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Abstract. A complete description is given for the structure of
a class of semigroups consisting of all abundant semigroups S in
which the set of idempotents generates a regular subsemigroup
such that S contains a multiplicative type A transversal.

Introduction

Blyth, McAlister and McFadden (see {1], {2] and [10]) have studied the
structure of some classes of regular semigroups. These structures have been built
on a set of idempotents E which generates a regular semigroup of an inverse
semigroup S whose set of idempotents E° is a specified subset of E, and the
Munn homomorphism «a : § — Tgo. Consider

W=W(E,S,a)={(e,a,[)EEXSXE: eles fRFfa},

where ¢, and f, are idempotents associated with the element a in S.
A binary operation on W is defined as follows:

(e,a, f) (v,b,w) = (e(fv);[::l_, afvb,(fv)apw),

where aa = a, and @; is an extension of «,.

An analogue of this semigroup has been considered in classes of abundant
semigroups. Accordingly, structures of some classes of abundant semigroups are
studied (see [3] and [4]). In regular semigroups, the structure of split orthodox
semigroups is given in [10] by introducing the concept of the skeleton E° in a
band E where S is an inverse semigroup whose semilattice of idempotents is E°.
In this case W is a split orthodox semigroup and any split orthodox semigroup is
isomorphic to W(E, S, ) for some split band E whose skeleton E° is the set of
idempotents of a certain semigroup S. This result was generalized to split quasi-
adequate semigroups which satisfy an idempotent-connected property (condition
A in [3)).

The result of [10] was also generalized in [2] to a class of regular semi-
groups by extending the concept of the skeleton E° in a band E to the in-
verse transversal of a regular semigroup S. It was shown that if F is a set
of idempotents generating a regular semigroup with a multiplicative semilattice
transversal E and S is an inverse semigroup with a set of idempotents E°,
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then W{(E, S, a) is a regular semigroup with a multiplicative inverse transversal.
Conversely, any regular semigroup with a multiplicative inverse transversal is of
the form W(E,S,a). The aim of this paper is to get an analogue of this result
in the abundant case which is also a generalization of the result of [3].

Recall that an ebundaent semigroup is one in which each L*-class and
each R*-class contains an idempotent [8]. Here two elements are L*-related
(R*-related) in a semigroup if they are related by Green’s related L(R) in
some oversemigroup. The abundant analogues of orthodox semigroups are quasi-
adequate semigroups: an abundant semigroup is a quasi-edequate semigroup if
its idempotents form a subsemigroup [6]. When the idempotents commute in
an abundant semigroup, it is called an adequate semigroup [7]. An adequate
semigroup S is called type A if it satisfies the following equalities:

SeNSa = Sae,eSNalS = eaS

for any idempotent e and element a in S.

Type A semigroups are analogues of inverse semigroups in the abundant
case. Some properties of inverse semigroups have been extended to type A
semigroups (see [7]).

Recall that regular semigroups are abundant semigroups and in this case
L* = L and R* = R. In [2], a description was given for the construction
of all regular semigroups S with a multiplicative inverse transversal. In this
paper we extend this construction to abundant semigroups S such that the
set of idempotents in S generates a regular subsemigroup and S contains a
multiplicative type A transversal. The “building bricks” of our construction
are: an idempotent-generated regular semigroup with a multiplicative semilattice
transversal E° and a type A semigroup whose set of idempotents is E®. The
approach adopted is similar to that used in [2].

After the preliminary results, we introduce in Section 2 the concept of
multiplicative type A transversals. Sections 3 and 4 are concerned with the
general construction of abundant semigroups which contain multiplicative type
A transversals and includes a structure theorem for this class of semigroups.

We use the notation and terminology of [9]. Other undefined terms can
be found in the preceding papers [3] and [4].

