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Abstract 

Using a geographic information system (GIS), digital maps of environmental variables including geology, 
topography and calculated clear-sky solar radiation, were weighted and overlaid to predict the distribution 
of  coast live oak (Quercus agrifolia) forest in a 72 km 2 region near Lompoc,  California. The predicted distri- 
bution of oak forest was overlaid on a map of actual oak forest distribution produced from remotely sensed 
data, and residuals were analyzed to distinguish prediction errors due to alteration of the vegetation cover 

from those due to defects of the statistical predictive model and due to cartographic errors. 
Vegetation pattern in the study area was associated most strongly with geologic substrate. Vegetation pat- 

tern was also significantly associated with slope, exposure and calculated monthly solar radiation. The 
proportion of observed oak forest occurring on predicted oak forest sites was 40% overall, but varied sub- 
stantially between substrates and also depended strongly on forest patch size, with a much higher rate of suc- 
cess for larger forest patches. Only 21~ of predicted oak forest sites supported oak forest, and proportions 
of observed vegetation on predicted oak forest sites varied significantly between substrates. The non-random 
patterns of disagreement between maps of predicted and observed forest indicated additional variables that 
could be included to improve the predictive model, as well as the possible magnitude of forest loss due to 
disturbances in different parts of the landscape. 

Introduction 

Regional vegetation analyses are conducted rou- 
tinely by landscape ecologists, geographers and 
resource managers in order to describe the distribu- 
tion of plant species and to relate observed distribu- 
tion patterns to biotic and abiotic site factors 
(Causton 1988). Typically, vegetation and site 
measurements from scattered samples are analyzed 
to develop empirical equations relating vegetation 
composition to measured site variables. Even in 
relatively undisturbed areas, such equations or 
vegetation 'site models' meet with mixed success in 

predicting actual vegetation patterns because of the 
complexity and dynamic behavior of  plant commu- 
nities across a range of spatial and temporal scales 
(Rowe and Sheard 1981 ). Ground samples inevita- 
bly comprise a very small fraction of the mapped 
region, raising the question of how representative 
resulting models are for unsampled areas. Samples 
are of predetermined area deemed suitable for 
describing vegetation stands, fixing somewhat ar- 
bitrarily the spatial scale of the analysis (Noy-Meir 
and Anderson 1971). Also, samples are usually lo- 
cated subjectively in homogeneous stands selected 
to be representative of idealized types (e.g., associa- 
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tions, wildlife habitat types, etc.), leading to selec- 
tive sampling of only some components of actual 
vegetation cover. As a result, a site model may 
predict a vegetation pattern very different from the 
actual pattern over the study region. These predic- 
tive errors may have practical consequences when 
site models are used to project the historical extent 
of  vegetation types, for example to locate restora- 
tion projects or natural preserves. 

A site model can be tested through additional 
field sampling; however, there are limits to the 
amount of  field data that can be collected. When 
maps of site model variables (e.g., geology, topog- 
raphy and soils) exist, a predictive vegetation map 
can be produced by map weighting and overlaying 
using a Geographi c Information System I (GIS). 
Given a map of actual vegetation distribution, one 
can overlay the maps to compare predicted to ob- 
served vegetation patterns to analyze spatial pat- 
terns of disagreement (cf. Thomas 1960). 

A number of  studies have used G1S capabilities 
of map weighting and overlay for modeling vegeta- 
tion pattern based on mapped environmental varia- 
bles (e.g., Box 1981). Most recently, predictive 
vegetation maps have been used in remote sensing 
applications to improve land cover classifications 
based on digital satellite data (e.g., Strahler 1981; 
Morissey and Strong 1986; Cibula and Niquist 
1987). In these studies, predictive models were de- 
veloped from ground samples and the GIS was used 
to extrapolate across unsampled areas. Our re- 
search approach is similar, except that we ace 
concerned with comparing predicted vegetation 
patterns to independently derived maps of actual 
vegetation (e.g., Hill and Kelly 1987). 

