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i. INTRODUCTION AND SUMMARY 

By the local subsemigroups of a semigroup S we mean the semi- 

groups of the form eSe where e is an idempotent of S, as in [9]. 

Problem N3 in the DeKalb 1979 conference proceedings, posed by 

Nambooripad, is as follows: if S is a regular semigroup such that 

for each idempotent e E S, the idempotents of eSe form a band, 

then do the idempotents of each eS (dually Se) also form a band? 

In other words, for regular semigroups is the property of having 

idempotents form a band inherited from the local subsemigroups by the 

(usually) larger subsemigroups eS and Se ? 

Section 3 begins with an affirmative answer. The above 

question arose from the paper [109 by Meakin and Nambooripad, where 

there is a structure theorem for regular semigroups S that satisfy 

the condition that the idempotents of eS and of Se form bands, 

for each idempotent e E S. The above affirmative answer shows that 

this class is precisely the class of regular semigroups with the 

local property of being orthodox (by a local property of a semigroup 

S we mean any property held by each of its local subsemigroups). 
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It was natural to ask next, what other local properties are in- 

herited by the subsemigroups eS and/or Se ? We were able to find 

a further nine such properties (Section 3); there are sure to be 

more. 

In Section 4, we consider regular semigroups in which the local 

subsemigroups are E-solid (defined below). We show that the idem- 

potent classes of the least congruence on such a semigroup giving a 

local inverse semigroup image are completely simple subsemigroups 

(by a local inverse semigroup we mean any semigroup in which the 

local subsemigroups are inverse semigroups). This congruence uni- 

fies three of its special cases occurring in the literature: the 

least inverse semigroup congruence on an orthodox semigroup; the 

least inverse semigroup congruence on a regular E-solid semigroup 

(the present author's appendix to [ii]); and the least local inverse 

semigroup congruence on a regular semigroup S in which the idem- 

potents of eS and Se form bands, for each idempotent e E S 

(Meakin and Nambooripad [i0]), i.e., from the affirmative answer 

above, on any regular locally orthodox semigroup S. The author is 

happy to acknowledge that his consideration of this question about 

the above congruence on a regular locally E-solid semigroup arose 

from reading some seminar notes on regular semigroups by 

D.B. McAlister. 

2. PRELIMINARIES 

For any adjective, A say, describing a type of semigroup, we 

shall say that a semigroup S is a locally A semigroup, or 

locally A, if each local subsemigroup is an A semigroup (this 

follows McAlister [9]). We note that the word inverse is not an 

adjective but a noun and so we shall call any semigroup in which the 

local subsemigroups are inverse semigroups a local inverse semigrou~ 

likewise, a local semilattice would be any semigroup in which the 

local subsemigroups are semilattices. 

For any semigroup S, we denote by E(S) the set of idem- 

potents of S, and we sometimes shorten E(S) to E, when no ambi- 

guity will result. C. Eberhart introduced the following condition 

on E(S) in a letter to the author around 1969 (see the acknowledge 

ment in [6], page 6): for any e,f,g E E such that e L f Rg, there 
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exists h E E such that eRhL g. When this condition is satisfied, 

following Clifford [i], we shall say that E is solid and that S 

is E-8olid 

The following result was found independently by Fitz-Gerald 

(unpublished) and the author [6, Theorem 3]. 

RESULT i. For any regular semigroup S, the subsemigroup generated 

b_~ the set of idempotents of S is a union of groups if and only if 

S is E-solid. 

For any semigroup S, we denote by Reg(S) the set of regular 

elements of S, i.e. Reg(S) = {aES: axa = a for some x E S}. It 

is of interest to know when Reg(S) is a subsemigroup of S; two 

necessary and sufficient conditions on E(S) can be gleaned from the 

literature. 

RESULT 2. For any semigroup S the following conditions are 

equivalent: 

(i) Reg(S) is a subsemigroup of S; 

(ii) <E(S)> is a regular subsemigroup of 

(iii) for all e,f E E = E(S), the product is regu 

S (i.e. E 2 C Reg(S)). 

S; 

ef ular in 

Proof. That (i) implies (ii) is due to Fitz-Gerald ([3] or [8, 

Chapter II, Exercise 15]), clearly (ii) implies (iii), and that (iii) 

implies (i) follows from [2, Theorem 2.4]. 

For any equivalence relation p on any set X, and for any 

y C X, we shall denote pn (y x y), the restriction of p to Y, 

by pIY . 

