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R E S E A R C H  A R T I C L E  

A b u n d a n t  S e m i g r o u p s  
w i t h  a M u l t i p l i c a t i v e  T y p e  A T r a n s v e r s a l  

A b d u l s a l a m  E I - Q a l l a l i *  

Communicated by John M. Howie 

A b s t r a c t .  A complete description is given for the s t ructure  of 
a class of semigroups consisting of all abundant  semigroups S in 
which the set of idempotents  generates a regular subsemigroup 
such that  S contains a mult ipl icat ive type A transversal.  

I n t r o d u c t i o n  

Blyth,  MeAlister  and McFadden (see [11, [21 and [101) have s tudied the 
s t ructure  of some classes of regular semigroups. These s tructures  have been built  
on a set of idempotents  E which generates a regular semigroup of an inverse 
semigroup S whose set of idempotents  E ~ is a specified subset of E ,  and the 
Munn homomorphism a : S --~ TE o . Consider 

W = W ( E , S , , )  = { ( e , a , f )  E E x S x E :  eZ:ea,  f R f . } ,  

where e~ and fa are idempotents  associated with the element a in S .  
A binary  operat ion on W is defined as follows: 

(e, a, f )  (v,  b, w)  = (e(fv)o~21 , a f vb ,  ( f v ) " ~ w ) ,  

where a s  = a~ and ~ is an extension of a~ .  
An analogue of this semigroup has been considered in classes of abundant  

semigroups. Accordingly, s t ructures  of some classes of abundant  semigroups are 
s tudied (see [3] and [4]). In regular  semigroups, the s t ructure  of split or thodox 
semigroups is given in [10] by introducing the concept of the skeleton E ~ in a 
band E where S is an inverse semigroup whose semilatt ice of idempotents  is E ~ . 
In this case W is a split or thodox semigroup and any split  or thodox semigroup is 
isomorphic to W ( E ,  S, c~) for some split band E whose skeleton E ~ is the set of 
idempotents  of a certain semigroup S.  This result  was generalized to split  quasi- 
adequate  semigroups which satisfy an idempotent -eonnected  proper ty  (condit ion 
A in [3]). 

The result of [10] was also generalized in [2] to a class of regular semi- 
groups by extending the concept of the skeleton E ~ in a band  E to the in- 
verse t ransversal  of a regular semigroup S .  It was shown that  if E is a set 
of idempotents  generat ing a regular semigroup with a mult ipl icat ive semilat t ice 
t ransversal  E ~ and S" is an inverse semigroup with a set of idempotents  E ~ , 
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then W ( E ,  S, a) is a regular semigroup with a multiplicative inverse transversal. 
Conversely, any regular semigroup with a multiplicative inverse transversal is of 
the form W(E,  S, a). The aim of this paper is to get an analogue of this result 
in the abundant case which is also a generalization of the result of [3]. 

Recall that  an abundant semigroup is one in which each /:*-class and 
each 7~*-class contains an idempotent [8]. Here two elements are /:*-related 
(T~*-related) in a semigroup if they are related by Green's related s in 
some oversemigroup. The abundant analogues of orthodox semigroups are quasi- 
adequate semigroups: an abundant semigroup is a quasi-adequate semigroup if 
its idempotents form a subsemigroup [6]. When the idempotents commute in 
an abundant  semigroup, it is called an adequate semigroup [7]. An adequate 
semigroup S is called type A if it satisfies the following equalities: 

Se N Sa =Sae ,  eS n aS = eaS 

for any idempotent e and element a in S. 
Type A semigroups are analogues of inverse semigroups in the abundant 

case. Some properties of inverse semigroups have been extended to type A 
semigroups (see [7]). 

Recall that  regular semigroups are abundant semigroups and in this case 
/:* = /: and 7"/* = 7"/. In [2], a description was given for the construction 
of all regular semigroups S with a multiplicative inverse transversal. In this 
paper we extend this construction to abundant semigroups S such that  the 
set of idempotents in S generates a regular subsemigroup and S contains a 
multiplicative type A transversal. The "building bricks" of our construction 
are: an idempotent-generated regular semigroup with a multiplicative semilattice 
transversal E ~ and a type A semigroup whose set of idempotents is E ~ . The 
approach adopted is similar to that  used in [2]. 

After the preliminary results, we introduce in Section 2 the concept of 
multiplicative type A transversals. Sections 3 and 4 are concerned with the 
general construction of abundant semigroups which contain multiplicative type 
A transversals and includes a structure theorem for this class of semigroups. 

We use the notation and terminology of [9]. Other undefined terms can 
be found in the preceding papers [3] and [4]. 

