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Abstract 

Epidemiology models, modified to include landscape pattern, are used to examine the relative importance 
of  landscape geometry and disturbance dynamics in determining the spatial extent of  a disturbance, such as 
a fire. The models indicate that, except for very small values for the probability of spread, a disturbance tends 
to propagate to all susceptible sites that can be reached. Therefore,  spatial pattern, rather than disturbance 
dynamics, will ordinarily determine the total extent of a single disturbance eveht. The models also indicate 
that a single disturbance will seldom become endemic, i.e., always present on the landscape. However, in- 
creasing disturbance frequency can lead to a landscape in which the proportion of susceptible, disturbed, and 

recovering sites are relatively constant. 

Introduction 

The role of  disturbance has been an important topic 

in ecology during the past decade (e.g., White 1979, 

Romme and Knight 1982, Mooney and Godron 
1983, Pickett and White 1985, Turner 1987), but 

many questions remain regarding the dynamics of  

disturbance at the landscape scale. What factors en- 

hance or retard disturbances spreading across a 

landscape? How do landscape geometry (e.g., size, 
shape, and arrangement of susceptible habitats) 

and disturbance dynamics (e.g., frequency and in- 
tensity) interact to control the total area affected by 

a disturbance? What conditions might produce an 

equilibrium landscape mosaic? In this paper we use 
epidemiology theory to address these questions. 

Epidemiology models are designed to predict the 

spread of disease through a population (Bailey 
1975). The analogy to an ecological disturbance, 

such as a forest fire, spreading across the landscape 

is obvious. However, the models must be modified 
to include aspects of spatial pattern of  interest in 

landscape ecology. 
The basic epidemiology model considers a well- 

mixed population in which each individual has an 

equal probability of being infected. To make the 
model suitable for landscape studies, the theory 
must be extended to two dimensions (Bailey 1965). 

Considerable work has been done on this problem, 
using simple versions of  the model (Mollison 1977, 

Kuulasmaa 1982, Cardy 1983, Faddy 1986). Some 
studies have considered more complex spatial 
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models but have emphasized population phenome- 
na such as family groups (Ball 1985) or immigration 

of  new susceptibles from an external reservoir 
(Smith 1985). The studies most relevant to land- 
scape disturbances emphasize the difference be- 
tween spatial and non-spatial models. Spatial 
models demonstrate,  for example, that equilibrium 
populations of  infected individuals are always 
smaller than would be expected from the well- 
mixed model (Mollison and Kuulasmaa 1985). 

Landscape ecology is particularly concerned with 
spatial pattern on the landscape. Previous land- 
scape investigations, using percolation theory 
(Gardner et al. 1987, in press), have demonstrated 
its utility at handling random spatial patterns. 
Epidemiologists have also utilized percolation the- 
ory to introduce spatial considerations into the 
models (Smythe and Wierman 1978, Cardy and 
Grassberger 1985). 

A fundamental result of  percolation theory is 
that a two-dimensional square lattice, with a per- 
centage, p, of the cells randomly occupied, be- 

comes disconnected below a critical value, Pc = 
0.5928. In the context of  a landscape disturbance, 
such as forest fire, the percentage, p, represents the 
fraction of the landscape occupied by burnable 
forest stands (Turner et al. 1989a). Above the criti- 
cal value, a fire starting at any point on the land- 

scape can spread across the landscape. Below Pc, 
the landscape is dissected into many discrete 
patches, and natural barriers prevent the fire from 
spreading throughout  the landscape. 

For simplicity, we assume that space and time are 
appropriately scaled, i .e . ,  the disturbance can only 
move a unit in space during a unit of  time. In some 
cases, such as wind-dispersed embers, the distur- 
bance may jump over narrow barriers. We will deal 
with this special case of  jump dispersal in a later 
section of the paper. 

Using simple models, it has been demonstrated 
that critical percolation thresholds exist for 
epidemiological processes (Grassberger 1983, 
Kuulasmaa and Zachary 1984, Mollison 1986)and 
that simple epidemics die out at a critical threshold 
of occupancy on a landscape (Cox and Durrett 
1988). A few studies have considered simple models 
of forest fires on percolating landscapes (McKay 

and Jan 1984, von Diessen and Blumen 1986, Oht- 
suki and Keyes 1986). 

