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Abstract. We show that if a suitable type of simplex in R" is randomly rotated and 
its vertices projected onto a fixed subspace, they are as a point set affine-equivalent 
to a Gaussian sample in that subspace. Consequently, affine-invariant statistics 
behave the same for both mechanisms. In particular, the facet behavior for the convex 
hull is the same, as observed by Affentranger and Schneider; other results of theirs 
are translated into new results for the convex hulls of Gaussian samples. We show 
conversely that the conditions on the vertices of the simplex are necessary for this 
equivalence. Similar results hold for random orthogonal transformations. 

1. Introduction 

This note was mot iva ted  by an observa t ion  made by Affentranger and  Schneider  
[1] in their  cons idera t ion  of a model  of J. E. G o o d m a n  and R. Pol lack for a 
random poin t  set. The lat ter  takes project ions  of a regular simplex on to  a r andom 
subspace. We adop t  an essentially equivalent  formula t ion  as follows: subject a 
regular s implex in N" to a r a n d o m  rota t ion  and then o r thogona l ly  project its 
vertices onto  a fixed subspace of  d imension d < n. In the course of  their study,  
Affentranger and  Schneider  observe that  the convex hull of the projected set shares 
a feature with the convex hull of  a s tandard  Gauss ian  sample in N d [5]:  the 
expected number  of facets (i.e., (d - 1)-dimensional faces) is the same for bo th  
mechanisms. Here we show that  this observat ion can be extended to provide  a 
full character iza t ion of the G o o d m a n - P o l l a c k  mode l  (Theorem 1). 
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First we set some definitions and conventions. Recall that  a regular simplex in 
/V "Ira + i Iq ~ is the convex hull of a vertex set t i j i=~,  1 < m < n, where tlv~ - v~lt > 0 is the 

same value for all i ~ j  [2, p. 121]. A regular simplex whose vertices lie on a sphere 
centered at the origin we call an SR-simplex S(S_pherico-R__egular). It has 

Ilvall = llvjlt > 0 for  all i and j, (1) 

(vi, v j) = (vl, vk) for all j, k 4: i. (2) 

Expanding  II~ viii 2 < ~llvill 2 shows that  the inner product  in (2) is nonposit ive 
( = 0 . ~ t h e  vi's are orthogonal) .  The simplex is centered if x = v I + v2 + "'" + 
vm+1 = 0 and normalized if Nvl}l = 1 for all i. We freely identify linear t ransforma- 
tions with their associated matrix representat ions and shorten "or thogona l  pro- 
ject ion"  to "project ion."  

A s tandard  Gauss ian  r a n d o m  variable has density (1 /x /~)e -" /2 )x : ,  - ~  < 
x < + o0. Independent  copies provide the componen t s  of a s tandard Gaussian 
r a n d o m  vector, of which independent  copies in turn compose  a s tandard Gaussian 
sample. For  propert ies  of  the Gauss ian  distribution, see [6]. A random rotation of 
R" is a stochastic choice from the group ~ ,  of  rota t ions  under normalized Haar  
measure;  similarly, a random orthogonal transformation is a stochastic choice from 
the or thogona l  g roup  (P, ~ ~ ,  under  its normalized H a a r  measure. Finally, we 
assume throughout that underlying probability spaces are sufficiently rich as to 
include copies of all random variables that are needed. 

The G o o d m a n - P o l l a c k  model  treated by Affentranger and Schneider deals 
with projections of  a regular simplex whose location is arbitrary.  Without  
loss of  generality, the simplex m a y  be suitably translated so that  it becomes an 
SR-simplex. With this convention,  our  main  result characterizes the G o o d m a n -  
Pollack model.  

Theorem 1. Suppose that an SR-simplex in R n is randomly rotated and its vertices 
projected onto a fixed subspace. Up to an affine transformation, the resulting point 
set coincides in distribution with a standard Gaussian sample in that subspace. The 
affine transformation can be taken so that 

(i) it is orientation-preserving and 
(ii) its linear and translational parts and the random rotation are three mutually 

stochastically independent actions. 

Conversely, only the vertices of an SR-simplex have this property. 

The following corollary, which contains the observat ion of Affentranger and 
Schneider, is immediate.  

Corollary 1. An affine-invariant functional of a point set follows the same distribu- 
tion for the Goodman-Pollack model and a standard Gaussian sample. 



Regular Simplices and Gaussian Samples 143 

We turn to the proof of Theorem 1 and a closely related result in the next section. 
Remarks appear in Section 3. In the last section we briefly consider a related 
model for a random point set. 

2. Random Projections of Simplices 

The following is of independent interest and provides a convenient route to 
Theorem 1. 

Theorem 2. Theorem 1 holds if"randomly rotated" is replaced by "subjected to a 
random orthogonal transformation." 

Corollary 2. Corollary 1 holds with the same change. 

Our main tool connects orthogonal transformations and Gaussian random 
variables. A general theory of such factorizations of random matrices together 
with a discussion of distributional invariance properties is available in Section 7.1 
of [4"1. For the reader's convenience, we sketch a proof of what we need. 