We use wherever possible, and usually without comment, the 

notations and conventions of Clifford and Preston [2] and Howie [8]. 
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3. SOME LOCAL PROPERTIES 

The affirmative answer to Nambooripad's question follows from 

part (i) of Theorem i. The next three parts of Theorem i and 

Theorem 5 give the further nine local properties inherited by each 

eS and/or Se. 

THEOREM I. Let e be any idempotent of any semigroup S. 

(i) If E(eSe) is a band, then E(eS) is a band. 

(ii) If eSe is E-solid, then eS is E-solid. 

(iii) If eSe has at most one idempoten_t per L-class, then 

eS has at most one idempotent per L-class. 

(iv) If Reg(eSe) is a subsemigroup (e.g. if S is regular) 

then Reg(eS) is a subsemigroup; equivalently , if <E(eSe)> is 

regular then <E(eS)> is regula r . 

Proof. (i) Take any f,g E E(eS). Then easy checking shows that 

fe, ge E E(eSe) and so fege is idempotent, giving that 

(fg)(fg) = fgfgg = f(eg)(ef)(eg)(eg) (since f,g @ eS) 

= (fege)(fege)g = (fege)g = fgg = fg, 

i.e. fg is an idempotent. Thus E(eS) is a band as required. 

(ii) Take any idempotents f,g,h E eS such that h L f R g. 

We show first that the idempotents he,fe,ge of eSe satisfy 

he L feRge. Now (fe)f = f(ef) = ff = f so feR f and likewise 

geRg, so feRge; and since L is a right congruence we have 

he L fe in S and hence also in eSe. 

Thus, since eSe is E-solid, there exists an idempotent 

k @ eSe such that he R k L ge. Routine calculations now show that 

kg is an idempotent of eS such that, from Green's Lemma, hRkg L g, 

whence eS is E-solid as required. 

(iii) Take idempotents f,g in eS such that f Lh. From 

above, fe and he are idempotents of eSe such that f R fe .... 

From Green's Lemma and (fe) f = f we have (he)f = h. However 

fe = he since eSe has at most one idempotent per L-class so f =h, 
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giving us that eS has at most one idempotent per L-class, as 

required. 

We note that routine arguments show that 

and 

L(eS) = [(S) IeS 

L(eSe) = [(eS) leSe = L~) leSe. 

(iv) We assume then that Reg(eSe) is a subsemigroup and we 

take any elements x,y E Reg(eS) and any x' E V(x) N eS and 

y' E V(y) NeS. Then x'e E V(xe) neSe, y'e E V(ye) NeSe and so 

xe,ye E Reg(eSe) giving that xeye = xye E Reg(eSe). Take any 

(xye)' E V(xye) A (eSe). Then from y' E eS we have 

xy(xye)'xy = xy(e(xye)')xyy'y = (xye)(xye)'xyey'y 

= xyey'y = xyy'y = xy 

and easily now we see that (xye)' E V(xy), whence xy is regular 

in eS and so Reg(eS) is a subsemigroup, as required. 

Note that if S is a regular semigroup then each local subsemi- 

group eSe is also regular, so by part (iv) each Reg(eS) is a sub- 

semigroup. 

The reverse implications of (i) to (iv) are obvious or easily 

proved; the reverse implication of (iv) also follows from Lemma 4(i) 

below. 

LEMMA 2. Let e be any idempotent of any semigroup S and let 

be the morphism of eS onto eSe given b_~ x~ = xe for each 

x e eS. The restriction map @ = ~IReg(eS) maps Reg(eS) onto 

Reg(eSe) and satisfies the following conditions: 

(i) ~ is R-class preserving (i.e. x~Rx in eS 

x E Reg(eS)), whence ~o ~-i C R(eS); 

for each 

(ii) ~ maps each regular L-class of eS one-to-one and onto 

regular L-class of eSe; 
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(ill) for each idempotent 

semigroup; i__n_npartlcular , when 

morphism ~: Reg(eS) + Reg(eSe) 

f E eSe, f~-i is a righ t zero sub- 

Reg(eSe) is a subsemlgroup, the onto 

i__ss idempotent-determlned. 

Proof. Routine checking shows that ~ is a morphism, so ~ maps 

Reg(eS) into Reg(eSe); since (Reg(eSe))~ = Reg(eSe) we have that 

maps Reg(eS) onto Reg(eSe). 

