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Communicated by B. M. Schein 

This paper  addresses the problem of describing automorphisms of semigroups 
of transformations. In [2] we were involved in characterizing all automorphisms 
of Croisot-Teissier semigroups. The semigroups of transformations that  belong to 
this large family generally consist of many-to-one transformations whose restrictions 
to range sets are one-to-one. Here we consider enlargements of Croisot-Teissier 
semigroups whose elements, restricted to range-sets, are no longer one-to-one. We 
show that  such semigroups contain a maximal Croisot-Teissier semigroup, which in 
turn is used to present a complete description of automorphisms of these semigroups. 
Moreover we describe the Green's relations on these enlargements of Croisot-Teissier 
semigroups, and show that  they are in fact simple semigroups, whose regular elements 
form a bisimple subsemigroup. We start  by recalling the definition of Croisot-Teissier 
semigroups. 

Let p and q be infinite cardinals with p >_ q, and let X be a set with IX] _> p. 
Let g = {gi I i C I} be a set of distinct equivalences on X such that  Ix/gll = p 
for all i C I .  A subset A of X is said to be well-separated (w.s.) by g if IAI = p 
and ,5"i M (A x A) is the identi ty relation on A for all i C I .  For a cardinal t,  
with q < t <_ p, let Ct = {w.s. A [ for somew.s .  B, A G B and ! B - A  I = t}. 
When X contains a w.s. set, the Croisot-Teissier semi9rou p on X , g  of type (p,q) 
is CT(X,g ,p ,q)  = { f  : X ---, X I ~r(f) e g, R(I)  �9 Cq} with the operation of 
function composition [1]. Recall that  for a transformation f of X, R(f)  = f ( X )  
denotes the range of f ,  and 7r(f) denotes the par t i t ion of X determined by f such 
that  x and y are in the same class of 7r(f) if and only if f (x)  = f(y) .  

A Croisot-Teissier semigroup CT(X,  g, p, q) is idempotent-free and either sim- 
ple (when p = q) or has a minimal ideal CT(X,  g, p, p) that  itself is a Croisot-Teissier 
semigroup. A simple Croisot-Teissier semigroup CT(X,  g, p,p) is the disjoint union 
of its minimal  left ideals, and any simple idempotent-free semigroup with a minimal 
left ideal can be embedded in a simple Croisot-Teissier semigroup CT(X,  g, p, p). The 
Green's  relations on these semigroups were described in [3], and their congruences 
were studied in [4], [5], [6], [7] and [8]. 

We construct  the following generalization of a Croisot-Teissier semigroup. In 
view of the in t imate  connection between equivalences on X and part i t ions of X 
we write [x] �9 B to indicate that  [x] is the equivalence class of the equivalence /3 
containing x �9 X .  Given an infinite cardinal r _< p, and an equivalence A on X 
let .A(r) be the family of all equivalences /3 on X such that  .A G /3 and for every 
[x] �9 /3, [[x]/.A] < r .  Informally, such a /3 in .2, (r) is formed by glueing together 
classes of .A, with each class in /3  made up of fewer than r classes of A.  The family 
,4 (T) is referred to as the family of r glueings of.A. Let g(r) = U{g} r) [ i �9 I}  be the 
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family of r glueings of s and 

S = { f  : X --+ X l R ( f )  e G and ~r(f) E g(~)} . 

The above semigroup S contains a maximal  Croisot-Teissier subsemigroup S # 
that  generally does not coincide with the original C T ( X , g , p , q ) .  Let s  = {.A E 
s [ rr(t) = 7r(ft),  for all f ,  t e S with 7r(f) = A} and let S # = C T ( X ,  g#, p, q). We 
show tha t  S # is a subsemigroup of S containing 
C T ( X ,  E, p, q). Let Cq # be the set of ranges of all the mappings in S # . If A E Cq and 
B C g # then ( A x A ) M B  = iA, else for f ,  t E S with ~r(f) = B and R(t)  = A, 7r(ft) 
and lr(t) are distinct,  a contradiction. Therefore Cq is a subset of C~. Moreover 
since s is a subset of s  Cq # is a subset of Cq, and so the next result follows from 
the above and the observation that  for any f and g in a Croisot-Teissier semigroup, 
r ( f g )  = re(g). 