1. Preliminaries

We recall some of the basic facts about the relations £* and R*. The
relation £*(R*) is defined on a semigroup S by the rule that a £* b(a R* b) is
and only if the elements a and b of S are related by Green’s relation L(R) in
some oversemigroup of S. Evidently, £*(R*) is a right (left) congruence on §.
The following lemma, from [5], provides us with an alternative description for

L*(R*):

Lemma 1.1. Let S be a semigroup and let a and b be in S. Then the following
conditions are equivalent:
(1) aL*b (a R* b);
(2) For all s,t € S, as = at (sa = ta) if and only if bs = bt (sb=tb).
As an easy consequence of Lemma 1.1 we have:

Corollary 1.2. Let S be a semigroup a € S and e be an idempotent of S.
Then the following conditions are equivalent:

328



EL-QALLALI

(1) al*e (aR*e)
(2) ae =a (ea = a) and for all 5,t € S, as = at (sa = ta) implies es = et
(se = te).
Obviously, in any semigroup S we have £ C £* and R C R*. It is well-
known and easy to see that for regular elements a and & in S, a L*b (a R* b)
if and only if ¢ £ b (a R b). In particular, if S is a regular semigroup, then
L*=L and R*=R.
Let S be an abundant semigroup with sets of idempotents F, and let
U be an abundant subsemigroup of S. U is called a left (right) *-subsemigroup
if for any a € I there exists e € U N E such that a L*(S)e (a R*(S)e). U is
called a *-subsemigroup if it is both a left and a right *-subsemigroup.
From [3] we have the following proposition:

Proposition 1.3. Let S be an abundant semigroup and let U be an ebundant
subsemigroup of S. U 13 a left (right) *-subsemigroup if and only if

LXU) = LXNS)N (U x U) (R*(U) = R*(S)N (U x U)) .

As in [5], if a is an element of S, then a* denotes a typical element

of L3(S)N E and al denotes a typical element of R}(S) N E. Recall that an
abundant semigroup S is adequate if its set of idempotents forms a semilattice.
In this case, it follows from the commutativity of the idempotents in S that each
L*-class and each R*-class contains a unique idempotent. For all @ and bin S,
it is easy to see that (ab)* = (a*b)* and (ab)! = (abh)t.

Let S be an adequate semigroup with semilattice of idempotents E. For
any a in S, define

[P JE S eE by ea, = (ea)", and B,:a"E — JE by ef, = (ae)f .

In order to use a, and §, to obtain a representation of S on the Munn
semigroup Tg as in the inverse (case (see [9]), it seems essential to impose the
condition that a, and 3, are both injective for each a in S. The following
proposition, from [7], relates this condition to others which allow one to show
that S with this condition can be represented in the Munn semigroup Tg.

Proposition 1.4. For any adequate semigroup S with semilattice of idempo-
tents E, the following conditions are equivalent:
(1) for each element a of S, the mappings a, and B, are injective;
(ii) for each element a of S: the mappings o, and B, are inverse isomor-
phismas.

(iii) for each element a of S and any idempotent e in A E and f in a*E
(a(ea))! = e and ((af)la)* = f .
The semigroups described in this proposition are called type A semi-
groups. This definition coincides with the definition in the introduction [7]. Since

any cancellative monoid is type A but not necessarily inverse, it is clear that the
class of type A semigroups properly contains the class of inverse semigroups.

329



EL-QALLALI

2. Adequate transversals

The aim of this section is to introduce the concept of a multiplicative
type A transversal for an abundant semigroup S. We begin by the following
Lemma.

Lemma 2.1. Let S be an cbundant semigroup with sets of idempotents E and
z,y € S. If there ezist e, f € E such that z = eyf and ¢ L yT, f R y* for
some yf, y*, then e R* z and f L* z.

Proof. Clearly ex =z. Let s, € S'. Then

sz =tz = seyfy" =tey fy*

= sey = tey (fRy* and yy* =y)
= .sey't = teyt (Corollary 1.2)
= se=te (e £ yly.
Now, by Corollary 1.2, e R* z. Similarly, f L* z. ]

Let S be an abundant semigroup with a set of idempotents E. Let S°
be an adequate *—subsemi%roup of § and E° be the semilattice of idempotents
of S% The semigroup SY is called an adequate transversal for S if for each
element z in S, there are a unique element z° in S° and idempotents e, f in

E such that z = ez f where e £ z°T, f R 2°* for z°1 and z°* in E°. In this
case e and f are uniquely determined by z, because, if

e1z’fi =z = ez’ f, where ¢; L :L‘OT,f,' R z%* (i=1,2),

then e; £ 2 ¢ e; and by Lemma 2.1, ¢ R* 2 R* e3. Thus e; H e; and
e; = ey. Likewise, f; = fo. Denote ¢ by e, and f by f,.