Take any elements x,x' E eS such that x' 6 V(x). Then 

(xe)x'x = x(ex')x = xx'x = x so xeRx in eS, i.e. x@Rx in eS, 

as required for (i). Statement (ii) is now seen to be part of Green's 

Lemma. Also, if x~ is an idempotent then x is an idempotent 

since 

2 
x = xxx'x = x(ex)(ex')x = (xe)(xe)x'x = (xe)x'x = x(ex')x = x. 

Statement (iii) now follows. 

LEMMA 3. Let e be any idempotent i__nn any regular semlgroup S. 

(i) Each idempotent separating congruence o__nn eSe extends to 

a_n_n idempotent separating congruence o__nn S and to a unique idempotent 

separating congruence o n_n SeS. 

(ii) l_~f H(eSe) (--H(S) leSe) i_ssa congruence o__nn eSe then 

H(SeS) (=H(S) ISeS) is a congruence on SeS. 

Proof. (1) Take any idempotent separating congruence 0 on eSe. 

By Hall and Jones [7, Proposition 4.5], 0 extends to a congruence 

on S, for example 0", the congruence on S generated by 0 (i.e. 

0*I eSe = 0)- Denoting by ~(T) the maximum idempotent separating 

congruence on any regular semigroup T, we have 0 ~ ~(eSe) and from 

the author [6, Corollary 6] we have ~(eSe) C ~(S); from 0 C ~(S) 

we have that 0* ~ ~(S), i.e. that 0* is Idempotent separating (as 

required). Further, 0*ISeS is therefore also idempotent separating 

and of course also extends p. It remains to show that 0*ISeS is 

the only idempotent separating extension of O to SeS (from which 

it follows that it is the congruence on SeS generated by 0). 

For any H-class, H say, of SeS, by Clifford and Preston [2, 

Section 8.4, Exercise 3] , there exists an element (in fact an idem- 
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potent) f E eSe such that H and f are in the same g-class, D 

say, of SeS (equivalently, of S). Now by Green's Lemma and its 
1 

dual there exist elements x,y,u,v E (SeS) (in fact in SeS since 

SeS is regular) such that the maps 

0 : Hf + H, 0 : H + Hf, x,y U~V 

: s ~ xsy, : t ~ utv, 

are mutually inverse bijections between H and H. Clearly then, 
f 

as is well-known, for any idempotent separating congruence O on S, 

olD is determined uniquely by oIH f (in fact for any H-class 

Hf C D) since, for all tl,t 2 E H, we have (tl,t2) E O if and only 

if (utlv,ut2v) E O (of course O C H(S), by [8, Proposition II.4.8]). 

Since f E eSe we have that Hf C eSe and that plHf(=p*IHf) 

determines P*iH uniquely and hence p*ISeS (c H(SeS)) is the 

unique idempotent separating congruence on SeS extending p. 

(ii) From the proof above of statement (i), statement (ii) 

easily follows. 

LEMMA 4. 

(i) 

(ii) 

Proof. (i) 

Let e be any idempotent in any semigroup S. 

Reg(eSe) = (eSe) nReg(eS) = (Reg(eS))e. 

(E(eSe) > = (eSe) A<E(eS) ) = (E(eS))e. 

It is clear that 

Reg(eSe) C (eSe) nReg(eS) C (Reg(eS))e 

and from Lemma 2, (Reg(eS))e = (Reg(eS))~ = Reg(eSe); this proves 

part (i). 

(ii) It is clear that 

(E(eSe) > C (eSe) A(E(eS) ) C <E(eS) >e 

and the morphism ~: eS -~ eSe of Lemma 2 of course satisfies 

(E(eS)>~ C <E(eSe)>, i.e. <E(eS)>e C <E(eSe)>; this proves part (ii). 

THEOREM 5. Let e be any idempotent of any semigroup S. 

(1) If (E(eSe) > is a union of groups then <E(eS) > is a 
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union of groups. 

(ii) If (E(eSe)) is a band of groups then <E(eS)) is a band 

of  $[oups.  

( i i i )  I f  Reg(eSe) i s  an i dempo ten t -gene ra t ed  subsemigroup then 

Reg(eS) i s  an i dempo ten t -gene ra t ed  subsemigrou p. 

( iv )  I f  the subgroups of  eSe a re  t r i v i a l  then the subgroups 

of eS are trivial. 

(v) If Reg(eSe) is a subsemigroup on which H is a con- 

gruence then Reg(eS) is a subsemigroup on which H is a 

congruence. 

