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Abstract. Consider the problem of moving a closed chain of n links in two or more 
dimensions from one given configuration to another. The links have fixed lengths 
and may rotate about their endpoints, possibly passing through one another. The 
notion of a "line-tracking motion" is defined, and it is shown that when reconfigura- 
tion is possible by any means, it can be achieved by O(n) line-tracking motions. These 
motions can be computed in O(n) time on real RAM. It is shown that in three or 
more dimensions, reconfiguration is always possible, but that in dimension two this 
is not the case. Reconfiguration is shown to be always possible in two dimensions if 
and only if the sum of the lengths of the second and third longest links add to 
at most the sum of the lengths of the remaining links. An O(n) algorithm is given for 
determining whether it is possible to move between two given configurations of a 
closed chain in the plane and, if it is possible, for computing a sequence of 
line-tracking motions to carry out the reconfiguration. 

1. Introduction 

The p rob lem of reconfiguring chains of n links under  various condi t ions  has been 
considered from an a lgor i thmic  poin t  of  view in I-5], [7 ] - [11 ] ,  and  1,16]. In 
par t icular ,  these papers  present  po lynomia l - t ime  a lgor i thms for p l ana r  mot ion-  
p lanning  p rob lems  that  have an unbounded  number  of degrees of freedom. While  
there are general  techniques [13], 1,1] for solving mot ion-p lann ing  prob lems  
having a bounded  number  of degrees of freedom in po lynomia l  t ime, p rob lems  
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having an unbounded number of degrees of freedom are often at least NP- 
complete. Even problems involving chains of n links or trees of n links can be 
NP-complete, NP-hard  [5], [16], [17], or P-space hard [7]. See [12] for a P-space 
hardness result for tree-like linkages and [4] for a P-space hard problem for 
graph-like linkages. Hence it is of interest to find examples of motion-planning 
problems that can be solved quickly despite having an unbounded number of 
degrees of freedom. This paper contributes such an example. (For collected works 
on algorithmic motion planning, see [14] and [15].) 

The study of linkages has also been pursued in other disciplines. For example, 
topologists study the properties of the configuration space of linkages. Each 
configuration in physical space is regarded as a point in some configuration space, 
and one asks for topological properties of this set of points, such as the number 
of its connected components. (See, for example, [6] and [3].) While the focus of 
our research is on planning motions that can be carried out physically, we obtain 
some topological results as a by-product of our algorithm design. Some of these 
results also have direct topological proofs. The study of linkages is also of interest 
to those investigating the design of large molecules. See, for example, [2]. 

In this paper we give an O(n) algorithm for moving a closed chain of links 
embedded in d > 3 dimensions from any given initial configuration to any given 
final configuration, where the links are allowed to pass through one another during 
the motion. For dimension d = 2, we show that a closed chain can always be 
moved between any given pair of configurations if and only if the lengths of its 
second and third longest links sum to at most half the sum of the lengths of all 
of the links. (Note: there may be several links of the same length; by "second and 
third longest links" we mean the links that would appear  in positions two and 
three of a list of the links sorted by decreasing length.) We also give an algorithm 
that uses "line-tracking" motions, defined in Section 2, to reconfigure a closed 
chain of links provided that reconfiguration is possible by some arbitrary motion. 
Our  algorithms in d = 2 and d > 3 dimensions require O(n) line-tracking motions 
for an n-link chain, and the descriptions of these motions can be calculated in O(n) 
time. The model of computation used for all algorithms is real RAM. 

In order to state our results, we need to introduce some terminology. An open 
chain is a weighted abstract graph Q having vertices (joints) {v0, vl . . . . .  v~} and 
edges (links) {L 1 . . . . .  Ln}, where L i = (vi-  1, vl) and each edge Li has positive weight 
(length) li. A configuration of a chain Q = L 1 . . . . .  Ln is a polygonal curve (possibly 
self-intersecting) that consists of n consecutive segments of lengths l~ . . . . .  l,, 
respectively. A closed chain is defined similarly to an open chain except that Vo = v,. 
Hence a configuration of a closed chain is just a closed polygonal curve. As Lemma 
3.1 shows, a closed chain admits configurations if and only if there is no link Li 
having length greater than the sum of the lengths of the remaining links. An arm 
is an open chain in which a fixed location has been associated with v o. 

The distance between two points x and y is denoted d(x, y), and the line 
determined by two points x and y is denoted l(x, y). Also, given an open or closed 
chain, the subchain f r o m  jo in t  u = v~ to jo in t  w = vj is the open chain consisting 
of joints v~, v~+~ . . . . .  vj with subscripts assumed to be increasing and taken mod 
n + 1. The same convention holds for summations. 



