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Abstract

We introduce a new class of weakly continuous semigroups and give a characteriza-
tion of their infinitesimal generators, generalizing the classical Hille-Yosida Theorem
for strongly continuous semigroups. The results are illustrated by the example of
transition semigroups corresponding to the solutions of certain stochastic differential
equations.

1. Introduction

Let X be a Banach space and let A : D{(A) C X — X be a closed linear
operator. As well known, the Hille - Yosida Theorem gives the necessary and sufficient
conditions in order that A generates a strongly continuous semigroup e*4 on X. Such
conditions are:

1. there exist M,w € R such that, if A > w,

RN A)=(A— A € £(X) and ||R¥(), A)| < (A__MI,F VkeN,

2. D(A) is densein X.

The aim of this paper is to examine the case in which D(A) is not dense. This
problem has been considered in several papers (see [2] and [3]) dealing with the non
homogeneous initial value problem

w(t) = A(t)u(t) + f(¢)

u(0) = =z,

(1)

in the autonomous [2] and non autonomous [3] case. Some results on existence
of solutions for (1) have been proved under suitable hypotheses, for any X -valued
continuous function f and any z € D(4).

Tt is easy to see that if hypothesis 1 is satisfied but D(A) is not dense, then
Y = D(A) is an e*4-invariant closed subspace of X, for every ¢t > 0, e is strongly
continuous on Y and the part of A on Y is its infinitesimal generator. Our purpose
is to construct a semigroup of bounded linear operators e*4 associated to certain
operators A satisfying 1 but not 2, such that

1. et4 is continuous in a weaker sense, to be specified later.
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2. R(), A) is the Laplace transform of e*4, in a suitable sense.

Jefferies has dealt with this problem in 4] and in [5], introducing a class of weakly
integrable semigroups on locally convex spaces, and giving a characterization of their
infinitesimal generators. But the approach followed in his articles, where he uses
weak integration and weaker topologies for the underlying spaces, seems not to be
suited for the study of transition semigroups corresponding to the solutions of certain
stochastic differential equations (see [1]).

To fill this gap, we introduce a class of semigroups of bounded linear operators
on UCy(H) (the Banach space of all uniformly continuous and bounded functions
from the separable Hilbert space H to R) which is well adapted to the concrete
cases studied in {1]. Infinitesimal generators are defined, as in Jefferies, in terms of
resolvents instead of the usual definition by differentiation; this approach allows us
to prove some properties of differentiability for weakly continuous semigroups. We
also give a characterization of such generators and conclude giving the example of
a weakly continuous semigroup which arises in studying Kolmogorov equations in
Hilbert spaces.

2. Weakly continuous semigroups

Troughout this paper H will denote a separable Hilbert space endowed with
the scalar product < -, > and the norm || -{|. We will use UCy(H) to indicate
the Banach space of all uniformly continuous and bounded functions from H to R,
where the usual norm is given

I¢lle = sup (@), Vo € UCH(H)

L(UC(H)) will denote the space of all bounded linear operators on UC,(H).

Definition 2.1. A semigroup of bounded linear operators {5(¢) | t € [0, +o0)}
defined on UCy(H) is said to be weakly continuous (of negative type) if there exist
M,w > 0 such that

1. The family of functions in UCy(H)
{S(t)p : t€[0,+00)}
is equi-uniformly continuous, for every ¢ € UCy(H).

2. For every ¢ € UCy(H) and for every compact set K C H, it holds
tm sup [S(t)e(2) — p(2)] = . )
Y zeK

3. For every ¢ € UC,(H) and for every sequence {p;} C UCy(H) such that
sup [|jlleo < +00
JeEN

lim sup |p,;(z) — ¢(z)| =0, VK C H compact set,
J—+0 reK

it holds
Lim sup |S(t)p;(z) — S(t)e(z)| =0, (4)
J7—+o00 zeK

for every compact set K C H . Furthermore the limit is uniform in .
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4. We have
IS ceweuay < Me™, Vi>0. (5)

We denote by G,(M,w) the set of all weakly continuous semigroups S(-)
satisfying (1)-(4) above.