(vi) If Reg(eSe) is a union of sroups (not necessarily 

subsemisroup) then Reg(eS) is a union of gr0ups .. 

Proof. (i) This follows from Theorem l(i) and (iv) and Result i. 

(ii) Now (E(eS)> = T say, is a union of groups from part 

(i). Clearly e 6 T and eT = T; from Lemma 4(ii) we have 

Te = (E(eSe)>. From H being a congruence on eTe = (E(eSe)> we 

have from Lemma 3(ii) that H is a congruence on TeT = T, so 

T = <E(eS)) is a band of groups, as required. 

(iii) Take any element a 6 Reg(eS) and any idempotent f L a 

in eS. Then ae L fe in eSe (Lemma 2(ii)). From fR fe = (fe) 2 

we have (fe)f = f whence (ae)f = a from Green's Lemma. From 

ae being a product of idempotents in eSe we have a = (ae)f is 

a product of idempotents in eS. 

(iv) This follows from Lemma 2(i) and (ii). 

(v) From Theorem l(iv), Reg(eS) is a subsemigroup. We put 

T = Reg(eS) and note that again eT = T, eTe = Te = Reg(eSe) by 

Lemma 4(i), and TeT = T. The required result now follows from 

Lemma 3(ii). 

(vi) This follows from Lemma 2(ii) and (iii). 

Again, the reverse implications of (i) to (vi) are obvious or 

easily proved. 
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4. REGULAR LOCALLY E-SOLID SEMIGROUPS 

Let S be any regular semigroup all of whose local subsemi- 

groups eSe (e E E(S)) are E-solid. In this section we consider the 

least congruence p on S such that S/p is a local inverse semi- 

group. We show that for each e E E = E(S), the congruence class ep 

is a completely simple subsemigroup, and we determine the (normal) 

partition of E induced by p (equivalently, we determine piE). 

It is easy to see that p exists, and that p is in fact the 

congruence on S generated by the relation 

00 = {(f,g) E E x E: for some e E E, f ~g in <E(eSe)>}; 

for example, this can be proved as follows from Lallement's Lemma. 
* 

For the moment we denote P0' the congruence on S generated by 

P0' by o. By Lallement's Lemma, any local subsemigroup of S/o is 

of the form (eo)(S/o)(eo) = (eSe)o ~ ~ eSe/(oleSe) for some e e E. 

Now < E(eSe)) is a union of groups by Result i so D = ~((E(eSe)>) 

is a congruence on <E(eSe)) and (E(eSe)>/D is a semilattice. 

Since D C P0 ~ aleSe' we have from Lallement's Lemma again that 

<E((eSe)o~)) is a homomorphic image of the semilattice 

<E(eSe))/~, and so is itself a semilattice. Hence (eSe)O$ is an 

inverse semigroup and so S/O is a local inverse semigroup. It is 

clear that 00 is the least such congruence, so p exists and 

P = PO" 

We denote by Pl the compatible closure of P0; that is, we 

define 

Pl = {(xfy,xgy) E S • S: x,y ~ S l,(f,g) @ p0 }. 

Then of course p= p~, the transitive closure of Pl (since Pl is 

reflexive and compatible). 

LEMMA 6. For any pair (s,t) E Pl there exist idempotents a,b E S 

such that s LaRb L t. 

Proof. There exist x,y E S I, e,f,g @ E(S) such that s = xfy, 

t = xgy and f Dg in <E(eSe)>. Since f,g ~ e we have s = xefey, 

t = xegey so we can assume without loss of generality that x = xe, 
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y = ey. Take any x' �9 V(x), y' �9 V(y); then ex' �9 V(x) and 

y'e �9 V(y) so we can assume without loss that x' = ex', y' = y'e. 

Thus we have x'x,yy' E E(eSe) and since (E(eSe)> is a union of 

groups (Result i), we have x'xfyy' ~x'xgyy' in (E(eSe)) and of 

course x'xfyy' Rx'xfy Lxfy and likewise x'xgyy' Rx'xgyLxgy in 

S. The egg-box diagram below will help explain the proof; shaded 

boxes indicate some of the group H-classes of S. Let i,j denote 

the idempotents satisfying iHx'xfyy' R j L x'xgyy'. From Green's 

Lemma we have i R iy L xfy and likewise j R jy L xgy. From i = iyy' 

and j = jyy' we see that y'i �9 V(iy), y'J �9 V(jy) and 

iLy'iRy'j L j and then that the idempotents a = y'iy, b = y'jy 

satisfy the required condition, namely that s LaRb L t. 

