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Abstract. We present a special similarity of R*"* which maps lattice points into
lattice points. Applying this similarity, we prove that if a (4n — 1)-polytope is
similar to a lattice polytope (a polytope whose vertices are all lattice points) in R*”,
then it is similar to a lattice polytope in R**~!, generalizing a result of Schoenberg
[4]. We also prove that an n-polytope is similar to a lattice polytope in some R” if
and only if it is similar to a lattice polytope in R?*"*!, and if and only if
sin®(£ ABC) is rational for any three vertices 4, B, C of the polytope.

1. Introduction

Let Z", Q" denote the subsets of Euclidean n-space R" consisting of all lattice
points, and all rational points, respectively. In the following a point-set means a
subset of a Euclidean space. The dimension of a peint-set X, dim(X), means the
dimension of the convex hull of X. A point-set X is said to be embeddable in Z"
(or Q) if X is congruent to a subset of Z” (or Q™). If X is similar to a subset of
Z" (or Q"), then X is similarly embeddable (s-embeddable) in Z™ (or in Q%). A
polytope is said to be embeddable (or s-embeddable) in Z” (or Q") if its vertex-set
is. A polytope with vertices in a Z" is called a lattice polytope.

It was proved in [1] that any triangle embeddable in Z* is s-embeddable in Z2,
and every lattice triangle is s-embeddable in Z>. In this paper we present a special
similarity of R*" which maps Z** into Z*", and, by applying this similarity, we show
the following. Every sublattice A of Z** of dimension < 4n is s-embeddable in
Z**~1 Hence, for example, any 3-polytope in Z* is s-embeddable in Z*.

It is well known that a finite metric space {p,,..., p,} is isometrically embed-
dable in Euclidean space if and only if the n X n matrix (D;;) is of negative-type
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(where D;; = d(p;, p;)®), that is, for any real numbers v,,...,v

ZU,- =0 = ;D,.]-v,-vj <0,
i L]

no

see, e.g., [3]. Then, under what condition is a point-set embeddable in a Q¥? We
prove that a point-set X is embeddable in a Q¥ for some N if and only if the
square-distances among the points in X are all rationals. If X is embeddable in
a QY then it is embeddable in Q3" *!, where # = dim(X). For s-embedding, we
can reduce the dimension 3n + 1 to 2n + 1. That is, if X is finite and the square-
distances in X are all rationals, then X is s-embeddable in Z2"*7.

2. A Special Similarity of R*"

Lemma 1. For any point P € Z* P #(0,...,0), a similarity : R — R*" fixing
the origin exists such that Y(Z*"),c Z“"‘ and

$(P) =(%,0,...,0).

Proof. (1) First, consider the four-dimensional case. Let us denote by [[x, y, z, w]]
the matrix

X -y z w

y x —w z
zZ —w —x =y
w z y -x

The column-vectors of this matrix are of the same length and mutually orthogonal.
Hence, if x?>+y? +2z%2+ w? # 0, then the linear transformation defined by
[[x,y, z,w]l is a similarity.

Now, let P = (a, b,c,d) € Z* and let ¢: R* - R* be the linear transformation
defined by

(x17x27 x37 x4) - (x]’x27x31 x4) . [[ayb’C,d]]-

Then ¢ is a similarity, and, since a,b,c,d are all integers, ¢ maps Z* into Z*.
Further, $(P) = (m,0,0,0) with m = a> + b> + c® + d°.

(2) Next, the eight-dimensional case. Let P = (*,..., *,a, b, c,d). By switching
coordinates (with an orthogonal transformation) if necessary, we may suppose that
a?+ b% + ¢2+d? # 0. Then the linear transformation a of R® defined by the

matrix
A 0
0 A

(A = [[a, b, c, d]]) is a similarity of R®, and a(P) becomes
(p’q7r9samv0:070) € ZS.

If p=q =r=s =0, then (by switching the first and the fifth coordinates) we are
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done. If one of p, g,r,s is not zero, then apply further the linear transformation B
of R® determined by the 8 X 8 matrix

( B *mI)
ml B )
where B = [[ p, ¢, 7, s]], B' its transpose, and 1 is the 4 X 4 identity matrix. Since the
column-vectors of this 8 X 8 matrix are mutually orthogonal and have the same
length, B is a similarity. Further, Ba(P) = (*,0,...,0). Thus the composition
¢ = Ba is a desired similarity.