3. Infinitesimal generator

Proposition 3.1.  Let 5(-) be a weakly continuous semigroup in G (M,w). De-
fine

FO)e(z) = [ T e NS ()p(a)dt, @ € UCKH), =€ H. (6)
Then we have that F(A) € L(UC,(H)), VA > —w.
Proof. From weak continuity of S(-) it follows that the function
[0, +00) — R, t —s e7*5(2)p(z)
is continuous V ¢ € UC,(H) and Vz € H; moreover for every z € H we have
| $(t)e(z) IS Me™||¢lles, @ € UCH(H).

Then the above definition of F(A) is meaningful.
If A > —w it follows

M

e

400 +o0
< —At < ~(w)t g
| FOYe() 1< [ 1 1l 50(e) | di < Mgl 7 e Ortay
Let us fix € > 0. Since A + w > 0 we can find T > 0 such that

2M|l¢loo e~ (AT €
Atw )

2
Now, we recall that the family of functions in UCy(H)
{S(t)p : te[0,+00)}
is equi-uniformly continuous V¢ € UC,(H). Then there exists § > 0 such that
iyl < 8=

St +1) — SWle) < § (=agr ) VeE4o0), Vae

Therefore, if ||y|| < 8., we have

[F(A)p(z +y) — F(M)p(z)] <
T +o0a
[ eIs@p(a +v) - S@e@)dt+ [ eISWle +3) - SOl dt <

€ A T o too atw)t
= w <e
5 (1 — e"‘T)/o e dt+2M||<p]|m./;‘ e dt <e

Then F(}) € L(UCH(H)), VA > —w. -
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We now want to introduce the notion of infinitesimal generator for weakly
continuous semigroups. To this purpose let us first show that F(}) is the resolvent
of some closed operator.

Proposition 3.2.  Assume that S(-) is a weakly continuous semigroup belonging
to Gu(M,w). Then there exists a unique closed linear operator Gs : D(Gs) C
UC,(H) — UCy(H) such that YA > —w it holds

RO\, Gs)p(z) = F(\e(z), Ve € UCKH), Vz € H. )

Proof. By using the Fubini- Tonelli theorem, it is easy to check that for every
o> —w

F(X) = F(u) = (b — NFQ)F(p), (8)
so that F is a pseudo resolvent on UCy{H). Then, by a well known result (see for
instance [6], Th VIII 4.1), in order to prove the proposition we have only to show
that the kernel of F|()) is equal to {0}, for every A > —w. From the uniqueness of
Laplace transforms it follows that for every measurable and exponentially bounded
function f for which there exists set of values A containing a limit point such that

/:m e Mf(t)dt =0,

it holds
f(t)=0 as. 9)

Now, from the resolvent equation (8) we obtain
F(Q)p(z) = 0 for some A > —w = F(A)p(z)=0for all A > —w

and then, as the function t — S(t)(z) is continuous V& € H, we have

F(X)p(z) =0=> S{t)e(z) =0, Vite[0,+00). (10)
In particular ¢(z) = S(0)p(z) = 0. (]
Definition 3.3.  The infinitesimal generator of the weakly continuous semigroup

S(-) in Gu(M,w) is the unique closed linear operator Gs : D(Gs) C UCy(H) —
UCy(H) such that VX > —w

R(\, Gs)p(s) = FO\)(z) = [ T eMS(t)p()dt, V€ UCKH), Ve H. (11)

Remark 3.4. We could have defined the infinitesimal generator of the weakly
continuous semigroup S(-) as for strongly continuous semigroups, i.e as the linear

operator A : D(A) CUC,(H) — UCy(H) such that

D(A) = {so C UC,(H): o imhoot Anp(z) Ve e H }

limpo+ Ane(") € UCH(H) (12)

Ap(z) = limpo+ Anp(z),
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where A} is the incremental ratio

S(h) -1

A==

h > 0.