Lemma 1. Let Z be an n x n matrix composed of independent, standard Gaussian 
random variables. Then Z = LO in distribution, where 0 is a random n x n 
orthogonal matrix and L is a lower-triangular matrix that is independent of 0 and 
such that the determinant of any first d x d submatrix is almost surely strictly 
positive. 

Proof. Apply the Gram-Schmidt  procedure to the rows of Z. This can be written 
as L - t Z - -  O1, or 

Z = LO1, (3) 

where O 1 is a random orthogonal matrix and L is lower-triangular and almost 
surely nonsingular. Adjust the diagonal elements of L to be (almost surely) positive 
by postmultiplying by a diagonal matrix of ___ l 's and absorb the same matrix into 
O1 from the left. Now postmultiply both sides of (3) by an independent random 
orthogonal matrix 0 2 and observe that distributions are preserved, but now L and 
the random orthogonal matrix O = O10~ are stochastically independent. [] 

Proof of  Theorem 2. Taking the standard basis for R", suppose that the vertices 
of the simplex are arranged as columns in an n • (m + 1) matrix S and assume 
that the d-dimensional subspace onto which the projection will be done is spanned 
by the first d coordinates. Taking Z as in the lemma and I I  as the d x n matrix 
with zero entries except 17, = 1, i = 1 . . . . .  d, consider 

= IIZS. (4) 
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As vectors in I! d, the columns of~  are distributed like a correlated Gaussian sample 

Y~, i . . . .  , m + 1, (5) 

where the Y~'s are identically distributed, each having independent mean zero 
Gaussian components, and E(Y~, Y~) < 0 is the same for all i # j .  Now import an 
independent standard Gaussian vector W. For easily computed constants a and 

hW~l  ~ra + 1 b, {E[(aY~ + bW, aYj + ~, , j j , . j : l  is the identity matrix and so {aY~ + bW)'~ +1 is 
a standard Gaussian sample. Thus, up to a (deterministic) scaling and random 
translation, the columns of ~ represent a standard Gaussian sample. 

Now use the lemma to rewrite ~, in distribution, as 

~ =  H L O S =  LOS, (6) 

where L is the d x (m + 1) matrix formed by the first d rows of L. Comparing (4) 
and (6), we see that a linear image of the projection of a random orthogonal image 
of the simplex equals, in distribution, a translate of a standard Gaussian sample. 
This proves the first part  of the theorem. 

For  the converse part, suppose that a point set in F1 n satisfies the hypothesis, 
that is, subjected to a random orthogonal transformation and projected onto a 
d-dimensional subspace, it is independently affine-equivalent to a standard Gauss- 
ian sample. If we write the point set as columns in the n x (m + 1) matrix S, this 
means that, with a random orthogonal matrix O, there are an independent d x n 
matrix M and an independent d-vector b such that the columns of 

= MOS + be r (7) 

represent a standard Gaussian sample in lid. Here e is the (m + 1)-column vector 
with all ones. It follows that 

E~rg  = E[eb r + s r O r M r ] [ M O S  + be r] (8) 

is d times the (m + 1) x (m + 1) identity matrix I , +  1. Expanding (8) out and 
observing that the cross-terms vanish (by first taking the expectation over O) yields 

E~TS = STE[OrMTMO]S + EIlb[I 2" ee T. (9) 

In the first term, the inner (symmetric) matrix expectation is orthogonally similar 
to itself using any orthogonal similarity (again think of holding M fixed and taking 
expectations with respect to O). In particular, as a symmetric matrix it is 
orthogonally similar to a diagonal matrix and hence itself must be diagonal. 
However, then similarity with respect to permutation matrices implies that all the 
diagonal elements must be the same. Thus it is a multiple 2 of the n x n identity 
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matrix (2 strictly positive owing to M r M  having strictly positive trace almost 
surely; see (7)). Plugging into (9), we have 

dim+ 1 = Egr~ = zSrS + E[Ibfl 2eeT. 0o) 

It follows that the columns of S satisfy conditions (1) and (2), and we are 
done. [] 

Proof of  Theorem 1. The proof of Theorem 1 is the same as that of Theorem 2 
except for an adjustment to take into account that random rotations are used. As 
for Theorem 1, let O stand for a random orthogonal matrix. Let Io stand for the 
diagonal matrix of the same dimension which has one's on the diagonal except 
for the last entry which is det O. We claim that O = IoO is a random rotation. 
It obviously has unit determinant so that it is only necessary to check that its 
distribution is invariant under postmultiplication by a fixed rotation matrix R. 
Since det R = 1, 

OR = loOR = IoROR, (11) 

and since OR is a random orthogonal matrix, the right-hand side of (11) has the 
same distribution as IoO. 

For the first part  of the proof, observe that (6) holds with O replaced by 
IoO since only the first d < n rows of O are active. The argument is then 
the same. The converse part holds verbatim with O read as a random rotation 
matrix. [] 

3. Remarks 

I. Using Corollary 1, we transcribe to standard Gaussian samples the 
asymptotic results of Affentranger and Schneider [1] for projections of regular 
simplices. 