Reconfiguring Closed Polygonal Chains in Euclidean d-Space 125 

1) 2 

Fig. !. Inverting a closed chain in two dimensions. (v0, vl) rotates clockwise about v 0 as (v2, v3) rotates 
first clockwise, then counterclockwise about v3; then (Vo, vl) rotates counterclockwise about Vo as 
(v2, v3) continues to rotate counterclockwise about v3. 

Definition 1.1. Two configurations of a chain Q are equivalent if one configuration 
can be continuously moved to the other. 

In mathematical  terms this means that there is a homotopy  between the two 
polygonal  curves having the property that the links remain straight and their 
lengths are preserved throughout the homotopy.  Note that links are allowed to 
intersect during the motion. Clearly, the definition of equivalence gives an 
equivalence relation on the set of  configurations of a chain. 

Definition 1.2. A configuration of a closed chain Q in d > 2 dimensions is 
invertible if it is equivalent to its mirror image (with respect to some arbitrary 
hyperplane). 

Figures 1 and 2 give examples of  invertible and noninvertible closed chains in 
the plane. 

Our  results are organized into sections as follows. Section 2 discusses the 
line-tracking motions used in the algorithms and in the constructive proofs. Section 
3 introduces "s tandard  triangular form" for a closed chain and proves that any 
configuration of  a closed chain can be moved to a s tandard triangular form. F rom 
this it can be immediately concluded that a closed chain has only one equivalence 
class of configurations in d _> 3 dimensions. Thus invertibility for closed chains is 
only an issue in the plane. Section 4 handles the case of the plane, where 
reconfiguration is not  always possible, and shows that a closed chain of  links in 
the plane has at most  two equivalence classes of configurations. If  the chain satisfies 
the property that the lengths of the second and third longest links sum to at most  
half the sum of the lengths of all of the links (or, equivalently, sum to no more 
than the sum of the lengths of the remaining links), then the chain has just one 

Fig. 2. A six-link chain that is not invertible. 
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equivalence class of configurations:  it is possible to move  between any given pair 
of configurations. If this proper ty  does not  hold (see Fig. 2 for an example), then 
the chain has exactly two equivalence classes of configurations, and the configura- 
tions in the one class are the mir ror  images of the configurations in the other  class. 
In this case it is possible to move  between two given configurations if and only 
if they lie in the same equivalence class. Section 5 summarizes  the results and lists 
some open problems.  

2. Simple Motions and Line-Tracking Motions 

Motion-p lanning  algori thms must  compute  unambiguous  descriptions of  motions.  
To  achieve this, it is useful to define one or more  kinds of simple mot ion  steps, 
so that  complicated mot ions  can be described as a sequence of the simple ones. 
Of  course, the simple mot ions  chosen should not be limiting: it should be possible 
to carry out any reconfigurat ion in terms of the simple mot ions  available to the 
algori thm. Here  is a list of criteria, based on [5], for " g o o d "  simple mot ions:  

Criteria: 

1. The description of the mot ion  should uniquely determine the geometric 
movemen t  of  all par ts  of the linkage. 

2. The mot ion  should be one whose description can be computed.  
3. If the angle at a joint  changes, it should change monotonical ly.  In other 

words, a mot ion  in which a given angle increases and then decreases should 
be regarded as a combina t ion  of simpler motions.  

The  criteria given above  allow for many  kinds ,of motions.  Before defining the 
types of mot ion  which are used in this paper,  we makc  a few remarks  concerning 
the region of points reachable by the end of an arm. 

Definition 2.1. Let Q be an a rm with joints v0, vl . . . . .  vn, where the position of 
v o is fixed. The  reachable region R~, 1 <_ j < n, of vj is the set of all points that  vj can 
reach. 

Remark. As ment ioned in [5], it is easy to show that  Rj  is either a ball of  radius 
l = ~{=1 Ii centered at Vo or an "annu lus"  centered at Vo, that  is, a ball of outer  
radius I centered at v0 minus the interior of  a ball of radius/ ' ,  0 < l' < l, centered at 
v o. Moreover ,  Rj  is an annulus if and only if there is a link Lk, k ~_ j, such that  

lk > Y l,, 
i<_j, i e k  

in which case the annulus has inner radius 

l' = I k -- 2 li" 
i<_j,i~:k 
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Fig. 3. Vo is as close as possible to vj. 

To see this, observe that any configuration of the first j links that places vj. as 
close as possible to Vo consists, for some k < j, of straight, possibly empty, chains 
of links L1, Lz . . . .  Lk- 1 and Lk+ 1, Lk+2 . . . .  L~ lying along link L k. See Fig. 3. 

We now define a mot ion (called simple elbow bending) that satisfies Criteria 1-3 
above and that is an essential ingredient of the definition of line-tracking motion. 
The elbow-bending mot ion applies to an open chain of links. 