If S(-) is strongly continuous, then the two definitions above coincide; otherwise we
have only the obvious inclusion

Gs C A. (13)

=
We now remark that from (11) it easily follows that

M
k <
[|R*(X, Gs)|| < I keN. (14)

Then if D(Gs) is dense in UCy(H) we have that G fulfills the hypotheses of the Hille
Yosida Theorem, so that S(-) is strongly continuous. Thus, if S(-) is not strongly
continuous, D(Gs) must not be dense in UC,(H). However the following weaker
result holds.

Proposition 3.5.  Let S(-) be a weakly continuous semigroup in G,(M,w). Then
for every function ¢ in UCy(H) and for every k € N, there ezists a sequence
{¢*} c D(G%) such that

sup ||¢k(leo < +oo VEEN (15)
neN

and
lili'l sup |k (z) — (z)| =0, YK C H compact. (16)
n—+o0 :eK

Proof. For every k € N and for every n € N, we put

p4(z) = n*R¥(n, Gs)p(a). (17)

Clearly {¢%} C D(G%), Yk € N; moreover, from (14) it follows that

k
e (25)" Mlbte < Ml Ve
ehle < (755) Mlelle < Milgls VnEN

We now show that Vk € N and for every compact set K C H compact it holds
lim sup [n*R¥(n, Gs)p(z) — p(z)] = 0.
n—++00 ek
Indeed, since

}in& sup [S(t)p(z) — p(z)] =0, VK C H compact,
Y z¢K

then for any fixed compact set K C H and any fixed € > 0, there exists § > 0 such
that

t]<é= ::Igls(tﬁp(w) —p(z)| <e
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Therefore for every n € N we have that

sup [n* R (n, G5)o(z) - ¢(2)] <

k

n +o00 kel —nt ,
— <
up o [ e S()e(e) — )] e <

nk

‘G=1)

k

§ 400
k—1_—nt n k—1_—nt
/0 th1e dt+(1+M)||<p||w———(k_1)!/6 th-1emnt gy <

k-1

+ (14 Mol |

and our claim follows as n — +oco. n

§le™ 4. +nbe™ + e—"‘s] ,

Remark 3.6. If S(.) € Gu(M,w) is a weakly continuous semigroup on UCy(H)
and if Gg : D(Gs) C UC,(H) — UCy(H) is its infinitesimal generator, then
Y = D(Gs) is a S(-)- invariant closed subspace of UC,(H), {S(t),, | t > 0} is
a strongly continuous semigroup in Y and Gsly is its infinitesimal generator. =

4. Differentiability of weakly continuous semigroups

If S(-) is a strongly continuous semigroup and A is its infinitesimal generator,

V& € D(A) we have
d
ES(t)m = AS(t)x = S(t)Az Vit >0.

For weakly continuous semigroups this is not true. Nevertheless we will state a similar
result, namely that V¢ € D(Gs) and Vz € H the function

[0, +00) — R, & — S(t)p(x)

is differentiable. First we want to describe some properties of the infinitesimal
generator of S(-).

Lemma 4.1.  Let S(-) € Gu{M,w) be a weakly continuous semigroup and let Gg
be its infinitesimal generator. Then the following statements hold

1. Vt>0 and X > —w we have

SEYR(A,Gs) = R(X, Gs)S(t). (18)
2. Vit > 0 we have
S(t)D(Gs) C D(Gs) (19)
and V¢ € D(Gs)
GsS(t)(p = S(t)Gs(p. (20)
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Proof. In order to prove (18) it is enough to verify that V7' > 0 and VA > —w

s [ T M5 (s)p(z) ds =

T (21)
/0 e™8(8)S(s)p(z)ds, Yz e H, Voe UC(H)

Indeed, assume (21). Let us fix ¢ € UC,(H) and put ¢u(z) = [ e S(s)p(z)ds,
for all n € N and z € H. Then we have ||¢¥n]lec € M||l¢||ec/} +w, Vn €N and

Yn(z) — /:w e S(s)p(x)ds| = 0.

lim sup
€H

n—+o00 .

