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Abstract. We present a special similarity of R 4n which maps lattice points into 
lattice points. Applying this similarity, we prove that if a (4n - 1)-polytope is 
similar to a lattice polytope (a polytope whose vertices are all lattice points) in R 4n, 
then it is similar to a lattice polytope in R 4n- 1, generalizing a result of Schoenberg 
[4]. We also prove that an n-polytope is similar to a lattice polytope in some R/v if 
and only if it is similar to a lattice polytope in R 2n§ and if and only if 
sin2(/_ ABC) is rational for any three vertices A, B, C of the polytope. 

1. Introduction 

Let Z n,Qn denote the subsets of Euclidean n-space R n consisting of all lattice 
points, and all rational points, respectively. In the following a point-set means a 
subset of  a Euclidean space. The dimension of a point-set X, d im(X),  means the 
dimension of  the convex hull of X. A point-set  X is said to be embeddabte in Z n 
(or Qn) if X is congruent to a subset of Z ~ (or Q~). If X is similar to a subset of 
Z ~ (or Q~), then X is similarly embeddable (s-embeddable) in Z ~ (or in Qn). A 
polytope is said to be embeddable  (or s-embeddable)  in Z n (or Qn) if its vertex-set 
is. A polytope with vertices in a Z ~ is called a lattice polytope. 

It was proved in [1] that any triangle embeddable  in Z 4 is s-embeddable in Z 3, 
and every lattice triangle is s-embeddable in Z 5. In this paper  we present a special 
similarity of R 4~ which maps Z 4~ into Z 4~, and, by applying this similarity, we show 
the following. Every sublattice A of Z 4~ of dimension < 4n is s-embeddable in 
Z4n-1. Hence, for example, any 3-polytope in Z 4 is s-embeddable in Z 4. 

It is well known that a finite metric space {Pl . . . . .  Pn} is isometrically embed- 
dable in Euclidean space if and only if the n • n matrix (Dig) is of  negative-type 
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(where D i j  = d ( p i ,  pj)Z), that is, for any real numbers v 1 . . . . .  vn, 

E v i  = 0 =:~ E O i j v i v  j <__ O, 
i i , j  

see, e.g., [3]. Then, under what condition is a point-set embeddable  in a QN? We 
prove that a point-set X is embeddable  in a QN for some N if and only if the 
square-distances among the points in X are all rationals. If X is embeddable  in 
a QN, then it is embeddable  in Q 3 n + t ,  where n = dim(X).  For  s-embedding, we 
can reduce the dimension 3n + 1 to 2n + 1. That is, if X is finite and the square- 
distances in X are all rationals, then X is s-embeddable in Z 2" § i. 

2. A Special Similarity of R 4n 

Lemma 1. For any point  P ~ Z 4n, P ~ (0 . . . . .  0), a similarity tO: R 4n ~ R 4n fixing 

the origin exists such that tO(Z4n)!c zan t and 

tO(P) = ( * , 0  . . . . .  0). 

Proof. (1) First, consider the four-dimensional  case. Let us denote  by [[x, y, z, w]] 
the matrix y w) 

X - -W Z 

- w  - x  - y  
z y - x  

The column-vectors of this matrix are of the same length and mutually orthogonal.  
Hence, if x 2 + y 2 +  z 2 +  w24: 0, then the linear transformation defined by 

[[x, y, z, w]] is a similarity. 
Now, let P = (a, b, c, d)  ~ Z 4 and let to: R 4 ~ R 4 be the linear transformation 

defined by 

( x l , x 2 , x 3 ,  x 4) ~ ( x l , x 2 , x 3 ,  x4) .  [[a,  b, c, d]] .  

Then to is a similarity, and, since a, b, c, d are all integers, tO maps Z 4 into Z 4. 
Further,  tO(P) = ( m , 0 , 0 , 0 )  with rn = a 2 + b 2 + c 2 + d 2. 

(2) Next, the eight-dimensional case. Let  P = (* . . . . .  *, a, b, c, d). By switching 
coordinates (with an orthogonal  t ransformation) if necessary, we may suppose that 
a 2 + b  2 + c  2 + d  e 4 : 0 .  Then the linear transformation a of  R 8 defined by the 

matrix (: o) 
(A = [[a, b, c, d i d  is a similarity of R 8, and a ( P )  becomes 

( p , q , r , s , m , O , 0 , 0 )  ~ Z s. 