1. P r e l i m i n a r i e s  

We recall some of the basic facts about the relations s and 7"4*. The 
relation /:*(R*) is defined on a semigroup S by the rule that a s b(a T~* b) is 
and only if the elements a and b of S are related by Green's relation /:(7~) in 
some oversemigroup of S.  Evidently, s is a right (left) congruence on S. 
The following lemma, from [5], provides us with an alternative description for 
/:*(ze*): 

L e m m a  1.1. Let S be a semigroup and let a and b be in S.  Then the following 
conditions are equivalent: 

(1) a s b (a ~* b); 
(2) F o r  all s,  t e S 1 , as -~- a t  (,~a = ta)  i f  and only  i f  bs -~ bt (85 ~- tb) .  

As an easy consequence of Lemma 1.1 we have: 

C o r o l l a r y  1.2. Let S be a semigroup a E S and e be an idempotent of S.  
Then the following conditions are equivalent: 
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(1 )  a Z:* e (a  T~* e)  
(2 )  a e  = a ( c a  - -  a)  and for  all s , t  e S 1 , as = at  ( s a  = ta) implies e s  = et 

(se = re). 
Obviously, in any semigroup S we have L: C L* and ~ C T4*. It is well- 

known and easy to see that  for regular elements a and b in S,  a L:* b (a T~* b) 
if and only if a s b (a 7~ b). In particular, if S is a regular semigroup, then 
Z;* =Z:  and 7"4* =7~.  

Let S be an abundant semigroup with sets of idempotents E ,  and let 
U be an abundant  subsemigroup of S. U is called a left (right) *-subsemigroup 
if for any a C I there exists e e U f3 E such that  a / : * ( S )  e (a 7?~*(S) e). U is 
called a *-subsemigroup if it is both a left and a right .-subsemigroup. 

From [3] we have the following proposition: 

P r o p o s i t i o n  1.3. Let S be an abundant semigroup and let U be an abundant 
subsemigroup of S .  U is a left (right) *-subsemigroup if and only if 

L * ( u )  = c * ( s )  n ( u  x u )  ( n * ( u )  = n * ( s )  n ( u  x u ) )  

As in [5], if a is an element of S, then a* denotes a typical element 

of L~(S) Cl E and at  denotes a typical element of R*~(S) Cl lY,. Recall that  an 
abundant semigroup S is adequate if its set of idempotents forms a semilattice. 
In this case, it follows from the eommutativity of the idempotents in S that each 
L;*-class and each 7Z*-class contains a unique idempotent. For all a and b in S,  
it is easy to see that  (ab)* = (a'b)* and (ab)t = (abt ) t .  

Let S be an adequate semigroup with semilattice of idempotents E.  For 
any a in S,  define 

c~a : a t E - - - * a * E b y  ea~ =(ca )* ,  and f l a : a * E - " * a t E b y  efl~ = ( a e ) t  . 

In order to use tea and fla to obtain a representation of S on the Munn 
semigroup TE as in the inverse (case (see [9]), it seems essential to impose the 
condition that  a~ and fl~ are both injective for each a in S. The following 
proposition, from [7], relates this condition to others which allow one to show 
that  S with this condition can be represented in the Munn semigroup :rE. 

P r o p o s i t i o n  1.4. For any adequate semigroup S with semilattice of idempo- 
tents E ,  the following conditions are equivalent: 

(i) for each element a of S ,  the mappings (~ and 13~ are injective; 
(ii) for each clement a of S:  the mappings a~ and 13. are inverse isomor- 

phisms. 

(iii) for each element a of S and any idempotent e in a~E and f in a*E 

(a(ea)*)f  = e and ( (a f ) fa )*  = f . 

The semigroups described in this proposition are called type A semi- 
groups. This definition coincides with the definition in the introduction [7]. Since 
any cancellative monoid is type A but not necessarily inverse, it is clear that  the 
class of type A semigroups properly contains the class of inverse semigroups. 
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2. Adequate  transversals  

The aim of this section is to introduce the concept of a multiplicative 
type A transversal for an abundan t  semigroup S. We begin by the following 
Lemma. 

L e m m a  2.1. Let S be 

x , y  E S .  I f  there exist 

some y t ,  y*, then e T~* x and f f~* x .  

P r o o f .  Clearly ex = x .  Let s, t E S 1 . Then 

an abundant semigroup with sets of idempotents E and 

e , f  E E such that x = e y f  and e L y t  f 7r  for  

sx  = tx  ~ s e y f y *  = tey  f y*  

sey  = tey  ( f  Tr y* and yy* = y) 

s ey t  = t ey f  (Corollary 1.2) 

se = te (e s y t )  . 

Now, by Corollary 1.2, e 7"r x. Similarly, f /~* x. �9 

Let S be an abundant  semigroup with a set of idempotents E .  Let S ~ 
be an adequate *-subsemi~roup of S and E ~ be the semilattice of idempotents  
of S ~ The semigroup S o is called an adequate transversal for S if for each 
element x in S,  there are a unique element x ~ in S o and idempotents e, f in 

E such that  x = e x ~  where e s x ~  f Tgx ~ for x~  and x ~ in E ~ In this 
case e and f are uniquely determined by x,  because, if 

e l x ~  = x = e2x~ where ei C x ~ fi 7~ x ~ (i = 1, 2) , 

then el /: x ~ /: e2 and by Lemma 2.1, el 7"r x 7r e2. Thus el 7-/ e2 and 
el = e2. Likewise, f l  = f2. Denote e by e~ and f by f~. 