In principle, the interpretation of residual pat- 
terns from a comparison of observed and predicted 
vegetation maps is extremely complicated, because 
predictive errors can originate both from errors in 
maps of site variables and actual vegetation, and 
from inadequacies of the site model. We have 
found in practice, however, that residual patterns 
may be interpretable based on the analysts' knowl- 

I Burrough (1986, p. 6) defines a GIS as 'a  set o f  tools for col- 

lecting, storing, retrieving at will, t ransforming,  and displaying 

spatial data from the real world for a particular set of  purposes. '  

edge of  the data sources and the region under inves- 
tigation, supplying much information not obtaina- 
ble from simple goodness-of-fit statistics or ad- 
ditional field sampling. For example, patterns in 
residuals may reveal model biases, ecological sub- 
regions or ecological variables not previously recog- 
nized. Furthermore,  knowing how a vegetation 
model performs in different parts of  the study 
region can temper its application to management 
and planning decisions. 

We have used digital maps of site variables (i.e., 
geology, topography and calculated clear-sky solar 
radiation) and GIS capabilities to map the predict- 
ed distribution of natural vegetation types in 
coastal California whose actual distributions were 
mapped using Thematic Mapper Simulator (TMS) 
data. We compared the actual distribution of one 
vegetation type, coast live oak (Quercus agrifolia 
Ne6) forest, to the distribution predicted by a quan- 
titative site model, to answer the following ques- 
tions: 

- What is the total area and patch size distribution 
of  observed oak forest? 

- What is the total area and patch size distribution 
of predicted oak forest? 

- For areas of  observed oak forest, what is the 
amount and patch size distribution of predicted 
vegetation types? 

- For areas of  predicted oak forest, what is the 
amount and patch size distribution of  observed 
vegetation types? 

- How are areas where predicted and observed 
maps disagree distributed with respect to geolo- 
gy and topography? 

) 
Our ove(riding objectives in this paper are to test 
the power of  mapped site variables for predicting 
the distribution of  natural vegetation in coastal 
California, to demonstrate the utility of  high reso- 
lution satellite data and GIS capabilities in regional 
vegetation analyses, and to call attention to some 
methodological issues of  data scale and data quality 
that must be addressed in applying these technolo- 
gies to regional vegetation modeling. 



Study area 

We modeled natural vegetation pattern over a 72 
km 2 area northeast of Lompoc,  California (lati- 
tude 34o42 ' N, longitude 120~ The climate 
here is mediterranean, with relatively cool summers 
and mild winters. Over 90% of  the 36 cm average 
annual precipitation falls between November and 
April. 

Two distinct physiographic regions occur in the 
study area; Burton Mesa and the Purisima Hills. 
Burton Mesa is a marine terrace underlain by ma- 
rine sedimentary rocks that are covered with Orcutt 
sandstone, 0 . 5 - 40  meters of  weakly cemented 
Quaternary aeolian sands (Diblee 1950). Level up- 
land expanses from 100-  120 m above sea level are 
separated by wide valleys filled with Quaternary al- 
luvium. 

Most vegetated areas are covered by maritime 
chaparral,  which is dominated by evergreen shrub 
species including Adenostoma fasciculatum, Cea- 
nothus ramulosus, Arctostaphylos rudis and A. 
purisima (Davis et al. 1988). Multi-stemmed coast 
live oaks 3 - 6  m in height are interspersed through- 
out the chaparral,  attaining 4 0 - 7 0 %  crown cover 
in areas not recently disturbed by burning or clear- 
ing. Coastal sage scrub and annual grassland occur 
on formerly cleared sites and on south=facing 
slopes. Coast live oak forest is most extensive on 
steep north-facing slopes and in riparian corridors. 