If  p = q = r = s = 0, then (by switching the first and the fifth coordinates) we are 
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done.  If one  of p ,  q, r, s is not  zero, then apply further  the l inear  t ransformat ion  /3 
of R 8 de te rmined  by the 8 • 8 matrix 

B - m I )  
mI B t ' 

where B = [[p, q, r, s]], B t its t ranspose,  and  I is the 4 • 4 identity matrix. Since the 
column-vectors  of this 8 • 8 matrix are mutual ly  or thogonal  and have the same 
length, fl is a similarity. Further ,  f l u ( P ) =  ( * , 0  . . . . .  0). Thus  the composi t ion 
~p = f la  is a desired similarity. 

(3) Now, as a general  case, let us consider  the 12-dimensional  case. (Other  cases 
follow analogously.)  Let P = (a~ . . . . .  al2) be a lattice point  in R ~2 different from O. 
By (2), there  is an integral 8 x 8 matrix C which induces a similarity of R 8 such that 

( a s ,  a 6 . . . . .  a 1 2 ) ' C  = ( * , 0  . . . . .  0 ) .  

Let A be the square- length of a column-vector  of C. Then,  by Lagrange 's  four 
squares theorem,  there are four integers x, y, z, w such that 3. = x 2 + y2 + z 2 + w 2. 
Let D = [[x, y, z, w]] and consider  the l inear  t ransformat ion  y defined by the matrix 

The column-vectors  of this matrix are of  the same length and  mutual ly  orthogonal .  
Hence  y is a similarity of R 12. If a 1 = a 2 = a 3 = a 4 = 0, then we have y ( P )  = 
(0, 0, 0, 0, *, 0 . . . . .  0) and we are done.  Otherwise, y ( P )  = (* ,  *, *, *, *, 0 . . . . .  0). 
Then  switch coordinates  by an or thogonal  t ransformat ion  with 0, 1 entries,  and  apply 
a similar procedure.  The composi t ion of the applied t ransformat ions  gives the 
desired similarity. [ ]  

Remark.  If n 4 : 2  and n ~ 0 (mod 4), then there  is no analogue of I_emma 1 in 
d imens ion  n. This can be seen as follows. For  n = 3, this can be checked directly by 
taking P = (1, 1, 1). For  n > 4, we apply the following result  proved by van Lint  and 
Seidel [5]. (See the proof  of Theorem 5.2 in [5].) 

If M is an n • n matrix with rat ional  entr ies  such that M �9 M t = m I  (m: integer),  
then there  is a rat ional  (n  - 4) x (n  - 4) matrix L such that  L -  U = mI.  [ ]  

Suppose that, for n -- 4k + r (0 < r < 4), there is an integral  n • n matrix M such 
that M . M t = m I  and ( 1 , 1 , 1 , 2 , 0  . . . . .  0 ) - M  = ( * , 0  . . . . .  0). Then  m = c 2 . 7  for 
some integer  c. By repeat ing the above result, we come to a rat ional  r x r matrix L 
such that L .  U = mI.  This is, however, impossible since c 2. 7 cannot  be expressed 
as a sum of r squares of rationals,  by the three-square theorem of Legendre:  

A positive integer  N can be expressed as a sum of three integral  squares if and  only 
if N is no t  of the form 4JM with M ~- 7 (mod 8). 

For  a proof  of three-square  theorem, see, e.g., p. 161 of [2]. 
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Theorem 1. Every (4n - 1)-dimensional sublattice A of  Z 4n is s-embeddable in 
z 4 n  - 1. 

Proof. Suppose that A is generated by P1 . . . . .  Pan- 1" By solving the simultaneous 
linear equations with integral coefficients 

OP �9 O P  i = 0 ,  i = 1 . . . . .  4n - 1, 

on P = (x 1 . . . . .  X4n) , we can find a lattice point  P E Z 4n, P 4: O. Now, by Lemma 1, 
there is a similarity 0 of R 4" which maps Z 4n into Z 4n, 0 ( O )  = O and O(P)  = 
( *, 0 . . . . .  0). Then, since 

) ) 

O 0 ( P )  �9 O6(P~) = O, i = 1  . . . . .  4 n - l ,  

the first coordinates  of O(Pi) must be zero. Hence 0 ( A )  is congruent to a subset of 
zan - 1. [] 

Corollary 1. I f  a polytope o f  dimension < 4n is s-embeddable in Z 4n, then it is 
s-embeddable in Z 4n- 1. 