We say that  the adequate transversal S O is multiplicative if for any 
x , y  E S ,  f~ev E E ~ If it happens also that  S ~ is type A, then it is called 
a multiplicative type A transversal. 

We are now in a position to show that when specialized to the regu- 
lar case, our definition of abundant  semigroups with a multiplicative adequate 
transversal coincides with the definition of regular semigroups with a multiplica- 
tive inverse transversal as defined in [2]. To demonstrate this fact, let S be a 
regular semigroup and S ~ be an inverse subsemigroup of S. If S O is a mul- 
tiplicative adequate transversal of S in the sense of our definition and x E S, 

then x = e~yfx  where y is in S o . It is clear that  y* = y - l y  and yt = yy-1  

where y-1 is the inverse of y in S o . Since e~ s yt  and f~ ~ y*, we have 
y y - l e ~  = yy -1  which implies that y - l e ~  = y - 1 .  Likewise, f~y -1  = y-1 .  It 
follows that  

y - l x y - 1  = y - l e x y f x y - 1  = y - l y y - 1  = y-1  

and 
x y - l x  = e z y f x y - l  exyf~ = e x y y - l y f x  = e~yfx  = x . 

Hence, y-1  E S O 0 V ( x ) .  
Notice tha t  x = x y - l x  = x y - l y y - l x ,  e ,  = x y  -1 and f ,  = y - i x ,  

which coincides with the notat ion of [2]. Therefore S O is a multiplicative inverse 
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transversal of S in conformity with the definition in [2]. On the other hand, if 5' 
is a regular semigroup with a multiplicative inverse transversal S o in the sense 
of the definition in [2], then S is an abundant semigroup and S o is an adequate 
*-subsemigroup. In fact, 5"0 is type A. Let y �9 S O n V ( x )  and let y-1 be the 
inverse of y in 5"0. Clearly 

- 1  x = x y a = z y y  y z .  

Notice that (y-1)~ .__ y - i v ,  ( y - l ) .  = y y - 1 ,  x y  and y x  are idempotents in S 
such that  

x y  s ( y - 1 ) t , y x  ~ ( y - ~ )  * �9 

Thus, e~ = x y  and f~ -- y x .  Therefore, e~ and f~ coincide with e~ and 
f~ as defined before. It follows that  S O is a multiplicative type A transversal of 
S in conformity with our definition. 

Note, however, that  it is conceivable that a regular semigroup could have 
a type A transversal which is not inverse. 

Moreover, there is an abundant semigroup with a multiplicative type A 
transversal which is not regular, as the following example illustrates. 

E x a m p l e  2.2. Let M be a cancellative monoid with an identity 1. Let E be a 
set of idempotents which generates a regular semiband (E) with a multiplicative 
semilattice transversal E ~ Consider the direct products S = M x (E) and 
S O = M x E ~ It is clear that  E ( S )  = {1} x E and E ( S  ~ = {1} x E ~ are 
the sets of idempotents of 5" and S ~ , respectively. Therefore, S is a semigroup 
whose set of idempotents generates a regular subsemigroup with a multiplicative 
semilattice transversal E ( S ~  For any ( re ,a )  C S ,  let a' be an inverse of a in 
(E) .  It is routine to check that  (m, a) s (1, a'a) and (m, a) 7-4* (1, ha') .  Thus S 
is an abundant semigroup which is not regular provided that  M is not a group. 
Likewise, for any (m, e) C S O , (m, e) s (1, e) and (m, e) 7"4* (1, e). So, clearly 
S O is an adequate *-subsemigroup of S. In fact, S O is a type A semigroup. 

Now for any (m, a) E S,  as a ~ �9 V ( a )  U E ~ , we have 

a = aa ~ a ~ a ~ a . 

Thus, (m, a) = (1, a a ~  a~ a ~ a) where (1, ha~ (1, a~ are idempotents 
in 5', (1,ha ~ L: (1,a~ (1,hue) T4 (1,a~ and 

(m ,a ~  _- (1,a ~ = (re, a~ * . 

It follows that  e(m,a) = (1, aa ~ and f(m,a) = (1, a~ Moreover, for any (re, a ) ,  
(m, b) in S we have a~ ~ in E ~ and thus f(m,a)e(m,~) E E ( S ~  Therefore, S o 
is a multiplicative type A transversal for S. 

3. T h e  S e m i g r o u p  W ( E , S )  

In this section we construct an abundant semigroup S in which the set 
of idempotents generates a regular subsemigroup and S contains a multiplica- 
tive type A transversal. It is clear from the previous section that the class of 
abundant semigroups which satisfy these conditions properly includes the class 
of regular semigroups with a multiplicative inverse transversal studied in [2]. 
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The components in this construction will be: type A semigroups and idempotent 
generated regular semibands with multiplicative semilattice transversals. 