Definition 2.2. An elbow E(x, y, z) is a two-link arm consisting of  joints x, y, and 
z, where the location of x is fixed. The angle at the elbow joint y may change, 
and the entire elbow may rotate about  the fixed joint x. An elbow motion con- 
sists of moving z in a straight line from its initial location to a specified final 
location. 

For  concreteness, if d >__ 3, the mot ion occurs in the plane determined by x and 
the line along which z moves. If necessary, y is first moved into that plane, by 
rotating its two links about  x and z, respectively. 

There are two special types of configuration for an elbow E(x, y, z). The elbow 
is said to be folded if x is as close to z as possible and straightened if x is as far 
from z as possible. Similarly, the action of bringing z closer to x is called folding 
the joint y, and the action of moving z away from x is called straightening y. 

Observation 2.1. It is easy to show that if P-q is a line segment contained within 
the reachable region of the free end z of an elbow E(x, y, z), and if z is at location 
p, then the elbow can be moved so that z tracks along the entire segment to q in 
such a way that the angles at joints x and y will change either monotonical ly  or 
unimodally. 

Observation 2.2. Given a closed segment ~ contained in the interior of the 
reachable region of the free end z of  an elbow E(x, y, z), the elbow motion from 
p to q is determined by the initial configuration of the arm. If some point on 
other than q lies on the boundary  of the reachable region of z, then additional 
information can be given to specify in which direction the elbow joint y should 
move. Hence elbow motions satisfy Criteria 1 and 2 above. 

Observation 2.3. Dur ing an elbow motion that moves z along a line segment 
within its reachable region, the joint angle at y might decrease (though not 
necessarily fold completely), then increase ( though not necessarily straighten 
completely). Also, in the plane of the elbow motion,  the first link L 1 might rotate 
first in one sense, then in the opposite sense (so the angle formed at x between L1 
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and a reference line both increases and decreases). Thus an elbow mot ion  does 
not  always satisfy Criterion 3 above. This prompts  the following definition: 

Definition 2.3. A simple elbow motion is an elbow mot ion  in which the joint angles 
at x and y each change monotonically.  

Clearly, every elbow mot ion can be decomposed into at most  a constant  number  
(in fact, three) of simple elbow motions that meet Criteria 1-3. 

Next, we define line-tracking motions. These are combinat ions of simple elbow 
mot ions  that  cause at most  five joint angles to change simultaneously. The idea 
is that  parts of  a chain Q should play the role of two elbows with a c o m m o n  free 
end; the two elbows cooperate  to move their c o m m o n  free end along a line. The 
links connecting the fixed joints of the two elbows do not move. 

Definition 2.4 (see Fig. 4). Let Q = v 0 . . . . .  vn be a closed chain, and let v~, vb, vc, 
vd, apd v~ be five consecutive joints of Q as they would appear in order around 
the chain (note that Va and v~ are the same joint if n = 4). Let M be a line containing 
v~. A l ine-tracking motion  is one such that:  

1. v~ moves in one direction along M. 
2. The locations of  joints va and Ve remain fixed throughout  the motion,  as 

does the subchain from v e to va. 
3. The two links between va and ve act as an elbow E(v~, vb, Vc) undergoing an 

elbow mot ion;  similarly, the two links between Ve and v c act as an elbow 
E(v~, vd, Vc) undergoing an elbow motion.  The planes of  these elbow motions 
need not  be the same in dimension d > 2. 

Definition 2.5. A simple l ine-tracking motion  is a line-tracking mot ion  in which 
both  E(va, vb, vc) and E(v e, va, Vc) move in simple elbow motions. 

M 

'x ~c 

Vd 

~b 

Fig. 4. Line-tracking motion. Elbows E(vo, vb, vc) and E(ve, v~, vc) cooperate to move v~ along line M; 
the two elbows need not determine the same plane in dimension d > 2. 



Reconfiguring Closed Polygonal Chains in Euclidean d-Space 129 

Clearly, any line-tracking mot ion can be decomposed into at most  a constant 
number  (independent of  n) simple line-tracking motions. Specifying the initial 
configuration, the line M, and the stopping position for the joint vc can be regarded 
as specifying the motion completely. (From this, specifications for the constituent 
simple motions can be computed.) 

3. Standard Triangular Form 

This section defines a "s tandard  triangular form" for a closed chain and proves 
that any configuration of a chain in d > 2 dimensions can be moved to a s tandard 
triangular form. 

Definition 3.1. Consider a configuration of a closed chain of n links in d > 2 
dimensions. Let m be the total length of the chain, let i be the smallest index such 
that L i has maximum length, and let j be the index such that 

j--1 j 

2 lk N m/2 but ~ 1 k > m/2. 
k = i  k : i  

Now let x : v i_ ~, y : vj_ ~, and z = v i. Then the chain is said to be in standard 
triangular form if all joints other than x, y, and z have joint angle equal to n. 