The purpose of  the present study is to modify the 
epidemiology model to incorporate spatial pattern 
and to explore the potential of  the model to (1) esti- 
mate the extent of  a disturbance, (2) examine 
equilibrium conditions for a disturbed landscape, 
and (3) study the interplay between spatial pattern 
and disturbance processes. 

The epidemiology model 

The simple epidemiology model (Bailey 1975) con- 
siders a population composed of three groups: x 

susceptibles, y infected, and z recovered individu- 
als. Recovered individuals are considered to be im- 
mune and no longer susceptible to infection. In the 
context of  a fire disturbance, x represents the un- 
burned forest in hectares or map pixels, y represents 
the forest actually burning, and z represents burned 
forest that is no longer susceptible to burning. The 
model takes the form: 

dx/dt  = - a x y  
dy/d t  = a x y  - b y  (1) 
dz /d t  = b y 

where a represents the rate of  disturbance spread or 
the probability of  a fire spreading to other sites, and 
b is the rate of disturbance extinction, i .e. ,  the in- 
verse of  the length of time a site burns. 

Equations (I) assume a well-mixed population in 
which all susceptibles have the same chance of  ex- 

posure to an infection. Therefore,  not only is it as- 
sumed that the population is uniformly distributed 
in space, it is assumed that the individuals move 
around/freely.  

To modify the equations for landscape studies, 
we need the probability that a disturbance will 
spread to an adjacent site multiplied by the proba- 
bility that the adjacent site is susceptible to dis- 
turbance. In previous studies, we have used the 
parameter,  i, to represent the probability of  a dis- 
turbance spreading to an adjacent site (Turner et 

al. 1989a, 1991, Gardner et al. in press) and con- 
tagion, q, to represent the probability that a sus- 
ceptible site will be found adjacent to a disturbance 



(O'Neill  et  al. 1988, Turner  1990, Turner  et al. 

1991). The revised equations become 

dx/d t  = - i q x y  

dy/d t  = iq xy - b y (2) 

dz/dt  = b y. 

The parameter ,  q, permits us to deal with some 
aspects of  spatial pattern.  Assume that  we can 

represent a landscape as a square lattice of  N cells 

with a fraction, p, of  the cells susceptible to distur- 

bance, i .e . ,  x at time zero, x (0) = pN. The re- 

mainder of  the landscape is not susceptible, i .e . ,  z 
(0) = ( 1 - p ) N .  If  the susceptible sites are randomly 

distributed in space, then the probabil i ty that a ran- 

domly chosen point is adjacent to a susceptible site 

is just q = p. If  q > p, then the landscape is patchy 

with susceptible sites occurring together in clusters. 
If  q < p, then the susceptibles are dispersed. Thus, 

the parameter  q represents the degree to which the 

landscape is patterned,  i .e . ,  the extent to which the 

landscape deviates from a random distribution. 

For a particular number  of  susceptible sites, it 
may be of  interest to know the max imum and mini- 

mum values of  contagion. Contagion reaches its 

maximum value when all of  the susceptible sites, 

x = pN, occur together as a single patch. On a 

square lattice, each susceptible pixel has 4 edges for 
a total of  4pN edges. If  the singular contagious 
patch is square, 4 (pN) ~ of  the total 4pN edges 

occur on the perimeter of  the square. Each peri- 
meter edge represents an adjacency ( x - z )  between 

a susceptible and nonsusceptible site. Therefore,  

max imum contagion occurs when 4pN - 4(pN) ~ 
edges are ( x - x )  adjacencies within the square 

patch, and 

Max (q) = ( 4 p N - 4 ( p N ) ~  = 
(pN_(pN)O.5)/pN. (3) 

To determine the minimum value of  q, we assume 

that if p < 0.5, it is possible to arrange the x sites 

so that contagion is zero, e .g . ,  a checkerboard pat- 
tern. Above p = 0.5, each susceptible site added to 
the landscape generates 4 x - x  adjacencies. So the 

minimum value of  q is given by, 

Min (q, p<0.5) = 0.0, 
Min (q, p>0.5) = 4 (pN-0.5N)/(4pN) = (4) 

(p - O. 5)/p. 
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It should be clearly understood that the model 
developed above (Eqs 2 - 4 )  deals with landscape 

level processes. We are considering the spread of a 

disturbance, such as fire, across blocks of  two- 

dimensional space representing, for example, forest 
stands. In our analyses, we will not be considering 
the spread of  a pathogen among  individuals of  a 

population.  As a result, our  assumptions and defi- 

nitions deviate significantly from the extensive 

body of literature in epidemiology. The most im- 
portant  distinction is whether individuals or units 

of  space are the variables of  interest. 