To begin, let <E) be a regular semigroup generated by a set of idempo- 
tents E and let E ~ be a multiplicative semilattice transversal of (E) .  Let S be 
a type A semigroup whose semilattice of idempotents is isomorphic to E ~ For 
convenience of notation, we shall identify this semilattice with E ~ . Consider the 
set 

W = W ( E , S )  = { (g ,a ,h)  E Z x S x E : g L a t , h  T~ a t}  . 

For any (g ,a ,h )  C W,  g g ~  at  and g = ga ta t ,  where a t  E E ~ Thus 
gO = at  and e 9 = g. Likewise fh = h. Hence for any (g, a, h) and (v, b, w) in W 
we have hv = fhev C E ~ because E ~ is a multiplicative semilattice transversal 
of <E). 

P r o p o s i t i o n  3.1. The rule 

(g, a, h) (v, b, w) = (g(ahv) t,  ahvb, (hvb)*~) 

defines a binary operation on W .  

P r o o f .  Let (g ,a ,h )  and (v,b,w) be in W. Since (ahv)t  = (ahv) ta t  and 
g L a t ,  then g(ahv)t  �9 E .  Similarly, (hvb)*w �9 E .  Furthermore, 

and 

g(ahv)t (ahvb)t = g(ahv)t (ahvbt)t 
= g(ahv)t (ahv)t 
= g ( ~ h ~ ) t ,  

(~ Z bt) 

(ahvb)t g(ahv)t = (ahvb)tat g(ahv)t 
= (ahvb)t (ahv)t 
= (ah~b)t 

(g/: at) 

Hence, g(ahv)t  L (ahvb)t .  Similarly, (hvb)*w T~ (ahvb)*. �9 

The following sequence of results provides considerably more information 
about W.  

P r o p o s i t i o n  3.2.  W is a semigroup. 
P r o o f .  Let (g, a, h), (v, b, w) and (x, c, y) be in W.  Then 

(g, a, h)[(v, b, w), (x, c, y)] = (g, a, h)(v(bwx) t,  bwxc, (wxc)*y) 

= (g.  (ahv(bwx) t ) t ,  ahv(bwx)tbwxc,  (hv(bwx) tbwxc)* .  (wxc)*y) 
and 

[(g, a, h)(v, b, w)] (x, c, y) = (g(ahv)t ,  ahvb, (hvb)* �9 w) (x, c, y) 

= (g (ahv ) t .  (ahvb(hvb)*wx)~, ahvb(hvb)* .wxc,  ((hvb)*wxc)*.  y). 

Notice that  

g( ahv ) t ( ahvb( hvb )* wx  ) t = g( ahv ) t ( ahvbwz ) t 

= g(ahvbwx)t  = g (ahv(bwx) t ) t  . 
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In a similar way, we obtain 

(hv(bwx)tbwxc)*(wxc)*y = ((hvb)*wxc)*y . 

Therefore, the first and the third components of the product coincide. Now for 
the second components, we have 

ahv(bxw)t  bwzc = ahvbwxc = ahvb(hvb)* wxc , 

and associativity holds. �9 

P r o p o s i t i o n  3.3. W is an abundant semigroup. 

P r o o f .  Let (g ,a ,h)  be in W.  Consider (g, a t , a t ) .  It is easy to see that 

(g, a t , a t )  is an idempotent in W,  and 

(g ,a  t , a t ) (g,a,  h) = (g(atatg)  t ,a ta tga , (a~ga)  *. h) = (g~a, h) . 

Now let (v ,b ,w)  and ( z , c , y )  b e i n  W.  Then ( v , b , w ) ( g , a , h ) =  (x , c , y ) (g ,a ,h ) ;  
that  is, 

(v(bwg) t, bwga, (wga)*h ) = ( x(cyg) t, cyga, (yga)*h ) . 

Hence v(bwg)t = x(cyg)t  and bwga = cyga, which implies that  bwgat = cygat 
by Corollary 1.2. Also, 

(wga)*h = (yga)*h 

gives (wga)*ha* = (yga)*ha* and (wga)* = (yga)*. Thus (with aa as in 

Proposition 1.4), (wgat)aa -- (ygat)aa,  and so wgat = ygat since aa is 
injective. It follows that 

(wgat)*a t = (ygat)*a t . 

Now 

(v, b, w)(g, a t , a t) -- (v(bwg) t , bwga t , (wgat)"  a t) , 

and 
(x, c, y)(g, at,  at)  _- (x(cyg)t ,  cygat, (ygat)*at)  . 

Hence (v, b, w)(g, at,  at)  = (x, c, y)(g, at, a t ) ,  and so by Corollary 1.2 it follows 

that  (g ,a ,h)  T~* (g, a t ,a~) .  Similarly, (g ,a ,h)  s (a*,a*,h) ,  and the result 
follows. �9 

P r o p o s i t i o n  3.4. The set of idempotents of W is 
E ( W ) - -  { ( g , a , h ) E  W :a 2 = a , g h g = g , h g h - - h )  . 