Finally, from the weak continuity of S(-) and from (21), it follows that Vz € H,
Ve UCy(H) and Vt >0

S(R(), Gs)p(z) = lim_S(tWu(e) =

lim S() [ e S(s)p(z)ds = lim [ e*S(1)S(s)p(a)ds =
o n—+oo Jo

nStoo
/0+°° e 5(s)S(t)p(z) ds = R(X, Gs)S(t)w(z).

Let us now prove (21). Consider partitions 0 = s} < s% < ... < s =T of the
interval [0,T], with size 8, = maxjeq,..;,}(s? — sh_,), VA € N, and assume that
bn — 0, as h > +oo. For every h € N we put

Jn
In(z) = Y (sh — sh,)e M S(sh)p(=), =€ H.
F=1

It is immediate to verify that supsey||Zaljee < +o0. Moreover for any compact set
K C H it holds

lim sup |[Ix(z) — /(;T e **S(s)p(z)ds| = 0. (22)

hotoo seK
In fact, for every € > 0 we can choose é. > 0 such that

|s — t| < 8 = sup |e ' 5(s)p(z) — e M5(t)p(z)| < e
z€K

Therefore, since limp_, 400 81 = 0, there exists % such that 8§, < 6., Vh >k and then
we have

sup[fu(e) = [ e S(s)pls) ds] <

Jn sh -
S sup [ 7 e S(s)p(z) — e S(s)p(z)|ds < €T, Yh>h
j=1 z€K ’_:'I—l
Our claim follows from (22) and the weak continuity of 5{:).
We now prove 2). For every A > —w we have

D(Gs) = R(\,Gs)(UCy(H)),
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then from (18) it follows
5(t)D(Gs) c D(Gs). (23)

Moreover if ¢ € D(Gs), there exist ¢ € UC,(H) and A > —w such that
R(XA, Gs) = o,
therefore from (18) we have
GsS(t)p = GsS(t)R(A, Gs)¥ = GsR(A, Gs)S(t) =

AR(X,Gs)S(t) — S(t) = S(t) [AR(), Gs) — 1] =
S(t)GsR(), Gs ) = S(t)Gsp. .

Proposition 4.2.  Let 5(-) be a weakly continuous semigroup. Then V¢ € D(Gs)
we have

S@)p(z) = ol(z) + [ S(s)Gsw(z)ds. (24)
In particular the function S(-)p(z) is differentiable and
2 S(t)o(a) = S()Csp(z) = CsS(1p(e). (25)

Proof. Let usfix p € D(Gs), ¢ € H and A > —w. Then we have

o(a) = R(A, Gs)(A I — Cs)p(z) = /0 T e MS(YAT — Cs)p(z) dt =

(26)
+oo -t _ +o00 e
by /0 e~ MS(2)p(z) dt /0 e™M5(8)Csy(z) d.
We now remark that if —w < p < A we have
¢ ¢
e [ S(s)Gsw()ds| < e [ |S(s)Gsp(e)lds <
O [ et S(a)Gop(e)lds < ek [*7 ew|S(a) ()] ds,
o o
and then .
tlgrnoo e*M/o S5(s)Gsyp(z)ds = 0. (27)

Integrating by parts and taking into account (26), we get

‘/:m e MS(t)p(z)dt — ‘/:w e ™M [)t 5(s)Gsp(z)dsdt = /0+°° e Mop(z)dt,

so that from the uniqueness of Laplace transforms and the continuity of the applica-
tion ¢ — S(t)p(z) it follows

S()p(z) = wla) + [ S(s)Gse(z)ds. (28)

356



CERRAI

5. Generation theorem

Our aim is here to generalize the Hille Yosida Theorem to weakly continuous
semigroups on UC,(H) giving a characterization of their infinitesimal generator.

