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Abstract. In this paper we discuss the polyhedral structure of polytopes associated 
with the linear-ordering problem. We give explicit lists of facets of small linear- 
ordering polytopes for complete digraphs" on up to seven nodes. For the latter we 
give a description that we believe to be complete. 

1. Introduction and Basic Results 

Suppose m persons have assessed n objects O1 . . . . .  O. by pairwise comparisons 
(i.e., for every pair of objects Oi and 0 i we know how many persons prefer object 
Oi to O j, object O~ to Oi, respectively) and that based on these judgments a ranking 
of the objects is to be found. One possibility is to determine a linear ordering of 
the objects such that the number of individual pairwise assessments that are not 
in accordance with this ordering is minimized. This problem is known as the 
linear-ordering problem and belongs to the class of JV'~-hard combinatorial 
optimization problems. 

The linear-ordering problem has several practical applications in economics, 
scheduling, sports, archeology, and social sciences. The most successful algorithm 
to solve linear-ordering problems to optimality is given in Grftschel et aL (1984). 
It is a branch and cut method which exploits knowledge about the so-called 
linear-ordering polytope. This present paper is concerned with some new results 
about the structure of this polytope, in particular we address the question of 
characterizing small instances completely. 

In what follows we use a graph-theoretical framework to deal with the 
linear-ordering problem. Let D. = (V., A.) be the complete digraph on n nodes, 
i.e., the directed graph with node set 1I. = { 1, 2 . . . . .  n} and the property that, for 
every pair of nodes i and j, there is an arc from i to j and an arc from j to i. A 
tournament (or spanning tournament) T in A. consists of a subset of arcs 
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containing, for every pair of nodes i and j, either arc (i , j)  or arc (], O but not both. 
A (spanning) acycl ic  tournament  is a tournament without directed cycles, i.e., not 
containing an arc set of the form {(vl, v2), (v2, v3) . . . .  , (Vk, Vl)} for some k > 1 and 
nodes Vl, v2 . . . . .  Vk. It is easy to see that such an acyclic tournament corresponds 
to a linear ordering of the nodes and vice versa: the first node is the one without 
entering arcs in T, the second node is the one with one entering arc, etc., and the 
node ranked lowest is the one without leaving arcs in T. We denote the linear 
ordering that ranks node vi~ first, v~2 second, etc., by (v~,, v~2 . . . . .  v~,). 

To be able to apply methods from linear programming we associate with every 
subset B of An an incidence vector ~ .  The incidence vector has n(n - 1) components 
indexed by the arcs of A, and is defined by 

Z ~ = { ~  if ( i , j ) e B ,  

otherwise. 

A polyhedron  is defined as the intersection of finitely many half-spaces or equiv- 
alently as the solution set of a finite system of linear inequalities and equations. 
A po ly tope  is a bounded polyhedron. The minimal (with respect to set inclusion) 
nonempty proper faces of a polyhedron are called vertices,  the maximal proper 
faces are its f ace t s .  A polytope can be defined as the convex hull of its vertices. 
We use this alternative to define the linear-ordering polytope. 

Definition 1.1. Let D, = (V,,A,) be the complete digraph on n nodes and 
m = n(n - 1). Then the linear-ordering polytope P~o is defined as the convex hull 
of the incidence vectors of the acyclic tournaments in D,, i.e., 

P~o := conv{z r e  {0, 1}ml T c A, is an acyclic tournament}. 

It is immediate that the vertices of P~o correspond to acyclic tournaments and 
vice versa. Moreover, solving the linear-ordering problem now in principle 
amounts to maximizing a linear objective function over this polytope, where an 
objective function coefficient cq is associated with every arc (i,j). In our example 
cq would be the number of comparisons ranking object O i before object O~. 

For  algorithmic purposes a description of the polytope as convex hull of vertices 
is of no help. Instead we are interested in its facial structure, i.e., in a description 
by systems of linear equations D x  = d and linear inequalities A x  < b such that 
~LO = { x e R " I D x  = d, A x  < b}. In addition we are interested in finding a minimal 
equation system and a nonredundant system of inequalities. It is known that in 
such a system of inequalities every inequality corresponds to a facet. 