Since a regular n-simplex is embeddable  in Z n+ 1, we have the following. 

Corol lary 2 [4]. For n - 3 (mod 4), a regular n-simplex is always embeddable in Z n. 

Schoenberg proved this result by applying Minkowski's theory of rational equiva- 
lence of quadrat ic  forms. He completely determined those dimensions n for which a 
regular n-simplex is embeddable  in Zn: For  even n, the embedding is possible if and 
only if n + 1 is a perfect square; for n --- 1 (mod 4), if and only if n + 1 is a sum of 
two squares, and for n -- 3 (rood 4), it is always possible. 

Corollary 3 [1]. Let O n = { 0 : 0  = / A B C ,  for A,  B, C ~ Zn}. Then 

(1) 0 3 = | and  
(2) 0 ~ {~4 

if and only if tan 2 0 = on or = (b 2 + c 2 + d2) /a  2 (a, b, c, d ~ Z).  

Proof. (1) and the "if" part  of (2) is clear. So, we show that if 0 ~ 04,  0 4:90 ~ 
then tan 2 0 = ( b  2 + c  2 + d2 ) /a  2 ( a , b , c , d  ~ Z) .  Let O= /--AOB ( A , B  ~ Z4). 
By Lemma 1, there  is a similarity qJ of R 4 such that 0 ( Z  4) c Z  4, 0 ( O ) = O  
and @(B) = (m, 0, 0, 0). Let  @(A) = (a, b, c, d). Then the point F = (a, 0, 0, 0) is 
the foot of the perpendicular  from @(A) to the line O@(B). Hence tan20  = 
(b 2 + c 2 + d 2 ) / a  2. []  

It is known that  0 2 ~ O 3 = O 4 ~ O 5 = 0 6 = . . .  ,0 • O 2 if and only if tan 0 is a 
rational or  0% and 0 ~ 0 5 if and only if tan 2 0 is a rational or 0% see [1]. 
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3. A Few More Lemmas 

The  length of  a line segment  A B  is deno ted  by IABI. 

L e m m a  2. Let  Yo, Y1 . . . . .  Yn be n + 1 rational points which span an n-simplex, and 

let P be an affine combination o f  the Yi' s, that is, 

P = x o Y  o + x 1 Y  1 d- . . ,  + x n Y  n (X 0 + X 1 + "'" +X,  = 1). 

I f  IY/PI 2 ~ Q, i = O, 1 . . . . .  n, then P is a rational point. 

Proof. To  prove the lemma,  we may suppose that  Y0 = O, the  origin. Then  

P = x l Y  1 + ... + x ~ Y  n , and 

O P ' O Y i  = x ~ O Y I " O Y ~  + . . . + x n O Y , . O Y ~  ( i = 1  . . . . .  n) .  ( * )  

) 

Note  that  O-~ �9 OYi = (lOP[ 2 + lOYal 2 - IYiPI2) /2  (i = 1 . . . . .  n) are all rationals.  

Now, let us regard ( * ) as a system of  l inear equat ions  on x 1 . . . . .  x n . Then,  since the 

coefficients are all rationals,  x l , . . . ,  x n must  all be  rationals.  H e n c e  P is a rat ional  

point.  []  

L e m m a  3. For any two integers a, b > 0, f ive integers x 4= O, y, u, c, w exist such that 
a x  2 - -  b y  2 = U 2 "Jr- U 2 -{- W 2. 

Proof. By the th ree-square  t heo rem of Legendre ,  it is enough  to show that  two 

integers x 4= 0, y exist such that  ax 2 - by 2 is posit ive and not  of  the form 4J(8k + 7). 

If  a is not  of  the form 4J(8k + 7), then  we may put  x = 1, y = 0. So, suppose that 
a = 4J(8k + 7). Let  b = 4ic, c ~ 0 (mod4) .  Choose  m so that  (2m + 1) 2 > 4c. 