If X is a Banach space and A : D(A) € X — X is a linear operator such
that p(A) D]0,+c0) the Yosida approzimation A,, n € N, is the bounded linear
operator on X defined by

Anz =nAR(n,A)z = n’R(n, A)z —nz, z€ X. (29)

Theorem 5.1. Let A: D(A) C UC,(H) — UCy(H) be a linear operator. Then
A is the infinitesimal generator of a weakly continuous semigroup S(-) in Gu(M,w)
if and only if the following statements hold

1. A is closed.
2. p(A)D{A>~w} and ||R¥(), A)llcweu ) < ZTNL)‘-’ YA>—-w, VkeN.
8. For every p € UC,(H) and for every compact set K C H

lim sup [n*R¥(n, A)p(z) — p(z)] =0, VkeN. (30)

n—+o0

4. For every ¢ € UCy(H) and for every sequence {@;} C UCy(H) satisfying
properties (8) it holds

lim  sup [n*R¥(n, A)p;(z) ~ n* R(n, A)p(=)] = 0, (31)
J—r1+00 IEK

for every compact set K C H, and this limit is uniform in n and k.

5. For every ¢ € UCy(H) the family of functions in UCy(H)
{nkRk('n.,A)cp : k,ne€ N} (32)

18 equi-~uniformly continuous.

Proof. Necessity - The first statement follows from the definition of infinitesimal
generator . The second and the third one were proved in Proposition 3.5.

Let us check the fourth. Fix ¢ € UCy(H) and let {¢;} C UC,(H) satisfy
properties (3). Since S(-) is weakly continuous, for every compact set K C H and
for every € > 0 there exists jo € N such that

sup |S(t)p;i(z) — S(t)p(z)| <€, Vj > joand Vte [0,+c0).
z€K
Then for every j > jo and for every ¢ € K we have
sup [nfR¥(n, A)p;(z) — n*R¥(n, A)p(z)| <
€K

k

sek (ki ! fom e |S(t)ps(z) — S(t)p(2)] dt <
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k

n +eo k-1 _-nt _
Em[) t € dt = e.

In order to prove the fifth statement, we use again the weak continuity of S()
and we get that Ve > 0 there exists §, > 0 such that

Iyl <8 = |S(t)e(z+y)— SH)p(z)| < e Yz e H, Vte|[0,+c0).

Then we proceed as above.
Sufficiency We split up the proof into several steps.
Step 1. Asfor the classical Hille-Yosida Theorem we can prove that for every
¢ € D(A?)
nEI—Poo Anp = Ap in UCy(H),

and the following inequality holds
llet4~|| < Me™%, Vne N, Yite [0,+oo). (33)
Step 2. For every ¢ € D(A) we have
e p — €m0l < MPte™ %" || Anp — Amplleo - (34)

In particular V¢ € D(A?)
(0}

is a Cauchy sequence in UCy(H), uniformly in t € [0, +o00).
The proof is the same as for the classical Hille-Yosida Theorem.
Step 3. Vi € UCy(H) and V {p;} C UC,(H) satisfying properties (3), it
holds
lim  sup |e*mp;(z) - e'mep(z)| = 0, (35)

J—too ze

for any compact set K C H, uniformly in ¢t € [0,+00) and n € N.
Indeed, from assumption 4, we have that Ve > 0 and for every compact set
K C H there exists jo € N such that Vn, ke N

sup [n*R¥(n, A)pi(z) — n*RE(n, A)p(z)| < €, Vj> jo.
z€

Then Vj > jo we have

su}g et (z) — e p(z)| <
+o0 o kyk ‘i - 0 gk
_"‘:L;l T:up [n*R*(n, A)pi(z) ~ n*R*(n, A)p(z)] < ee™ 2 BT
Step 4. For every ¢ € UC,(H) and for every compact set K C H, the

sequence {em"qo} is a Cauchy sequence in C(K), uniformlyin t € [0, +00), namely,

Ve> 0 there exists 7 such that

sg}g]e“"cp(:n) —ethmp(z)| <€, VYn,m>a, Vi>0.
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We set for every j € N
i = I2E(j, A)p.