The facial structure of P~o has been investigated in Gr6tschel et  al. (1985) and 
Reinelt (1985). It is far beyond the scope of such investigations to derive a complete 
general description of the linear-ordering polytope. No such description is known 
for polytopes associated with JV'~-hard combinatorial optimization problems and, 
for complexity reasons, it is not likely that complete characterizations will ever be 
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found. It turned out, however, that partial knowledge about the facial structure 
is already very effective for practical computations. The algorithm mentioned in 
the outset is based on such a partial description and was able to increase the size 
of solvable linear-ordering problems substantially. 

Fairly recently further research on the polyhedral structure of P~o has been 
undertaken. New facet-defining inequalities were given in Leung and Lee (1990) 
and Suck (1991). The paper by Fishburn (1991) gives a status report on the 
knowledge about P~o. This report is of particular interest since it documents that 
two different lines of (almost) independent research concerning this polytope 
existed, one coming from combinatorial optimization and graph theory, and the 
other from the study of binary choice probabilities. Motivated by these recent 
developments we took another look at P~o. 

As well as identifying classes of facet-defining inequalities, there has always been 
interest in deriving complete linear descriptions for polytopes associated with small 
instances of combinatorial optimization problems. Though real problems are 
usually large scale, it is worthwhile investigating small polytopes. Facets derived 
for small polytopes can give hints for generalizations to facets for larger polytopes 
and studying small polytopes can also yield information on the relative importance 
of the different classes of facets. Our main interest was to consider the linear 
description of PLTO and possibly to identify new classes of facet-defining inequalities. 

Some basic general properties of the linear-ordering polytope are easily derived. 

Theorem 1.2. Let n > 2. Then the system 

x O + x j i = l  for all i , j~  V~, i < j, 

is a minimal equation system for P[o. 

P[o is contained in the (n'(n - 1))-dimensional Euclidean space and hence the 
minimal equation system determines its dimension to be n(n - 1)/2. Since P[o is 
not full-dimensional, a facet-defining inequality can be represented in different 
ways. However, due to the simple structure of the equation system, we can define a 
standard representation of inequalities which are valid for P[o. 

Corollary 1.3. For every facet o f  P[o there exists an inequality arx < ~t defining 
it such that a has nonnegative coefficients and the property that, for every pair o f  
nodes i, j ~ Vn, at least one of the coefficients a~j or aji is equal to zero. 

We can use this observation to define a normal form for facet-defining 
inequalities. Namely, every facet can be represented uniquely by an inequality 
arx <_ ~ such that all coefficients aij are nonnegative coprime integers and, 
moreover, we have alj �9 aji = 0 for every pair of nodes i, j e  Vn. 

An important general question is to decide whether or not two facet-defining 
inequalities define the same facet, i.e., whether they are equivalent. The following 
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theorem gives a sufficient condition for the nonequivalence of two inequalities 
which define facets of the linear-ordering polytope. 

Theorem 1.4. Let  arx  < ~ and brx  < [3 be facet-defining inequalities for  Pig, 
n >_ 2, given in normal form I f  there exists an arc ( i , j )~A ,  with aij > 0 andbi j  = 0 
(or bii > 0 and aij = 0), then the inequalities define different facets. 

The theorem does not exclude that two nonequivalent facet-defining inequalities 
have the same support. Indeed, such cases exist (see Leung and Lee, 1990; Suck, 
1991). Two useful general properties of facet-defining inequalities for P~,o are stated 
in the following two lemmas. 

Lemma 1.5 (Trivial Lifting Lemma). Let arx  < ~ be a facet-defining inequality 
for  P[o, n > 2. Define ~ e R  t'+ 1)n by setting aij = ao , for  all ( i , j ) eA , ,  and ai,.+ l = 
fi~+l.i = O, for  i = 1 . . . .  ,n. Then ?trx < ~ defines a facet  o f  P[~ 1. 

Lemma 1.6 (Arc Reversal Lemma). Suppose arx  < ~ is a facet-defining inequality 
for  P~,o, n > 2. I f b e R  n~n-l~ is defined by bit = aji for all ( i , j ~ A , ,  then brx  < �9 is 
facet  defining for  Pig .  

We therefore know that the linear-ordering polytope Pig inherits all facets from 
Pig 1 and that reversing the arcs in the support of a facet-defining inequality yields 
a new facet-defining inequality. 