P r o p o s i t i o n  1. S # is a maximal Croisot-Teissier subsemigroup of S .  �9 

In the following example we start  with a specific Croisot-Teissier semigroup 
and construct  the associated g(r) and E # . The example is based on [2, Example 4.2]. 

E x a m p l e .  Let N be the set of all real numbers, and N + be the set of all positive 
reals. For each a E N + let g~ be the equivalence on N whose only non-singleton 
class is [a] = {a} U (N - N+).  Let •0 be the equivalence on 11{ having two non- 
singleton classes: [ - 1 ] =  {bE N : - I  < b < 0 }  and [ - 2 ] =  { b e  N : b < - l } .  Let 
g = {gb : b E N, b _> 0}, and p = q = INI. Note that  the C~ sets are those subsets 
A of li~ + having IAI = II~ + - A I ,  and that  the semigroup CT(  N, ,~, p, p) consists of 
all t ransformations f :  N --* N having r ( f )  e g and R ( f )  e Cp. 

If r = R0, s is the set of all equivalences on li~ whose non-singleton classes 
are of the form Y'  U Y "  where Y '  is either [ -1] ,  [ -2] ,  R - R +, or empty, and Y "  is 
either a finite subset of N + or empty. Let S = { f :  N --* R I R ( I )  E Cp, rr(f)  e ~(~)}. 
Since s  is jus t  s together with all part i t ions in s (~) for which every Cp set is a 
par t ia l  transversal,  g# consists of all equivalences in E (~) whose non-singleton classes 
are of the form Y'  U Y " ,  where Y ' , Y "  are as above with IY"I < 1. Thus we have 
tha t  C T ( N , E , p , p )  C S # = C T ( X , E # , p , p )  C S.  �9 

We show that  the restriction r  of an automorphism r of S to S # is a 
range-preserving, r union-preserving and r glueing-preserving automorphism of S # 
(see Definitions 2,4, and 5 below), and that  every such automorphism of S # may 
be extended to an automorphism of S .  Therefore using the characterization of 
automorphisms of Croisot-Teissier semigroups in [2] we are able to describe the 
automorphisms of S completely. The next definition was introduced in [2, p.228]. 

D e f i n i t i o n  2. An automorphism r  semigroup of transformations S is said to 
be range-preserving i f  for  all f , g E S, R ( f )  C R(g) if  and only f f R ( r  C R(r  

The following decomposit ion of the union W of all well-separated sets, and 
the associated decomposit ion of the Croisot-Teissier semigroup into a union of its 
right ideals was first described in [2]. Here we present a brief account of these 
decompositions and some terminology introduced in [2], which we use to give a 
description of all range-preserving automorphisms of S # and automorphisms of S .  
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Let K be an index set containing I such that g# = {• I i E K}.  A pair of Cq sets 
A and B are said to be a-related if whenever A and B both meet a non-singleton 
class [u] of 5 = C/{s : i e If} there exist F1 = A, F 2 , . . . , F n  = B C Cq such 
that Fj N Fj+I e Cq and F j n  [u] r ~.  Let {.M~ I a e f~} be the collection of all 
maximal families of a-related Cq sets. For each a C f~ let A~ = U{A I A E .M~} 
and Zo = { f  �9 S # I R( I )  �9 M~},  a right ideal of S #.  A set {h~ I a e a}  of 
permutations of W is termed compatible if there exists a permutation k of W / p  such 
that the equality of the p-classes [h~(x)] = k([x]) holds for all ~ C fl and x �9 W, k 
induces a permutation of the set {(gdw• : i �9 If} of the equivalences on W / p ,  
and h~f  = ha f  for all f �9 2 ~ n I z .  For each gi define B(gi) = {[x] �9 gi ] [x]MW = r 
and let J = {i �9 I (  ] /3(g~) r dp}. The following result describing range-preserving 
automorphisms of a Croisot-Teissier semigroup was proved in [2, Theorem 4.4]. The 
statement is in terms of the maximal Croisot-Teissier subsemigroup S # of S. 

