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Abstract. We show that n random points chosen independently and uniformly 
from a parallelogram are in convex position with probability 

( ~ n - 1  

n! 

A finite set of points in the plane is called convex if its points are vertices of a 
convex polygon. In this paper  we show the following result: 

Theorem 1. The set A of  n random points chosen independently and uniformly from a 
parallelogram S is convex with probability 

( 2 n - 2 t )  2 
n - l ]  . 

n! 

A large part of the studies in stochastic geometry deals with the convex hull C of 
a set of n points placed independently and uniformly in a fixed convex body K in I~ a. 

* The work on this paper was supported by the "Deutsche Forschungsgemeinschaft" under Grant 
We 1265/2-1. 
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Typical questions are: How many vertices does C have? What  is the volume of C? 
What  is the surface area of C? See [WW] for a survey. In this paper  we settle one 
very special c a s e - - t h e  probabili ty that C has n vertices in the case when K is a 
parallelogram. It is interesting that our approach is purely combinatorial,  with no 
use of integration. We think that our method based on an approximation of the 
uniform distribution in a square by a large grid might have other applications. 
However, it is already unclear how to apply our method when K is a triangle or :m 
three dimensions. 

We now prove Theorem 1, and then we mention some applications of Theorem 1. 

Proof of Theorem 1. Let n > 2 be a fixed integer. Since a proper  affine transforma- 
tion transfers the uniform distribution on S onto the uniform distribution on a 
square, we assume that S is a square. We approximate the square S by a grid whose 
size tends to infinity. 

Let rn be a positive integer (denoting the size of the grid). Partit ion the 
(axis-parallel) square S by m - 1 horizontal and by m - 1 vertical lines into m 2 
squares $1,..., Sm2 of equal size. The centers of the squares S~ , . . . ,S r ,2  form a 
square grid m x m. Every point of  A lies in each of the squares S 1 . . . . .  Sin2 with 
the same probabili ty 1/m 2. Move every point of A to the center of the square S i in 
which it lies, and denote the obtained multiset by A(m). It is not difficult to see that 

P r o b ( A  is convex) = lira P r o b ( A ( m )  is convex). 
m o o o  

Thus, 

P rob (A  is convex) = lim Prob(Rm is convex), 
m ~ o o  

where, for every m > l ,  R m is a multiset of n points chosen randomly and 
independently from the square grid G m =  {(i, j ) :  i, j = 1, 2 . . . . .  m} (each point  of 
G m is always taken with the same probabili ty 1/rn2). 

Let ~V(G,,) be the set of all multisets of size n with elements from Gin, and let 
~(Gm) be the set of all convex n-element  subsets of Gin. It is easy to see that 

P r o b ( A  i s c o n v e x ) =  lim P rob (R  m 
m ~  

is  c o n v e x )  

I~(Gm)I I~(G,.)I 
= lim l i m -  m~~ m - , ~  [ m 2 ~  " 

In what follows we est imate the size of ~(Gm). 
Every convex set R ~ ~(G m) is uniquely defined by the smallest axis-parallel 

rectangle Q(R) containing R and by the set V(R) of the n integer vectors forming 
the boundary of  the convex hull of  R oriented in counterclockwise order. 

Let X(R) and Y(R) be the multisets of the first and second coordinates of 
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vectors in V(R), respectively. Formally, 

X(R)  = U {x}, Y(R) = U {Y}" 
(x, y)e V(R) (x, y)e V(R) 

Let ~"(G m) be the set of all convex sets R ~ ~(G m) such that 0 ~ X(R)  U Y(R) 
and that the directions of the n 2 vectors (x, y)  formed by all the n 2 pairs x ~ X(R), 
y ~ Y(R) are distinct. Thus, in particular, the multisets X(R) and Y(R) are sets for 
any R E ~ ' (Gm).  It is not difficult to see that 

Therefore, 

I~'(Gm)l 
lim 

m-.~ I~(Gm)l 
1. 