The Purisima Hills are a northwest-southeast 
trending anticline of marine sedimentary rocks. 
Elevations range from 225 to 450 m, and topogra- 
phy consists of rolling hills with short steep slopes. 
Important geologic formations in the study area in- 
clude the Sisquoc diatomite and shale, the Careaga 
sandstone and the Paso Robles conglomerate. 
Predominant vegetation types in the Purisima Hills 
include coastal sage scrub, chaparral, bishop pine 
(Pinus muricata) forest, coast live oak woodland 
and coast live oak forest. Vegetation pattern is as- 
sociated strongly with geology and topography. 
Cole (1980) documented the association of  bishop 
pine forest with the diatomaceous member of  the 
Sisquoc Formation,  coast live oak forest with north 
facing slopes of the Careaga sandstone and Sisquoc 
shale, and coastal sage scrub or chaparral with 

71 

steep south facing slopes of the Purisima Hills. 
Natural vegetation in the study area is fragment- 

ed by roads, residential areas, agriculture and other 
developments. Remaining vegetation has expe- 
rienced a complex disturbance history over the past 
century or more that includes wildfire, grazing and 
clearing. These disturbances exert a strong and 
persistent effect on vegetation composition and 
weaken the association between actual vegetation 
and mapped site variables (e.g., Wells 1962; Davis 
et al. 1988). We applied predictive mapping only 
within areas where actual vegetation was dominat- 
ed by native shrub or tree species. We excluded an- 
nual grasslands, nearly all of  which were either ac- 
tively grazed or recently burned or cultivated (see 
below). 

Although we modeled the distribution of  5 vege- 
tation types (Table 1), we focused on the actual and 
predicted distribution of coast live oak (Quercus 
agrifolia Ne6) forest, which we define as vegetation 
where the species attai'ns at least 60% canopy cover. 
Because coast live oak is the only dominant broad- 
leaf evergreen tree in the study area, vegetation con- 
taining the species has a distinctive reflectance and 
can be mapped reliably with high resolution satel- 
lite data and aerial photography (Davis 1987). Fur- 
thermore, because coast live oak is relatively less 
adapted to drought than other mediterranean plant 
species, oak forests are generally restricted to mesic 
substrates and sites such as steep north-facing 
slopes and riparian corridors (Wells 1962; Griffin 
1973; Cole 1980). The documented association of 
the species with mapped surficial geology and 
topography makes it especially suited for testing the 
potential of  GIS-based predictive mapping. 

Melhods 

A vegetation map for the study area was produced 
using Thematic Mapper simulator data (28 m re- 
sampled to 30 m resolution) collected in July 1984 
(Davis 1987). Natural vegetation classes were 
mapped with 89% accuracy overall (accuracy deter- 
mined following Card (1982); see Davis (1987) for 
details). All classes were mapped with greater than 
85% accuracy except for oak forest, which was 
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Table 1. Classification system used to map dominant  natural  vegetation types in the study region. For logistic regression analysis, oak 

woodland and chaparral were merged into a 'woodland /chapar ra l '  category. Grassland and Willow woodland were excluded from the 

analysis. Map accuracy for each class is the proportion of samples classified correctly in the TMS-derived vegetation map,  based on 

141 test sites (see Davis (1987) for details). 

Class % Oak cover Dominant  species Map accuracy (%) 

Coast live oak forest >60  Quercus agrifolia 79 

Toxicodendron diversilobum 

Coast live 20 -60  Quercus agrifolia 86 

oak woodland 

,4 denostom a fasciodat um 
A rctostaphylos spp. 

Chaparral  0 - 2 0  Quercus agrifolia 89 

,4 denostoma fasciculatum 
Ceanothus iamltlosas 

C. hnpressus 

A rctostaphylos radis 
A. purisima 

Coastal Scrub 0-20  Salvia mellifera 86 

Baccharis pihdaris 
Ericameria ericoicles 

Artemisia californica 
Conifer Forest 0 -  30 Pinus muricata 92 

Quercus agrifolia 

Heteromeles arbutifolia 
Grassland 0 - 2 0  Bromus spp. 89 

Vulpia spp. 
A vena barbara 

Brassica spp. 
Willow woodland 0 - 2 0  Salix spp. 100 

mapped with 79% accuracy (Table 1). Oak forest 
was most frequently confused with dense oak 
woodland. This is not a severe mapping error, given 
that one class grades into the other. 