Predicting the spatial extent of  a single disturbance 

One of  the most useful features of  the landscape 

model (Eqs 2) is the ability to estimate the total ex- 

tent of  a single disturbance. Once initiated, the dis- 

turbance spread accelerates only as long as dy/dt  > 

0. When dy/d t  = 0, the rate of  disturbance spread 
begins to decrease. At this threshold point, 

dy /d t  = 0 = iq xy - by. (5) 

Equation (5) implies that there exists a threshold 

value of  unburned sites, x = k = b/ iq,  that defines 
the turning point in the disturbance spread. If the 

initial value of x(0) = pN is less than or equal to the 

threshold k, the disturbance does not spread. If the 

initial number  of  susceptible sites is greater than the 

threshold value, i .e . ,  x(0) -- k + m, then the total 
extent of  the disturbance will be 2m. There will be 

m sites disturbed up to the point that dy/d t  = 0 and 

an equal number  of  sites disturbed until y(t) = 0. 

Then, working from x(0) = k + m = pN and k 
= b/ iq,  the model predicts the total extent of  the 

disturbance as 

2m = 2pN - 2b/iq (6) 

Inspection of  Eq. (6) reveals that 2m may be larger 

than the total number  of  susceptible sites, pN. In 
this case, the theory predicts that all susceptible 

sites will be disturbed. 

The effect o f  pattern on disturbance extent 

From the viewpoint of  landscape ecology, the im- 
portant  thing to note about Eq. (6) is the interplay 
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between the dynamics of  the disturbance, 

represented by b and i, and the pattern of  the land- 

scape, represented by p and q. The conditions un- 
der which Eq. (6) predicts that all susceptible sites 

will be disturbed (i .e. ,  substitute 2m = pN) can be 
stated in several ways, but a useful form is: 

i > 2b /qpN,  (7) 

which emphasizes the sensitivity of  the prediction 

to disturbance spread, i. As the probabil i ty of  
spread increases beyond the critical value given in 

Eq. (7), all susceptible sites will be disturbed if they 

can be reached. Consider the case where the distur- 
bance extinction rate b = 1, p = q = 0.7 and the 
landscape size N = 100 • 100 = 10,000. Under 

these circumstances, any value of  i > 0.0004 will 

cause the disturbance to spread to all sites that it 

can reach. Any further increase in intensity may 
increase the rate at which the disturbance spreads 
but will have little effect on the total extent of  the 

disturbance. The extent of  the disturbance will be 

determined by the spatial pattern of  susceptible 

sites on the landscape, rather than the dynamics of  
the disturbance itself. 

The effect of  spatial pattern on the spread of dis- 
turbance can be illustrated by simulated distur- 

bances on landscapes of  100 x 100 cells. Using an 

existing model for disturbance spread (Turner et al. 
1989a), a single disturbance was initiated at a ran- 

domly chosen susceptible site. The disturbance can 

spread to any of the four adjacent cells with proba- 

bility i, given that the adjacent site is susceptible to 

disturbance. The simulation ends when the distur- 
bance is extinguished, i .e. ,  y(t) = 0. 

The results in Table 1 are based on 10 replicate 

simulations with parameters  set so that 2m > pN 

for p > 0.83 and 2m < pN for smaller values of  p. 

Percolation theory predicts that the well-mixed 
model (Eq. 6) will only be accurate at p > Pc = 
0.5928. Below the critical threshold, the landscape 

is fragmented and the well-mixed model will predict 

that the disturbance will spread to sites that cannot,  

in fact, be reached. The table reveals that simula- 
tions begin to deviate from the 2m prediction (Eq. 

6) at significantly higher values of  p. For the 

parameter  values in Table 1, the well-mixed model 
and simulations begin to diverge at p = 0.72. If  we 

Table 1. Simulations relating landscape pattern to the spread of 
disturbance. Simulated values are based on 10 replicates of a 100 
x 100 landscape with parameter values were chosen so that 2m 
< pN for p < 0.833. The ratio of simulated to predicted 
(Column 4) and should be 1.0 if Eq. (6) accurately predicts the 

extent of the simulated disturbance, i.e., if spatial pattern does 
not influence disturbance extent. 