'/x 'xf;y~ ~//j/t~j/~/ x'xfy 

X / / " 
x ' xgyy~ x' xgy 

' / / / I /  

y'i y'j 

s = xfy 

t = xgy 

/ / i 1 1 , ' 1 / / / /  
/a=y' iy j rb=y' jy/ 

"///// 

Define a relation y on S, containing L, by 

= U{L a x Lb: aRb and a,b �9 E(eSe) for some e �9 E(S)} 

and define L # to be the transitive closure of ~. (Note that 

L c L # c D.) 

In the notation of the proof of Lemma 6 we have that the idem- 

potents a = y'iy, b = y'jy are in y'ySy'y and are R-related in 

x Lb C y which gives us that Pl C y and so S, so (s,t) e L a _ , 

0 C yt = L #. Conversely, given any a,b as in the definition of 

we see that (a,b) E P0 ~ p so for any (x,y) E y we have that x 

and y map into the same L-class of S/p, and thus likewise for any 

(x,y) �9 t = L #. 
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Dually, we define ~ and R # by 

6 = U{R a x ~: a Lb and a,b E E(eSe) for some e C E(S)} 

and R # = 6 t, the transitive closure of 6; and we have that per #. 

Putting H # L # n R # = we have also that 0 C H # and H c H #. This 

does not concern us here, but L#/p, R#/p and H#/p are Green's 

relations L, R and H respectively on S/O; since p c U we have 

that D/p and J/p are D and J on S/o, by the author [5, 

Theorems i0 and 13]. 

THEOREM 7. (i) For any (x,y) E R #, the pattern of ~roup H-classes 

in R x is identical to the pattern of group H-classes in Ry, in 

the sense that for each L-class L of S, LnR x is a subgroup if 

and only if Ln R is a subgroup. 
Y 

(ii) For each e E E = E(S), eH # is a completely simple 

subsemigroup of S, whence ep is also a completely simple subsemi- 

group of S. 

( i i i )  DIE = H#1E.  

P r o o f .  ( i )  F i r s t  we t a k e  a n y  ( x , y )  ~ 6 ;  t h e n  t h e r e  e x i s t  

e E E(S)  a n d  a , b  E E ( e S e )  s u c h  t h a t  x R a  L b R y .  N o t e  t h a t  

R x , R y  ~ e S .  Now T h e o r e m  l ( i i )  c o m e s  to  o u r  a s s i s t a n c e ,  f o r  eS i s  

t h e r e b y  E - s o l i d ,  a n d  s i n c e  a 2 = a L b = b 2 we h a v e  t h e  r e q u i r e d  

c o n c l u s i o n  f o r  a n y  ( x , y )  E 6 ( n a m e l y  t h a t  t h e  p a t t e r n  o f  g r o u p  

H - c l a s s e s  i n  R x i s  i d e n t i c a l  t o  t h a t  o f  Ry) a n d  t h u s  a l s o  f o r  

any (x,y) E ~t = R#. 

(ii) Take any element s @ eH #. From e R # s and part 

(i) above we have that L n R contains an idempotent f say, 
e s 

and then from e L # s and the dual of part (i) above we have that 

H s contains an idempotent, g say, and H is a group. From 

H c H # we have that H C eH # and so eH #s is a union of groups. 
-- S -- 

Prom e L f Rs we have e L # f R # s R # e so f @ eH#; and dually 

there is an idempotent hEeH # satisfying eRh L s. Thus, 

regarding H and H as arbitrary H-classes in eH #, we see that 
e g 

the group H-classes of S which constitute eH # form a rectangu- 

lar array in the egg-box picture of the containing D-class of S; 
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i.e. eH # is a completely simple subsemigroup of S, as required. 

Of course 0I(eH #) is a congruence on eH # so (eo) N (eH #) = e0 

is also a completely simple semigroup, since any idempotent con- 

gruence class in a completely simple semigroup is itself completely 

simple. 

(iii) 

H#1E C 01E. 

(e,f) ~ L # 

We have already that O C H # so we now show that 

Take any pair (e,f) E H#1E. As shown before, from 

we have that e and f map into the same L-class of 

S/0, and dually, into the same R-class and hence the same H-class of 

S/0; thus e0 = fo, i.e. (e,f) E O and so H#1E ~ 01E as required. 