The vegetation map was co-registered in Univer- 
sal Transverse Mercator (UTM) projection to a 
geologic map of  the study area (Dibblee 1950) that 
we digitized using Earth Resources Data Analysis 
System (ERDAS) software (Fig. 1). Dibblee origi- 

nally mapped 19 geologic series at 1:50,000 scale. 
We did not attempt to quantify the accuracy of the 
map. To simplify the analysis of association be- 
tween vegetation and geology, recent Quaternary 
deposits, including terraces, alluvium and Orcutt 
sandstone, were merged into a single class (Orcutt 
sand comprised 86~ of this class). All three series 
were characterized by deep sandy soils. We anal- 
yzed three other widespread lithologic units, includ- 
ing the Paso Robles conglomerate, Careaga sand- 

stone, and Sisquoc diatomaceous shale. Although 
soil maps exist for the study area, we did not use 
them because the soil maps for the Purisima Hills 
were less detailed than the geologic map and had 
less predictive value. 

Topographic variables including elevation, slope 
angle and slope aspect, clear-sky solar radiation 
and drainage area were derived from the U.S. Geo- 
logical Stirvey 30 m digital elevation model (DEM) 
for the Lompoc quadrangle using software deve- 
loped at the UCSB Department of Geography 
(Frew and Dozier 1986). Unsmoothed elevations 
possessed 1 m vertical and 30 m horizontal resolu- 
tion, with a nominal root mean square error of 3.0 
m in both vertical and horizontal dimensions. 
Based on transit surveys of several hillslope profiles 
on eastern Burton Mesa, there was good agreement 
between actual and mapped elevations (r 2 = 0.93), 
but only fair agreement between actual and mapped 
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Fig. 1. Surficial geology of the s tudy area (simplified from Dib- 

blee 1950). 

slope angle (r2=0.41) and slope aspect (r2=0.38) 
(Goetz 1987). This is partly because errors in eleva- 
tion data were amplified by the local differencing 
operations used to calculate slopes and exposures. 
Errors were concentrated in areas of rapidly chang- 
ing slope and exposure such as ridges and ravines, 
and included both resolution errors (i .e. ,  under- 
sampling in areas of rapid change) and stereo- 
model errors (e.g. ,  overestimating surface elevation 
in riparian corridors filled with tall, continuous tree 
canopy). 

Incident radiation on a slope was calculated us- 
ing maps of slope angle and slope aspect as well as 
a horizon file which provided, for each cell in the 
elevation model, the angle to the local horizon for 
8 different azimuth sectors (i .e. ,  north, northeast, 
. . . )  (Dozier 1980; Dozier et al. 1981). Terms for 
diffuse irradiance and reflected radiation from sur- 
rounding terrain were estimated under specified 
conditions of  atmospheric scattering and transmit- 
tance and surface albedo. The range in elevations 
was small enough that the atmosphere was treated 
as the same at all locations. 

To produce maps of  monthly solar radiation for 
the months of December through June, we calculat- 
ed instantaneous radiation at hourly intervals for 
three days in each month, and integrated these 

Fig. 2. Distribution of integrated January  insolation calculated 

from digital elevation data. Image brightness is proportional to 

total insolation. Image orientation and area are the same as in 
Fig. 1. 

Fig. 3. Distribution of coast live oak forest mapped using July, 

1984 TMS data, shaded to indicate predicted vegetation types on 

observed oak forest. Black areas are non-forested areas. 

Colored areas are existing oak forest that were predicted by the 

Iogit regression model to be oak forest (red), oak woodland 

(blue), coastal scrub (green) or conifer forest (white). Image 

orientation and area are as in Fig. I. 
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values over the entire month. Because we could 
only roughly estimate seasonal atmospheric proper- 
ties, the calculated insolation values were treated as 
relative and scaled from 0 to 255 (Fig. 2). 