P r o o f .  For any (g, a, h) in W,  

(g, a, h)(g, a, h) -~ (g(ahg)t ,  ahga, (hga)*h) . 

If a ~ = a, ghg = g, hgh = h, then clearly at  -- a -~ a*. Thus 

ahga = ahgha -- aha = a, g(ahg)t = ghg = g and (hga)*h = ghg = h .  

Therefore, (g, a, h) is an idempotent. Conversely, if (g, a, h) is an idem- 
potent,  then ahga = a which implies, by Corollary 1.2, that  hga -- a*hga = a* 
and ahg = aghat = at .  Hence 

a = a h g h g a = a t a  * E E ~  a 2 - - a .  

Also g = g(ahg)t  = ghg, and h -- (hga)* �9 h = hgh. �9 
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Proposition 3.5. If (E(W)) 
E ( W ) ,  then ( E ( W ) ) :  { ( g , a , h )  

P r o o f .  This is the same as in 

Proposition 3.6.  ( E ( W ) )  is 

denotes the subsemigroup of W generated by 
G W : a  ~ = a } .  

[2], , ,  

i somorphic  to (E). 
P r o o f .  Notice tha t  if (g, a, h) is in ( E ( W ) )  and a 2 = a ,  then gab 6 (E)  and 

a t  = a = a*, so tha t  gah = gh.  Define r  ( E ( W ) )  --~ (E)  by ( g , a , h ) r  = gh.  
Since for any x E (E) ,  there  exists x ~ 6 E ~ such that  x = e , x ~  where 

e ,  s 1 7 6  x ~ = x ~ = x ~ x ~ 7" / f , .  Thus x = e , f , ,  ( e , , x ~  G ( E ( W ) ) ,  
and ( e ~ , x ~ 1 6 2  = e ~ f ,  = x .  Therefore, r is a surjective map.  To show tha t  
r is also injective, let (g, a, h) and (v, b, w) be in ( E ( W ) )  such tha t  gh = v w .  
Since a 2 = a, b 2 = b we have gh = gah and v w  = vbw.  Thus gab = vbw; 
a, b 6 E ~ and a = b follows from the uniqueness of the element in E ~ associated 
with a given element in (E) .  Therefore gha = v w a  which implies g = v. Also 
agh = a v w  which implies h = w. Thus (g ,a ,  h ) =  ( v , b , w )  and r is injective. 
Finally,  for any (g, a, h) and (v, b, w) in ( E ( W ) )  with a and b in E ~ , we have 

(g , a, h )( v , b, w)r  = (g( ahv  ) t , ahvb, ( hvb )* . w)r = (g( ahv  ), ahvb,  ( hvb )w )q5 

= (ghv,  hv, h v w ) r  = g h v w  = (g ,a ,  h)r b ,w)r  ; 

tha t  is, r is a homomorphism.  Hence r is an isomorphism. 
As (E) is an idempotent -genera ted  regular semigroup, we have the fol- 

lowing corollary as an immedia te  consequence of Proposi t ion  3.6. 

C o r o l l a r y  3.7.  The set  of idempotent.~ of  W generates a regular .~emigroup. 

We now proceed to a character izat ion of the relat ions E* and 7"4* on W .  
To do this, we need the following proposit ion.  

Proposition 3.8.  For any (g, a, h) and ( v ,g ,  w)  in E ( W ) ,  
(i) ( g , a , h )  s (v,  b ,w)  i f  and only i f  a = b and h = w ,  

(it) ( g , a , h )  T i ( v , b , w )  i f  and only i f  a = b  and g = v .  

P r o o f .  Since (it) is the dual of (i), it suffices to prove (i). If (g, a, h) s (v, b, w),  
then 

(g, a, h)(v ,  b, w)  = (g, a, h) and (v, b, w)(g ,  a, h) = (v, b, w)  . 

Tha t  is, ( g ( a h v ) t ,  ahvb,  (hvb)* . w)  = (g, a, h) ,  and 

(v (awg)~ ,  bwga , (wga)*  . h) = (v,  b, w)  . 

Since a, b E E ~ , we get (ghv ,  hv, h v w )  = (g, a, h) and (vwg,  wg,  wgh)  = (v, b, w ) .  
Therefore,  hv = a,  h v w  = h; tha t  is, aw = h.  Also, wg = b and bh = w .  Now 
aw = h and bh = w imply abh -- aw = h ,  which with a 7~ h implies aba = a. 
Also b a t  = bh = w implies bab = b. But a ,b  E E ~ Hence a = b. Since h T~ a 
and bT~ w, then h T~w.  Now aw = h implies hw = h and bh = w implies 
w h  = w , so h t~ w .  Thus h T-l w and h = w .  

