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R E S E A R C H  A R T I C L E  

Universal Expansion of Sernigroup Varieties 
by Regular Involution 

Velclav K o u b e k  

Communica ted  by Boris M. Schein 

1. Prel iminaries  

This paper is an "expansion" of, and makes a whole with, its predecessor 
[7]. For the reader's convenience, we recall here the basic definitions and put in 
a word on the motivation. 

A category K is said to be 
universal if every category C of algebras can be fully embedded into K ,  
monoid universal if every monoid M is isomorphic to the endomorphism 
monoid End(A) for some object A of K .  
We are concerned here with characterizations of universality for certain 

subvarieties of the variety R of regular involution semigroups (the universality of 
R was stated by Demlovs and Koubek [3]), the latter being defined as semigroups 
with an additional unary operator x --* x + , the regular involution, tied up to the 
semigroup multiplication by the identities 

X A-+ ~ X,  X X + X  ~ X.  

The kind of subvarieties of R we are interested in are what we call 
"expansions" of semigroup varieties by regular involution. The aim of this paper 
is to characterize the universal expansions of varieties of semigroups by regular 
involution. The universal expansions of varieties of bands (i.e. idempotent 
semigroups) were described by Demlov~ and Koubek [4]. 

For a set E of semig:coup equations (i.e. without the involution symbol 
in their terms), let R ( E )  denote the subvariety of R determined by E .  For a 
semigroup variety (without involution) V ,  let Eq(V)  denote the set of equations 
satisfied in V (i.e. the identities of V) .  

Now, the expansion of V by regular involution (shortly: the expansion 
of V)  is the subvariety 

R ( V )  = R ( E q ( V ) )  

of R .  
There is no simple way of recovering V from R ( V )  - certainly not by 

just forgetting the involution. We cannot even expect that  the subclass of V 
thus obtained would generate V .  Still it is felt that  in a case - an especially 
interesting one - when V is not universal (the universal varieties of semigroups 
were described by Koubek and Sichler [8]) and R ( V )  is, it is the semigroup 
variety V which is a major  agent responsible for the universality of R ( V ) .  As 
if V possessed a sort of "hidden" univerality "revealed" by the added regular 
involution, the role of the latter being rather an accessory one. 

In [7] we have obtained several equivalent characterizations of the uni- 
versal expansions of band varieties, summed up in the following 
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T h e o r e m  1.1. For a variety V of bands the fol lowing are equivalent: 
(1) R ( V )  is universal; 
(2) R ( V )  is monoid  universal; 
(3) V contains either all left normal  bands or all right normal  bands or all 

rectangular bands; 
(4) V contains a semigroup S which is nei ther  a semilattiee nor a left-zero 

semigroup, nor a right-zero semigroup. �9 

Note that condition (3) specifies the minimal band varieties whose 
expansion is universal: 

L N B  - the variety of left normal bands, i.e. semigroups satisfying the 
identities x 2 = x ,  x y z  = x z y ;  

R N B  - the variety of right normal bands, i.e. semigroups satisfying the 
identities x 2 = x, z y x  = y z x  ; 

R C B  - the variety of rectangular bands, i.e. semigroups satisfying the 
identities x 2 = x, x = x y x ;  

Adding to this list, for every prime p, the varieties 

L A B p  - the variety of left elementary p-groups, where p is a prime, i.e. 
semigroups satisfying the identities x z y  = x y z ,  x p+I = x ,  xPy p = xP; 

R A B p  - the variety of right elementary p-groups, where p is a prime, 
i.e. semigroups satisfying the identities z y x  = y z x ,  x p+I = x ,  yPx p = x p. 

We are able to establish in this paper the following more general 
(we recall that  an algebra A is rigid if E n d ( A )  is trivial). 

T h e o r e m  1.2. For a variety V of semigroups the fol lowing are equivalent: 
(1) R ( V )  is universal; 
(2) R ( V )  is monoid  universal; 
(3) for  every group G there exists a regular semigroup S E R ( V )  with 

E n d ( S )  "~ G;  
(4) there exists a non-singleton rigid regular semigroup S E R ( V ) ;  
(5) V contains one of the varieties L N B ,  R N B ,  R C B ,  L A B p ,  R A B p  

where p is a prime; 
(6) V contains a semigroup S such that for  every s E S there exists t E S 

with s = s ts  and S is nei ther an inverse semigroup nor a left-zero 
semigroup nor a right-zero semigroup. 