We say that the adequate transversal S° is multiplicative if for any
z,y € S, frey € E°. If it happens also that S° is type A, then it is called
a multiplicative type A transversal.

We are now in a position to show that when specialized to the regu-
lar case, our definition of abundant semigroups with a multiplicative adequate
transversal coincides with the definition of regular semigroups with a multiplica-
tive inverse transversal as defined in [2]. To demonstrate this fact, let .S be a
regular semigroup and S® be an inverse subsemigroup of S. If S° is a mul-
tiplicative adequate transversal of S in the sense of our definition and z € S,

then r = e yf, where y is in S°. It is clear that y* = y~'y and yT = yy~!
where y~! is the inverse of y in S°. Since e, £ yt and fr R y*, we have
yy~te, = yy~! which implies that y~le, = y~!. Likewise, fry™! = ¢y~ 1. It

follows that
1 —y iyl =yl

y eyt =y !

eyfay”

and
wyTle = eyfoy T eryfe = exyy T yfr = ey fe =
Hence, y~1 € S* NV (z).
Notice that = = zy~ !z = zy 'yy 'z,e;, = 2y™! and f, = vy~ 'z,
which coincides with the notation of [2]. Therefore S° is a multiplicative inverse

1 1
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transversal of S in conformity with the definition in [2]. On the other hand, if S
is a regular semigroup with a multiplicative inverse transversal S° in the sense
of the definition in [2], then S is an abundant semigroup and S° is an adequate
*-subsemigroup. In fact, S® is type A. Let y € SN V(z) and let y~! be the
inverse of y in S?. Clearly

T =gy = zyy‘ly:z .

Notice that (y‘l)T =y ly, (y"1)* = yy~!, zy and yz are idempotents in §
such that

ey £ (y ™M yz R 71

Thus, e, = zy and f, = yz. Therefore, e, and f, coincide with e, and
fe as defined before. It follows that SO is a multiplicative type A transversal of
S in conformity with our definition.

Note, however, that it is conceivable that a regular semigroup could have
a type A transversal which is not inverse.

Moreover, there is an abundant semigroup with a multiplicative type A
transversal which is not regular, as the following example illustrates.

Example 2.2. Let M be a cancellative monoid with an identity 1. Let E bea
set of idempotents which generates a regular semiband (E) with a multiplicative
semilattice transversal E®. Consider the direct products S = M x (E) and
S° = M x E°. It is clear that E(S) = {1} x E and E(S°) = {1} x E° are
the sets of idempotents of S and S°, respectively. Therefore, S is a semigroup
whose set of idempotents generates a regular subsemigroup with a multiplicative
semilattice transversal E(S°). For any (m,a) € S, let o' be an inverse of a in
(E) It is routine to check that (m,a) £* (1,d'a) and (m,a) R* (1,aa’'). Thus S
is an abundant semigroup which is not regular provided that M is not a group.
Likewise, for any (m,e) € S°, (m,e) L* (1,¢) and (m,e) R* (1, e). So, clearly
S9 is an adequate *- subsemlgroup of §. In fact, SY is a type A semigroup.
Now for any (m,a) € S, as a® € V(a)U EO, we have

a=aa°a0a°a.

Thus, (m,a) = (1,aa’)(m, ag(l a,a) where (1,aa%), (1,a%a) are idempotents
in S, (1,aa") E (1 a%); (1,a a)'R(l a®), and

(m, aO)T =(1,a%) = (m,d®)* .

It follows that e(,, 0y = (1, aao) and fim,q) = (1, aoa). Moreover, for any (m, a),
(m,b) in S we have a®abb® in E° and thus f(m a)€(m b € E(S®). Therefore, S0
is a multiplicative type A transversal for §.

3. The Semigroup W(E,S)

In this section we construct an abundant semigroup S in which the set
of idempotents generates a regular subsemigroup and S contains a multiplica-
tive type A transversal. It is clear from the previous section that the class of
abundant semigroups which satisfy these conditions properly includes the class
of regular semigroups with a multiplicative inverse transversal studied in [2].
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The components in this construction will be: type A semigroups and idempotent
generated regular semibands with multiplicative semilattice transversals.

