Discrete Comput Geom 13:585-592 (1995)

Embedding a Polytope in a Lattice

H. Maehara

College of Education, Ryukyu University, Okinawa, Japan and The Institute of Statistical Mathematics, Tokyo, Japan

Abstract. We present a special similarity of \mathbb{R}^{4n} which maps lattice points into lattice points. Applying this similarity, we prove that if a $(4n - 1)$ -polytope is similar to a lattice polytope (a polytope whose vertices are all lattice points) in \mathbb{R}^{4n} , then it is similar to a lattice polytope in \mathbb{R}^{4n-1} , generalizing a result of Schoenberg [4]. We also prove that an *n*-polytope is similar to a lattice polytope in some \mathbb{R}^N if and only if it is similar to a lattice polytope in \mathbb{R}^{2n+1} , and if and only if $\sin^2(\angle ABC)$ is rational for any three vertices A, B, C of the polytope.

1. Introduction

Let Z^n, Q^n denote the subsets of Euclidean *n*-space \mathbb{R}^n consisting of all lattice points, and all rational points, respectively. In the following a *point-set* means a subset of a Euclidean space. The dimension of a point-set X , dim(X), means the dimension of the convex hull of X . A point-set X is said to be *embeddable* in $Zⁿ$ (or \mathbf{Q}^n) if X is congruent to a subset of Z^n (or \mathbf{Q}^n). If X is similar to a subset of $Zⁿ$ (or $Qⁿ$), then X is *similarly embeddable* (*s-embeddable*) in $Zⁿ$ (or in $Qⁿ$). A polytope is said to be embeddable (or s-embeddable) in $Zⁿ$ (or $Qⁿ$) if its vertex-set is. A polytope with vertices in a $Zⁿ$ is called a *lattice polytope*.

It was proved in [1] that any triangle embeddable in Z^4 is s-embeddable in Z^3 , and every lattice triangle is s-embeddable in Z^5 . In this paper we present a special similarity of \mathbb{R}^{4n} which maps Z^{4n} into Z^{4n} , and, by applying this similarity, we show the following. Every sublattice Λ of Z^{4n} of dimension $\leq 4n$ is s-embeddable in Z^{4n-1} . Hence, for example, any 3-polytope in Z^4 is s-embeddable in Z^4 .

It is well known that a finite metric space $\{p_1, \ldots, p_n\}$ is isometrically embeddable in Euclidean space if and only if the $n \times n$ matrix (D_{ij}) is of negative-type (where $D_{ij} = d(p_i, p_j)^2$), that is, for any real numbers v_1, \ldots, v_n ,

$$
\sum_i v_i = 0 \quad \Rightarrow \quad \sum_{i,j} D_{ij} v_i v_j \leq 0,
$$

see, e.g., [3]. Then, under what condition is a point-set embeddable in a \mathbf{Q}^N ? We prove that a point-set X is embeddable in a \mathbf{Q}^N for some N if and only if the square-distances among the points in X are all rationals. If X is embeddable in a \mathbf{Q}^{N} , then it is embeddable in \mathbf{Q}^{3n+1} , where $n = \dim(X)$. For s-embedding, we can reduce the dimension $3n + 1$ to $2n + 1$. That is, if X is finite and the squaredistances in X are all rationals, then X is s-embeddable in Z^{2n+1} .

2. A Special Similarity of \mathbb{R}^{4n}

Lemma 1. *For any point* $P \in \mathbb{Z}^{4n}$, $P \neq (0, \ldots, 0)$, *a similarity* $\psi \colon \mathbb{R}^{4n} \to \mathbb{R}^{4n}$ *fixing the origin exists such that* $\psi(Z^{4n}) \subset Z^{4n}$ *and*

$$
\psi(P)=(*,0,\ldots,0).
$$

Proof. (1) First, consider the four-dimensional case. Let us denote by $[[x, y, z, w]]$ the matrix

$$
\begin{pmatrix} x & -y & z & w \ y & x & -w & z \ z & -w & -x & -y \ w & z & y & -x \end{pmatrix}.
$$

The column-vectors of this matrix are of the same length and mutually orthogonal. Hence, if $x^2 + y^2 + z^2 + w^2 \neq 0$, then the linear transformation defined by $[[x, y, z, w]]$ is a similarity.