Extent of Disturbance 

Susceptible Predicted Simulated Simulated/Predicted 

Sites (pN) (Eq. 6) 

10,000 10,000 9,974 0.997 
9,000 9,000 8,906 0.989 
8,000 7,666 7,651 0.998 
7,400 6,466 6,077 0.940 
7,300 6,266 5,326 0.850 
7,200 6,066 3,652 0.602 
7,100 5,866 3,411 0.581 
7,000 5,666 2,876 0.508 
6,900 5,466 1,104 0.202 
6,800 5,266 1,103 0.209 
6,600 4,866 451 0.093 
6,400 4,466 192 0.043 
6,200 4,066 120 0.029 
6,000 3,666 84 0.023 
5,500 2,666 30 0.010 
5,000 1,666 15 0.009 

use the criterion that a threshold occurs where 
simulation and model differ by a factor of  2, then 

the threshold is at p = 0.70. 
The results in Table 1 suggest that the pattern of  

susceptible patches plays an important  role in dis- 

turbance spread that is not reflected in the simple 
epidemiology model. The relative importance of 

landscape pattern and disturbance dynamics de- 
pends on the value of p and on the ratio 2b/ iq in 

Eq. (6). At small values of  the ratio, the distur- 

bance &aches all available sites. However ,  land- 
scape pattern limits the disturbance spread to the 

cluster on which the disturbance began. As p be- 

comes smaller, the likelihood increases that the dis- 

turbance will (1) be halted by the increasing number  

of  edges with non-susceptible sites, (2) be unable to 
pass a bottleneck in the increasing complex shape of  

the cluster, or (3) trap itself in a corner. 

The effect of  landscape contagion, q, are greatest 

at small values of  p. Table 2 shows the size of  the 
largest cluster of  susceptible sites on landscapes 



Table 2. Largest cluster of susceptible sites on 100 • 100 simu- 

lated landscapes. Results for various values of landscape oc- 

cupancy, p, without contagion and with q = 0.9 are the mean 

of 10 replicate landscapes. 

p No contagion q = 0.9 

0.80 7996 7998 

0.75 7440 7408 

0.70 6836 6575 

0.65 5796 5192 

0.60 2941 4431 

0.55 576 3214 

0.50 190 1395 

0.45 105 934 

0.42 77 499 

with no contagion and with relatively high con- 
tagion, q = 0.9. The effect of  contagion begins to 

become important  at Pc = 0.5928 and becomes in- 
creasingly important  as p becomes smaller. At 

small values of  p, the landscape with contagion 

contains clusters that are significantly larger than 

the purely random landscape. 

Landscapes with recovery 

On natural landscapes, the vegetation recovers 

f rom the effects of  single disturbances. The spatial 

pattern seen on the landscape results, in part,  f r o m  
the complex interactions of  repetitive disturbance 

and recovery events. To examine the long-term be- 

havior of  a disturbed landscape, it is necessary to 
modify Eq. (2) to include recovery. We introduce 

the probabili ty,  c, that a randomly selected dis- 
turbed site will recover during a unit of  time, i .e. ,  
a unit of  z becomes a unit o f  x. The equations now 

become: 

dx/d t  = - i q x y  § c z  
dy /d t  = iq xy - b y (8) 

dz/dt  = b y -  c z .  

Equation (8) admits an equilibrium solution and 

allow us to examine the circumstances under which 
a single disturbance may become endemic, i .e. ,  
always present on the landscape. Setting Eqs (8) to 

zero, solving the second equation for x(eq), and 

remembering that x + y + z = N, we find 
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x(eq) = b/ iq 

y(eq) = c (iqN - b)/iq (b + c) 

z(eq) = b ( i q N -  b)/ iq (b + c). 
(9) 

However,  the disturbance can only continue to 
spread across the landscape as long as the suscepti- 
ble habitat remains connected, i .e. ,  if x(eq) remains 

greater than or equal to Pc N. We will use this in- 
format ion in the first equation to set 

i -- b/(0.5928Nq). (10) 

Under this constraint,  we find: 

x(eq) = 0.5928 N 
y(eq) -- 0.4072 c n / ( b + c )  (I 1) 

z(eq) = 0.4072 bN/ (b  + c) 

Equations (11) will always yield feasible equilibria, 
permitting an endemic disturbance. However,  it 

must be recognized that the constraint represented 

by Eq. (10) is severe. For example, if b = 1.0, N -- 

100x 100 = 10,000, and q -- 0.7, then i must be 

equal to or less than 0.00024. If  the probabili ty of  
spread becomes greater than this value, x(t) be- 

comes less than Pc N and the disturbance can no 
longer spread throughout  the landscape. Eventual- 
ly, the disturbance becomes isolated in a small por- 

tion of the landscape and burns itself out. 