P r o p o s i t i o n  3. Let r be a range-preserving automorphism of S # . There exists, 
uniquely, 

(i) a compatible set {ho [ ~ �9 ft} of permutations of W ,  

(ii) a permutation z # of $# such that z#(gi)[w = h~(gilw) for any $i �9 g# and 
a E Q, and 

(iii) a family of bijeetions {y, I i �9 J )  where y~ : B(Ei) ~ t3(:#(E,)) ,  such that 
I) r = h~fh2' So~ all f �9 Z~, 
2) 7r(f) = z#(~r(f)) ,  and 
3) r  = h~fy:[~(D) for all f �9 I~ with r ( f )  = s 

and D �9 B(z#(~'i)). 

Conversely, 9ivan S # and (i), Oi), and (iii), there exists a unique range-preserving 
automorphism r of  S # such that i), 2), and 3) hold. �9 

Def in i t ion  4. Given an automorphism r a of S # and an equivalence class A of 
Ei let .A be the equivalence class of z#(Ei) containing h~(x),  for some c~ E f~, i f  
x E AM W ~ ~ ,  and f l  = yi(A) if  A N  W is empty. An automorphism r of S # is 
said to be r union-preserving i f  whenever s Ej G $ a with $!~) M s 7~ q) and C, 73 
are collections of fewer than r classes in Ci and Cj respectively, then [.J C = U 73 i f  
and only if  U {.A: A e C} = U {/3: B e 79}. 

Def in i t i on  5. An automorphism r a of S # is said to be r glueing-preserving i f  
for all Ci E ~#,  $i E s if  and only if  z#($1) E z#(Cj) (~) 

- 3  

We are now ready to present the main result of the paper describing automor- 
phisms of S. The proof of the theorem below is the content of Lemmas 7 to 16 and 
Propositions 8 and 17. 

T h e o r e m  6. An automorphism r of  S induces a range-preserving, r union- 
preserving, r glueing-preserving automorphism r  of S # .  Conversely every range- 
preserving, r union-preserving, r glueing-preserving automorphism of  S # can be 
extended uniquely to an automorphism of  S .  �9 
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L e m m a  7. Let f , g C S .  Then 

(i) 7r(f) e ~r(g) (r) if  and only if f C Slg;  

(ii) ~r(f) = r(g)  if and only if Sl f = S 'g ;  

(iii) f 1: g if and only if r ( f )  = r(g) .  

P r o o f .  Observe that  (ii) follows directly from (i), while to prove (i) it suffices 
to show that  if r ( f )  G 7r(g) (r) then f E Slg.  For this choose any Ei E E # and 
let 73 be the set of all classes in Ei that  have a non-empty intersection with R(g).  
Define an equivalence relation # on the classes of 79 via (A, B) E # if and only if 
f g -~ (A)  = f g - l ( B ) .  Since It(g) G E (r) and zr(f) E 7r(g) (~), it follows that  there are 
fewer than r classes of 73 in each #-equivalence class. Let 7/ : g'i - 73 ~ 73 be a 
one-to-one mapping (it is readily checked that  IEi - 79[ <_ [79[ = p). Extend # to 
Ci by adjoining to each #-equivalence class the preimages of its elements under 7?. 
Fewer than r classes are adjoined, since ~/ is one-to-one. The equivalence classes of 
/z on E~ natural ly  provide us with an r glueing 7) of C~. Note that  R(g) contains a 
transversal  of 7 ) and let t be a transformation of X having ~r(t) = 7) and for every 
y = g(x), t(y) = f ( x ) .  Then t G S and f = tg e S~g, as required. Finally note that  
(iii) is a res ta tement  of (ii). �9 

Let r be an automorphism of S.  The following is a consequence of Lemma 7 
and the definition of S #.  

P r o p o s i t i o n  8. 1. The correspondence z : g (~) -~ g (~) defined by z(Tr(f)) = 

~(r is a bijection such that 7' e E(~) if and only if z(7)) e *(E~)('~) 

2. The restriction r  of r to S # is an r glueing-preserving automorphism of S # . �9 

L e m m a  9. For every A E Cq and gl E E there exists a 7 a E Er v) such that A is 
a total transversal of 7). 