Note  that s tandard triangular form is unique up to isometry. Note  also that 
the configuration has the shape of a (possibly degenerate) triangle with vertices 
x, y, and z. See Fig. 5 for an example of a configuration in s tandard triangular form. 

Lemma 3.1. The following are equivalent for a closed n-link chain L: 

1. L admits a standard triangular form. 
2. L admits some configuration. 
3. L contains no link the length of which is greater than the sum of the lengths 

of the remaining links. 

Proof. Clearly 1 implies 2 and 2 implies 3. To prove that 3 implies 1 we describe 
how to assign locations to the joints. Compute  m, i, j, x, y, and z as in Definition 
3.1; this can easily be done in O(n) time. Now, place x at the origin and z on the 

Fig. 5. A configuration in standard triangular form. 
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positive x-axis at a distance from the origin equal to the sum of the lengths of the 
links in the chain section from vj to v l - r  Then place y at an intersection point 
of two circles in the (x, y)-plane: the circle, centered at z, of radius equal to the 
length of link (v j_ 1, v j) and the circle, centered at x, of radius equal to the sum of 
the lengths of the links between vi_ 1 and vj 1. Note that these circles must have 
nonempty intersection: The circle centered at x cannot contain the circle centered 
at z by the choice of v j_ 1. The circle centered at z cannot contain the circle 
centered at x: if it did, then link (vj_ 1, v~) would be longer than the sum of the 
lengths of all the other links, contradicting that the closed chain admits a 
configuration. Finally, the two circles cannot lie in each other's exteriors, as the 
sum of their radii is greater than m/2 and hence greater than the distance between 
x and z. [] 

We now show that any configuration of a closed chain can be moved to a 
standard triangular form using a linear number of a line-tracking motions. The 
proof consists of an algorithm which first moves the configuration into a (possibly 
degenerate) triangular shape and then adjusts this triangular configuration until 
it is in standard triangular form. Before presenting the algorithm, which appears 
in Fig. 6, we describe some of the operations the algorithm performs. 

If C is a configuration of a closed chain Q and if v is a straightened joint of C, 
to remove v from C means to replace the two links adjacent to v with a single 
link whose length equals the sum of the lengths of the two links adjacent to v. 
Note that the joint is not removed from Q, only from C. Suppose C is a 
configuration of Q and that some remove operations are performed on C and 
suppose further that v is a joint of Q that was removed from C. Reinsertin9 v into 
C is defined as follows: Let w be the first joint in Q after v such that w e C, and 
let u be the last joint in Q before v such that u e C; thus there is a link in C from 
u to w. Replace this link in C with a link from u to v of length equal to the sum 
of the lengths of the links in Q from u to v along with a link from v to w of length 
equal to the sum of the lengths of the links in Q from v to w. 

Note that the shape of C (and its length) remain unchanged by remove and 
reinsert operations; only the number of links changes. Note also that a remove 
operation can be performed in constant time and that a reinsert operation can be 
performed in time proportional to the size of Q, since all that is needed is to 
compute the lengths of the two links added. Moreover, reinserting into C all joints 
of Q not in C can also be accomplished in time proportional to the size of Q by 
traversing C and Q simultaneously. 

Theorem 3.1. Any configuration of  a closed n-link chain in d >__ 2 dimensions can 
be moved to a standard triangular form with O(n) simple line-tracking motions 
whose descriptions can be computed in O(n) time. 

Proof. The proof  consists of verifying the correctness and analyzing the time 
complexity of procedure standard_triangular_form presented in Fig. 6. Let Q be 
a closed n-link chain. The first phase of the algorithm repeatedly straightens a 
joint of configuration C of the closed chain Q and then removes the straightened 
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p r o c e d u r e  standard_triangular_.form(Q, C) 
{ Q is a closed chain and C is a configuration of Q; } 
{ x, y and z are the three joints of Q given in Definition 3.1. } 

{ phase 1: Move C to a triangular shape. } 
wh i l e  C has at least four joints 

choose v~, Vb, re, vd, ve to be any five consecutive joints of C 
{ If C has only four joints then vo = v~. } 
i f  va and ve have different locations t h e n  

choose M to be the line through vc perpendicular to l(v~, v~) 
else 

choose M to be any line through vc 
e n d i f  
move vc away from both va and ve along M with a line tracking 
motion until  Vb or va straightens 
i f  vb straightens t h e n  remove Vb from C else remove va from C 

e n d w h i l e  
{ C is now a possibly degenerate triangle T. } 

{ phase 2: Reshape into standard triangular form. } 
i f  x is not a joint  of T t h e n  adjust_triangle(T, x) 
i f  y is not a joint of T t h e n  adjust_triangle(T, y) 
i f  z is not a joint of T t h e n  adjust_triangle(T, z) 
reinsert into T all joints of Q not in T 

e n d  standard_triangular_form 

p r o c e d u r e  adjust_triangle(T, v) 
{ T is a possibly degenerate triangle; v is a joint  of Q not ill T. ) 

reinsert v into T 
find the joint  w in T not adjacent to v 
i f  w and v have different locations t h e n  

choose M to be the lille l (w ,  v) 
else 

choose M to be any line through v 
e n d i f  
move v away from w along M with a line tracking 
motion unti l  some joint  u straightens 
remove u from T 

e n d  adjust_triangle 

Fig. 6. The algorithm for moving to standard triangular form. 

