt ice S with four 
:D-classes: A, B, J = A V B and M = A A B.  The operations restricted to each of 
the four classes is given trivially by x V y = x and x A y = y. The class members are 
given as follows. A and B are both copies of the set of integers 

A : { . . . , - - 1 A , O A , 1 A , 2 A , . . . }  and B = { . . . , - l m 0 m l m 2 m . . . }  

while d = {0j,  1j} and M = {0M, 1M}. Operations between distinct classes are 
subject  to the following constraints: (i) Both J and M are to be full cosets with 
respect to any :D-class. (ii) The natural  part ial  ordering between classes is given by 
0j  > 2n _> 0M and l j  _> 2n + 1 _> 1M where 2n and 2n + 1 respectively denote 
even and odd members in either A or B.  Because of these constraints we have: (iii) 
For n C {0,1}, and any x C S, n l V x  = ny, but x V n j  = (x mod 2)z. Likewise 
nM h x = (x mod 2)M and x A n M =  riM. (iv) Since u V v > u > v A u holds in any 
right handed skew lattice, we have in part icular  for x, y in distinct middle classes, A 
and B : x V y = (x mod 2)j and x h y = (y mod 2)M. It remains to describe the 
following cases for x in either A or B.  

F o r x E { 2 n ,  2 n + l } ,  x A O j = 2 n  and x A 1 j = 2 n + l ,  
F o r x E { 2 n - l , 2 n } ,  0 M V X = 2 n  and l M V z = 2 n - - l .  

Thus the d-cosets in both A and B are of the form {2n, 2n + 1} and the M-cosets  
are of the form {2n - 1,2n}. This allows a possible overlapping between d-cosets 
and M-cosets  in both A and B that  is crucial to the success of this example. 

C l a i m :  S = <0A,1B). Clearly 0A and 1B generate J and M.  This leads to an 
expansion of intervals in A (and likewise in B)  as follows: [0, 1] = 0A A J;  [ - 1 . . - 2 ]  = 
M v [0, 11; [ - 2 . . .  31 = [ - 1 . . .  2] ^ J; and in general, 

[ M V [ - n + l - . - n ] ,  f o r n o d d ,  [ - ~ . . . ~  + 1] 
[ - n  + 1 . . .  n] A J, for n even. 

22 



LEECH 

5.12. Notice that  we have not a t tempted a detailed check of either the associativity 
of the two operations defined in 5.11, or their joint satisfaction of the absorption 
laws. By Theorem 5.5 these requirements are satisfied on all five possible maximal 
primitive subalgebras. That  they hold all on S is a consequence of the system of 
cosets partitions and coset bijections. This coset geometry is the subject of [15] from 
which the results of this section is taken. The skew lattice S constructed above is, 
in fact, free on the generators 0A and lB. as a right handed, symmetric skew lattice. 
By taking the fibered product of S with its left-handed dual S ~ over their common 
maximal lattice image, one obtains (thanks to Theorem 1.6) a free symmetric skew 
lattice on two generators. 
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