To begin, let {E) be a regular semigroup generated by a set of idempo-
tents F and let E° be a multiplicative semilattice transversal of (E). Let S be
a type A semigroup whose semilattice of idempotents is isomorphic to E°. For
convenience of notation, we shall identify this semilattice with E®. Consider the
set

W =W(E,S)={(g,a,h) EExSxE:gLal AR al} .

For any (g,a,h) e W, g€ L al and g= gaTaf, where al € E°. Thus
¢’ = al and e, = g. Likewise fi = h. Hence for any (g,a,h) and (v,b,w) in W
we have hv = fre, € E? because E° is a multiplicative semilattice transversal

of (E).
Proposition 3.1.  The rule
(9, h) (v,b,w) = (g(ahv)!, ahvb, (hvb)?,)
defines a binary operation on W.
Proof. Let (g,a,h) and (v,b,w) be in W. Since (ahv)T = (ahv)TaT and
gL a]t, then g(ahv)T € E. Similarly, (hvb)*w € E. Furthermore,
g(ahv)t (ahvb)t = g(ahv)t (ahvit)t
= g(ahv)f (ahv)]L (v L bT)
= g(ahv)T ,

(ahvb)f g(ahv)t = (ahob)tal g(aho)t
= (ahvb) (ahv)t (¢ £ ah)
= (ahvb)t .
Hence, g(ahv)T L (ahvb)f. Similarly, (hvb)*w R (ahvb)*. "

The following sequence of results provides considerably more information
about W.

Proposition 3.2. W i3 a semigroup.
Proof. Let (g,a,h), (v,b,w) and (z,c,y) bein W. Then
(9,a, h)|(v,b,w),(z,¢,¥)] = (9,q, h)(v(bwm)f, bwze, (wzc)'y)
= (g - (ahv(bwz))), aho(bwz) T bwze, (ho(bwz)Tbwze)® - (wze)*y)
and
[(g,a,h)(v,b,w)] (z,c,y) = (g(ahv)T,ahvb, (hvd)* - w) (z,¢,y)
= (g(ahv)l - (ahvb(hvb)*wz)! | ahvb(hvb)* - wze, (hvb)*wzc)* - y).
Notice that
g(ahv)f (ahob(hvb)*wz)T = g(ahv)t (ahvbwz)t
= g(ahvbwz)T = g(ahv(bwa:)f)f .
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In a similar way, we obtain
(ho(bwz) bwzc)*(wze)'y = ((hub)*wze)'y .

Therefore, the first and the third components of the product coincide. Now for
the second components, we have

ahv(bzw)T bwze = ahvbwzre = ahvb(hvb)*wzc

and associativity holds. |

Proposition 3.3. W is an ebundant semigroup.
Proof. Let (g,a,h) be in W. Consider (g,aT,aT). It is easy to see that
(g,aT,aT) is an idempotent in W, and

(g,aT,aT) (9,a,h) = (g(aTatg)t,aTaTga,(aTga)* -h) =(g,a,h) .

Now let (v,b,w) and (z,¢,y) bein W. Then (v,b,w)(g,a,h) = (z,¢,y)(g,e, h);
that is,

(v(bwg)t, bwga, (wga)*h) = (x(cyg)T, cyga, (yga)*h) .
Hence v(bwg)f = z(cyg)f and bwga = cyga, which implies that bwgat = cygaf
by Corollary 1.2. Also,
(wga)*h = (yga)*h

gives (wga)*ha* = (yga)*ha* and (wga)* = (yga)*. Thus (with o, as in
Proposition 1.4), (wgaT)aa = (ygal)a,, and so wgaT = yga! since a4 is
injective. It follows that

(wgal)*al = (ygal)*al .
Now
(v, 6, w)(g,al,a) = (v(bwg)!, bwgal, (wgal)*al) |
and
(z,¢,u)(g, a1, al) = (2(cyg)T, cygal, (ygal)*al) .
Hence (v,b,w)(g,at,a]k) = (z,c,y)(g,aT,aT), and so by Corollary 1.2 it follows

that (g,a,h) R* (g,aj[,at). Similarly, (g,a,h) £* (a*,a*,h), and the result
follows. ]

Proposition 3.4.  The set of idempotents of W 13
EW) = {(g,a,h) € W :a® = a,ghg = g,hgh = h} .