P r o o f .  Note that  A is a part ia l  transversal of El and let 73 be the set of all classes 
in g'~ that  have an empty  intersection with A. Then 17)1 < p, and there exists a one- 
to-one function T/: 73 --~ A. Let 7) be a part i t ion of X consisting of all classes of s 
that  do not intersect T/(73) and all the sets of the form F U [T/(F)], where [~(F)] is 

the gl-class of r /(F) and F C 73. Then 7) G g~v) as required. �9 

L e m i n a  10. For every A C Cq and gi C g there exists an idempotent e in S with 

R(c) = A and r(e)  e E[ ~). 

P r o o f .  Using Lemma 9 choose 7) E g.(v) such that  A is a total  transversal  of 7). 
Then the required idempotent  is a transformation e of X with ~r(e) = P ,  7~(]) = ,4 
and e(a) = a, for every a E A. �9 

P r o p o s i t i o n  11. S:  = S .  

P r o o f .  For an f in S let e be an idempotent  in S with R(e) = R ( f )  (Lemma 
10). Then f = e f C S  2. �9 
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L e m m a  12. (i) For f and g in S, R ( f )  C__ n(g)  if and only i f  for every 
idempotent e in S, eg = g implies e f  = f . 
(ii) All automorphisms of S are range-preserving. 

P r o o f .  Observe tha t  (ii) is an easy consequence of (i) and the fact tha t  idempo- 
tents are preserved under  automorphisms.  To prove (i) note  tha t  if R ( f )  C R(g) 
and e is an idempoten t  such that  eg = g t hen  e is the ident i ty  on R(g) ,  hence e 
is the ident i ty  on R ( f ) ,  and  so e f  = f . Conversely assume x E R ( f )  - R(g) and 
let x = f ( y ) .  Choose an idempoten t  e in S with R(e) = R(g).  T h e n  eg = g while 
e f (y )  = e(x) # x = f ( y ) ,  so that  e f  # f .  �9 

Note tha t  the above result  implies tha t  the restr ict ion r  of r to S # is a 
range-preserving au tomorph i sm of S # , described in Proposi t ion 3. We will use it to 
describe r itself. 

L e m m a  13. Let f C S with R ( f )  E M ~ ,  and take x E W .  Then r  = 
h~fh~ l (x ) .  

P r o o f .  We show tha t  there exists a g C S # such that  f g  E S # and x C R ( r  
Let Ix] be the 6--class conta in ing  x and V = h ; l ( [ z ] ) .  Choose A E Cq such that  

A M V is non -empty  and let A M Y = {y}. Assume 7r(f) C C} *). Since A is a part ial  
t ransversal  of Ci and each class of 7r(f) consists of fewer t han  r classes of Ei, r < p, 
there exists a subset  D of A of cardinal i ty  p such that  y E D and D is a par t ia l  
t ransversal  of ~r(f). Let D E M z, for some /3 E f~, and  h~l(z)  = w. Note that  
h~l([x]) = h ; l ( [x ] ) ,  so tha t  y 6 w (see [2, p.211] for details),  and  choose g e S # 
with R(g) = (D - {y})  U {w)  and g(v) = w for some v C W.  Then  g C 2" a, and 
since ~r(g) = rc(fg) and  R ( f g )  C_ R ( f )  we have that  f g  C S # M Zo. Let u = ha(v),  
then u E W and  r  = hagh~l(u) = hagh~lha(v) = hag(v ) = ha(w ) = z; 
r  = h~ fgh; l (u ) ;  r  = r162  = r  = h~fgh~l(u)  = 
h ~ f g h ~ h a ( v )  = hofg(v)  = h~f (w)  = h ~ f h ~ ( x )  = h , f h ; t ( z ) ,  since h~tha(v) 
and v, h~l (x)  and h;~(x) are pairwise 5-related. �9 

Recall  (Proposi t ion  8) that  r induces a pe rmu ta t i on  z : $ (~) + g (~) defined 
by z ( r ( f ) )  = 7r(r  

L e m r n a  14. I f 'P  E C~ v) and C and D are classes of gi, then C U D  is a subset 
of a 7 ~-class if and only if C U D is a subset of a class of z(7~). 