Now, let $P = (a, b, c, d) \in \mathbb{Z}^4$ and let $\psi: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation defined by

$$
(x_1, x_2, x_3, x_4) \rightarrow (x_1, x_2, x_3, x_4) \cdot [[a, b, c, d]].
$$

Then ψ is a similarity, and, since a, b, c, d are all integers, ψ maps Z^4 into Z^4 . Further, $\psi(P) = (m, 0, 0, 0)$ with $m = a^2 + b^2 + c^2 + d^2$.

(2) Next, the eight-dimensional case. Let $P = (*, \ldots, *, a, b, c, d)$. By switching coordinates (with an orthogonal transformation) if necessary, we may suppose that $a^2 + b^2 + c^2 + d^2 \neq 0$. Then the linear transformation α of \mathbb{R}^8 defined by the matrix $\begin{pmatrix} A & 0 \end{pmatrix}$

$$
\begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}
$$

 $(A = [[a, b, c, d]])$ is a similarity of \mathbb{R}^8 , and $\alpha(P)$ becomes

$$
(p,q,r,s,m,0,0,0) \in Z^8
$$
.

If $p = q = r = s = 0$, then (by switching the first and the fifth coordinates) we are

done. If one of p, q, r, s is not zero, then apply further the linear transformation β of \mathbb{R}^8 determined by the 8×8 matrix

$$
\begin{pmatrix} B & -mI \\ mI & B^t \end{pmatrix},
$$

where $\mathbf{B} = [[p, q, r, s]]$, \mathbf{B}^t its transpose, and I is the 4×4 identity matrix. Since the column-vectors of this 8×8 matrix are mutually orthogonal and have the same length, β is a similarity. Further, $\beta \alpha(P) = (*, 0, \ldots, 0)$. Thus the composition $\psi = \beta \alpha$ is a desired similarity.

(3) Now, as a general case, let us consider the 12-dimensional case. (Other cases follow analogously.) Let $P = (a_1, \ldots, a_{12})$ be a lattice point in \mathbb{R}^{12} different from O. By (2), there is an integral 8×8 matrix C which induces a similarity of \mathbb{R}^8 such that

$$
(a_5, a_6, \ldots, a_{12}) \cdot \mathbf{C} = (*, 0, \ldots, 0).
$$

Let λ be the square-length of a column-vector of C. Then, by Lagrange's four squares theorem, there are four integers x, y, z, w such that $\lambda = x^2 + y^2 + z^2 + w^2$. Let $D = [[x, y, z, w]]$ and consider the linear transformation γ defined by the matrix

$$
\begin{bmatrix} D & 0 \\ 0 & C \end{bmatrix}
$$
.

The column-vectors of this matrix are of the same length and mutually orthogonal. Hence γ is a similarity of \mathbb{R}^{12} . If $a_1 = a_2 = a_3 = a_4 = 0$, then we have $\gamma(P) =$ $(0, 0, 0, 0, *, 0, \ldots, 0)$ and we are done. Otherwise, $\gamma(P) = (*, *, *, *, *, 0, \ldots, 0)$. Then switch coordinates by an orthogonal transformation with 0, 1 entries, and apply a similar procedure. The composition of the applied transformations gives the \Box desired similarity. \Box

Remark. If $n \neq 2$ and $n \neq 0$ (mod 4), then there is no analogue of Lemma 1 in dimension *n*. This can be seen as follows. For $n = 3$, this can be checked directly by taking $P = (1, 1, 1)$. For $n > 4$, we apply the following result proved by van Lint and Seidel [5]. (See the proof of Theorem 5.2 in [5].)

If M is an $n \times n$ matrix with rational entries such that $M \cdot M^t = mI$ (*m*: integer), then there is a rational $(n - 4) \times (n - 4)$ matrix L such that $\mathbf{L} \cdot \mathbf{L}^t = m\mathbf{L}$.

Suppose that, for $n = 4k + r$ ($0 < r < 4$), there is an integral $n \times n$ matrix **M** such that $M \cdot M^t = mI$ and $(1, 1, 1, 2, 0, \ldots, 0) \cdot M = (*, 0, \ldots, 0)$. Then $m = c^2 \cdot 7$ for some integer c. By repeating the above result, we come to a rational $r \times r$ matrix L such that $\mathbf{L} \cdot \mathbf{L}^t = m\mathbf{I}$. This is, however, impossible since $c^2 \cdot 7$ cannot be expressed as a sum of r squares of rationals, by the *three-square theorem* of Legendre:

A positive integer N can be expressed as a sum of three integral squares if and only if N is not of the form 4^jM with $M \equiv 7 \pmod{8}$.