Proof. For any (g,a,h) in W,
(9,0, h)(g,a, k) = (g(akg)t, ahga, (hga)*h) .
If o® = a, ghg = g, hgh = h, then clearly al =a=a*. Thus
ahga = ahgha = aha = a,g(ahg)f = ghg = ¢g and (hga)*h = ghg=h .

Therefore, (g,a,h) is an idempotent. Conversely, if (g, a, k) is an idem-
potent, then ahga = a which implies, by Corollary 1.2, that hgae = a*hga = a*
and ahg = aghaT = af. Hence

a =ahghga =ala* € E%thatis,a® =a .

Also g = g(ahg)l = ghg, and h = (hga)" - h = hgh. n
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Proposition 3.5. If (E(W)) denotes the subsemigroup of W generated by
E(W), then (E(W)) = {(g,a,h) € W : a® = a}.
Proof. This is the same as in [2]. ]

Proposition 3.6.  (E(W)) is isomorphic to (E).
Proof. Notice that if (g,a,h) isin (E(W)) and a® = a, then gah € (E) and
al =a= a*, so that gah = gh. Define ¢ : (E(W)) — (E) by {g,a,h)¢ = gh.
Since for any z € (E), there exists z° € E® such that = = e,2°f, where
es L zOT, 2o = 20 = 2%, 2" R f,. Thus z = e, fs, (es,2°, fz) € (E(W)),
and (ez,z%, fz)¢ = e fr = z. Therefore, ¢ is a surjective map. To show that
¢ is also injective, let (g,a,h) and (v,b,w) be in (E(W)) such that gh = vw.
Since a? = a, b = b we have gh = gah and vw = vbw. Thus gab = vbw;
a,b e E° and a = b follows from the uniqueness of the element in E° associated
with a given element in (E). Therefore gha = vwa which implies ¢ = v. Also
agh = avw which implies & = w. Thus (g,q,h) = (v,b,w) and ¢ is injective.
Finally, for any (g,a,k) and (v,b,w) in (E(W)) with a and b in E®, we have

(g9,a,h)(v,b,w)¢ = (g(ahv)T, ahvb, (hvd)* - w)¢ = (g(ahv), ahvb, (hvb)w)d
= (ghv, hv, hvw)¢ = ghvw = (g, a, h)¢(v, b, w)¢ ;

that is, ¢ is a homomorphism. Hence ¢ is an isomorphism.
As (E) is an idempotent-generated regular semigroup, we have the fol-
lowing corollary as an immediate consequence of Proposition 3.6.

Corollary 3.7.  The set of idempotents of W generates a regular semigroup.

We now proceed to a characterization of the relations £* and R* on W.
To do this, we need the following proposition.

Proposition 3.8. For any (g,a,k) and (v,g,w) in E(W),
(1) (g,a,h) L (v,b,w) if and only if a =b and h = w,
(i1) (g,a,h) R (v,b,w) if and only if a=b and g =v.
Proof.  Since (ii) is the dual of (i), it suffices to prove (1). If (g,a, ) £ (v, b, w),
then
(g9,a,h)(v,b,w) = (g,a,h) and (v,b,w)(g,a,h) = (v, b,w) .

That is, (g(ahv)T, ahvb, (hvb)* - w) = (g,a,h), and
(v(awg)T, bwga, (wga)* - h) = (v,b,w) .

Since a,b € E°, we get (ghv, hv, hvw) = (g,a, k) and (vwg, wg, wgh) = (v, b,w).
Therefore, hv = a, hvw = h; that is, aw = h. Also, wg = b and bh = w. Now
aw = h and bh = w imply abh = aw = h, which with ¢ R h implies aba = a.
Also baw = bh = w implies bab == b. But a,b € E°. Hence a = b. Since h R a
and 8 R w, then h R w. Now aw = h implies hw = h and bk = w implies
wh=w,so h L w. Thus hHw and h =w.