j o in t  f rom C. To  s t ra igh ten  a jo in t ,  a n y  five consecut ive  jo ints ,  say va t h rough  re, 
are selected (va = ve if C has on ly  four  joints).  N o w  vc is m o v e d  by  a l ine - t rack ing  
m o t i o n  a long  a l ine M chosen  so tha t  the d i s tance  f rom v c to each of v~ a n d  v, 
increases  m o n o t o n i c a l l y .  T h u s  the angles  at b o t h  vb a n d  vd are m o n o t o n i c a l l y  
increas ing  t h r o u g h o u t  the m o t i o n  so that  ei ther Vb or  va will s t ra ighten.  This  m a y  
require  m o r e  t h a n  one  (but  at  mos t  a cons t an t  n u m b e r  of} s imple l ine - t rack ing  
m o t i o n s  because  the angles  at  j o in t s  v~ a n d  v~ m a y  no t  change  m o n o t o n i c a l l y .  The  
s t ra igh tened  j o i n t  a n d  its two l inks  are then  replaced by  a single l ink  of l eng th  
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equal to the sum of the lengths of the two removed links. Repeating this process 
transforms the original configuration into a configuration T having a (possibly 
degenerate) triangular shape. Only O(n) simple line-tracking motions are used. 

Let x, y, and z denote the joints of Q specified in the definition of standard 
triangular form. If these happen to be the three joints of T, then the algorithm 
reinserts into C the n - 3 joints of Q that were removed, giving a configuration 
of Q in standard triangular form. This can be done in O(n) time. If the three joints 
of T are not x, y, and z then the algorithm adjusts T (in O(n) time) so that T has 
joints x, y, and z. This adjustment is described below. 

If x is not in T, then x is reinserted into T using procedure adjust_triangle. 
This procedure first adds x back to T and then moves x away from that joint w 
of T not adjacent to x until some joint of T straightens. The straightened joint 
of T is now removed. The same procedure is invoked, if necessary, to reinsert y 
and z, in that order, so that x, y, and z become the joints of T. 

The only way that reinserting y could cause x to be removed from T is if x 
straightens as y is moved. For  this to occur, however, y must have been reinserted 
into the interior of one of the links adjacent to x. This means that this link of T 
had length greater than m/2, which contradicts the definitions of x, y, and z. Thus 
reinserting y into T using procedure adjust-triangle does not cause x to be 
removed. 

Now consider applying adjust-triangle to T in order to reinsert z. Let t be the 
third joint of T before z is reinserted. By definition of x and y, the chain in Q from 
x to y does not contain t. Clearly, z must be inserted into the link from y to t. 
Thus z will be moved away from x in procedure adjust-triangle and so x will not 
straighten. Also, by definition of x, y, and z, y cannot straighten. [] 

The proof of the preceding theorem shows how to move any configuration in 
dimension d > 2 to a triangle and then to standard triangular form. Another 
approach would be to move the initial configuration to a planar one, and then to 
move this to a standard triangular form within the plane. This could be done by 
O(n) motion steps involving rotation of a rigid subsequence of links about a line 
through the endpoints of the subsequence. However, as the proof of Theorem 3.1 
shows, such a planarization step is not necessary and would only increase the 
number of moves. 

Theorem 3.2. Any two configurations of a closed n-link chain in d >_ 3 dimensions 
are equivalent. 

Proof. By Theorem 3.1, in d > 3 dimensions, each configuration of a closed n-link 
chain is equivalent to some standard triangular form. Any two standard triangular 
forms of a closed chain are equivalent via a combination of translation and 
rotation. [] 

In d = 2 dimensions two standard triangular forms of a closed chain need not 
be equivalent. The next section discusses this. 
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4. Configurations in the Plane 

This section considers configurations of closed chains in the plane. Clearly, any 
two s tandard triangular forms of a closed chain in the plane having the same 
orientation (clockwise or counterclockwise) are equivalent. Hence, by Theorem 
3.1, in the plane, a closed chain has at most  two equivalence classes. This section 
gives a necessary and sufficient condition for a closed chain to have exactly one 
equivalence class of configurations and gives an O(n) algorithm for moving between 
any two equivalent configurations. 