Theorem 3. For a standard Gaussian sample of size n in F{ d, the expected number 
of k-dimensional faces of its convex hull is asymptotic to 

x/~ k + 1 flk'd-l(rclogn)(e-ll/2 

as n-~ oo, where flk,d-1 is the internal angle of the regular simplex of d vertices at 
one of its k-dimensional faces. 

Theorem 4. For a standard Gaussian sample of size n in FI "-d, the expected 
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number of  k-dimensional faces o f  its convex hull, 0 < k < n - d, is asymptotic 
to 

n 

a s  n - - ~  oo .  

The case k = d - 1 in Theorem 3 is the result of Raynaud  1-5] ment ioned earlier, 
which was incorpora ted  by Affentranger and Schneider into their asymptotic 
argument.  

2. A feature of  the affine t ransformat ion  asserted in Theorems  1 and 2 is that 
it consists solely of a linear m a p  (without a translative component )  if and only if 
the SR-simplex has or thogonal  vectors as vertices. In this case, the vectors Y~ in 
(5) are already independent,  and the constant  b is zero. On the other  hand, if the 
number  of vertices is large, then the translative componen t  will be small (in mean 
square) in any case. This is significant for asymptot ic  questions that  will be treated 
elsewhere. 

3. It is possible to exploit other  connect ions between randomly  rotated 
polytopes and Gauss ian  samples. Consider  the problem of determining the mean 
number  of faces of  a Gaussian zonotope, i.e., a Minkowski  sum of line segments 
0, X i, 1 < i < n, where {Xi}~ is a s tandard  Gauss ian  sample in R d. A direct solution 
seems to be rather  difficult, but  the p rob lem can be approached  as follows. By 
Theorem 1 and Remark  2, {Xi}q is affinely equivalent (with no translative 
component )  to a set {3~i}~ which arises by randomly  projecting n orthogonal  
vectors in Fi n onto  ll d. This implies that  the given Gaussian zono tope  is affinely 
equivalent to the zono tope  which sums 0, ~,i, 1 < i < n. However,  the latter is just 
the r andom project ion of  a cube in lin, and formulas  for its mean  face numbers 
can be consulted in Section 2 of  [-1]. 

4. A Further Equivalence 

We conclude with another  way of  relating a high-dimensional  sample  to Gaussian 
structure in lower dimension. With  N > 1, think of generating a r andom point 
X = (X 1, X 2 . . . . .  X m )  uniformly distr ibuted on the unit sphere of  R Nd = (lid)N. Let 
Y =  {Y1, Y2 . . . . .  YN} in R d, where Y1 = (X1, X2 . . . . .  Xd), Y2 = (Xd+l, Xd+2 . . . . .  
X2d) . . . . .  YN = (Xs -d+  1, XN-d+2 . . . . .  Xm) .  

Proposition 1. Up to a stochastically independent scaling, Y is equivalent in 
distribution to a standard Gaussian sample in R d. 

Proof. It  is a s tandard  fact that  if Z = (Z t, Z2 . . . . .  ZNd) is a s tandard Gaussian 
sample  in R ~d, then I[Zll and Z/llZtl are independent  and the latter is uniformly 
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distributed on the unit sphere in I1Nd. We may as well identify X = ZjllZll, so that 

IlZll Y = (l[Zl[ I11, fFZjl Y2 . . . . .  ]lZ[I YN) = (HZl[X~, I[Zl[X2 . . . . .  IIZJFX~) 

= (Z1, Z2 . . . . .  Z~) 

is a s tandard Gaussian sample in R a. []  

A related assertion, variously at tr ibuted to Poincar6 and Borel (see [-3] for a 

critical discussion) is that  as N - ,  oo, the distribution of x/NdY1 (or x/NdYj for 
any fixed j) tends to that  of a s tandard Gaussian vector in R a. This is because 

, fNdY,  = x /Nd(X, ,  X2 . . . .  , X~) = (x/Nd/ItZII)(Z~, Z2 . . . . .  Z~) and .v/IWt/t!ZII 
tends to 1 in probability. 

Acknowledgments 

The second au thor  is indebted to R. Schneider for kindly providing [1] in preprint 
and to M. L. Eaton for a tutorial  on factoring of r andom matrices. 

References 

1. F. Affentranger and R. Schneider, Random projections of regular simplices, Discrete Comput. Geom. 
7 (1992), 219-226. 

2. H. S. M. Coxeter, Regular Polytopes, Dover, New York, 1973. 
3. P. Diaconis and D. Freedman, A dozen de Finetti-style results in search of a theory, Ann. Inst. H. 

PoincarO 23 (1987), 397J,23. 
4. M. L. Eaton, Multivariate Statistics, a Vector Space Approach, Wiley, New York, 1983. 
5. H. Raynaud, Sur l'enveloppe convexe des nuages de points al6atoires darts R", J. Appl. Probab. 7 

[1970), 35~J,8. 
6. Y. L. Tong, The Multivariate Normal Distribution, Springer-Verlag, New York, 1990. 

Received June 1, 1992, and in revised form July 24, 1992, and April 12, 1993. 