2. C o n s t r u c t i o n s  for  un i ve r s a l i t y  o f  R ( L A B p )  

In this chapter we prove that for every prime p, the varieties R ( L A B p )  
and R ( R A B p )  are universal. Proof will be given only for the variety R ( L A B p ) ,  
for R ( R A B p )  the proof is dual. Like Pigozzi and Sichler [9], we would rather 
work with the category P ( L A B p )  extending R ( L A B p )  by permitt ing partial 
involution. For this reason, define the category P ( L A B p )  of left elementary 
p-groups with partial involution: 

objects are pairs ( S , f )  where S E L A B p  is a left elementary p-group, 
f : S --+ S is a partial mapping such that for every s E S,  if f ( s )  is defined then 
s f ( s ) s  = s ,  f ( f ( s ) )  is also defined and f ( f ( s ) )  = s ,  

morphisms  f r o m  (S,  f )  into (T ,g )  are all semigroup homomorphisms 
X : S ~ T satisfying x( f ( s ) )  = g(x ( s ) )  for every s E S whenever the left side is 
defined. 
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It is obvious tha t  P ( L A B p )  is a category and for every object  (S, f )  if 
f is a to ta l  mapping,  then  (S, f )  E R ( L A B p ) .  For (S, f ) ,  (T, g) E R ( L A B p ) ,  
homomorphisms from (S, f )  to (T,g) and morphisms of P ( L A B p )  from (S, f )  
to (T,g) coincide, thus R ( L A B p )  is a full subcategory of P ( L A B p ) .  

Denote by G R A  the category of all undirected graphs without  loops 
and isolated elements such that  every edge belongs to a triangle. 

First  we construct  a full embedding r from the category ( 3 R A  into 
P ( L A B p ) .  Then we describe a reflection A : P ( L A B p )  --+ R ( L A B p )  and we 
show tha t  A o r is a full embedding from G R A  into R ( L A B p ) .  Since G R A  
is universal,  see [5] or [10], the universali ty of R ( L A B p )  will be proved. 

Let p be a prime. For a set X denote by F ( X )  a free semigroup over 
the set X in the variety A B p  of semigroups determined by identi t ies xy = yx,  
xPy = y.  

By [1], every semigroup S E L A B p  can be represented as S = G x L for 
an e lementary  p-group G and a left-zero semigroup L.  Then (G, L) is called a 
canonical decomposition of S .  Every morphism X : G • L --* G'  x L'  in L A B p  
splits into X = ~ x r for c 2 : G --~ G' and r : L --~ L ' .  

Assume tha t  (S, f )  E P ( L A B p )  and (G, L) is a canonical decomposit ion 
of S ,  then for every (t, u) E S ,  if f ( t ,  u) is defined, then f ( t ,  u) = (t p- l ,  u') for 
some u'  E L. Indeed, if f ( t , u )  = ( t ' ,u ' ) ,  then  ( t ,u )  = ( t , u ) f ( t , u ) ( t , u )  = 
(t, u) ( t ' ,  u')(t, u) = (tt't, u) and hence t '  = t p-1 . 

For a graph P = (V,E)  E G R A  denote V/, i E 3 three disjoint 
copies of V, the element of Vi corresponding to v E V is denoted by vi. Set 
X r  = U{V/ l i E 3}. Let A = {a, b, c} be a three-element left-zero semigroup. 
Put  S r  = F ( X r )  • A then  Sr  E L A B p .  Define f r  : Sr  --* S r  as the smallest 
par t ia l  mapping  with the proper ty  tha t  f r ( f r ( s ) )  = s whenever f r ( s )  is defined 
and satisfies: 

(a) f r ( 1 , a )  = (1, b) 
(b) fr(vo,a)  = ((v0)P-l ,b)  for every v �9 Y 
(c) f r (v l ,b)  = ((Vl)P-a,c)  for every v �9 V 
(d) fr(v2,c)  = ( ( v 2 ) P - l , a )  for every v �9 V 
(e) fr(vovlv2, b) = ((VOVlV2) p-l ,  b) for every v �9 Y 
(f) fr(vawa,c) = ( ( V l W l ) p - l , a )  for every {v ,w}  e E 
(g) fr(uavawl,c)  = ((UaVlWl)P-X,a) for every tr iangle {u ,v ,w}  in (V ,E) .  