It is interesting to notice the effect of  the pattern 
parameter ,  q, on this result. At Pc = 0.5928 and N 
= 10,000, contagion can take on values, 0.156 < 

q < 0.987 (Eqs 3 and 4). This range of  feasible 

values of  q permits some flexibility in i. With b = 

1.0 and N = 10,000, the Min (q) = 0.156 allows i 
= 0.0022. The Max (q) = 0.987 constrains i to be 

less than 0.0003. Thus, the inclusion of spatial pat- 

tern in the form of  contagion permits the values of  
i to vary by a factor of  7. If  the susceptible sites are 

dispersed (minimal q) the disturbance can continue 
at larger values of  spread. But as q increases to a 
maximum,  the susceptible sites tend to be clumpt- 

ed. The disturbance attacks all sites in the clump 

and dies out. However,  even with the modification 

introduced by contagion, the probabili ty of  spread 
of  a single disturbance must be very small to remain 

endemic on the landscape. 
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Landscapes with multiple disturbances 

Equations (8) only consider the fate of  a single dis- 
turbance event. To consider more realistic distur- 

bance regimes, we must include the possibility of  

multiple disturbances, e.g., repeated lightning 

strikes beginning fires. We will introduce this factor  

with the parameter  f, representing the probabil i ty 
that a randomly selected susceptible site will be dis- 

turbed during a unit of  time. The equations now 

become: 

dx/d t  = - i q x y  + c z  - f x  
dy /d t  = i q x y  + f x  - b y  (12) 
dz /d t  = b y  - c z .  

The resulting equilibrium solutions are complex 

and most simply stated as: 

x(eq) = by/( iq  y +  f) 

z(eq) = by /c  (13) 
y(eq) = (U + ( U 2 + V ) ~  

where: U -- iqN - b - fR, 

V = 4iqfNR, 

W = 2iqR, 
R = 1 + b/c .  

The radical (U2+V)  ~ is always larger than U. 

Therefore,  the root o f  the equation with - 
(U 2 + V) ~ is always negative and of  no interest. If  

U is positive, then y, the number  of  sites being dis- 

turbed, is relatively large. If  U is negative, then y is 
relatively small. 

Equations (13) always give feasible solutions. 
The condition for x to be positive is y + z < N, or 

R [(iqN - b - fR) + ((iqN - b - fR) 2 + 
4iqfNR)~ < N 

which reduces to 0 < iqbN and is always satisfied 
for non-zero values of  the parameters.  

It is interesting to examine Eqs (13) for insights 
into the proport ion of  the landscape that will be 

susceptible sites (i.e.,  x(eq)) and the proport ion 
that will be in recovery stages (i .e. ,  z(eq)). For 

many situations, z(eq) can be considered as sites in 
various successional stages. The stable ratio 

x(eq)/z(eq) = c / i q y  + f. (14) 

implies that faster recovery rates will increase the 

number  of  mature,  susceptible sites, while greater 

disturbance intensity, greater contagion and greater 

disturbance frequency will all favor  a landscape 

dominated by successional stands. 
It is also interesting to examine Eqs (13) for con- 

ditions under which y(eq) is small. This represents 
conditions where the disturbances are small in ex- 

tent but consistently present on the landscape. The 

minimum value of  y(eq) occurs when U is negative, 
V is small, and W is large. For V = 4iqfNR to be 

small, while W = 2iqR is large, the value of  f must 

be small. Then,  if f is small, b must be relatively 

large. To ensure that U is negative, requires b > 

(iqcN - fc)/(c + f). It is also necessary that x(eq) re- 
main above Pc N for the disturbance to be endem- 

ic. This requires that y(eq) + z(eq) < N - Pc N, 
or pcqN + 1.4558fR < b and once again we see 
that f must be relatively small and b must be rela- 
tively large. 