For a proof of three-square theorem, see, e.g., p. 161 of [2].

Theorem 1. *Every* $(4n - 1)$ -dimensional sublattice Λ of Z^{4n} is s-embeddable in Z^{4n-1} .

Proof. Suppose that Λ is generated by P_1, \ldots, P_{4n-1} . By solving the simultaneous linear equations with integral coefficients

$$
\overrightarrow{OP} \cdot \overrightarrow{OP_i} = 0, \qquad i = 1, \ldots, 4n - 1,
$$

on $P = (x_1, \ldots, x_{4n})$, we can find a lattice point $P \in \mathbb{Z}^{4n}$, $P \neq O$. Now, by Lemma 1, there is a similarity ψ of R^{4n} which maps Z^{4n} into Z^{4n} , $\psi(0) = 0$ and $\psi(P) = 0$ $(*, 0, \ldots, 0)$. Then, since

$$
\overrightarrow{O\psi(P)}\cdot\overrightarrow{O\psi(P_i)}=0, \qquad i=1,\ldots,4n-1,
$$

the first coordinates of $\psi(P_i)$ must be zero. Hence $\psi(\Lambda)$ is congruent to a subset of Z^{4n-1} .

Corollary 1. *If a polytope of dimension* $\lt 4n$ *is s-embeddable in* Z^{4n} *, then it is s-embeddable in Z 4n- 1.*

Since a regular *n*-simplex is embeddable in Z^{n+1} , we have the following.

Corollary 2 [4]. *For n* \equiv 3 (mod 4), *a regular n-simplex is always embeddable in* Z^n .

Schoenberg proved this result by applying Minkowski's theory of rational equivalence of quadratic forms. He completely determined those dimensions n for which a regular *n*-simplex is embeddable in $Zⁿ$: For even *n*, the embedding is possible if and only if $n + 1$ is a perfect square; for $n \equiv 1 \pmod{4}$, if and only if $n + 1$ is a sum of two squares, and for $n \equiv 3 \pmod{4}$, it is always possible.

Corollary 3 [1]. Let $\Theta_n = \{\theta: \theta = \angle ABC, \text{ for } A, B, C \in \mathbb{Z}^n\}$. Then

(1) $\Theta_3 = \Theta_4$ and (2) $\theta \in \Theta$ ₄

if and only if $\tan^2 \theta = \infty$ *or* $= (b^2 + c^2 + d^2)/a^2$ *(a, b, c, d* $\in \mathbb{Z}$ *).*

Proof. (1) and the "if" part of (2) is clear. So, we show that if $\theta \in \Theta_4$, $\theta \neq 90^\circ$, then $\tan^2 \theta = (b^2+c^2+d^2)/a^2$ (a, b, c, $d \in \mathbb{Z}$). Let $\theta = \angle AOB$ (A, $B \in \mathbb{Z}^4$). By Lemma 1, there is a similarity ψ of \mathbb{R}^4 such that $\psi(Z^4) \subset Z^4$, $\psi(0) = 0$ and $\psi(B) = (m, 0, 0, 0)$. Let $\psi(A) = (a, b, c, d)$. Then the point $F = (a, 0, 0, 0)$ is the foot of the perpendicular from $\psi(A)$ to the line $O\psi(B)$. Hence tan² $\theta =$ $(b^2+c^2+d^2)/a^2$.

It is known that $\Theta_2 \subsetneq \Theta_3 = \Theta_4 \subsetneq \Theta_5 = \Theta_6 = \dots, \theta \in \Theta_2$ if and only if tan θ is a rational or ∞ , and $\theta \in \Theta_5$ if and only if $\tan^2 \theta$ is a rational or ∞ , see [1].

Embedding a Polytope in a Lattice 589

3. A Few More Lemmas

The length of a line segment *AB* is denoted by *IABI.*

Lemma 2. *Let* Y_0, Y_1, \ldots, Y_n *be* $n + 1$ *rational points which span an n-simplex, and let P be an affine combination of the Y_i's, that is,*

$$
P = x_0 Y_0 + x_1 Y_1 + \dots + x_n Y_n \qquad (x_0 + x_1 + \dots + x_n = 1).
$$

If $|Y_i P|^2 \in \mathbf{Q}$, $i = 0, 1, \ldots, n$, then P is a rational point.