Variation in soil moisture related to drainage ba- 
sin position (e.g.,  upper slope versus lower slope) 
was modeled by calculating, for each cell, the num- 
ber of  cells in the basin which were expected to 
drain through that cell based on maps of  slope and 
exposure (e.g., Band 1986; Marks et al. 1984). 

The association of vegetation and mapped ter- 
rain variables was modeled using polychotomous 
Iogit regression analysis (Wrigley 1975). Vegetation 
samples were located by stratifying the study area 
into six subregions, and then sampling 40 -60  vege- 
tation stands from each subregion that were at least 
60 by 60 meters in area on 'uniform'  geology and 
topography (to minimize cartographic error). Sam- 
ple neighborhood was selected randomly, but sam- 
ple locations were sometimes adjusted 30 -60  m to 
meet our criteria of  uniform vegetation and site 
conditions. Vegetation type and percent cover by 
coast live oak in each sample were determined using 
1983 1:24,000 color aerial photography (high pho- 
tointerpretation accuracy was verified during nu- 
merous field visits between 1985 and 1987). Geo- 
logic substrate and values for topographic variables 
were taken from the digital database. 

The data consisted of 258 samples of four vegeta- 
tion types, oak forest (n = 60), oak woodland and 
hard chaparral (n = 116), coastal scrub (n = 62) and 
conifer forest (n = 20). We excluded willow wood- 
land because it is infrequent and is associated with 
riparian areas that we could not model successfully 
using the DEM data. As mentioned above, we also 
excluded grassland because this type occurs nearly 
exclusively on recently disturbed sites. Initially, oak 
woodland and chaparral were analyzed separately, 
but we observed no difference in the site relations 
of these tw 9 types so these types were combined to 
increase class sample size for estimating logit model 
coefficients. Oak cover increases during fire-free 
intervals on many chaparral-covered sites in the 
study area, and on these sites chaparral is probably 
seral to woodland (Wells 1962; Davis et al. 1988). 

Initial data exploration indicated that site rela- 
tions of the vegetation classes differed among the 

substrates, so separate logit regression models were 
developed for each geologic class. Topographic 
variables analyzed included elevation, slope, ex- 
posure, monthly and seasonal solar radiation and 
drainage basin position. Regression coefficients 
were estimated by ordinary least squares. Model 
performance was evaluated using the RHO-squared 
goodness-of-fit statistic (Costanzo et al. 1982) and 
by comparison of  predicted and observed vegeta- 
tion patterns (see below). 

To generate a map of  predicted vegetation pat- 
tern, vegetation class probabilities for each cell in 
the database were calculated from the regression 
equations, and the cell was assigned to the vegeta- 
tion class with the highest calculated probability of  
occurrence using the program PROBCLAS (May- 
nard and Strahler 1981). 

The correspondence between maps can be mea- 
sured by testing for non-random distribution of 
map residuals using spatial measures of  contiguity 
or spatial autocorrelat ion (Cliff and Ord 1981), or 
using aspatial measures of contingency or correla- 
tion (Phipps 1981). Given the large sample size 
(n = 79,605 cells) we assessed map correspondence 
using non-spatial analyses of randomly located 
samples. The use of  conventional significance 
tests of  association was problematic because the 
spatial dependence in mapped variables violated the 
assumption of sample independence (Fingleton 
1986). To avoid this problem we sub-sampled the 
maps at a sampling density low enough so that sam- 
ple values were expected to be independent at the 
average intersample distance. For topographic vari- 
ables, the sampling distance was determined empir- 
ically by semi-variogram analysis (Oliver and Web- 
ster 198~ to be around 210 m, corresponding to a 
2~ sample of  the region. Accordingly, the associa- 
tion of  observed vegetation pattern with topo- 
graphic variables was measured for a random sam- 
ple of 1450 cells (1.8% of  the study region) from the 
database. 