Lemma 4.1. Let T be a standard triangular form of a closed chain of  n links, 
let m be the sum of all of  the link lengths, and let li, l j, and I k be the lengths of the 
first, second, and third longest links of L, respectively. I f  lj + I k <_ m/2, then T 
can be moved to a mirror image using a constant number of simple motions; moreover, 
these motions can be computed in O(n) time. 

Proof. Let x, y, and z be the joints of the triangle T, labeled as in Definition 3.1, 
and suppose that lj + lk <_ m/2. Procedure reflect_triangle (Fig. 7) takes T, x, y, 
and z and moves T to a configuration which is the mirror image of  T with respect 
to the line M = l(x, z). We assume that these joints appear in clockwise order x, 
y, z on T (the case in which they are in counterclockwise order is analogous). 

Let p be the midpoint  of the side ~-2 and let u and v be the joints (in clockwise 
order) of the link containing p (if p is a joint, choose v = p). See Fig. 8. The 
algorithm moves the chain to a configuration in which x, y, and z are collinear, 
then moves y to the other side of M. We now describe how this is accomplished. 

Case 1." I d(x, y) - d(y, z) l > I d(x, u) - d(z, u)q. We can assume that u :~ z in this 
case; otherwise, because of the inequality, T is degenerate and so is already its own 
mirror image with respect to M. The algorithm first uses a line-tracking mot ion 
with elbows E(x, y, z) and E(x, u, z) to move z toward x along M until y folds. 
The inequality above ensures that u does not fold before y does. Now the motion 
of the elbows is reversed but as y begins to unfold, y is moved to the opposite 
side of M. The mot ion continues until u straightens (it must  straighten before y 
by the triangle inequality); the chain is now configured as a mirror image of T. 

Case 2: [d(x, y) - d(y, z)L < Id(x, u) - d(z, u)l. The inequality above guarantees that 
v ~ x. It will be easier to see this, however, once the first (conditional) step 
of the algorithm is carried out. If u % z, the algorithm first uses a line-tracking 
motion with elbows E(x, y, z) and E(x, u, z) to move z toward x along M until u 
folds. The inequality above ensures that u folds before y does. See Fig. 9. N o w  it 
is easy to see that v % x, since otherwise the links (u, v) and (y, z) would have 
lengths which sum to more than m/2. Because neither of these links is the maximum 
length link, which lies on the chain from x to y, the second and third longest link 
lengths would sum to more than m/2. 

Now, regardless of whether u = z, a line-tracking motion with elbows E(z, y, x) 
and E(u, v, x) is used to move x toward z along M until y folds. We claim that v 
does not fold before y does, for otherwise links (u, v) and (y, z) have length whose 
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p r o c e d u r e  reflect_triangle( T ,x ,y , z  ) 
{ T is a s tandard triangular form with joints x, y and z. ) 

choose M = l(z, z) 
i f  Id(x, y) - d(y, z)l >_ Id(x, u) - d(z, u)l t h e n  

i f  u ~ z t h e n  
move z towards x along M with a line tracking motion 
using elbows E(x ,  y, z) and E(x,  u, z) unt i l  y folds 
{ The inequality above ensures that  u does not fold before y. } 

e lse  

reverse the preceding motion, moving z away from x 
but moving y to the opposite side of M as y unfolds 
{ This moves T to its mirror image with respect to M. } 

s t o p  { T is degenerate and is already its own mirror image. } 
e n d i f  

e l s e  { Id(x, y) - d(y,  ~)1 < Id(x, ~,) - d(z, u)l } 
{ Claim: v r z. See proof of Lemma 4.1. } 

i f u r  z, t h e n  
move z toward x along M with a line tracking motion 
using elbows E(x ,  y, z) and E(x ,  u, z) unti l  u folds 
{ The inequality ensures that  u folds before y does. } 
{ See Figure 9. } 

e n d i f  

Fig. 7. 

move x toward z along M with a line tracking motion 
using elbows E(z ,  y, x) and E(u, v, x) until  y folds 
{ Claim: y folds before v. } 

reverse the preceding motion, moving x away from z 
but  moving y to the opposite side of M as y 
begins to unfold. 

i f  u ~ z t h e n  
move z away from x along M with a line tracking motion 
using elbows E(x ,  y, z) and E(z ,  u, z) unti l  u straightens 
{ The resulting configuration is the mirror image of T. } 

e n d i f  
e n d l f  
e n d  reflect_triangle 

The algorithm for moving from standard triangular form to a mirror image when 1~ + I k < m/2. 

s u m  is grea ter  t h a n  m/2. However ,  there is at  least one  l ink  on  the cha in  f rom x 
to y which  is at least as l ong  as e i ther  of  these two l inks.  Therefore,  as in  the 
a r g u m e n t  tha t  v ~ x above ,  the lengths  of  the  second  a n d  th i rd  longes t  l inks  mus t  
also s u m  to m o r e  t h a n  m/2. 