(3) Now, as a general case, let us consider the 12-dimensional case. (Other cases

follow analogously.) Let P = (a,,...,a,,) be a lattice point in R'? different from O.
By (2), there is an integral 8 X 8 matrix C which induces a similarity of R® such that

(as,aq,...,a15) - C = (%,0,...,0).

Let A be the square-length of a column-vector of C. Then, by Lagrange’s four
squares theorem, there are four integers x, y, z, w such that A = x? + y? + z% + w2

Let D = [[x, y, z, w]] and consider the linear transformation y defined by the matrix
D o
0 CY}
The column-vectors of this matrix are of the same length and mutually orthogonal.
Hence vy is a similarity of R'2. If a, = a, = a; = a, = 0, then we have y(P) =
(0,0,0,0, x,0,...,0) and we are done. Otherwise, y(P) = (*, *, *, %, 0,...,0).
Then switch coordinates by an orthogonal transformation with 0, 1 entries, and apply

a similar procedure. The composition of the applied transformations gives the
desired similarity. d

Remark. If n + 2 and n # 0 (mod4), then there is no analogue of Lemma 1 in
dimension n. This can be seen as follows. For n = 3, this can be checked directly by
taking P = (1,1, 1). For n > 4, we apply the following result proved by van Lint and
Seidel [5]. (See the proof of Theorem 5.2 in [5}])

If M is an n X n matrix with rational entries such that M - M' = mI (m: integer),
then there is a rational (n — 4) X (n — 4) matrix L such that L- L' = mL O

Suppose that, for n = 4k + r (0 < r < 4), there is an integral # X n matrix M such
that M-M'=mI and (1,1,1,2,0,...,0)-M = (*,0,...,0). Then m =c?-7 for
some integer c. By repeating the above result, we come to a rational r X r matrix L
such that L - L' = mI This is, however, impossible since c?+7 cannot be expressed
as a sum of r squares of rationals, by the three-square theorem of Legendre:

A positive integer N can be expressed as a sum of three integral squares if and only
if N is not of the form 4/M with M = 7 (mod 8).

For a proof of three-square theorem, see, e.g., p. 161 of [2].
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Theorem 1. Every (4n — V)-dimensional sublattice A of Z*" is s-embeddable in
Z4n—1.

Proof. Suppose that A is generated by P,,..., P,,_,. By solving the simultaneous
linear equations with integral coefficients

—_— —
OP - OP, =0, i=1,...,4n - 1,

on P =(xy,..., x,,), we can find a lattice point P € Z**, P # O. Now, by Lemma 1,
there is a similarity ¢ of R** which maps Z*" into Z*", ¢(O) = O and y(P) =
(*,0,...,0). Then, since

—_— —

Oy(P) -Oy(P) =0, i=1,....4n—1,

the first coordinates of (P;) must be zero. Hence (A) is congruent to a subset of
Z4n - 1. D

Corollary 1. If a polytope of dimension < 4n is s-embeddable in Z*", then it is
s-embeddable in Z*" .

Since a regular n-simplex is embeddable in Z"*!, we have the following.
Corollary 2 [4]. For n = 3 (mod4), a regular n-simplex is always embeddable in Z".

Schoenberg proved this result by applying Minkowski’s theory of rational equiva-
lence of quadratic forms. He completely determined those dimensions » for which a
regular n-simplex is embeddable in Z": For even n, the embedding is possible if and
only if n + 1 is a perfect square; for n = 1 (mod 4), if and only if n + 1 is a sum of
two squares, and for n = 3 (mod 4), it is always possible.

Corollary 3 [1]. Let ©, = {6: 6 = 2 ABC, for A,B,C € Z"}. Then

(1) @3 = @4 and
2 €0,

if and only if tan®? 8 = w or = (b*> + ¢ + d*)/a® (a,b,c,d € Z).

Proof. (1) and the “if” part of (2) is clear. So, we show that if § € ©,, 6 # 90°,
then tan®@ = (b? + c2 + d?)/a® (a,b,c,d € Z). Let 8= L AOB (A4,B € Z*).
By Lemma 1, there is a similarity ¢ of R* such that @(Z*) c Z* ¢(0) =0
and Y(B) = (m,0,0,0). Let y(A4) = (a,b,c,d). Then the point F = (4,0,0,0) is
the foot of the perpendicular from y(A) to the line Oy(B). Hence tan® g =
(b% + ¢ + d?) /a> a

It is known that ©, G 0, =0, G 0, =0, = ..., € O, ifand only if tan 6 is a
rational or ®, and 9 € O, if and only if tan? 6 is a rational or =, see [1].
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3. A Few More Lemmas

The length of a line segment AB is denoted by | AB|.