Clearly {¢;} C D(A?). Moreover {,;} satisfies properties (3). Indeed we have that
sup;en ||@jllee < +00 and from assumption 3

lim sup |p;(z) — ()| = 0.
J—+oo zeK

Then, since
et p(z) — e4mp(e)| <
le*4np(z) — emgpi(z)] + e pi(z) — e'hmpi(z)] + et p (2) — e ez,
the conclusion easily follows from the second and the third step.
From step 4 we can define Vo € UCy(H) and Vz € H

S(t)p(z) = lim e'*p(z). (36)
Clearly Vo € UCy(H) we have
[5()elleo < Me™lpllea V1t € [0, +00).

Indeed

|S(te(@)l = lim lep(e)| < limsup e | cweyylelleo <

lim sup Me ™% ||plla0 = Me™||¢|lco, Vz € H.
n-+-+00

Now we will verify that S(-) is a weakly continuous semigroup belonging to
Guw(M,w) and that A is its infinitesimal generator.
Step 5. For all ¢ € UC,(H) the family of functions in UC,(H)

{e“‘"cp :neNte [0,+oo)} (37)

is equi-uniformly continuous.
From assumption §, for all € > 0 there exists §, > 0 such that Vz € H we
have
Iyl <6 =

In*R¥(n, A)p(z +y) — n*R*(n, A)p(z)| <, Vn, k€N

Therefore, we proceed as in the third step and we get that for every n € N and for
every t € [0,+00)

lyll < & = e p(z +y) — ep(e)| < e Vo€ H.
Step 6. For every ¢ € UCy(H) the family of functions
{S(t)e : t€[0,+00)}

is equi-uniformly continuous.
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From the precedent step the family of functions
{em"go : n€Nt 20}

is equi-uniformly continuous, so that for every € > 0 there exists 6, > 0 such that
Vze H

Iyl < 6. = |et4np(z + y) — ethmp(z)] < ¢, VE>0, VneN.
Then, since
I5(t)e(z +y) — S(t)e(2)] < IS(t)e(z +y) — e p(z +y) I+

e mp(z + y) — emp(z)| + |et p(z) — S(t)e(z),
and it follows that Yz € H Vit >0

lyll < & =

15(t)p(z +9) — S(t)p(2)] < e+ [S(t)p(z +y) — p(z +y)l+
1S(t)p(z) — e*rp(z)]
and letting n — -+oo we prove our claim.
Step 7. For every ¢ € UC,(H) and for every compact set K C H

lim sup [S(t)p(2) — ¢(2)] = 0.
=Y zeK
Once € > 0 is fixed, there exists 7 such that
sup |S(t)p(z) — erp(z)| <€, V0.
zeK
Then
sup |S(8)e(2) - 9(2)] < sup |S(B)e(z) — e4p(z)|+
zeK zeK
sup [e4*p(z) — p(2)] < e+ [le*p — plles, YE20
zeK

and letting ¢ — 0% our claim follows.
Step 8. For every ¢ € UC,(H) and for every sequence {p;} C UC(H)
satisfying (3), it holds

lim_sup |S(t)e,(2) — S(Ep(a)] =0, (38)
I+0 zcK

for every compact set K C H, uniformly in ¢.
We have that Yz € H

15()pi(=) - S(D)e(e)] <

15(t)pi(z) ~ ;)| + |ep;(z) — enp(2)| + |emp(z) — 5(t)e(2)|
and using the third and the fourth step we can say that (38) holds.
Step 9. The semigroup law holds.
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Let us recall that Vo € UCy(H) there exists a sequence {p;} C D(A?)
satisfying (3), therefore
e Mn(a) — S(2)S(s)p(2)] <
4Hn ) — M ()] 4 [et4rengs () — S s)g ()4
e~ S(s)pi(z) — €4~ S(s)p(z)| + |4~ S(s)p() — S(2)S(s)e(z)| =

Ln(n, 5)(2) + La(n, 7)(z) + La(n, j)(z) + La(n, j)(z).