T o  c o n t i n u e  the desc r ip t ion  of the  a lgor i thm,  the p rev ious  m o t i o n  of the  elbows 
is reversed,  b u t  as y begins  to unfold ,  y is m o v e d  to the oppos i t e  side of M.  The 
m o t i o n  c o n t i n u e s  un t i l  v s t ra ightens .  



Reconfiguring Closed Polygonal Chains in Euclidean d-Space 135 

. . . . . .  . . . . . . . . . .  M 
X ~ p U Z 

Fig. 8. A closed chain in standard triangular form with the longest link having endpoint x and lying 
along x~. 

If u = z, we have obtained a configuration which is the mirror image of T; 
otherwise one final line-tracking motion using elbows E(x, u, z) and E(x, y, z) to 
move z along M away from x is performed until u straightens. [] 

The preceding lemma can be proved in another way, which, while more direct 
from a topologist's point of view, does not provide an algorithm for carrying out 
a reconfiguration physically. The idea of the alternative proof is as follows. It is 
shown that the set of configurations of a closed chain of given edge lengths is 
congruent to the set of configurations of that chain with its edges reassembled in 
any other order. In particular, the number of connected components of the set of 
configurations is independent of the edge order. This allows convenient assump- 
tions, such as the longest and shortest edges being adjacent, or the second and 
third longest edges being adjacent, to be made without loss of generality. 

The next lemma proves that the condition of the preceding lemma is also a 
necessary condition for inverting a planar configuration, that is, moving a closed 
chain from a given configuration to a mirror-image configuration. These two 
lemmas taken together characterize invertibility in terms of the condition on the 
link lengths. This means that invertibility of closed chains is independent of their 
initial placement and even of the order of their links. 

A sequence (x, y, z) of three noncollinear points in the plane is a left turn if it 
determines a counterclockwise cycle; otherwise the sequence is a right turn. The 
orientation of a sequence of collinear points is undefined. 

The key idea behind the proof of the next lemma is the following. Let 
Li = (vi t, vi) be a link of a closed chain L. Suppose that some configuration of 
L can be moved to its mirror image with respect to some arbitrary line. Let vj be 
any joint of L that is not collinear with Li in this configuration. Then at some 
moment during the motion that moves the configuration to its mirror image, vj 

y 

. . . . . . . . . .  ~ M  

Fig. 9. In moving z toward x, u folds before y. 
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and Li must be collinear. This is because the orientation of (v j, vi-  1, vi) in the 
original configuration of L differs from its orientation in any mirror image of that 
configuration. Determining what conditions on the lengths of the links allow each 
vi to become collinear with each L~ yields a necessary condition for invertibility. 

Lemma 4.2. Suppose L is a closed chain consisting o f  n >_ 3 links, and suppose 
the sum o f  its link lengths is m. A configuration o f  L can be moved to a 
mirror-image configuration only i f  the lengths o f  the second and third longest 
links o f  L sum to no more than m/2. 

Proof.  The proof is trivial for n = 3. Assume that n > 4. We show that if the 
condition is violated, then some joint cannot be positioned on the line determined 
by some link, which is necessary for invertibility by the key idea. Since the chain 
has at least four links, by suitably choosing a labeling of the joints we can assume 
that L~, Lj ,  and L k are the three longest links, that Li and L k do not have a joint 
in common, and that i < j  < k. See Fig. 10. Note that Li, L i, and L k do not 
necessarily appear in order of decreasing length and that the configuration of L 
may not form a simple polygon as in the figure. 

If the condition is violated, then 

lj + Ik > m/2 (1) 

I i + I i > m/2, (2) 

and 

I i + I k > m/2. (3) 

To complete the proof, it suffices to show that making vj and Li collinear 
violates one of (1)--(3). Partition L into three chains as follows: the link Li = 
(vi- 1, v3, the "left chain" (vi, vi+ 1 . . . . .  vj), and the "right chain" (vj, v~+ 1 . . . . .  vi- 1). 
Also, let sj be the total length of the left chain not including link L j, and let Sk be the 
total length of the right chain not including link Lk. Thus m = l~ + lj + sj + I k + Sk. 

'~ ? ~ '"",,right chain left chain ,/'" Lj 

( / / 
/ 

i 

Fig. 10. A polygon with longest links L, Lj, and L k. 
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For future reference, observe that, regardless of the configuration of the closed 
chain, the following must hold: 

d(vj, v3 >- I t - s j, 

d(v t, vi- I) ~ lk - -  Sk ,  

d(v t, vi- 1) <- lk + Sk, 

and 

d(v t, vl) -< I t + s t. 

Suppose now that there is a configuration of the chain such that vj and L~ 
are collinear. We consider the relative positions of vi_l, vi, and v t on the line 
l(v~_ 1, v3. 