2. Linear-Ordering Polytopes on at most Six Nodes 

The simplest class of valid inequalities for P[o are the trivial inequalities 0 < xi~ < 1 
for all (i, j )E A , .  They are also called hypercube constraints and are always valid 
for polytopes defined as the convex hull of 0-I-vertices. Trivial inequalities define 
facets of Pig  for all ( i , j )~A . .  No two of the inequalities xij < 1 are equivalent. 
An inequality - x  o < 0 reads xjl < 1 in normal form and therefore does not give 
a further facet. The minimal equation system and the trivial inequalities are 
sufficient for describing pL20 . Further inequalities are needed for n > 3. 

The most natural inequalities to be taken into account in addition for a 
description of Pig are those which exclude incidence vectors of tournaments 
containing a dicycle. In the case of a dicycle C of length 3 (i.e., consisting of three 
nodes) the corresponding inequality ~,0,j)Ec xij < 2 defines a facet of Pig for n > 3 
and we have 2. (n(n - 1)/3) different 3-dicycle inequalities which are nonequivalent. 
Inequalities associated with dicycles on more than three nodes do not define facets 
of Pig. 

A minimal equation system, trivial inequalities, and 3-dicycle inequalities are 
sufficient to completely describe P~o, Pig,  and P~o. Hence their respective 
number of facets is 8, 20, and 40. Explicit proofs can be found in, e.g., Dridi 
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(1980) and Fishburn (1990). We denote by P~ the polytope defined by the minimal 
equation system and the facet-defining inequalities derived so far. In earlier 
publications it was believed that P[o = P~ (see De Cani, 1969; Bowman, 1972), 
but this is not the case. 

In Reinelt (1985) a partial description of P6 o was given. It consisted of the 15 
equations forming the minimal equation system, 30 trivial inequalities, 40 3-dicycle 
inequalities, 120 3-fence inequalities (see F 3 of Fig. 4.1), and 720 particular 
MSbius-ladder inequalities on six nodes (see F 4 of Fig. 4.1). 

Using a computer program (some details of which are given below) to derive 
the linear description of the convex hull of a given number of points, we could 
verify that this description is indeed complete for PLrO . 

Therefore, a complete description of P6 o is given by the minimal equation 
system and 910 facet-defining inequalities. 

3. The Computation Technique for P[o 

No attempt to give an explicit description of P~o has been made so far in the 
literature. We used a computer program (Christof, 1991) to try to achieve this. 
The program for transforming the representation of a polytope as a convex hull 
of points into the representation as intersection of half-spaces is based on 
Fourier-Motzkin elimination. In order to keep the number of inequalities small 
it was enhanced by a redundancy check due to Tschernikov (1971). Rational 
arithmetic is used to guarantee exact numerical results. 

The linear-ordering polytope on seven nodes has 5040 vertices. Due to storage 
and CPU time limits direct application of the computer code was not possible. 
We therefore proceeded along the same lines as Christof et al. (1991), where 
complete descriptions of small traveling salesman polytopes were considered. The 
linear-ordering polytope is symmetric, i.e., the facets containing one specific vertex 
can be obtained from the facets containing some arbitrary vertex by a suitable 
permutation of the nodes. 

If we denote by x~, x 2 . . . . .  X5o4o the incidence vectors corresponding to linear 
orderings of seven nodes, then it is sufficient to consider 

c o n v ( x l )  + c o n e ( x 2  - x 3  - . . . . .  - x l ) .  

From a linear description of this cone we can obtain the complete description of 
P7o. Of course, it is sufficient to only take those directions xi - xl into account 
where xi is a vector adjacent to xl .  

To identify adjacent vertices on the linear-ordering polytope we make use of a 
result stated in Young (1978) (see also Hausmann, 1980). To formulate this theorem 
we make some conventions. If x and y are incidence vectors of spanning acyclic 
tournaments in Dn, then we denote by x u y (x n y) the vector obtained by 
calculating the logical "o r"  ("and"). By x ~ y  we denote the vector whose 
components are 1 if the corresponding components of x and y are different and 
0 otherwise ("exclusive or"). Note that x n y induces a partial ordering of the 
nodes of Dn. 
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Theorem 3.1. Let  T 1 and T 2 be two distinct linear orderings o f  the nodes o f  D,.  
Construct a 9raph F(TI, / '2)  = (Vr, Er) as follows: 

Vr = {{u, v}lZuv = 1, where z = Z r ' ~  Xr2}, 

E r = {({u, v}, {v, w})lz, w = 1 or z~, = 1, where z = X r' c~ Xr2}. 