P r o o f .  Let f E S with 7r(f) = T'. Using Lemma 7 choose g, t  C S ,  such that  
f = tg and 7r(g) = Ei. Assume R(t)  E M ~  (and so R ( I )  E M~) ,  R(g) E M a. 
If C E B(gi) then C = yi(C),  and  by Proposi t ion  3, r  = r  = 
r  = h~.th-~lhag(C) = ho f (C) ,  by Lem m a  13, since hag(C ) E W .  If 
D E B(C,) t h e n  r  = r  iff r = r iff f ( C )  = f.(D), 
as required. If D is not  in B(Ei), then there is an x G D M  W and r  = 
r  = h~fh~ah~(x) = h~ f (D) ,  so again r  = r  iff f ( C )  = 
f ( D ) .  The  remain ing  case when C is not  in B(g~) can be deal t  with in a similar  
manner .  �9 

C o r o l l a r y  15.  The automorphism r is r union-preserving. 
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L e m m a  16. Let f �9 S with n ( f )  �9 jt4~, ~r(f) e g[~), and D �9 z(Tr(f)) with 
D M W  = rb. Then r  = h ~ f y [ ' ( C ) ,  where C C_ D, C e z(g,) and C A W  = ~ .  

P r o o f .  Assume R(g) e Ad z, R(t)  �9 Ad~. Since D �9 z(Tr(f)) �9 z(C}r)), there 
exists a subset C of D, C �9 z(&).  Then r  = r  = r162 = 
h~thTahzgy~-~(C), since g �9 S #,  and hzgy~q(C) �9 W .  Since for any a C X,  hTlhzg(a) 
and g(a) are Ej-equivalent for any j ,  h~thT~hzgy[-~(C) = h#gy[~(C)  
= h , f y~q (C)  = h~fy~-a(C), because R ( f )  is a subset of R(t) .  �9 

P r o p o s i t i o n  17. Let # be a range-preserving, r union-preserving and r 
glueing-preserving automorphism of S #.  Then it can be extended uniquely to an 
automorphism r of S .  

P r o o f .  Let # be as stated,  and {ha I a E f~}, z #, {Yi I i E I}  be the parameters  
describing # as in Proposit ion 3. We extend z # to a permutat ion z of g(r) as follows. 
Define a mapping z from g(~) to itself such that  z($1) = z#($i),  i C K ,  and for 
T' e gr :}(T') �9 (:~#($)))(v) such that  / )U  C is a subset of a z(T')-class if and only 

if B U C  is a subset of a P-class.  To see that  z is well-defined assume T' C C{ v) Nglv) ,  
and let F be a P-c lass  such tha t  F = U {G I G �9 &} = U {H I H �9 Ej}. Since F 
is a union of fewer than r classes of El or gj and /z is r union-preserving, we have 
that  tO {G ] G �9 gl} = U { H :  H �9 gj},  a S  required. 

Define a mapping r on S as follows. For f E S #,  let r ( f )  = p ( f ) .  For f �9 S 

with R ( f )  C Ad~ and w(f)  �9 E! r), let r ( r ( f ) )  = z(Tr(f)), and r ( f ) ( x )  = h~fh2~(x)  
i f z  �9 W ,  while for an [x] E B(z(&)) ,  r ( f ) ( x )  = h~ fy[~(D) ,  where D C_ [x], D �9 &. 

To see tha t  r ( f )  is a mapping assume that  Ix] E B(z(gi))  and there exists 
u e W, u e C �9 z($i) such that  x, u are in the same class of rc(r(f)) .  Then r ( f ) ( x )  = 
h~fyT~(z) ,  r ( f ) ( u )  = h~fha~(u) ,  and since by the definition of z, I h 2 t ( C )  = 
f y [ a ( x )  we have that  h~fy[~(x)  = h~fh[,~(u), as required. The proof that  r is a 
homomorphism is analogous to that  of Proposit ion 3 (see [2, w �9 

We now turn to the description of the Green's  relations on S. Just  as the 
maximal  Croisot-Teissier subsemigroup S # = { f  C S I 7r(ft) = 7r(t) for all t E S} of 
S played a crucial role in the description of the automorphisms of S ,  so the maximal  
regular subsemigroup of S aids in the description of the Green's  relations on S. Let 
E(S )  be the set of all idempotents  of 5', and define 

N = { f  E S[ R ( f t )  = R ( f )  for some t E S} . 