It is easy to check that S(s)y and the sequence {S(s)p;} satisfy (3), V& > 0, then
from the third step, we have that

dim Za(n,3)(e) = lim Ls(m, (&) = 0
uniformly in n. Moreover
La(n, j)(z) < [l | cwaymlle™ps — S(s)pilleo < Mlle*Ap; — S(8)@jlloo,
and from the second step it follows that
nli’rgloo Ly(n,j)(z)=0, VjeN, Vze€ H.
Choosing jo € N such that
Li(n, jo)(2) + La(n,jo)(z) < e, VREN,

we have
e+ )4np(2) — S(8)S(s)(z)] <

€+ La(n, jo)(z) + le“4S(s)p(z) ~ S(2)S(s)p()l,
and taking the limit as n — 400, Vz € H and Vy € UC,(H) we get

S(t)S(s)p(z) = nli.r+nw e Mnp(z) = S(t + 8)p(z), Vz € H. (39)

Step 10. The operator A is the infinitesimal generator of the semigroup
S(-), namely for every ¢ € UC,{(H) we have

+o00
[ e S(te(a)dt = RO\, A)e(s), Va e H. (40)
0
Let ¢ € D(A?). Then for every compact set K C H it holds
lim sup [e*4" A.p(z) — S(t)Ap(z)| = 0. (41)
Rt pek

Indeed we have
sup |e4" Anp(z) — S(8)Ap(s)] <
F13:¢

sup [+ A,(2) — ¢4~ ()| + sup |e“4 Ag(s) — S(1)Ap()] <
zeK z€

M| Ant — Agplleo + sup le*4n Ap(z) — 5(t)Ap(z),
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and (41) follows a8 n — +o0. Since V¢ € UC,(H) and Vz € H we have

T (e e(@) = e Aap(z), VneN,
it follows that Y2 € N and VA > —w
+o0 +oa
/\/0 e Metrp(z)dt = p(z) + /0 e~ Metn A p(z) dt. (42)

We now remark that Vi € D{A)
ep(2)| < Mllplles, Yr€ N
and

et Anp(2)] = |e4"nR(n, A)dp(a)] < M* ——| Apllw < M| b,

then, from the Dominated Convergence Theorem, taking the limit in (42), as n —
+o00, we get

A / e S(t)p(z) dt = w(z) + j e MS()Ap()dt, Vo€ D(A®)  (43)

Now, let ¢ € D(A). Since
nR(n, A)p € D(A?),

from (43) it follows that

A / e~ MS(t)nR(n, A)p(z)dt =
(44)
nR(n, A)p(z) + / e S()nR(n, A)Ap(z) dt.

Moreover
sup [nR(n, A)plle < +o0
neN
lirf sup [nR(n, A)p(z) — ¢(z)] =0, VK C H compact,

therefore, because of the weak continuity of S(-) we can say that
nEernm S(E)nR(n, A)e(z) = S(t)p(z), Yo e H.

Taking the limit in (44), as n — +o00, by Dominated Convergence Theorem we have

to o _ o
A /0 e MS(t)p(z) dt = p(z) + /D e MS(t) Ap(z) dt, (45)
and then, using notations of proposition 6, V¢ € D(A) it holds
FOYO - A)p(a) = 9(a) (46)
Finally, let us remark that Vo € UC,(H), Vz € H
R, Aplz) = (A — A) Ho(z) = F(A)e(z). (47)
The proof is thus complete. ]
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6. An example: Transition Semigroups

Let us consider the following stochastic equation

dX(t) = AX(t)dt + dW (¢
{x<§>)= X W) )

where A is the infinitesimal generator of a Cy - semigroup S(-) on a separable
Hilbert space H, W is an H-valued Q-Wiener process (defined on a probability
space (2, F,P) ), @ being a self-adjoint and positive bounded linear operator on H
and z € H.

For all t > 0 we define the bounded linear operator @),

t
Quz = /0 S(s)QS*(s)zds Vz € H. (49)
It is well known (see for instance [1]) that if

TrQi < +o0, V>0, (50)

then the mild solution of (48) is given by

X(t,2) = S(t)s + /ot St — s)dW (s) (51)

and X(t,z) is the Gaussian random variable AN(5(t)z, @,), with mean S(t)z and
covariance operator @, for all { >0 and z € H.