If c is even, then put  x = 2i(2m + 1), y = U .  T h e n  

ax 2 -- b y  2 = 4J+ i ( (2m + 1)2(8k + 7) - c) 

and (2m + 1)2(8k + 7) - c is odd. Since (2m + 1)2(8k + 7) - 7 (mod8)  and c ~ 0 

(mod8) ,  

(2m + 1 ) 2 ( 8 k + 7 ) - c ~ 7  ( m o d 8 ) .  

I f  c is odd,  then put  x = 2i(2m + 1), y = 2 j+l .  T h e n  

ax 2 - -  b y  2 = 4J+ i ( (2m + 1)2(8k + 7) - 4c )  

and similarly we have 

(2m + 1 ) 2 ( 8 k + 7 ) - 4 c ~ 7  ( m o d 8 ) .  []  
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Corollary 4. For any two rationals a, b > O, there are five rationals x -4= O, y, u, v, w 
such that ax 2 - b y  2 = u 2 + v 2 +  w 2. 

For  an n-simplex Z, [ZI denotes its content (i.e., the n-dimensional  volume). If 
X 0, X 1 . . . . .  X n are the vertices of Z, then 

[Z[z de t ( aq )  where 
n! ' % = X o X i ' X o X j .  

Therefore,  if IXiXjl  2 ( i , j  = O, 1 . . . . .  n) are all rationals, then IE[ 2 is also a rational. 
A facet of a simplex is a maximal proper  face. 

Lemma 4. Let  Z be a simplex such that [ABI 2 E Q for  every edge AB.  Suppose that a 
facet A is embeddable in Qn, n > dim(A). Then: 

(1) E /s embeddable in Qn+3. 
(2) I f  n is odd, then E is s-embeddable in Q,+2.  

Proof. (1) We may suppose that Z c R  "+3 and A c Q" x {(0,0,0)}. Let P be the 
opposite vertex of A. Since the squares of edge-lengths are all rationals, IZI 2 and 
IA[ 2 are rationals. Let X a . . . . .  X k be the vertices of A, and let F be the foot of the 
perpendicular  from P to the flat L(A)  spanned by A. Then F is represented by an 
affine combination of X 1 . . . . .  X k . Since 

1 
IZI = ~-IA[. IPFI, 

we have IPFI 2 ~ Q. Hence,  by the Pythagorean theorem, IXiFI 2 are all rationals for 
i = 1 . . . . .  k, and hence, by Lemma 2, F is a rational point. Since n > dim(A) and 
the vertices of  A are all rational points, there is a rational point  Q = ( * . . . . .  *, 0, 0, 0) 
such that OQ is perpendicular  to the flat L(A).  Let [PFt 2 =  a and IOQI 2 =  b 
(a,  b ~ Q). Then, by Corollary 4, there are rationals x 4= 0, y, u, v, w such that 

Then 

a x  2 - -  b y  2 = u 2 3t- u 2 -Jr w 2.  

Let P '  = F + ( y / x ) Q  + (0 . . . . .  O, u / x ,  v / x ,  w / x ) .  Then P '  ~ Q" + 3, FP '  is perpen-  
dicular to L(A),  and [P'FI 2 = IPF[ z. Hence the convex hull of A O {P'} is congru- 
ent to Z. 

(2) Note that in the above congruent embedding of Z in Q,+3,  points X i and P '  
are of the following form: 

X i = (* . . . . .  . , 0 , 0 , 0 )  ( i  = 1 . . . . .  k ) ,  

P '  = (*  . . . . .  * , p , q , r ) .  
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Now, consider the linear transformation ~: R n+3 ~ R n+3 defined by (x I . . . . .  xn+ 3) 
( X l , . . .  , Xn+3)  " M, where M is the matrix 

[q  q r ]  

0 

0) 
[q qr] 

Then $ ( X  i) = (* . . . . .  *, *, 0, 0) and 0 ( P ' )  = (* . . . . .  *, *, *, 0). Hence, neglecting 
the last coordinate, we can see ~b(A U {P'}) c Qn+2 []  

Remark. If a facet A of a simplex ~ is embeddable in Q4m, and [ABI 2 ~ Q for 
every edge A B  of E, then ~ is s-embeddable in Qam + 1. 

4. Embeddings in Q~ and Z ~ 

Theorem 2. Let ~ be an n-simplex such that [ABI 2 ~ Q for every edge AB. Then: 

(1) ~L is embeddable in Q 3n + i. 
(2) E is s-embeddable in Z 2"+1. 