Then Z r' and X r2 are adjacent with respect to P[o i f  and only i f  the 9raph F(T:,  ?2) 
is connected. 

The adjacency criterion can be efficiently checked and it turns out that the 
number of 5039 directions can be reduced to 1042. Still the program failed to 
compute the linear description. To reduce the amount of work further we 
considered the cones 

conv{x,} + cone{y1 . . . . .  Ylo,2} + cone{-y,} ,  

where y~ are the edges from xx to its adjacent vertices. 
In the case of the traveling salesman polytope on eight nodes we could make 

use of symmetry considerations at this point. This enabled us to reduce the number 
of cones to be considered there from 730 to 59. We were not able to identify 
symmetry classes in the case of the linear-ordering polytope. Since computation 
of the linear description of one such cone as above takes on average about 2 days 
on a SUN SPARCstation 1 + we confined ourselves to a reasonable subset of the 
1042 cones. If xx is the incidence vector corresponding to the canonical ordering 
(1, 2, 3, 4, 5, 6, 7), then we considered the six cones arising when y~, i = 1 . . . . .  6, 
are the directions to the following six adjacent vertices of xl :  

( 2 , 1 , 3 , 4 , 5 , 6 , 7 ) ,  

( 1 , 3 , 2 , 4 , 5 , 6 , 7 ) ,  

( 1 , 2 , 4 , 3 , 5 , 6 , 7 ) ,  

( 1 , 2 , 3 , 5 , 4 , 6 , 7 ) ,  

( 1 , 2 , 3 , 4 , 6 , 5 , 7 ) ,  

( 1 , 2 , 3 , 4 , 5 , 7 , 6 ) .  

This way we can identify all facets with the property that they contain two vertices 
corresponding to linear orderings which just differ in two adjacent positions. 

4. The Linear Description of P~o 

We now discuss in detail the classes of facets of PL7o that we could identify. Every 
class is represented by a digraph F = (W, B) with certain arc weights a~l for every 
arc e e B  and a fight-hand side ~ such that ~a~.~m aoxo < ~ defines a facet of PL7O . 
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We say that a class is invariant (with respect to arc reversal) if the digraph F' 
obtained from F by reversing all arcs (keeping the arc weights) is isomorphic to F. 

There are 19 different classes of facets whose corresponding digraphs (except 
for the trivial inequalities) are shown in Fig. 4.1. Arc weights not listed explicitly 
are 1, the right-hand side of the associated inequality is given in Table 4.1. Classes 
are named F1-F19. We give some comments on these classes. 

F 1. These are the trivial inequalities. The class is invariant. 
F 2. The second class consists of 3-dicycles whose associated inequalities were 

the first known nontrivial facet-defining inequalities. Arc reversal does not 
create new digraphs. 

F 3. This class contains 3-fences which lead to the first counterexample to the 
P~ -- P[o conjecture. This class is invariant. The 3-fence also belongs to 
the class of MSbius ladders and is denoted M 1 in Reinelt (1985). 

F 4. The fourth class is the last one defined on fewer than seven nodes. It 
belongs to the broad class of M6bius ladders. This M6bius ladder is 
generated by four 3-dicycles and one 4-dicycle. It was named MSbius 
ladder M 2 in Reinelt (1985) and is not invariant. 

F 5. This M6bius ladder is generated by three 3-dicycles and two 4-dicycles. It 
is obtained from the basic M6bius ladder M2 by extending a 3-dicycle to 
a 4-dicycle. The class is not invariant. 

F 6. Here we have another Mgbius ladder generated by three 3-dicycles and 
two 4-dicycles. It is also obtained from M2 by extending a 3-dicycle to a 
4-dicycle. The class is invariant. 

F 7. This M6bius ladder is generated by six 3-dicycles and one 4-dicycle. It can 
be constructed from M 2 by adding two 3-dicycles. The class is not 
invariant. 

F 8. This is a M6bius ladder generated by five 3-dicycles and two 4-dicycles. 
The class is not invariant. (Note that this Mfbius ladder is not obtained 
from another one by adding two 3-dicycles.) 