Then N is a subsemigroup of S containing E(S) .  Moreover N contains all the 
regular t ransformations in S ,  for if f is regular then f g f  = f ,  for some g E S ,  
and R(I(gI)) = R ( I ) .  We show in Proposit ion 20 that  N is the maximal  regular 
subsemigroup of S.  

P r o p o s i t i o n  18." For distinct f ,  g E S, f 7~ g iff f ,  g C N with R ( f )  = R(g).  

P r o o f .  Assume f Tr g, then f s  = g and g t = f ,  for some s , t  E S.  Therefore 
R ( f )  = R(g),  and so n ( f )  = n(g)  = R ( f s )  = R(gt) ,  hence f , g  e N .  Conversely, 
assume f ,  g e N with R ( f )  = R(g).  Then there exist A, B E Cg such that  A and B 
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are transversals of ~r(f) and 7r(g) respectively. Let h : B --+ A be a bijection such that 
h(b) = {I -Zg(b)}MA,  for each b �9 B. Define s �9 S such that R(s)  = A, 7r(s) = 7r(g), 
and for each b �9 B, a transversal of ~r(s), s(b) = h(b). Then I s  = g, and a 
transformation t �9 S such that gt = f may be constructed similarly. �9 

P r o p o s i t i o n  19. For distinct f ,  g E S, f TP 9 if f  either ~r(f) = r (g) ,  or f ,  g G N .  

Proof .  Assume f 7:) g, so that f /2 s and s T~ g, for some s �9 S. Then 
7r(f) = 7r(s) (Lemma 7) and if s r g, then s ,g  �9 N so that I �9 N also. Conversely, 
if f , g  �9 N,  choose s �9 S with R(s)  = R ( f )  and =(s) = ~r(g). Then s �9 N and 

f l : s ~ g .  �9 

Since N consists of precisely those elements f of S whose partit ion ~r(f) has 
a total transversal amongst Cq sets, N is a :D-class of S. Moreover N is a :D-class of 
S containing the set of idempotents of S, so that every element of N is regular. This, 
in conjunction with the earlier observation that N contains all the regular elements 
of S, proves the next result. 

P r o p o s i t i o n  20. N is the maximal regular subsemigroup of S .  �9 

P r o p o s i t i o n  21. S is simple. 

Proof .  Since N is a :D-class of S (see the remark after Proposition 19) and 
7:) C / 7 ,  it suffices to show that for any f �9 S there exists g �9 N such that f / 7  g. A 
proof similar to that of Lemma 9 yields that for an f �9 S there exists P �9 (~r(f)) (~) 
such that for g �9 S with 7 ) = ~r(g), we have that g �9 N.  Now let i be such that 

~r(f) �9 L'~ ~), and choose Q �9 g}~) such that for A ,B  �9 g,, A and B are in the same 
class of Q if and only if both A M R ( I )  and B M R(g) are non-empty, and f -~(A)  
and f - l ( B )  are in the same class of 7). Then for s �9 S with r ( s )  = Q we have that 
7r( s f )  = 7), and so s f �9 N .  Let s f = g. We show that there exist u, v �9 S such that 
f = ugv.  Let v be such that R(v)  is a transversal of ~r(g) and 7r(v) = ~r(f). Then 
R(gv) = R(g) and ~r(gv) = ~r(f). Choose a bijection w from R(g) onto R ( I )  such 
that w(gv(x) )  = f ( x )  for all x �9 X.  Let u �9 N be such that R(g) is a transversal 
of ~r(u), and for each y �9 R(g), u(y) = w(y) .  Then f = ugv,  as required. �9 
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