Proof. To prove the lemma, we may suppose that $Y_0 = O$, the origin. Then $P = x_1 Y_1 + \cdots + x_n Y_n$, and

$$
\overrightarrow{OP} \cdot \overrightarrow{OY_i} = x_1 \overrightarrow{OY_1} \cdot \overrightarrow{OY_i} + \dots + x_n \overrightarrow{OY_n} \cdot \overrightarrow{OY_i} \qquad (i = 1, \dots, n). \qquad (*)
$$

Note that $\overrightarrow{OP} \cdot \overrightarrow{OY_i} = (|OP|^2 + |OY_i|^2 - |Y_iP|^2)/2$ $(i = 1, ..., n)$ are all rationals. Now, let us regard $(*)$ as a system of linear equations on x_1, \ldots, x_n . Then, since the coefficients are all rationals, x_1, \ldots, x_n must all be rationals. Hence P is a rational \Box

Lemma 3. For any two integers $a, b > 0$, five integers $x \neq 0, y, u, v, w$ exist such that $ax^2 - by^2 = u^2 + v^2 + w^2$.

Proof. By the three-square theorem of Legendre, it is enough to show that two integers $x \neq 0$, y exist such that $ax^2 - by^2$ is positive and not of the form $4/(8k + 7)$. If a is not of the form $4^{j}(8k + 7)$, then we may put $x = 1$, $y = 0$. So, suppose that $a = 4^{j}(8k + 7)$. Let $b = 4^{i}c$, $c \neq 0 \pmod{4}$. Choose *m* so that $(2m + 1)^{2} > 4c$.

If c is even, then put $x = 2^{i}(2m + 1)$, $y = 2^{j}$. Then

$$
ax^2 - by^2 = 4^{j+i}((2m+1)^2(8k+7) - c)
$$

and $(2m + 1)^2(8k + 7) - c$ is odd. Since $(2m + 1)^2(8k + 7) = 7 \pmod{8}$ and $c \neq 0$ $(mod 8)$,

$$
(2m + 1)^2(8k + 7) - c \neq 7 \pmod{8}.
$$

If c is odd, then put $x = 2^{i}(2m + 1)$, $y = 2^{j+1}$. Then

$$
ax^2 - by^2 = 4^{j+i}((2m+1)^2(8k+7) - 4c)
$$

and similarly we have

$$
(2m + 1)^2(8k + 7) - 4c \neq 7 \pmod{8}.
$$

Corollary 4. *For any two rationals* $a, b > 0$ *, there are five rationals* $x \neq 0, y, u, v, w$ *such that* $ax^2 - by^2 = u^2 + v^2 + w^2$ *.*

For an *n*-simplex Σ , $|\Sigma|$ denotes its content (i.e., the *n*-dimensional volume). If X_0, X_1, \ldots, X_n are the vertices of Σ , then

$$
|\Sigma|^2 = \frac{\det(a_{ij})}{n!}, \quad \text{where} \quad a_{ij} = X_0 X_i \cdot X_0 X_j.
$$

Therefore, if $|X_iX_j|^2$ $(i, j = 0, 1, ..., n)$ are all rationals, then $|\Sigma|^2$ is also a rational. *A facet* of a simplex is a maximal proper face.

Lemma 4. Let Σ be a simplex such that $|AB|^2 \in \mathbb{Q}$ for every edge AB. Suppose that a *facet* Δ *is embeddable in* Q^n , $n > \dim(\Delta)$. *Then:*

- (1) Σ *is embeddable in* Q^{n+3} .
- (2) If *n* is odd, then Σ is s-embeddable in Q^{n+2} .