Lemma 2. LetY,,Y;,...,Y, ben + 1 rational points which span an n-simplex, and
let P be an affine combination of the Y;'s, that is,

P =xYy +x,Y; + - +x,Y, (xg+x; + - +x,=1).
If lY,P* € Q,i=0,1,...,n, then P is a rational point.

Proof. To prove the lemma, we may suppose that Y, = O, the origin. Then
P=xY; + - +x,Y,, and

—_— — _ —> _— —>
OP - OY, =x,0Y, - OY, + - +x,0Y, - OY, (i=1,...,n). (%)
. 2 2 2
Note that OP - OY;, = (|OP|" + |OY|* — |Y;P|")/2 (i = 1,...,n) are all rationals.
Now, let us regard (*) as a system of linear equations on x,,..., x,. Then, since the

coefficients are all rationals, x,,..., x, must all be rationals. Hence P is a rational
point. O

Lemma 3. For any two integers a, b > 0, five integers x #+ 0, y, u, v, w exist such that
ax? — by? = u? + v? + w

Proof. By the three-square theorem of Legendre, it is enough to show that two
integers x + 0, y exist such that ax? — by? is positive and not of the form 4/(8k + 7).
If a is not of the form 4/(8k + 7), then we may put x = 1, y = 0. So, suppose that

a = 4’8k + 7). Let b = 4ic, ¢ # 0 (mod4). Choose m so that Cm + 1)* > 4c.
If ¢ is even, then put x = 2{2m + 1), y = 2J. Then

ax? — by? = 4i*i((2m + 1’8k + 7) — ¢)

and Cm + 128k + 7) — ¢ is odd. Since @m + 1)*(8k + 7) = 7 (mod8) and ¢ # 0
(mod 8),

Cm +1P@®k+7) —c#7 (mod8).
If ¢ is odd, then put x = 2‘Q2m + 1), y = 2/*1. Then
ax? — by? = 41+((2m + 1’8k + 7) — 4¢)
and similarly we have

Qm + 1’@k+7) —4c#7 (mod8). m]
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Corollary 4. For any two rationals a, b > 0, there are five rationals x + 0, y,u,v,w
such that ax*> — by? = u? + v? + w2,

For an n-simplex 3,13| denotes its content (i.e., the n-dimensional volume). I
Xy, X,,..., X, are the vertices of X, then

det(a;;)
2 ij
[Z]° = —

, where a;; = X, X, - X, X,.
Therefore, if IX,-XjI2 (i,j = 0,1,..., n) are all rationals, then |SJ° is also a rational.
A facet of a simplex is a maximal proper face.

Lemmad4. Let 3 be a simplex such that | AB|* € Q for every edge AB. Suppose that a
facet A is embeddable in Q”, n > dim(A). Then:

(1) 3 is embeddable in Q"*3.
() If nis odd, then 3, is s-embeddable in Q"2

Proof. (1) We may suppose that 3 ¢ R**? and A ¢ Q" X {(0,0,0)}. Let P be the
opposite vertex of A. Since the squares of edge-lengths are all rationals, I$|? and
|A|? are rationals. Let X 11-++» X, be the vertices of A, and let F be the foot of the
perpendicular from P to the flat L(A) spanned by A. Then F is represented by an
affine combination of X,,..., X, . Since

1
= —|A}-
12 kl {1 PF|,

we have | PF|* € Q. Hence, by the Pythagorean theorem, | X,F|* are all rationals for
i=1,...,k, and hence, by Lemma 2, F is a rational point. Since n > dim(A) and
the vertices of A are all rational points, there is a rational point Q = (*,..., %,0,0,0)
such that OQ is perpendicular to the flat L(A). Let |PF I*=gq and IOQI2 =}
(a, b € Q). Then, by Corollary 4, there are rationals x #+ 0, y, u, v,w such that

ax? — by? = u? + v? + w

y\2 u\2 D2 w2
=)o+ G+ G+ (5)
x X x x
N
Let P' =F + (y/x)Q + (0,...,0,u/x,v/x,w/x). Then P’ € Q"*3, FP' is perpen-
dicular to L(A), and |P'F|* = |PF|*. Hence the convex hull of A U {P'} is congru-
ent to 3.