Case 1: v t lies between v~ and vi_ 1. In this case, 

li = d(v t, vi) + d(v t, vi-  t) >- (lj - st) + (lk -- Sk), 

which implies that 

m/2 >_ l t + Ik. 

This violates inequality (1). 

Case 2: vi lies between vj and v i_ r In this case, 

lk + sk > d(v t, vi-  1) = d(vj, vl) + d(vl, v i -  1) > (lj - st) + li, 

which implies that 

m/2 >_ lj + l~. 

This violates inequality (2). 

Case 3: vi-  t lies between vj and vi. In this case, 

lj + sj > d(vj, vl) = d(vj, v i_ 1) + d(vi- 1, vi) > (lk -- SR) + Ii, 

which implies that 

This violates inequality (3). 

m/2 > Ik + li. 

[] 

Theorem 4.1. A configuration o f  a closed cha& in the plane can be inverted i f  and  
only i f  the lengths o f  the second and  third longest links sum to no more  than the 
sum o f  the lengths o f  the remaining links. This can be checked in t ime proport ional  
to the number  o f  links. 

Proof. Immediate consequence of Lemmas 4.1 and 4.2. [] 
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Theorem 4.2. Given two configurations of a closed n-link chain in the plane, it 
can be determined in O(n) time whether the configurations are equivalent. When the 
two configurations are equivalent, one configuration can be moved to the other with 
O(n) simple line-tracking motions together with a single rotation and translation of 
the entire chain. 

Proof. Move each of the two configurations into standard triangular form, which 
can be done in linear time. Determine, in constant time, whether the triangular 
forms are mirror images. 

If the triangles have the same orientation or are degenerate, move one to the 
other with a translation or rotation, and undo the appropriate moves to reach 
the other configuration. 

If the triangles are not degenerate and do not have the same orientation, then 
test in O(n) time whether they are invertible. If they are not invertible, then the 
original given configurations are not equivalent. If they are invertible, then invert 
one, translate and rotate it to the other, and undo the appropriate motion to 
complete the move to the other given configuration. [] 

5. Conclusion 

This paper has considered the reconfiguration of closed, n-link chains in d > 2 
dimensions, where the links are allowed to pass through one another, or in the 
case of the plane, are allowed to pass over one another. The main algorithmic 
result of the paper is the following: In dimension d > 2 every move between 
equivalent configurations can be accomplished with O(n) simple line-tracking 
motions (plus a translation and a rotation that does not change joint angles). 
These motions can be computed in O(n) time on real RAM. 

Our  algorithmic approach yields the following topological results about the 
nature of configurations of a closed chain (these results have alternative, more 
topological proofs): 

1. The configurations of a closed n-link chain in d > 3 dimensions form one 
equivalence class; that is, every configuration can be moved to every other 
configuration. 

2. The configurations of an n-link chain in d = 2 dimensions form one equi- 
valence class if and only if the sum of the lengths of the second and third 
longest links (which may be equal in length) is at most half the sum of all 
the lengths. This means that it can be determined in O(n) time on real RAM 
whether two configurations are equivalent. 

3. If the configurations of an n-link chain in d = 2 dimensions form more than 
one equivalence class, then they form exactly two equivalence classes. Each 
configuration in one class has a mirror image in the other. 

It was also pointed out that a set of n lengths can be realized as a configuration 
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Uc We 

~3 b 

Fig. I1. A generalized line-tracking motion. The thick lines represent "virtual" links; "elbows" 
E(v~, v b, v~) and E(v~, v e, vg) bend, moving the chain from vc to v~ along the dashed line. The actual 
chains (thin lines) that form the virtual links remain rigid throughout the motion. 

of a closed chain if and only if no length is greater than the sum of the remaining 
lengths. Furthermore,  if the lengths can be realized as a configuration of a closed 
chain, then they can in fact be realized as a triangle whose description can be 
computed in O ( n )  time. 

Another  contribution of this paper has been to define the not ion of a line- 
tracking motion. While reconfiguration could be accomplished by other types of 
motions, this not ion has led to algorithms which are not only linear but which 
are also particularly simple to describe. Consequently, line-tracking motions or 
some natural generalizations of them could prove useful in other types of 
reconfiguration problems. While this paper used pairs of elbows cooperat ing to 
move a single point along a straight line, it is natural to imagine pairs of "vir tual" 
elbows cooperat ing to move a point or a section of the linkage along a curve; a 
virtual elbow would consist of a section of  linkage with an internal joint that 
functions as an elbow joint, while the remaining joint angles remain fixed. (See 
Fig. 11.) 

Among the many open problems that remain, some of the most  interesting are 
the most  conceptually simple. What,  for example, can be said about  the difficulty 
of determining whether two configurations of a closed chain are equivalent if links 
are not allowed to cross through or  pass over one another? Currently it is still 
not known whether all configurations of  an open chain in the plane are equivalent 
under this more  restrictive type of motion. 
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