Clearly, ( S r , f r )  is an object  of P ( L A B p ) .  Define ffP = ( S r , f r ) .  For 
a compat ib le  mapping g : P ~ r ' ,  where F = ( V , E ) ,  F '  = (Y' ,  E ' )  denote by 
~9 the homomorphism from F ( X r )  into F ( X r , )  satisfying ~g(vi) = (g(v))i for 
every i �9 3 and v �9 V. Let fig = ~g x e A where ~A is the ident i ty  of A.  We 
immedia te ly  ob ta in  that  Og is a homomorphism from S r  into S t , ,  and because 
~g o f r  = f r ,  o q,g, we conclude that  Og is a morphism of P ( L A B p ) .  Thus 

P r o p o s i t i o n  2.1.  �9 : G R A  --* P ( L A B v )  is an embedding. �9 

We prove that  �9 is full. Assume that  F = ( V , E ) ,  F ~ = (V ~,E')  are 
graphs from G R A .  Assume tha t  X : OF --+ OF'  is a homomorphism. Then 
there exist homomorphisms ~ : F ( X r )  ~ F ( X r , ) ,  r : A --* A such that  
X(X, d) = (r r  for every (x, d) �9 F ( X r )  • A.  Since ~p is a homomorphism 
we have ~(1) = 1. 

L e m m a  2.2. r  = b, r  = a. Moreover, for every v �9 V,  ~O(vo) �9 V0'U{1 } 
a n d  ~('v0'ol'V2) �9 {v0L~lV 2 I 'or �9 V t )  U t t t p--1 V # ' ' ' {(UOUIU2) [ �9 V ' } .  
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P r o o f .  If x e F ( X r ) ,  d E A and f r ( x , d )  = (y ,d) ,  then d = b and 
~ (vo.~v~ I .  e v }  u {(v0v~,~)~ -~ I , e y } ,  therefore r = b and for 

i i t ~ i p--1  v l  every v E V ,  ~(vovlv2) Z {vovlv' ~ I v' ~ V'} U {(VoVlV2) I ~ V '} .  b'~rther, 
f r (1 ,  b) is defined and, because of ~(1)  = 1, we obta in  r  = a.  For every 
v E V ,  f r (vo ,a)  p--1 = (v 0 ,b) and since f r , ( x ,a )  = ( x ~ - l , b )  for x E F ( X r )  if 
and only if x E Vg U {1} we conclude tha t  for every v E V,  qa(v0) ~ Vg U {1}. �9 

L e m m a  2.3. r  = c. 

P r o o f .  First  assume that  r  = a.  Then for v E V,  there exists x E F ( X r , )  
p- -1  with X(V2,C) = (x ,a) .  By Lemma 2.2, X(v 2 , a )  = (y ,a)  for some y E F ( X r , )  

and thus f r , ( x , a )  = (y,a) - a contradiction with the definition of f r , .  Thus 
r  # a .  Assume that  r  -- b. Since f r ( v l ,b )  = (Vl p - l , c )  for every v E Y,  

t i I ~ t p - 1  V I we obta in  ~ ( v l ) ,  ~(v~ -1)  E {VoVlV~2 I v' e V'}  U {(VoVlV2) I e W } .  
Further ,  fr(vlWl,C) = ((VlWl)P-l ,a)  for every {v ,w} E E .  Hence ~(VlWl) e 
{(v~) p-1 I v' E Y'} U {1} by Lemma 2.2. If we combine both  facts, we obta in  
for every {v,w} E E tha t  { ~ ( V l ) , ~ ( W l )  } ! t ! t I t p - -1  = { Z o Z l Z 2 , ( Z o Z I Z 2 )  } f o r  s o m e  
z' E V'  and ~(vlw~) = 1. Since (V ,E )  contains a triangle,  there exist three 
edges {v ,w} ,  {u ,v} ,  {u ,w} E E.  If {~(Vl) ,~(Wl)  } ---- {Z;Z~Zt2,(ZIoZlZI2)P--1 } 
for some z' E Y ' ,  then also { ~ ( v l ) , ~ ( u l ) }  = {z~z~lz~,(z~oz~z~)P-1}. Hence 
~p(Ul) ~(Wl) and thus ' 'z~ = " ' ' , ,p -1  = Z o Z  1 �9 (zozlz2) , therefore p -- 2 In this case 
~ ( u l v l w l )  = z~z~z~ is a contradict ion to ~(UlVlWl) e {(v~) p-1 [v' e Y'} U {1} 
because fr(ulVlWl,C) = ((U~VlWl)P-~,a). Hence r  # b and thus r = c . � 9  