Results 

Oak forest was mapped over 4.5% of  the study 
area (Fig. 3). The remaining area was mapped as 
oak woodland and chaparral (19.4%), coastal 
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Fig. 4. Patch size distribution of observed oak forest in classified 

TMS image (bars) and cumulative proportion of  forested area as 

a function of patch size (line). 

scrub (20.0%), conifer forest (2.9%), or other 
(residential, cropland, grassland, willow wood- 
land) (53.2%). Mapped stands of oak forest aver- 
aged 0.51 ha, with the size distribution strongly 
skewed towards the 0.09 ha resolution of  the TMS 
data (Fig. 4). Some of the small patches were local 
dense clusters of  oaks in stands of oak woodland 
and chaparral (Davis 1987). These occurred primar- 
ily on Burton Mesa. Other small patches were forest 
stands that were highly localized in riparian cor- 
ridors or mesic coves, or were remnant fragments in 
areas subjected to historical clearing and burning. 

Table3. Summary  of polychotomous logit regression models for 

four potential natural vegetation classes, Burton Mesa and 

Purisima Hills. Signs in parentheses indicate the direction of  the 

relationship between the topographic variable and the likelihood 

of  oak forest. 

Geologic substrate Significant variables RHO-squared 

Quarternary deposits March insolation ( - ) 0.246 

Slope ( - ) 

Paso robles conglo- March insolation ( - )  0.174 

merate 

Careaga sandstone 

Sisquoc Diatomite 

March insolation ( - )  0.228 

Aspect ( + ) 

December insolation ( - )  0.192 

Elevation ( - ) 

All substrates 0.338 

Overlaying maps of  geology and vegetation cor- 
roborated the observations by Cole (1980) that 
conifer forest in the region is essentially restricted 
to diatomaceous shale of the Sisquoc formation 
(Table 2). Stratification of the region by geology 
combined with logit regression models based on 
topographic variables gave a relatively high RHO- 
squred of 0.338 (Table 3). The separate logit regres- 
sion models had only moderate predictive skill, 
with values for RHO-squared of  0 .17-0.25.  Calcu- 
lated March radiation was the topographic variable 
most strongly associated with the pattern of natural 
vegetation on all substrates except the Sisquoc 
diatomite, where December radiation was a better 
predictor. Differences in the association of vegeta- 
tion pattern and solar radiation for the months of 
December through March were slight (correlation 
of  March and December radiation = 0.97). 

The RHO-squared statistics indicated how well 
the model fit the 258 training samples, but a more 

Tahle 2. Frequencies and relative percentages of 4 natural vegetation classes and other land cover types on four geologic substrates in 

the study area (n = 79,605 cells). Percentages for each substrate sum to 100%. 

Oak Oak Coastal  Conifer  

Geology' forest woodland/chaparra l  scrub forest Other 

Quaternary deposits 2423 0.05 18824 0.39 8572 0.18 4 0.00 18530 0.38 

Paso Robles conglomerate 588 0.12 1335 0.26 1343 0.26 3 0.00 1811 0.36 
Careaga sandstone 1927 0.11 6468 0.37 6195 0.36 8 0.00 2848 0.16 

Sisquoc shale 939 0.11 5034 0.58 1434 0.16 500 0.06 819 0.09 
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OAK FOREST OAK WOODLAND COASTAL SCR CONIFER FOREST 

Fig. 5. Boxplots showing the distribution of  March insolation 

for 4 vegetation classes on all geologic substrates,  based on a 

random sample of 1450 cells from the database.  Sharp ridges 

and ravines were excluded from the sample,  because of the lower 

accuracy of  DEM data in those areas. Boxes show the upper 

quartile, median and lower quartile for observations;  vertical 

lines and asterisks show upper and lower extremes and outliers. 

Non-overlapping of notches indicates difference at a rough 5~ 

significance level (Chambers  et al. 1983). 

general test of model performance was provided by 
comparing predicted to observed vegetation pat- 
terns for the entire study region. The proport ion of  
observed oak forest that occurred on predicted oak 
forest sites was 40~ overall, but varied substan- 
tially between substrates (Table 4). For example, 

most observed oak forest on Quaternary deposits 
mapped onto predicted oak woodland sites. Low 
predictive success of  model was the result of: 1) car- 
tographic error due to confusion of  dense oak 
woodland and oak forest in the map of  actual vege- 
tation, and 2) ecological error, in the sense that oak 
forest was not as restricted to low radiation en- 
vironments as the model predicted. For example, 
many small patches of  oak forest were predicted 
oak woodland sites on level uplands of  Burton 
Mesa that were not recently burned or cleared. 