I~(Gm)l I~"(Gm)l 
Prob(A is convex) = lim lim 

In the estimation of the size of ~ " ( G  m) we use an auxiliary set ,Y defined by 

S':= { (X(R) ,Y (R) ,Q(R) ) :  R E c~'(Gm) }. 

The following construction shows that, for every (X,  Y, Q) ~ 5:,  there are exactly n! 
sets R ~ ~'(G m) with (X(R), Y(R), Q(R)) = (X, Y, Q): 

Take any of the n! one-to-one correspondences f :  X ~ Y between X and Y, and 
define a set V of n vectors by V = {(x, f (x)) :  x ~ X}. Due to the definitions of 
~'(G m) and S:, vectors in V have distinct directions and, consequently, form the 
(counterclockwise oriented) boundary of the convex hull of a unique set R E ~ ' (Gm)  
fitting into the rectangle Q. 

Thus, 

I~'(Gm)l = n!. I~1 

and 

I~'(Gm)l nZ. I~l 
Prob(A is convex) = lim lim . m--,~ ( m2)n rn-~o* (/~2) 

It remains to estimate the size of the set 5 # which is done in the following technical 
part  of the proof. 

For  (X,  Y, Q) E S:, partit ion each of the two sets X and Y into two subsets 
containing elements with the same sign: 

X += {x e X :  x > 0}, X - =  {x e X :  x < 0}, 

Y+= { y ~ Y : y > 0 } ,  Y - =  { y ~ Y : y < 0 } .  
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Suppose that each of  the sets 
D e n o t e  s = IS+[ and  t = IY+I. Thus,  

P. Valtr 

X +, X - ,  Y+,Y is ordered  in an arbitrary way. 

X + =  {xl  . . . . .  Xs}, 

Y+= {Yl . . . . .  Yt}, 

X -  = {Xs+ 1 . . . . .  x . } ,  

Y - =  {Yt+l . . . . .  Y~}. 

For  every ( X , Y , Q ) ~ S  ~, where Q = { ( x , y ) :  a 1 < x < a 2 ,  b l _ < y < b 2 } ,  the 
orders  on the sets X +, X , Y+, Y -  uniquely  de te rmine  four sets D - ,  E - ,  D +, E + of 
integers from the set {1, 2 . . . . .  rn} in the following way: 

/ ) / k ) 
D §  a t +  ~ _ , x i : k = O ,  1 . . . . .  s , D = a 2 +  Y'~ x i : k = s , s + l  . . . . .  n , 

i=1 i=~+1 

E +=  b l +  Y ' ~ y i : k = O ,  1 . . . . .  t , E - =  b2+ )2 x i : k = t , t + l  . . . . .  n . 
i=1 i = t + l  

Note that  the sets D - ,  E - ,  D +, 

IO+l + ID-I  = n + 2, 

[E+I + IE-I  = n + 2, 

E § satisfy the following condit ions:  

a 1 = min  D +=  min  D - ,  a 2 = max D +=  max D , 

(1 )  

b I = min  E +=  min  E - ,  b 2 = max E §  max E - .  

(2)  

For  any (X,  Y, Q) E 5 '~, we obta in  IX+[I tX 1! [Y+I! [Y-I! different  4-tuples of sets 
D - ,  E , D r ,  E § cor responding  to different orders on  the sets X § X , Y+, Y . 

Deno te  the set of  all these 4-tuples ( D  , E - ,  D § E § by J ( X ,  Y, Q). Thus,  

[ J ( X , Y , Q ) I  = Ix+l!  IX-I! ]Y+[! [Y-I! 

= ( [ D + I -  1)! ( I O - I -  1)! ( I E + [ -  1)! (IE 1 -  1)!, 

where ( D - ,  E , D § E § is an arbitrary 4-tuple in ~ r (X ,  Y, Q). For  0 < i __< n - 2 
and 0 < j < n - 2, we say that  a 4-tuple (D  , E - ,  D r ,  E +) of sets of integers has 

proper ty  9 i ,  j if 

( ~ i , j )  IO+l = i + 2, IE+I = j  + 2, and the sets D , E - ,  D +, E + satisfy (1) and  (2) 

for s o m e l  < a  1 < a  2 _ < m a n d l  < b  l < b  2 < m .  