L e m m a  2.4. For every v E V there exists v' E V' such that for every i E 3, 
~(vi)  = v:. 
P r o o f .  Since X o f r ( z )  = fr, o X(X) whenever f r ( x )  is defined, we conclude 
by Lemmas 2.2 and 2.3 and (c) that  ~(V1) C V~. This and (d), (f), (g) imply 
~(V2) C V~ and according to Lemma 2.2, we obta in  ~(V0) C_ (Vg). Taking the 
second half  of Lemma 2.2, we obtain that  ~(v0) = v~ implies ~ (v l )  = v~ and 
qo(v2) = v~ for every v E V. �9 

Define g :  V ~ V'  such that  ~(vo) = (g(v))o. 

L e m m a  2.5. g is a compatible mapping from (V,E)  into ( V ' , E ' ) .  

P r o o f .  For ( v ,w}  E E ,  we have f r , (g(v) lg(w)l ,C)  = fr,(X(VlWl,C)) = 
x ( f r ( vxwl , c ) )  = X( (v luq)p - l ,a )  = ( (g (v ) lg (w) l )P- l ,a )  and by the definition 
of f r , ,  we conclude that  {g(v), g(w)} E E ' .  �9 

T h e o r e m  2.6. r : G R A  --~ P ( L A B p )  is a full embedding. Thus P ( L A B p )  
is universal. 

P r o o f .  We prove that  Cg = X. Since r = (g(v))i for every v E V,  i E 3 
and since X = (~ • tA) where tA is the  identi ty of A,  we obta in  (I)g = X. Now 
Proposi t ion 2.1 completes the proof. �9 

The second step contains a description of a free complet ion of left elemen- 
ta ry  p-groups  with par t ia l  involution. A regular  semigroup (S, + ) E R ( L A B p )  
is a free completion of a left e lementary p-group (T, f )  wi th  a par t ia l  involution if 
there exists an injective morphism # : (T, f )  --* (S, + ) in P ( L A B p )  such tha t  for 
every morphism a : (T, f )  ~ (S ' ,  + ) in P ( L A B p )  where (S ' ,  + ) E R ( L A B p ) ,  
there exists a unique homomorphism X : (S, + ) ~ (S  ,+ ) with a = X o ~t. 
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Our aim is to prove tha t  every left e lementary p-group with par t ia l  invo- 
lut ion has a free complet ion and to investigate propert ies  of the  free completion. 
Analogous results were obta ined by Pigozzi and Sichler [9] for Steiner tr iples and 
Koubek  [7] for rectangular  bands with par t ia l  involution. 

L e m m a  2. ' / .  For every left elementary p-group (S, f )  with partial involution, 
there exists a left elementary p-group (T, g) with partial involution such that the 
following hold: 

(1) /f ( G s , L s )  and (GT, LT) are the canonical decompositions of S and T ,  
then Gs  = GT and L s  C_ LT;  

(2) the inclusion ~ : S --* T is a morphism from ( S , f )  to (T ,g)  in 
P ( L A B ~ ) ;  

(3) for every s E S ,  g(s) is defined; 
(4) for  every morphism X : (S, f )  --* (S' ,  + ) in P ( L A B p )  where (S' ,  +)  E 

R ( L A B p )  there exists exactly one morphism a : (T,g)  ---* (S' ,  +)  in 
P ( L A B p )  with X = a o ~. 
Moreover, if ui E GT, i E 3, z I E LT ,  j E 3 with g(ui, zi) = 

(u~- l , z i+ l )  for i E 3 (where the addition is taken modulo 3), then zj e L s  
for  every j E 3. 