Limiting assumptions  

The current study was designed as a theoretical in- 

vestigation of  the interplay between landscape pat- 

tern and disturbance dynamics.  The equations 
should not be considered a simulation model that 

would accurately predict dynamics on a specific 

landscape. Nevertheless, the theory contains a 

series of  assumptions that could limit the applica- 

bility of  the conclusions. Without repeating the en- 
tire analysis, it is possible to consider these assump- 

tions, suggest ways that the assumptions could be 

eased, and discuss how the conclusions might be ef- 
fected. 

The ~resent analysis assumes that disturbance 
can spread only to immediately adjacent cells, i.e., 
the adjacency x - x  is necessary. Many disturbances 

exhibit ' j ump  dispersal '  that moves across barriers. 

The simplest way to handle such a disturbance is to 

rescale the landscape data so that the size of  x is 
sufficiently large so that a disturbance moved 

across one unit of  x in one unit of  time considering 
all methods of  dispersal. This would require that 

the size of  x be larger than any of the small barriers. 

The net effect would be to increase both p and q and 



significantly decrease the importance of small-scale 

spatial pattern in determining the extent and persis- 

tence of  a disturbance. The impact  of  this change of  
scale on the percolation threshold, Pc, has been 
considered in O'Neil l  et al. (1988). 

An alternative approach to ' j ump  dispersal '  

might consider disturbance spread across addi- 

tional adjacencies. Consider a disturbance that can 
' j u m p '  a single non-susceptible pixel. Then the dis- 
turbance can spread across 3 of  the four possible 

configurations: x - x - x  with occurrance probabil i ty 
q2, x - x - z  with occurrance probabil i ty q ( l - q ) ,  and 

x - z - x  with probabil i ty ( 1 -q )q .  Only the configu- 

ration x - z - z  contains a double barrier that would 

be effective. The effective adjacency, q*, then be- 

comes the sum of  the probabilities of  finding any of 
the three configurations that permit transmission: 

q .  = q2 + q ( 1 - q )  + ( l - q ) q  = q ( 2 - q )  (15) 

Then,  q* can be substituted into any of  the equa- 

tions (Eqs 1 -14)  to examine the importance of 
' j u m p  dispersal ' .  Once again, the general effect is 
to decrease the importance of  small scale pattern in 

determining disturbance extent and persistence. 

Another  potentially limiting assumption can be 

found in Eqs (8). The recovery process, e .g . ,  succes- 

sion, may occur far more slowly than the process of  
disturbance spread, i .e . ,  c < < i. This difference in 

scale may lead to real problems (O'Neill et  al. 

1986). This assumption can be lifted by considering 

a number  of  successional stages, zj, j = 1, 2 . . . . .  
n, such that cj is of  the same magnitude as distur- 
bance spread, i. However,  it should be noted that 

this change does not alter Eq (10) or the conclusions 
based on Eq (10). In general, the change only rein- 

forces the conclusion that endemic disturbances are 
difficult to achieve on patterned landscapes. 

Conclus ions  

Examinat ion of  epidemiology models, modified to 
account for spatial pattern,  has suggested a number  

of  ways that pattern and process interact. For all 

but the smallest values of  disturbance spread, the 

disturbance moves to all reachable sites. The reach- 
able sites are a function of landscape pattern and 
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the extent o f  the disturbance is determined by spa- 

tial pattern that limits access to susceptible sites. 

Contagion is a simple way to represent landscape 

pattern. It represents the degree to which the sus- 

ceptible sites are clumped or dispersed. High levels 
of  contagion tend to increase the extent of  a single 

disturbance, particularly when the number  of  sus- 
ceptible sites is small and the probabil i ty of  distur- 

bance spread is large. Low levels of  contagion tend 

to increase the probabili ty that a single disturbance 
can become endemic on a landscape. 

The model provides insight into factors that de- 

termine the relative proport ions of  susceptible, dis- 

turbed, and successional sites when a landscape is 

exposed to repeated disturbance. Under these cir- 
cumstances, landscape composit ion is determined 

by a balance between spatial pattern and factors 

characterizing disturbance spread and recovery. 

Landscape geometry clearly influences the spa- 

tial extent of  disturbances. Thus, our results have 
implications for the analysis of  disturbed land- 
scapes. Ecologists have tended to focus on distur- 

bance dynamics and have given little attention to 

spatial effects. Our results suggest that new ex- 

perimental designs ought to address both the spatial 
pattern of  susceptible habitat and the dynamics of  

the disturbance. In this way, ecologists will gain a 

"more complete understanding of the causes and 

consequences of  ecological disturbances. 
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