Proof. (1) We may suppose that $\Sigma \subset R^{n+3}$ and $\Delta \subset \mathbf{Q}^n \times \{ (0,0,0) \}$. Let P be the opposite vertex of Δ . Since the squares of edge-lengths are all rationals, $|\Sigma|^2$ and $|\Delta|^2$ are rationals. Let X_1, \ldots, X_k be the vertices of Δ , and let F be the foot of the perpendicular from P to the flat $L(\Delta)$ spanned by Δ . Then F is represented by an affine combination of X_1, \ldots, X_k . Since

$$
|\Sigma| = \frac{1}{k} |\Delta| \cdot |PF|,
$$

we have $|PF|^2 \in \mathbf{Q}$. Hence, by the Pythagorean theorem, $|X_iF|^2$ are all rationals for $i = 1, \ldots, k$, and hence, by Lemma 2, F is a rational point. Since $n > \dim(\Delta)$ and the vertices of Δ are all rational points, there is a rational point $Q = (*, \ldots, *, 0, 0, 0)$ such that *OQ* is perpendicular to the flat $L(\Delta)$. Let $|PF|^2 = a$ and $|OQ|^2 = b$ $(a, b \in Q)$. Then, by Corollary 4, there are rationals $x \neq 0$, y, u, v, w such that

$$
ax^2 - by^2 = u^2 + v^2 + w^2.
$$

Then

$$
a = \left(\frac{y}{x}\right)^2 b + \left(\frac{u}{x}\right)^2 + \left(\frac{v}{x}\right)^2 + \left(\frac{w}{x}\right)^2.
$$

Let $P' = F + (y/x)Q + (0, ..., 0, u/x, v/x, w/x)$. Then $P' \in \mathbb{Q}^{n+3}$, $\overrightarrow{FP'}$ is perpendicular to $L(\Delta)$, and $|P'F|^2 = |PF|^2$. Hence the convex hull of $\Delta \cup \{P'\}$ is congruent to Σ .

(2) Note that in the above congruent embedding of Σ in \mathbf{Q}^{n+3} , points X_i and P' are of the following form:

$$
X_i = (*, ..., *, 0, 0, 0) \qquad (i = 1, ..., k),
$$

$$
P' = (*, ..., *, p, q, r).
$$

Now, consider the linear transformation $\psi: \mathbb{R}^{n+3} \to \mathbb{R}^{n+3}$ defined by (x_1, \ldots, x_{n+3}) \rightarrow (x_1, \ldots, x_{n+3}) M, where M is the matrix

The solution of the matrix
\n
$$
\begin{bmatrix} q & -r \\ r & q \end{bmatrix} \qquad 0
$$
\n
$$
\begin{bmatrix} q & -r \\ r & q \end{bmatrix}.
$$

Then $\psi(X_i) = (*, \ldots, *, *, 0, 0)$ and $\psi(P') = (*, \ldots, *, *, *, 0)$. Hence, neglecting the last coordinate, we can see $\psi(\Delta \cup \{P'\}) \subset \mathbf{Q}^{n+2}$.

Remark. If a facet Δ of a simplex Σ is embeddable in Q^{4m} , and $|AB|^2 \in Q$ for every edge *AB* of Σ , then Σ is s-embeddable in Q^{4m+1} .

4. Embeddings in $Qⁿ$ and $Zⁿ$

Theorem 2. Let Σ be an n-simplex such that $|AB|^2 \in \mathbb{Q}$ for every edge AB. Then:

- (1) Σ *is embeddable in* Q^{3n+1} *.*
- (2) Σ *is s-embeddable in* Z^{2n+1} .

Proof. Since a point (0-simplex) is embeddable in Q^1 , it follows by induction on n and Lemma 4 that Σ is embeddable in \mathbf{Q}^{3n+1} and s-embeddable in \mathbf{Q}^{2n+1} . Thus, by dilating suitably, Σ is s-embeddable in Z^{2n+1} .

Problem 1. Is there a triangle which is embeddable in Q^7 but not embeddable in \mathbf{Q}^6 ?

There is a triangle which is s-embeddable in $Z^5 = Z^{2 \cdot 2 + 1}$ but not s-embeddable in Z^4 . For example, the triangle with side-lengths $1, \sqrt{7}, \sqrt{8}$ is such a one. (By Corollary 3, arctan $\sqrt{7}$ does not belong to Θ_4 .) By Theorem 2, any lattice tetrahedron is s-embeddable in Z^7 .

Problem 2. Is there a lattice tetrahedron which is not s-embeddable in Z^6 ?

Theorem 3. *For a point-set X of dimension n, the following three conditions are equivalent:*

- (1) *X* is embeddable in Q^{3n+1} .
- (2) *X* is embeddable in a \mathbf{Q}^N for some N.
- (3) *For any A, B* \in *X,* $|AB|^2 \in$ **Q**.