P r o o f .  Set B = {(u,v)  ] u E Gs,  v e Ls ,  f ( u , v )  is not defined}. Wi thou t  
any loss of generali ty we cart assume that  B M L s  = • and set LT = B U L s .  
Let T = G s  x LT.  Define a par t ia l  mapping g : T --* T such tha t  for every 
s E S ,  g(s) = f ( s )  whenever f ( s )  is defined. Fur ther ,  if (u, v) E S and f ( u , v )  
is not defined, then g(u, v) = (u p - l ,  (u, v)),  g(up-1, (u, v)) = (u, v).  Denote by 
t : S ~ T the inclusion. Clearly, (1), (2), and (3) hold, and it suffices to  prove 
(4), the  rest is clear. Let X : (S, f )  --* (S ' ,  + ) be a morphism of P(LABp) such 
tha t  (S ' ,+)  E R ( L A B p ) .  Assume that  (Gs , ,  Ls , )  is a canonical decomposi t ion 
of S r , then there exist homomorphisms q0 : Gs ~ Gs , ,  r : L s  --* Ls,  such tha t  
X = q0 x r  Define r : LT _--* Ls,  as follows: for u E L s ,  ~bl(u) = r  for 
(u ,v )  E B ,  if (X(U,V)) + = (x ,y ) ,  then r  = y.  Set a = ~0~31 . Clearly, 
X = a o ~ and a : T --* S t is a semigroup homomorphism. By a direct inspection 
we obta in  for every t E T tha t  a(g(t))  = a(t)  + whenever g(t) is defined. Clearly, 
a is unique because (S, f )  generates (T ,g) .  �9 

T h e o r e m  2.8.  Every left elementary p-group (S, f )  with partial involution 
has a free completion (T,+ ). Moreover, 

(1) i f  (Gs,  L s )  and (GT, LT) are the canonical decompositions of S and T ,  
then Gs  = GT and L s  C_ LT;  

(2) if for  i E 3, ui E GT,  zi E LT with (ui, Zi) + p--1 = (U i ,Z i+ l ) ,  then 
zi E L s  for  every i E 3. 

P r o o f .  Set (So, f0) = (S, f )  and for every posit ive integer n ,  let (Sn, f~)  be 
the left e lementary  p-group  with par t ia l  involution given by Lemma 2.7 for the 
left e lementary  p-group  ( S n - l , f n - ~ )  with par t ia l  involution. Set T = U{S,  ] 
n is a na tura l  number},  and  for t E T ,  if t E Sn,  then t + = fn+l( t ) .  By a 
direct inspection we obta in  that  (T, + ) E R ( L A B p )  and from Lemma 2.7 we 
immedia te ly  obta in  tha t  (T, + ) is a free complet ion of (S, f ) .  The proper t ies  
of (1) and (2) follow from (1) of Lemma 2.7 and the last s ta tement  of Lemma 
2.7. �9 

For a left elementary p-group (S, f) with partial involution, denote by 
A ( S , f )  a free complet ion of ( S , f ) .  For a morphism X : ( S , f )  ---* (T ,g) ,  by 

156 



KOUBEK 

a universal property of a free extension, there exists a unique homomorphism 
A~/ : A(S , f )  ~ A(T,g) such that  ~o)/  = A X o 0  where ~ : (T,g)  ~ A(T,g) ,  
0 : (S, f )  --~ A(S, f )  are the inclusions. Then A :  P ( L A B p )  --~ R ( L A B p )  is a 
reflection functor. 

T h e o r e m  2.9. A o @ : G R A  --~ R ( L A B p )  is a full embedding. 

Proof .  From the definition of A, we immediately obtain that  A o (I) is an 
embedding. To prove that A o ~ is full, assume that r -- (V,E) ,  I" = ( V ' , E ' )  
are graphs from G R A  and that X : A o (I)r ~ A o (I)r t is a homomorphism. If 
(Gr,  Lr)  and (Gr, ,  Lr,)  are canonical decompositions of A o (I,r and A o (I)r', 
then Gr = F ( X r ) ,  Gr, = F ( X r , ) ,  A C Lr ,  Lr, and there exist homomorphisms 
qa : F ( X r )  ~ F ( X r , ) ,  r : Lr --* Lr, with X = ~o • r  By Theorem 2.8 and by 
the definition of r we have for wi E Lr ,  i E 3 that {wi I i E 3} = A if and only 
if there exist uj E F ( X r ) ,  j E 3 with (ui ,wi)  + = (u~-a,Wi+l) ,  i E 3. Since this 
property is perserved by homomorphisms, we obtain that  r  = A and thus 
X((I)F) C_ ~ r  r. According to Theorem 2.6, there exists a compatible mapping 
g : r ---+ r ~ such that  the domain-range restriction of X to @F and C r  t is equal 
to ~g.  Since Ao@F is generated by (I)r, and X and Ao (I)g coincide on r  we 
obtain that  X = A o ~g.  Hence A o ~ is full. �9 

C o r o l l a r y  2.10. For every prime p, the varieties R ( L A B p )  and R ( R A B p )  
are universal. 