REMARK. Of course 00 C oIE = H#1E so O is the least congruence 

on S corresponding to its normal partition of E. 

The following corollary follows also from [i0, Theorem 1.5] and 

Theorem l(i) (since part (i) is easily proved from part (ii)), but 

for completeness we give a proof of it from Theorem 7. 

COROLLARY 8. Let S be any regular locally orthodox semigroup. 

For each idempotent h E S 

(i) 01hSh = F(hSh), the least inverse semigroup congruence o nn 

the orthodox semigroup hSh, 

and 

(ii) h0 is a rectangular band. 

Proof. Take any s,t E hSh such that s 01 t and take the 

elements e,f,g,x,y as in the proof of Lemma 6. Since 

s = hsh = hxefeyh and t = hxegeyh we can assume without loss that 

x = hxe, y = eyh and then that x' = ex'h @ V(x), y' = hy'e E V(y). 

Thus the idempotents a = y'iy and b = y'jy are elements of hSh 

and dually the idempotents c = xjx', d = xkx' (where 

k = x'xgyy' E E(eSe)) are in hSh and s Rc L dR t. Now from a R b 

we have (a,b) E Y(hSh) = F say, and likewise (c,d) ~ Y. Routine 

checking shows that s = cta and so we have s = ctaF dtb = t, 

giving that PllhSh C Y. 

Take any x,y c hSh such that (x,y) E p = p~. Then 

x = Sl01S201...01s n = y 
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for some 

Thus 

s2,s3,...,Sn_ 1 E S, and so 

x = hxh = hSlh pl hs2h pl...pl hSnh = hyh = y. 

x = hSlh V hs2h F ... V hSnh = y 

giving that (x,y) 6 F. Thus p[hSh C y and the reverse containment 

is obvious since the image of hSh in S/p is inverse. 

(ii) Take any element s E hp, a completely simple semigroup by 

Theorem 7(ii). Thus she oh for some e E E(S). Then s E eSe 

and spe, so from part (i), s e (ep) n (eSe) = eY(eSe) = {e}, whence 

s = e. Thus hp is a rectangular band, as required. 

There are obvious converses to Theorem 7 and Corollary 8, 

namely the following. 

THEOREM 9. Let S be any regular semigroup. 

(i) If there is a congruence p on S such that S/O is a 

local inverse semigroup and ep is a union of groups for each 

e E E(S), then S is locally E-solid. 

(ii) If there is a congruence p on S such that S/p is a 

local inverse semigroup and ep is a band for each e E E(S), then 

S i_ss locally orthodox. 

Proof. (i) Suppose such a congruence P exists and take any 

e 6 E(S) and any f,g,h E E(eSe) such that f L gRh. To show that 

eSe is E-solid we must show there exists k C E(eSe) such that 

f RkLh. Since (eSe) p ~ is a local subsemigroup of S/p it is an 

inverse semigroup, so from f L gRh we obtain f0 = gp = hp , i.e. 

fpgph. Thus gh @ fP, a union of groups, so there is an idem- 

potent k E fp such that ghHk in fp and hence also in S. Now 

gRghLh from [2, Theorem 2.17] so of course gRkLh in S. 

From g,h < e we have k ~< e, i.e. k E E(eSe), and so gRkLh in 

eSe, i.e. eSe is E-solid, as required. 

(ii) 

e e E(S). 

Given that such a congruence P exists, let us take any 

By part (i), we have that (E(eSe)> is a union of groups. 

4? 



HALL 

Take any f,g E E(eSe) such that fDg in <E(eSe)>; we show that 

fg is idempotent. Now <E(eSe))0 ~ is a semilattice so 

(f,g) E D((E(eSe)>) C 0; thus (f,fg) E O and so fg is idempotent 

since f0 is a band. It follows that each D-class of (E(eSe)>, 

besides being a completely simple semigroup, is also orthodox, 

whence, from D = J on <E(eSe)>, we have that each principal fac- 

tor of <E(eSe)> is orthodox, which gives us that <E(eSe)> is 

orthodox by the author [4, Corollary i] (or [8, Chapter VI, 

Exercise 2]), i.e. E(eSe) is a band, giving that S is locally 

orthodox, as required. 
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ADDENDUM 

The author has recently learned that the word "inverse" is in 

fact an adjective as well as a noun. The phrase "locally inverse 

semigroup" now seems to the author to be preferable to "local 

inverse semigroup". 
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