Proof. (1) \Rightarrow (2) \Rightarrow (3) is obvious. So, we show (3) \Rightarrow (1). Since dim(X) = n, X contains (the vertex set of) an *n*-simplex Σ . By Theorem 2, there is an embedding $\Sigma \rightarrow \mathbf{Q}^{3n+1}$. This embedding can be extended to an embedding $X \rightarrow \mathbf{R}^{3n+1}$. Then, by (3) and Lemma 2, all points of X are automatically sent to rational points. \Box

Theorem 4. For a finite point-set X of dimension $n \geq 2$, the following three conditions *are equivalent:*

- (1) *X* is *s*-embeddable in Z^{2n+1} .
- (2) *X* is *s*-embeddable in a Z^N for some N.
- (3) For any A, B, $C \in X$, $\sin^2(\angle ABC)$ is a rational.

Remark. Suppose that three points A, B, C are collinear, and $|AB| = 1$, $|BC| = \pi$. Then, though $X = \{A, B, C\}$ satisfies (3), it is not s-embeddable in Z^N . The restriction dim(X) \geq 2 in Theorem 4 excludes such cases.

Proof. (1) \Rightarrow (2) is clear. To see (2) \Rightarrow (3), suppose that X is a subset of some Z^N . Let A, B, C be three points of X. If A, B, C are collinear, then $\sin^2(\angle ABC) = 0$. Suppose that *ABC* forms a triangle. Let F be the foot of perpendicular from \vec{A} to the line *BC*. Then, since $|ABC| = |BC| \cdot |AF|/2$, $|AF|^2$ is a rational, and hence $sin^2(\angle ABC) = |AF|^2/|AB|^2$ is a rational.

Now we show (3) \Rightarrow (1). Since dim(X) = n, X contains (the vertex set of) an *n*-simplex Σ . By dilating *X*, we may suppose that an edge *AB* of Σ has rational length. Then, for any two vertices C, D of Σ , $|CD|^2$ is rational. This can be seen as follows. Applying the law of sine to the triangle *ABC*, we have $|AB|/\sin C =$ $|BC|/\sin A$. Hence $|BC|^2 = |AB|^2(\sin A/\sin C)^2$, which is a rational by (3). Similarly, from the triangle *BCD,* we have

$$
|CD|^2 = |BC|^2 \bigg(\frac{\sin B}{\sin D} \bigg)^2,
$$

which is a rational.

Then, by Theorem 2, Σ is s-embeddable in Z^{2n+1} . Therefore, there is an injection $\varphi: X \to \mathbf{R}^{2n+1}$ such that $\varphi(X)$ is similar to X, and $\varphi(\Sigma)$ is a lattice simplex. Let Y be an arbitrary point of X, and let P be a vertex of Σ . We can choose a vertex Q of Σ so that P, Q, Y are not collinear. Then applying the law of sine to the triangle $\varphi(POY)$, we have $|\varphi(PY)|^2 = |\varphi(PO)|^2(\sin O/\sin Y)^2$, which is a rational by (3). Thus the square-distances from $\varphi(Y)$ to the vertices $\varphi(P)$ of $\varphi(\Sigma)$ are all rationals. Hence $\varphi(Y)$ is a rational point by Lemma 2, and hence $\varphi(X)$ is a subset of Q^{2n+1} . Now, since X is a finite set, we can dilate $\varphi(X)$ so that it becomes a subset of Z^{2n+1} . Therefore X is s-embeddable in Z^{2n+1} .

References

- 1. M. J. Beeson, Triangles with vertices on lattice points, *Amer. Math. Monthly,* 99 (1992), 243-252.
- 2. W. Narkiewicz, *Classical Problems in Number Theory,* PWN--Polish Scientific Publishers, Warszawa, 1986.
- 3. I. J. Schoenberg, Remarks to Maurice Frechet's article *Ann. Math.* 36 (1935), 64-70.
- 4. I. J. Schoenberg, Regular simplices and quadratic forms, *J. London Math. Soc.,* 12 (1937), 48-55.
- 5. J. H. van Lint and J. J. Seidel, Equilateral point sets in elliptic geometry, *Nederl. Akad. Wetensch. lndag. Math.* 28 (1926), 335-348.

Received December 18, 1993.