On the other hand, if (g, q, k) and (v, b,w) are in E(W) such that a =6
and h = w, then ¢ L a =b L v. It follows that

(g,a,h)(v,b,w) = (g(ahv)f, ahvb, (hvb)* - w)
= (ghv, ahvb, hvw) = (gvhv, hv, hvw) (g L)
= (g,hv, h) (h=w € V(v)).
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Since a,hv € E°, then by using the properties of elements of W we get
alyg C hv; that i 1s hv = a and thus (g,q, h)(v b w) = (g,a,h). Slmllarly,
(v,b w)(g,a h) = (v,b,w), and so (g,a,h) L (v,b,w

Now let (g,a,h) bein W = W(E S). From the proof of Proposition
3.3, we have

(g,a,k) L* (a*,a*, k) and (g,a, k) R* (g,a’,al).
Thus, for any (g¢,a,k) and (v,b,w) in W,

(g,a,h) LY(W) (v,b,w) & (a”,a",h)( L (b",b*,w)
& a*=bandh=w (Proposition 3.8)
& al*(S)band h=w.
and
(g,a,h) R*(W) (v,b,w) & (g,al,a") R (v,8751)
& al =T and g="v (Proposition 3.8)
& aR*(S)bandg=v.

Consequently, if we put H* = £* O R*, then (g,a,h) H*(W) (v,bw) &
aH*(S)b, h=w and g =v.
Finally, define W° = {(aT,a, a*);a € S)}. Since for any a and b in §,
(al,a,a) (b7, 8,5%) = (af (aa*b!)T, aabTh, (a*bTb)*b*) = ((ab)T, ab, (ab)") ,

we deduce that W° is a subsemigroup of W. In fact, a — (at,a,a*) describes
an isomorphism of S onto W?°, and so W9 is a type A semigroup. Clearly — as

in the proof of Proposition 3.3 — for any (at, a,a*) in W°
(a*,a”,a") L*(aT,a,a*) and (aT,aT,aT) R* (at,a,a") .

Thus WP is an adequate *-subsemigroup of W.
Now let (g,a,h) be in W. Since

(g,al,at)(al,a,a*) (0", a*, ) = (gal,a,(al a)*a*)(a", a, h)
= (g,0,0")(a*,a*, h)=(g(aa*)!,a,a*h)=(g,a, h),
it is clear that (g,at,af) and (a*,a*, k) are in E(W). By Proposition 3.8,
(g,at,al) £ (af,af,at) and (a*,a*, h) R (a*,a*,a") .
Further, if there exists (b7,b,5*) in W such that
(9,a,h) = (e,z, F)(bT,b,5")(i, ,5) ,

where (e, z, f) £ (bT,bT,ng, (i,y,7) R (b*,b%,b%) for (e,z,f) and (i,y,j) in
E(W), that is, for z,y € E’, then in particular

(e, 2, £)(bF, b1, b1) = (e, 2, £) and (81,81, ) (e, 2, £) = (o, b1 8Ty .
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It follows that zfb =z and as z R f so fbl = z. Also

o blevt), blex, zbtexdl) = (b1, 5t oT)

which implies zblezdt = b1 and hence zb = bf. Moreover, we have
(4,y,7)(b*, 0*,b%) = (b"‘ b*,b*) and (b*,b* b*)(z,y 7) = (1, y,]) By an argument
similar to the previous one, we obtain b t = y and b*y = b*. Recall that

(9,a,h) = (e(szt)T, szib, (beb) b*)(¢,y,J), which implies that

a = ofbTo(folb) b iy = zb(zb)*y  (Fbl = z,0%i = y)
=b (zbt = bT by = b*) .