Proof. Since a point (0-simplex) is embeddable in Q1, it follows by induction on n 
and Lemma 4 that ~ is embeddable in Q3n+l and s-embeddable in Q2,+1. Thus, by 
dilating suitably, ~ is s-embeddable in Z 2~ + 1. []  

Problem 1. Is there a triangle which is embeddable in Q7 but not embeddable 
in 06.  9 

There is a triangle which is s-embeddable in Z 5 = Z 22+1 but not s-embeddable 
in Z 4. For example, the triangle with side-lengths 1, ~/ff, x/g is such a one. (By 
Corollary 3, arctan v~- does not belong to O 4.) By Theorem 2, any lattice tetrahe- 
dron is s-embeddable in Z 7. 

Problem 2. Is there a lattice tetrahedron which is not s-embeddable in Z6? 

Theorem 3. For a point-set X of  dimension n, the following three conditions are 
equivalent: 

(1) X is embeddable in Q3n+ 1. 
(2) X is embeddable in a QN for some N. 
(3) F o r a n y A ,  B ~ X ,  IABI 2 ~ Q. 

Proof. (1) ~ (2) ~ (3) is obvious. So, we show (3) ~ (1). Since dim(X) = n, X 
contains (the vertex set of) an n-simplex ~. By Theorem 2, there is an embedding 

~ Q3n+l. This embedding can be extended to an embedding X---, R 3n+l. Then, 
by (3) and Lemma 2, all points of X are automatically sent to rational points. [] 
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Theorem 4. For a finite point-set X of  dimension n > 2, the following three conditions 
are equivalent: 

(1) X is s-embeddable in Z 2" + 1 
(2) X is s-embeddable in a Z N for some N. 
(3) For anyA ,  B ,C  ~ X ,  s in2(LABC)  is a rational. 

Remark.  Suppose that three points A, B, C are coltinear, and [ABI = 1, IBCI = 7r. 
Then, though X = {A, B,C} satisfies (3), it is not s-embeddable in Z N. The 
restriction d i m ( X )  > 2 in Theorem 4 excludes such cases. 

Proof. (1) ~ (2) is clear. To see (2) ~ (3), suppose that X is a subset of some Z u. 
Let A,  B, C be three points of  X. If A,  B, C are collinear, then sin2(/_ ABC)  = O. 

Suppose that A B C  forms a triangle. Let F be the foot of perpendicular  from A to 
the line BC. Then, since IABCI = IBCI" IAFI/2,  IAF[ 2 is a rational, and hence 
sinZ(/_ABC) = IAFI2/IAB[ 2 is a rational. 

Now we show (3) ~ (1). Since d im(X)  = n, X contains (the vertex set of) an 
n-simplex Z. By dilating X,  we may suppose that  an edge A B  of E has rational 
length. Then, for any two vertices C, D of E, ICDI 2 is rational. This can be seen as 
follows. Applying the law of sine to the triangle ABC, we have [ABI/sin C = 
[BCI/sin A.  Hence IBCI 2 = IABI2(sin A / s i n  C) 2, which is a rational by (3). Simi- 
larly, from the triangle BCD, we have 

2 [ sin B ~2 

rc J 2 = J ,c l  t 

which is a rational.  
Then, by Theorem 2, E is s-embeddable in Z 2n+1. Therefore,  there is an 

injection q~: X ~ R 2n+1 such that  ~ ( X )  is similar to X, and q~(2) is a lattice 
simplex. Let  Y be an arbitrary point of X, and let P be a vertex of E. We can 
choose a vertex Q of E so that P,  Q, Y are not collinear. Then applying the law of 
sine to the triangle qffPQY), we have Iq~(PY)l 2 = 4qffPQ)12(sin Q / s i n  y)2,  which is 
a rational by (3). Thus the square-distances from qffY) to the vertices qffP) of ~v(E) 
are all rationals. Hence ~(Y)  is a rational point by Lemma 2, and hence qffX) is a 
subset of Q2n+ 1. Now, since X is a finite set, we can dilate ~ ( X )  so that it becomes 
a subset of Z 2n + 1. Therefore  X is s-embeddable in Z 2n + 1. [] 
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