There  are 

4-tuples ( D - , E - , D + , E  +) with ~i , j  and [D+r3D-[ = I E + N E  I =  2. It  follows 



Probability that n Random Points Are in Convex Position 641 

that there are 

~, +o.,,  ( ~ - : t (~ ) (n - i  ; 2){~t 

4-tuples (D , E - ,  D +, E +) with ~i,j" (Throughout the proof, o(t)  denotes functions 
of m which tend to 0 as m tends to infinity.) Most of them (i.e., a (1 - o(1))-fraction 
of them) lie in the disjoint union 

U g ( X , Y , Q ) .  
(X, Y, Q)~,M" 

Thus, 

IJ (x ,Y ,Q)[  
I~l = E 1 = E 

( x , v ,o )~  (x,r,o)~jlg+l! Ix-l! IY+l! ]Y-[! 

( ) ~(n_2)() n2(m J n-2 n-2 (l - -  o(1)) �9 (1 + o(1)) i n 

Z., /_., ( i +  1 ) ! ( n - i -  1 ) ! ( j +  1 ) ! ( n  j 1)! 
i = 0  j = 0  

2 n 2 n  2 

= ( 1  +o(1 , ) (nm ) - ~ Y'~ 
i = 0  j = 0  

(n-~-l}'(n-~'-l)( 
(n!)  2 

F/ - -  2 

= (1 +o(1) ) (nm/2  1 (n -2  I"/ n -- 2 ) )  

\ j=o  n - j  - 1 j 

. o . , , (~  ~ , )~ = + ) v T (  2~-2~_, 

Hence, 

n!. I~[ 
Prob(A is convex) = lim m~. (m2) n lim 

m ---+ ~ 

( ) 2 1 ( ) 2  
(1 + o ( 1 ) )  m 2 n - 2  

n n - 1  

( 2 n - 2 t )  2 
n - l ]  . 

n! 
[]  
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Now we briefly sketch some applications of Theorem 1. More information about 
applications can be found in the preliminary version [V] of this paper. 

If K is a bounded convex body in the plane, then, applying proper  approximations 
of K by parallelograms, Theorem 1 implies that there are two positive constants c a 
and r such that the set of n points chosen independently and uniformly from K is 
convex with probabili ty at least ( c J n )  n and at most ( c J n )  ~. 

It is not difficult to show that 

P rob (A  is convex) + 4 �9 E [Area  of T] = 1, 

where A is a set of four random points selected independently and uniformly from a 
convex body S of area 1, and T is a triangle with random vertices also selected 
independently and uniformly from S. If S is a parallelogram, Theorem 1 yields that 
the expected area of T is 

1 - ( } )2  11 

4 144 ' 

which was also shown in [HI by a different method.  
Let A be a set of n random points chosen independently and uniformly from a 

parallelogram. Theorem 1 yields that, for any A _> 0, the size of the largest convex 
subset of A is greater  than An 1/3 with probabili ty smaller than (24/3e/A) 3An'/3, 
which was shown in a somewhat stronger form by Talagrand. 

Welzl (personal communication) pointed out that the above proof  of Theorem 1 
yields a fast way to construct a random convex set of size n in a square. The proof  
also shows that such a random set has a limit shape represented by the curve 

{ ( x , y ) : l / 1 - 1 x l  + t / 1 -  ly] = 1} 

(see [B] for other  limit-shape theorems). 
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Note added in proof. The author  has very recently proved that n r andom points 
chosen independent ly  and uniformly from a triangle are in convex posit ion with 
probabil i ty 

2n(3n - 3)! 

( (n  - 1)!)3(2n)!  " 

The proof  will appear  elsewhere. 