On the other  hand,  if (g, a, h) and (v, b, w) are in E ( W )  such that  a = b 
and h = w,  then g E a = b s v. It follows tha t  

(g, a, h)(v, b, w) = (g (ahv) t ,  ahvb, (hvb)* �9 w) 

= (ghv ,  ahvb, hvw)  = (gvhv ,  hv, h v w )  (g s v) 

= (g,  h , ,  h) (h = w e V(v ) ) .  
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Since a, hv E E ~ then by using the properties of elements of W we get 
a 12 g 12 hv; that  is, hv = a and thus (g ,a ,h)(v ,b ,w)  = (g,a,h) .  Similarly; 
(v ,b ,w)(g ,a ,h)  = (v,b,w),  and so (g,a,h) s (v,b,w).  �9 

Now let (g,a, h) be in W = W(E,  S).  From the proof of Proposition 
3.3, we have 

(g,a,h) 12" (a*,a*,h) and (g,a,h) TO* (g ,a t ,a  t) . 

Thus, for any (g, a, h) and (v, 

(g, a, h) 12"(W) (v, b, w) r  

and 

(g, a, h) Ze*(W) (v, ~, w) , ~  

Consequently, if we put 7Y* 
a 'H*(S)  b, h = w  and g : v .  

b,w) in W,  

(a*,a*,h)( s (b*,b*,w) 
a* =b*  a n d h = w  
a12*(S) b a n d  h = w .  

(g, at, at) R (v, bt, bt) 
a t : b  ~" a n d g : v  

a Tr b and g = v . 

(Proposition 3.8) 

(Proposition 3.8) 

= 12" M 7~*, then (g,a,h) 7"(.*(W) (%b,w) r 

Finally, define W ~ = {(at ,a,a*);a E S)}.  Since for any a and b in S,  

(at, a, a*)(r  ~, b*) = (at(aa*bt)t,  aa*r ( : r  = ((ab)t, ab, (ab)*), 

we deduce that W ~ is a subsemigroup of W.  In fact, a --~ (at ,a,a*) describes 
an isomorphism of S onto W ~ , and so W ~ is a type A semigroup. Clearly - as 
in the proof of Proposition 3.3 - for any (at, a, a*) in W ~ 

(a*,a*,a*) s  a, a*) and ( a t a t , a t )  TO* ( a t , a , a* )  . 

Thus W ~ is an adequate *-subsemigroup of W.  
Now let (g,a, h) be in W.  Since 

(g, a t , at  ) ( a t  a, a*)(a*, a*, h) -- (ga t , a, (a t a)*a*)(a*, a, h) 

-= (g, a, a*)(a*, a*, h) = (g(aa*) t, a, a'h) : (g, a, h), 

it is clear that  (g, a t ,a t )  and (a*,a*,h) are in E ( W ) .  By Proposition 3.8, 

(g ,a t ,a  t) ~ (a t , a t , a  t ) and (a*,a*,h) 77~(a*,a*,a*) . 

Further, if there exists (bt, b, b*) in W ~ such that 

(g, a, h) = (e, x, f)(bt, b, b*)(i, y , j )  , 

where ( e , x , f )  12 (bt ,b t ,b t ) ,  ( i , y , j )  T~ (b*,b*,b*) for ( e , x , f )  and ( i , y , j )  in 
E ( W ) ,  that  is, for x ,y  E E u , then in particular 

(e, x, f )(b t, b t, b t) = (e, x, f )  and (b t , b t , bt )(e, x, f )  = ( bt, b t, b t) . 
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It follows tha t  x f b t  = x and as x 7E f so fb t  = x.  Also 

(b~(btebt), b~ex, xb~ezb~) = (b~, b~, bt) , 

which implies xb~ezbt = bt and hence xb~ = bf. Moreover, we have 
( i ,y , j )(b*,b*,b*) = (b*,b*,b*) and (b*,b*,b*)(i ,y, j)  = ( i , y , j ) .  By an argument 
similar to the previous one, we obta in  b*i = y and b*y -- b*. Recall that  

(g, a, h) = ( c ( x fb t ) t ,  z fb tb ,  (fb+b)*b*)(i, y , j ) ,  which implies that  

a = xfbtb( fbtb)*b*iy  = xb(xb)*y ( fb t  = x, b*i = y) 

= b ( z b t  = bt, b*y = b*) 

Hence ( a t , a , a * ) =  (bt, b,b*). Therefore, (a+,a,a*) in W ~ is uniquely deter- 
mined by (g,a, h) in W and W ~ is a type A transversal  for W .  In fact, W ~ is 
mult ipl icat ive since for any w = (e, a, f )  and v = (g, b, h) in W ,  we have 

and 

f ~  = (a* ,a* ,  f ) , e .  = (g, bt,bt) 
f~e~ = (a *, a *, f)(g, b+, b~ ) = (a *(f  g), a* f gb+, ( f  g)b+ ) 

= (a*fg, a*fgb~, fgbt)  = (fg,  fg,  fg); 

tha t  is, f , ,ev E E ( W ~  Hence W ~ is a mult ipl icat ive type A transversal  for W .  
Summing up, we have the following theorem: 

T h e o r e m  3.9.  Let (E) be an idempotent generated regular semiband with a 
multiplicative semilatiice transversal E ~ and let S be a type A semigroup whose 
semilattice of idempolents is (isomorphic to) E ~ Then W = W ( E , S )  is an 
abundant semigroup in which the set of idempotent8 generates a regular subsemi- 
group isomorphic to (E) and W contains a multiplicative type A transversal W ~ 
which is isomorphic to S .  