The proport ion of  observed oak forest on 
predicted oak forest sites also depended strongly on 
patch size (Fig. 6), with a much higher rate of  suc- 

cess for larger patches of  forest. Excluding patches 
less than 2 hectares (58% of  mapped oak forest), 
60o7o of  remaing forest occurred on predicted oak 
forest sites. The three largest patches of oak forest, 
all greater than 10 ha in size, fell entirely within 
predicted oak forest areas. Although we could not 
account fully for this scale-dependence in model fit, 
it was due in part to the high error rate for small 
oak forest patches on Quarternary deposits. Also, 
larger patches of  oak forest tended to occur on larg- 
er more homogeneous slopes, which were more ac- 
curately depicted by the DEM data. Finally, we ob- 
served in the field that many smaller patches of  
mapped oak forest occurred near seeps, along geo- 
logic contacts, in swales and near lower order 
streams, all environments that were not depicted 
reliably by the database. 

Only 21% of  predicted oak forest sites supported 
oak forest. 55~ supported oak woodland and 
chaparral and 24% supported coastal scrub, 
conifer forest or other cover types (mainly grass- 
land, crol~land and residential) (Fig. 7). Propor-  
tions of "observed vegetation on predicted oak 
forest sites varied sharply between substrates (Table 

Table 4. Relative proport ions of observed oak forest on predicted vegetation types as a function of substrate type (columns sum to 1). 

Predicted vegetation Quaternary  Paso Robles Careaga Sisquoc 

deposits conglomerate  sandstone shale 

Oak forest 0.24 0.27 0.42 0.50 

Oak woodland 0.73 0.37 0.42 0.02 

Coastal scrub 0.03 0.36 0.16 0.13 
Conifer forest 0.00 0.00 0.0 0.35 
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oak forest sites as a function of m i n i mum forest patch size ana- 
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locally weighted regression (Chambers  et al. 1983). Broken line 

shows corresponding percent of  observed oak forest on predict- 

ed oak woodland sites. 

5). For example, most predicted oak forest on 
Sisquoc shale was observed to be oak woodland and 
chaparral,  whereas on the Paso Robles it was main- 
ly coastal scrub and other. This partly reflected 
differences in land use and disturbance on these 
substrates. Fire has been the major form of  distur- 
bance on Sisquoc shale, whereas large areas of the 
Paso Robles conglomerate and Careaga sandstone 
have been cleared and grazed. On several substra:es 
the residuals were systematically associated with 
different topographic variables. For example, on 
the Sisquoc shale, conifer forest and oak wood- 
land/chaparral  occurred at significantly higher ele- 
vation than oak forest on I~redicted oak forest sites. 
We attributed this result to the association of these 
vegetation types with the diatomaceous member of  
the Sisquoc Formation,  which occupes higher ele- 
vations. Thus this model bias could be reduced by 
including a more detailed geologic classification. 
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Fig. 7. Predicted distribution of  coast live oak forest based on 

geology, topography and insolation. Black areas are predicted 

vegetation other than oak forest. Colored areas are predicted 

oak forest sites on which mapped existing vegetation was oak 

forest (red), oak woodland (blue), coastal scrub (green), conifer 

(white) or other land cover types (yellow). Image orientation and 

area are as in Fig. 1. 

Discussion 

The association between vegetation and calculat- 
ed monthly radiation was relatively strong for the 
months of  December through March, in spite of the 
inaccuracies and relatively coarse resolution of the 
DEM data. Also, vegetation pattern was more 
strongly associated with calculated radiation than 
with measures of  slope orientation that did not ac- 
count for shading by local horizons. These results 
indicate the potential for analyzing plant species 
distributions in relation to dynamic patterns of  so- 
lar radiation using high resolution (e.g., 5 -10  m) 
digital elevation data. Previously such analyses 
were possible only for sample points or localized 
transects (e.g., Kirkpatrick and Nunez 1980). Using 
accurate higher resolution data it should also be 
possible to relate vegetation patterns to topographi- 
cally-controlled patterns in soil moisture or sur- 
face hydrology (e.g., O'Loughlin 1986; Band 
1986). 