Proof .  Since G R A  is universal, the proof follows from Theorem 2.9 and its 
dual. �9 

3. M a i n  R e s u l t  

We prove Theorem 1.2. First (1) =~ (2), see [10]. The implication 
(2) ~ (3) is clear. By Hedrlln-Sichler Theorem [6] or [10], we obtain (1) ::~ (4). 
We prove that  (3) =~ (6) and (4) ~ (6). For this reason we recall the fonowing 
easy Iemma: 

L e m m a  3.1. The following hold: 
(1) I f  S is an inverse semigroup, then it ha8 a unique regular involution + 

and there exists a constant endomorphism of ( S, + ). 
(2) I f  S is either a left-zero semigroup or a right-zero semigroup, then for 

every regular semigroup ( S, + ) either a constant mapping is an endomor- 
phism of (5', + ) or there exists a non-idempotent endomorphism of 
(S, + ) with Jim(f)[  = 2. 

P r o o f .  We prove (1). By [1], paragraph 2.3, there exists an idempotent 
s E S. Since S is inverse, s + = s,  thus a eonstant mapping f : S ~ S to s is 
an endomorphism of (S, + ). We prove (2). Let S be a left-zero semigroup. If 
there exists s E S with s + = s, then a constant mapping f : S --* S to 8 is an 
endomorphism of (S, + ). Assume that for every s E S, s + # s. Choose s E S; 
then there exists a mapping f :  S --* S such that I rn ( f )  = {s , s+} ,  f ( s )  7~ s, 
and f ( t  +) = f ( t )  + for every t E S - it suffices for every set {t , t  +} # {s,s +} 
to choose a representative u and to set f ( u )  = s,  f ( u  +) = s +,  and f ( s )  = s +,  
f ( s  +) = s. Then f is a non-idempotent  endomorphism of (S, + ) .  If S is a 
right-zero semigroup, then the proof is dual. �9 
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Lemma 3.1 implies (3) =~ (6) and (4) =~ (6). We show (6) =~ (5). 

L e m m a  3.2. Let S be a semigroup which is neither an inverse semigroup nor 
a left-zero semigroup nor a right-zero semigroup and such that for every s E S 
there exists t E S with s = sts .  Then the variety V generated by S contains 
either L N B  or R N B  or R C B  or L A B p  or R A B p  for a prime p. 

P r o o f .  If for every s E S there exists t C T with s = s t s ,  then by [1] every left 
Green class and every right Green class contains an idempotent ,  see [1], paragraph 
2.3. Since S is not an inverse semigroup, there exists either a left Green class of 
a right Green class containing two idempotents  and hence V contains either a 
two-element left-zero semigroup or a two-element right-zero semigroup, again by 
[1], paragraph  2.3. Whence either every left-zero semigroup or every right-zero 
semigroup belongs to V .  Therefore, if V contains a two-element semilattice, 
then either L N B  C V or R N B  C V.  Since for every variety W of semigroups 
either W contains all commutat ive  semigroups or every semigroup in W is 
periodical, and since V contains a two-element semilattice whenever S is not 
simple, we can assume that  S is simple and periodical, thus S is completely 
simple. In this case, obviously, either L A B p  C V ,  or R A B p  C_ V for some 
prime p ,  or R C B  C V.  �9 

The implication (6) =~ (5) follows from Lemma 3.2. The implication 
(5) ~ (1) follows from Theorem 1.1 and Corollary 2.10. The proof  of Theorem 
1.2 is complete. �9 

At the end we like to recall two open problems: A variety V is called 
finite-to-finite universal if there exists a full embedding from G R A  into V taking 
finite graphs into finite algebras in V .  It is an open question whether  varieties 
R ( R C B ) ,  R ( L A B p ) ,  and R ( R A B p )  are finite-to-finite universal. The second 
open problem is a characterization of all universal varieties of regular semigroups. 
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