Hence (af,a, a*) = (bT,b, b*). Therefore, (aT,a,a"‘) in W? is uniquely deter-
mined by (g,a, k) in W and W? is a type A transversal for W. In fact, W?° is
multiplicative since for any w = (e,a, f) and v = (g,b,h) in W, we have

= (a*,a*, f)’ €y = (ga b".a bT)
and fwew = (a*,a%, F)(g,b',81) = (a*(fg), a* fabT, (Fg)bT)
= (a*fg,a"fobl, fgbT) = (fg, fa, fo);

that is, fwe, € E(W?°). Hence WP is a multiplicative type A transversal for W.
Summing up, we have the following theorem:

Theorem 3.9.  Let (E) be an idempotent generated regular semiband with
multiplicative semilattice transversal E°, and let S be a type A semigroup whose
semilattice of idempotents 1is (isomorphic to) E°. Then W = W(E,S) is an
abundant semigroup in which the set of idempotents generates a regular subsemi-
group isomorphic to (E) and W contains a multiplicative type A transversal W°
which is isomorphic to S'.

4. The Characterization

In this section we shall prove the following converse of Theorem 3.9. Let
S be an abundant semigroup in which the set of idempotents generates a regular
subsemigroup. Furthermore, let S contain a multiplicative type A transversal.
Then S has the same form as the semigroup constructed in Section 3.

Let S be an abundant semigroup in which the set of idempotents E
generates a regular subsemigroup (E). Suppose that S contains a multiplicative
type A transversal S° whose semilattice of idempotents E° is the corresponding
semilattice transversal of (E). Our objective is to prove that § is isomorphic to

W = W(E, §°). We begin by providing a technical result.

Lemma 4.1. For any z and y in S, we have:
(@) (@) = 2 foey®; (i) exy = ec(sfoey)Ts (i) fry = (foegs®)"fy-

Proof. Since z =e,2°f, and y = €,4°f,, we have

Ty = ezxofzeyyofy = ez(:cof,ey)t fcofzeyyo (fzeyyo)*fy .
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It is clear that
(2° freyy) = (2 faeyu' )T = (° frey)T R 2 fuey
which implies 27 (20 f e,)T = («°f.¢,)!. But ¢, £ 2°T, and so
ex(@®faey)l £2T(2% frey)T = (2 frey) = (20 freay®)t .

Similarly, (fze,y°)*fy R (z°f.e,y°)*. Now z°f,e,y° € S° and so (i), (i) and
(iii) will follow from the uniqueness of (zy)°, e;, and fz, if we show that
e,(xof,ey)T and (fre,y°)*f, are idempotents.

For any element a and idempotent e of any type A semigroup we have

(ae)J[aT = aT(ae)T = (ae)Jf .
Hence, since e, L zOT, we have

(@ foey) ea(e® fae)t = (20 faey) 2 ex (2 foep)T = (e fey)t 2% (20 frey)t
= (2% frey) (2% fuey)| = (e faey) .

Thus e,(xof,ey)T is an idempotent. Similarly, so is (f2€,y°)f, and so the proof
is complete. ]

Theorem 4.2. S is isomorphic to W = W(E, S9).

Proof. For any z € 5, 2° € S° and = = e.2"f, where e, and f, are
idempotents uniquely determined by z and e, £ :I:OT, fz R 2. Therefore
(er, 2%, fz) € W = W(E, S°).

Define © : § — W by 20 = (e,,2% f.) for any z in §. If for any z,
yin S, (e5,2° f2) = (ey,9°, fy), then « = e,2°f; = €,3°f, = y and we have
that © is an injective map.

To show that @ is also surjective, let (g,a,h) be in W, and consider
b = gah. It is easy to see that b € S and ¢, = g, ¥ = @ and f, = h.
Consequently,

bO = (ebaboﬁfb) = (g)avh)

and O is surjective.
Finally, for any z and y in S,

20Y0 = (e2,2°, fo )y, ', fy) = (ex(e*Foe) 2 freyy®, (frey®)' £))
= (ezy, (2y)°, fey) (Lemma 4.1)
= (zy)© .

So © is a homomorphism. Hence © is an isomorphism.