4. T h e  C h a r a c t e r i z a t i o n  

In this section we shall prove the following converse of Theorem 3.9. Let 
S be an abundant  semigroup in which the set of idempotents  generates a regular 
subsemigroup. Fur thermore ,  let S contain a mult ipl icat ive type A transversal.  
Then S has the same form as the semigroup constructed in Section 3. 

Let S be an abundant  semigroup in which the set of idempotents  E 
generates  a regular  subsemigroup (E) .  Suppose tha t  S contains a mult ipl icat ive 
type  A t ransversal  S o whose semilat t ice of idempotents  E ~ is the corresponding 
semilat t ice  t ransversal  of (E) .  Our  object ive is to prove tha t  S is isomorphic to 
W = W ( E ,  SO). We begin by providing a technical  result.  

L e m m a  4 .1 .  For any x and y in S ,  we have: 

(i) (xy)  ~ = x~ h % y ~  ; (it) e~y = c~(x~ ; (iii) f~y = (f~e~y~ fy .  

P r o o f .  Since x = e~x~ and y = %y~ , we have 

xy = ezx~176  = e~(x~ t x~  ~ "J~e~ ~yO'*r) IV " 
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It is clear that  

(x~176 t = (x~176  = (x~ r~* x~ f ,  ev , 

which implies x~176 = (x~ But ex s x~ and so 

e~(x~ f~:ey) t s x~176 f~%) ~ = (x~ f~ey)t = (x~ f~:e~y~ . 

Similarly, (f~eyy~ ~ (x~176 *. Now x~ ~ e S O and so (i), (ii) and 
(iii) will follow from the uniqueness of (xy) ~ , e~v and f~v if we show that  

e~(x~ and 0 �9 (f~eyy ) fy are idempotents .  
For any element a and idempotent  e of any type  A semigroup we have 

(ae){a} = at(ae)~ = (ae)~ . 

Hence, since e~ Z; x~  we have 

(x~ f~ey)~e~(x~ f~ey)t = (x~ f~ey)tX~176 f~ev)~ = (x~ fxey)~ x~176 f~ev)t 

= (x~ (x~  ev) t = (x~  ~ �9 

Thus e~(x~ is an idempotent .  Similarly, so is (f~evy~ and so the proof 
is complete. �9 

T h e o r e m  4.2.  S is isomorphic to W = W ( E ,  SO). 

P r o o f i  For any x E S ,  x ~ C S O and x = % x ~  where e,  and f ,  are 

idempotents  uniquely determined by x and e,  L: x~ f z  T~ x ~ Therefore 
(%, x ~ f=) C W = W ( E ,  SO). 

Define O :  S ~  W by xO = ( e , , x~  for any x in S.  If for any x,  
y in S, ( % , x ~  = (%,yO,fy) ,  then x = exx~  = evy~ = y and we have 
tha t  O is an injective map. 

To show that  0 is also surjective, let (g ,a ,  h) be in W ,  and consider 
b = gab. It is easy to see tha t  b C S and eb = g, b ~ = a and fb = h. 
Consequently, 

bO = (eb, b ~ fb) = (g, a, h) 

and O is surjective. 
Finally, for any x and y in S,  

xOyO = (e.,  x ~ f . ) (ev,  yo, fy) = (ex(xo f . % ) t ,  xO f.evyO, ( f .evyO). fv)  

= (e.v, (xY) ~ f~v) (Lemma 4.1) 

= ( x y ) O .  

So O is a homomorphism. Hence O is an isomorphism. 
In general,  a semigroup S which is isomorphic to W ( E ,  SO), as in the 

previous theorem, need not  be a quasi-adequate semigroup (see Example  5.3 in 
[2]) and it is of interest  to see when this is the case. 
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P r o p o s i t i o n  4.3. I f  the func t ion  62 : S --* S O defined by xq2 = x ~ is a 
homomorph i sm  f rom S into S ~ then S is a quasi-adequate semigroup. 