(2) Note that in the above congruent embedding of ¥ in Q"*3, points X; and P’
are of the following form:

Then

X, =(x,...,%,0,0,00 (i=1,...,k),

P'=(*,...,%,p,q,r).
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Now, consider the linear transformation ¢: R"*? — R"*? defined by (x,...,x,,3)

- (x4,...,%,,3) "M, where M is the matrix
q -r
AT
qg -r
I
Then y(X) = (*,..., *,*,0,0) and $(P') = (*,..., *, *, *,0). Hence, neglecting
the last coordinate, we can see (A U {P'}) c Q"2 O

Remark. If a facet A of a simplex X is embeddable in Q*”, and |AB)* € Q for
every edge AB of 3, then 3 is s-embeddable in Q*"*1,

4. Embeddings in Q" and Z"

Theorem 2. Let 2 be an n-simplex such that IABI* € Q for every edge AB. Then:

(1) 2 is embeddable in Q3"*1.
(2) 3 is s-embeddable in Z*"* 1.

Proof. Since a point (0-simplex) is embeddable in Q, it follows by induction on n
and Lemma 4 that 3 is embeddable in Q3**! and s-embeddable in Q" *!, Thus, by
dilating suitably, 3, is s-embeddable in Z2**1, [

Problem 1. Is there a triangle which is embeddable in Q7 but not embeddable
in Q%?

There is a triangle which is s-embeddable in Z° = Z22*! but not s-embeddable
in Z* For example, the triangle with side-lengths 1,v7,V8 is such a one. (By
Corollary 3, arctan V7 does not belong to @,.) By Theorem 2, any lattice tetrahe-
dron is s-embeddable in Z7.

Problem 2. Is there a lattice tetrahedron which is not s-embeddable in Z¢?

Theorem 3. For a point-set X of dimension n, the following three conditions are
equivalent:

(1) X is embeddable in Q3" *1.
(2) X is embeddable in a QY for some N.
(3) Forany A, B € X, |AB|* € Q.

Proof. (1) = (2) = (3) is obvious. So, we show (3) = (1). Since dim(X) =n, X
contains (the vertex set of) an n-simplex X. By Theorem 2, there is an embedding
3 - Q3*!, This embedding can be extended to an embedding X — R3"*!, Then,
by (3) and Lemma 2, all points of X are automatically sent to rational points. O
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Theorem 4. For a finite point-set X of dimension n = 2, the following three conditions
are equivalent:

(1) X is s-embeddable in Z?"+1,
(2) X is s-embeddable in a ZN for some N.
(3) Forany A, B,C € X, sin® (£ ABC) is a rational.

Remark. Suppose that three points A, B, C are collinear, and |AB| = 1, |BC| = .
Then, though X = {4, B, C} satisfies (3), it is not s-embeddable in ZV. The
restriction dim(X) > 2 in Theorem 4 excludes such cases.

Proof. (1) = (2) is clear. To see (2) = (3), suppose that X is a subset of some Z%.
Let A, B,C be three points of X. If A, B,C are collinear, then sin*(£ ABC) = 0.
Suppose that ABC forms a triangle. Let F be the foot of perpendicular from A4 to
the line BC. Then, since |ABC| = |BC|-|AF|/2, |AF I* is a rational, and hence
sin’(£ ABC) = | AF|* /| AB|* is a rational.

Now we show (3) = (1). Since dim(X) = n, X contains (the vertex set of) an
n-simplex 2. By dilating X, we may suppose that an edge 4B of X has rational
length. Then, for any two vertices C, D of 3, |CD|? is rational. This can be seen as
follows. Applying the law of sine to the triangle ABC, we have |AB|/sin C =
|BC|/sin A. Hence |BC|* = | AB|*(sin A /sin C)?, which is a rational by (3). Simi-
larly, from the triangle BCD, we have

sin B )2

CD)? = |BC|*
| | | l(sinD

which is a rational.

Then, by Theorem 2, ¥ is s-embeddable in Z2"*!, Therefore, there is an
injection ¢: X — R*"*! such that ¢(X) is similar to X, and ¢(X) is a lattice
simplex. Let Y be an arbitrary point of X, and let P be a vertex of X. We can
choose a vertex Q of X so that P,Q,Y are not collinear. Then applying the law of
sine to the triangle ©(PQY), we have |o(PY)|* = |@(PQ)|*(sin Q /sin Y)?, which is
a rational by (3). Thus the square-distances from ¢(Y) to the vertices ¢(P) of ¢(3)
are all rationals. Hence ¢(Y') is a rational point by Lemma 2, and hence ¢(X) is a
subset of Q%" %1, Now, since X is a finite set, we can dilate ¢(X) so that it becomes
a subset of Z2"*1, Therefore X is s-embeddable in Z2"*1, O
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