In general, a semigroup S which is isomorphic to W(E, $°), as in the
previous theorem, need not be a quasi-adequate semigroup (see Example 5.3 in
[2]) and it is of interest to see when this is the case.
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Proposition 4.3.  If the function ¥ : § — S defined by 20 = 2° is ¢
homomorphism from S into S°, then S is a quasi-adequate semigroup.
Proof. By Lemma 4.1, we have z°y® = (zy)° = 2°f,e,y°, which implies by
Corollary 1.2 that z%*y° = 2°* foe,y® = foe,y°. Then 2%y = f,;eyyo\L = fre,
for any z and y in S. In particular, if v,w € E, then

0

(’Uw)o = wo = fvew where vo,wo eF s

because E° is a multiplicative semilattice transveral of (E). It follows that

VW = €4y (VW) fr = ev(vof,,ew)Jr P w(fueww®)* fu (Lemma 4.1)
= evaewwovofvewfw (vowo’ foew € EO)
= eufvewfvewfw = evaewfw = eu'Uowofw (UOwO = fvew)
=eyfuw -

Now it is clear from above that we have
evfw = ewwovofv = ewfweva, evaev = evavO and fvevf'u = vovofv = fv -
Likewise, €y fwew = €y and fyeyfuw = fu, and so

vw = evf'u; = 6vaevfwewfw = evfwewfvevfw (fvev,fw S EO)
= evfwewfwevaevfw (ewfv = ewfweva)

= ey fwey fu = (vw)(vw) .

Thus vw is an idempotent and E is a band. Thus, S is a quasi-adequate
semigroup. |

If S is a quasi-adequate semigroup, that is if £ = (E}, we follow [9] and
denote the J-class in E of an idempotent e by E(e). In this case, as in [6], we
define the relation é§ on S by the rule:

a 6 bif and only if b = eaf for some e € E(at),f € E(a") .

Proposition 4.4. Let S be a quasi-adequate semigroup. The function ¥
of Proposition 4.3 is a homomorphism from S into S° if and only if § is a
congruence on S. In this case, Ker ¥ =4§.
Proof. If § is a congruence, then for any = and y in S, 2z § z° and y 6 ¢/°
we have 2y § z%%°. But 2%° and (zy)° € S°. Thus (zy)° = 2% and T isa
homomorphism.

Conversely, suppose that ¥ is a homomorphism and let z, y and ¢ be
in S such that z 6 y. Then z° = ¢° so that z°° = 4°c°. Now because ¥ is a
homomorphism, (zc)® = (yc)?; that is, zc § yc. Likewise, czécy. Therefore, é
1s a congruence.

Finally, if ¥ is a homomorphism and z,y € S, then

(z,9) EKer TV & x¥ =yl & x* =y & (x,y) €56

It now follows that if ¥ is a homomorphism, then S is a quasi-adequate
semigroup on which 6 is a congruence and thus ¢ is the minimum adequate good
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congruence on S [6]. Consider the mapping « : $/§ — S defined by (z6)r = 2°.
For any z and y in S,

(@8)m(yé)m = 2%¢° = (zy)® = (ay)é7 = (z6yé)r

so 7 is a homomorphism. Moreover, ¢ = e,z’f, and for any z* there exists
(alr:’")0 € E° such that z* = e (z*)0f». Let 2% € L7, (S)N E®. Then

2 R fo L% 7 L foe R (a¥)°

and so z°* D (z*)°. But F is a band, and 2%, (2*)° € E°. Hence z°* = (2*)°,
and (z*8)r = (z*)° = 2™ = ((28)r)*. Similarly, for = we get (z1)° = (2
and (zT5)7r = ((325)7\')'r It follows that for any z and y in S, if z £* y, then
(z*6)n L (y*6)m, but from above we have for any z*,y*, (2*8)7 = ((zé)n)*,
(y*6)m = ((yb)w)*. Therefore:

(8)7 L* ((z8)7)" = (2*&)7 L (y*8)m = ((y6)m)* L™ (yé)m .

Similarly, z R* y implies (x8)m R*(yd)7.

Hence, 7 is a splitting homomorphism and S is a split quasi-adequate
semigroup [3].

Further, for any (g,a, k), (v,b,w) in W, we have a* R h, bt £ v and
pla* Lva* R vk LbMh. But Disa congruence on E and the D-classesin E are
the rectangular bands in E. Therefore, va*bThva* = va* so that vhva* = va*
which implies blvhva* = blva* and thus bTh - va* = bfa*. Then

ahvb = aa*hvblb = a(a*b! bt hva*)b
= a(bThva*)b = abla*b

= aa*blb=ab.
Hence the products in W coincide with those in [3]. Therefore the result in this
paper extends the result in the previous paper [3]. =
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