P r o o f .  By Lemma 4.1, we have x ~  ~ = (xy)  ~ = x~ f~eyy  ~ , which implies by 

Corollary 1.2 that  x~ ~ x ~ e o = f~: vY = fxevY  ~ Then x~ ~ = f~evy~  = f zey  
for any x and y in S.  In particular, if v , w  �9 E ,  then 

( vw)  ~ = v ~  ~ = fvew where v~ ~ � 9  

because E ~ is a multiplicative semilattice transveral of (E).  It follows that 

vw = e,~o(vw)~ fvw = e~(v~ foew) t  v~176176 f ~  

= e o f o e w W ~ 1 7 6  ~ 

= e,,fve,,,f , ,ewf~, = e,ffve~,f,,, = e , , v~176  

el3 f w �9 

(Lemma 4.1) 

(v~ ~ f~ew �9 E ~ 

( v~  ~ = f~e~)  

Now it is clear from above that we have 

evf,,, = e w w ~ 1 7 6  = e w f w e . f ~ ,  e~f~e~ = e~v~ ~ and f ~ e . f ~  = v ~ 1 7 6  = f~ . 

Likewise, e~,f,,,ew = ew and f~,e,,,f~, = f,, , ,  and so 

= e~ f~e~ f~e~ f~ev fw  

= e . f ~ e ~ f ~  = ( v ~ ) ( v ~ )  . 

( f v e . , f w  �9 E ~ 

(e~f~ = e~f~e~f~)  

Thus vw is an idempotent  and E is a band. Thus, S is a quasi-adequate 
semigroup. �9 

If S is a quasi-adequate semigroup, that  is if E = (E) ,  we follow [9] and 
denote the if-class in E of an idempotent  e by E(e ) .  In this case, as in [6], we 
define the relation ~ on S by the rule: 

a 5 b if and only if b = e a f  for some e �9 E ( a f ) , f  �9 E(a*)  . 

P r o p o s i t i o n  4.4. Let S be a quasi-adequate semigroup. The func t ion  q2 
of Proposit ion ~.3 is a homomorph i sm f rom S into S O if and only if  5 is a 
congruence on S .  In  this case, Ker �9 =- 5. 

P r o o f .  If ~ is a congruence, then for any x and y in S,  x ~ x ~ and y 5 y0 
we have xy  5 x~  ~ But x~  ~ and (xy)  ~ e S o �9 Thus (xy)  ~ = x~  ~ and fig is a 
homomorphism. 

Conversely, suppose that  k9 is a homomorphism and let x, y and c be 
in S such that  x ~ y. Then x ~ = y0 so that  x~ ~ = y~176 Now because fig is a 
homomorphism, (xc) ~ = (yc)~ that  is, xc 5 yc. Likewise, cxScy.  Therefore, 
is a congruence. 

Finally, if fig is a homomorphism and x , y  E S ,  then 

( x , y ) � 9  ~ r  ~ 1 7 6 1 4 9  

It now follows that  if k~ is a homomorphism, then S is a quasi-adequate 
semigroup on which 5 is a congruence and thus $ is the min imum adequate good 
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congruence on S [6]. Consider the mapping ~r : S/5  --* S defined by (xh)Tr = x ~ 
For any x and y in S ,  

( x 6 ) ~ ( y 6 ) ~  = x ~  ~ = ( z~ )  ~ = (x~)6~ = (x6~6)~  

so ~r is a homomorphism. Moreover, x = e~x~ and for any x* there exists 
(x*) ~ E E ~ such that  x* = ex . (x*)~  Let x ~ e L*o(S) N E  ~ Then 

z ~ 7~ f~  s  x s  ~ (x*) ~ , 

and so x ~ 7? (x*) ~ But E is a band, and x ~ (x*) ~ E E ~ Hence x ~ = (x*) ~ 

and (x*5)rc = (x*) ~ = x ~ = ((x6)Tr)*. Similarly, for x~ we get (x~) ~ = (x~ 

and (x~5)Tr = ((xh)Tr)~. It follows that  for any x and y in S ,  if x /2" y, then 
(x*eh)~r 1: (y*5)rc, but  from above we have for any x*,y*,  (x*5)rc = ((xh)rr)*, 
(y*5)rr = ((yh)rc)*. Therefore: 

(x6)~ c* ((x6)~)* = ( z * 6 ) ~  c (y*6) .  = ((y6)~)* c* (~6)~ .  

Similarly, x "R.* y implies (xh)rc "R*(yh)rc. 
Hence, ~r is a spl i t t ing homomorphism and S is a split quasi-adequate 

semigroup [3]. 

~ r t h e r ,  for any (g, a, h), (v, b, w) in W ,  we have a* n h, bl Z; v and 

bta* s va* Tr vh L bth.  But ~D is a congruence on E and the T~-classes in E are 

the rectangular  bands in E .  Therefore, va*blhva* = va* so that  vhva* = va* 
which implies b~fvhva * = btva* and thus b~h �9 va* = b~a*. Then 

ahvb = aa*hvb~b = a(a*b~b~hva*)b 

= a(bihva*)b = abia*b 

= aa*b~b = ab . 

Hence the products  in W coincide with those in [3]. Therefore the result in this 
paper  extends the result in the previous paper  [3]. �9 
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