F 9. Adding two 3-dicycles in yet another way to M 2 leads to this M6bius 
ladder generated by six 3-dicycles and one 4-dicycle. The class is not 
invariant. 

Flo. A M6bius ladder generated by three 4-dicycles and two 3-dicycles. It is 
obtained from the basic M6bius ladder M 1 by adding two 3-dicycles. The 
class is not invariant. 

F l l .  This M6bius ladder is generated by seven 3-dicycles. It is named M3 in 
Reinelt (1985) and is invariant. 

F~2. This is the M6bius ladder M4 (see Reinelt, 1985). It is generated by seven 
3-dicycles and it is invariant. 

F~3. This is yet another M6bius ladder generated by seven 3-dicycles. The 
digraph is invariant. 

F~4. This digraph is known as 3-wheel (Reinelt, 1985) or augmented 3-fence 
(Suck, 1991). The two names correspond to two different possible gen- 
eralizations. The class is invariant. 

F~s. A M6bius ladder generated by eight 3-dicycles and one 4-dicycle. The 
digraph is not invariant. 
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Fig. 4.1. Facets of P,~o" 
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Table 4.1. The polyhedral structure of P~.o. 

77 

Number of Number of Right-hand 
Facet vertices on facet Invariant different facets side 

F1 2,520 Yes 42 1 
F2 2,520 Yes 70 2 
F3 126 Yes 840 7 
F 4 126 No 5,040 8 
F5 67 No 10,080 9 
F 6 44 Yes 5,040 9 
F7 104 No 5,040 10 
F 8 67 No 10,080 10 
F 9 67 No 10,080 10 
Flo 44 No 5,040 9 
F 11 67 Yes 5,040 10 
F12 104 Yes 5,040 10 
F 13 67 Yes 5,040 10 
F14 126 Yes 840 I0 
F 1 s 104 No 5,040 11 
F16 104 Yes 5,040 11 
Ft7 28 No 2,520 13 
F 18 28 Yes 2,520 14 
El9 28 Yes 5,040 14 

F16. An invar iant  Miibius ladder generated by nine 3-dicycles. 
F l7 .  The facet associated with this d igraph  was not  known before. The class 

is not  invariant .  
F~s. This is ano ther  example  of a new class of facet-defining inequali t ies and 

the first one whose coefficients are not  all 1 (i.e., it is not  a rank facet). 
The class is invariant .  

F19. This is ano ther  facet with coefficient 2. It has the same suppor t  as F~s (if 
arc direct ions are left out  of consideration).  The class is invariant .  

The discussion shows that  the concept  of  M r b i u s  ladders  provides  a very rich 
class of  facet-defining inequalities.  Therefore, though never s tated explicitly, all 
facets of P7 o except for F t 7, F Ia ,  and  F19 were a l ready implici t ly known. We were 
able to generalize F17 and  F l a  to derive new facets of P [o  for n > 7. Our  a t tempts  
to generalize F19 failed so far. 

If  we count  the d igraphs  ob ta ined  by arc reversal as new graphs  we have 
therefore 27 different graphs  which yield facets of P7 o. Table  4.1 summarizes  some 
propert ies  of  the 19 classes. I t  gives the number  of vertices on each facet of  the 
respective class, the number  of different facets in each class, the r ight -hand side of 
the associa ted inequali ty,  and  states whether  we have invariance or  not. 

Table  4.1 also gives an indica t ion  on the impor tance  of trivial  and  3-dicycle 
inequalit ies since each such facet contains  half  of the vertices of  P7 o. The useful- 
ness of these inequali t ies has also been observed in pract ical  computa t ions  
(Grr t sche l  et al. 1984; Reinelt,  1985). 
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Summing up we obtain that the total number of facets of P~o is at least 87,472. 
If the hypothesis is true that on every facet of P~o there are two vertices 
corresponding to linear orderings which differ only in two adjacent positions, then 
this number gives the total number of facets of PtTo . It should be noted that there 
is a high chance for this hypothesis to be true. In the case of the symmetric traveling 
salesman problem on eight nodes it would have been sufficient to consider just 
one ray corresponding to a two-exchange (i.e., replacement of two edges by two 
different edges to form a new tour) to derive the complete description of the 
associated polytope. 
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(Universit6 de Bretagne Occidentale, Brest, France) could show that the descrip- 
tion of PLTO given here is indeed complete. 