Results of predictive mapping suggest that coast 
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Table5. Relative proportions of observed vegetation or land cover types on areas predicted as oak forest sites, as a function of substrate 
type (columns sum to 1). 

Observed vegetation Quaternary Paso Robles Careaga Sisquoc 
deposits conglomerate sandstone shale 

Oak forest 0.17 0.14 0.18 0.13 
Oak woodland 0.54 0.24 0.35 0.65 
Coastal scrub 0.14 0.34 0.33 0.05 
Conifer forest 0.00 0.00 0.00 0.04 
Other 0.14 0.28 0.15 0.13 

live oak forest occupies only a small fraction of  ex- 
isting suitable habitat in the region, and that in 

mo'st areas it has been replaced by oak woodland 
and chaparral .  Wells (t962) blamed anthropogenic 

fires, cutting and grazing for the conversion of 

large areas of  oak forest to chaparral  in this area. 
Oak forest may require several to many decades to 
recover from such disturbances (Davis et al. 1988), 

although the rates probably vary between sites and 

depending on the nature of  the disturbance. In this 

study we observed that much of  the observed oak 
forest occurred only on the lower port ion of  slopes 

that were predicted oak forest. This could be a sys- 
tematic flaw in the predictive site model,  an indica- 

tion of  less frequent or less intense disturbance (es- 

pecially fire) of  lower hillslope areas, or more rapid 

recovery of oak forest f rom disturbances in these 
sites. Including maps of  recent fire and land use his- 

tories should help to resolve some of  the discrepan- 
cies between observed and predicted vegetation pat- 
terns in the region. 

Our analyses of  coast live oak forest are based on 
relatively simple GIS operations combining map 

weighting and overlay, patch size analysis, and spa- 
tial sampling. Such GIS-based ecological analyses 

are useful to the degree that maps derived from a se- 
quence of cartographic operations are of  sufficient 
spatial resolution to describe the ecological pro- 

cesses under investigation, and are of  sufficient ac- 
curacy so that ecological information is not over- 

whelmed by cartographic noise. Digital maps 
contain inaccuracies due both to inherent errors in 
the original data and operational errors from map 
digitizing and registration (Burrough 1986; Walsh 

et al. 1987), so that a geographical database is 
at best a ' fuzzy '  representation of  the landscape 

(Robinson and Strahler 1984). For this reason there 

is a t rade-off  between model complexity (e.g., more 
variables or more complex spatial operations) and 

model reliability (Burrough 1986). In the analyses 

reported here, we could readily generate enough 

samples f rom the database to outweigh cartograph- 

ic errors, so that previously documented associa- 
tions of  vegetation pattern with geology and topog- 

raphy were detectable (e.g., Wells 1962; Harrison et 

al. 1971; Cole 1980; Westman 1981). 

The results presented above are intended to illus- 
trate how GIS-based cartographic modeling can 

contribute to the analysis of  regional vegetation 

patterns and the association of vegetation with en- 
vironmental  variables. We are not suggesting that 

cartographic modeling can substitute for field sam- 
pling in developing and testing vegetation site 

models. However,  the types of  cartographic ana- 

lyses conducted here complement  traditional field 

survey methods by measuring associations or test- 
ing field results with many  more random samples 

and at larger spatial scales than can practically be 
collected in the field, facilitating the analysis of  
large heterogeneous landscapes. Furthermore,  we 

have fou/nd that the ability to overlay predicted on 
observed landscape patterns gives a strong sense of 

the true predictive skill and bias of  quantitative site 
models, providing useful guidance in terms of  mod- 
el improvement  and application. 
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