The aim of this section is to describe, under the hypothesis (50), the transition
semigroup P(t), t > 0, associated with the stochastic equation (48) and defined
Vo€ UC,(H) and Va € H by

Jre(N(S(t)z,Q) t>0
P(t)p(e) = Elp(X(¢,2))] = (52)
w(z) t=0.
It is easy to check that for arbitrary ¢ € UC,(H) the function u : [0, +o0)x H — R
defined by
u(t,2) = P(t)p(2)
is continuous.

However, the semigroup P(t) is not strongly continuous on UCy(H) in general,
as the following example shows.

Example 6.1. Let H =R andlet Az = —}z and Qz =z, Vz € R . If we set
g(t) =1— e, for every t > 0 we have Qsz = ¢(t)z and

Jep(y)N(e™2z,q(t))dy ¢t >0
P(t)p(z) = { (53)

(p(:l:) =0,
for every ¢ € UC,(R). Moreover it is easy to check that the function

u:[0,+c0) x R — R, (¢,z) — P(t)e(z)
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is the unique solution in UC,(R) of the following Cauchy problem
{ ut,z) = %u"(t,z) - %zu,(t,z) t>0, zeR

u(0,z) = p(z) z eR.
Now let us introduce for every ¢ € UCy(R) the function
$:[0,+00) xR — R, (4,2) — T(t)p(a),
where T(-) is the strongly continuous semigroup on UC,(R) defined by

Re(W)N(z,t)dy t>0
T(t)e(z) = {

w(z) t=0.
Since the function 4 is the unique solution in UCy(R) of the Cauchy problem
{ Yi(t, ) = ea(t,z) t>0, z€R

"p(osz) = (P(:I:) z € R,
it is easy to show that V(¢,z) € [0,+00) x R we have
u(t, 2) = Y(a(t), e ™/%2) = T(g(t))p(e™**z).

If we set () =sinz, t, = 2log ("2’:—‘}:) and z, =7 (I:e—l—,;ﬁ) =%(2n+1),YneN,
we have that

sup [u(tn,z) — sinz| > |u(ln, zn) — sinz,| >
z€R

‘T(q(t,.)) sin ((2n - 1)%) — T(q(ta)) sin ((2n + 1)§)l -
‘T(q(t,.))sin ((2n + 1)%) — sin ((2n + l)g-)i >
T(q(ta))sin ((2n ~ 1)7) — T(a(ta)) sin ((2n +1)F
2
{/R (sin (y +(2n - 1)%) — sin (y +(2n+ 1)12_r)) N0, ¢(t,)) dy! -

sup |T(g(2s))sinz —sinz| =
zeR

—sup |T(q(t.))sinz — sinz| =
z€R

(sin(2n - 1)Z2r— — sin(2n + 1)%) ‘/RcosyN(O, q(tn)) dy+

(cos(2n - 1)% —cos(2n + 1)%) /‘;siny./\f((), q(ts)) dyl -
ilég [T(q(tn))sinz —sinz| =
2|T(g(tn)) cos(0)| — ilelg [T(q(tn))sinz — sinz|.

Therefore, since the semigroup T(-) is strongly continuous and limn_4e0 g{ts) = 0,
it holds

lim inf sup |u(t,,z) — sinz| > 2,
n—to0 R

so that the semigroup P(-) is not strongly continuous. n
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Proposition 8.2. Let S(-) be a Cy-semigroup of negative type on H, namely
assume that there exist L, > 0 such that ||S(t)||cweymy) < Le™®*, t 2 0. Then, if
(50) holds, the semigroup P(-) on UCy(H) defined by (52) satisfies properties 1), 2)
and 8) of definition 2.1.

Thus the semigroup {e™“*P(t) |t > 0} is a weakly continuous semigroup in
Gu(l,w), for every w > 0.

Proof. Step 1. If ¢ € UC,(H), then for every € > 0 there exists §, > 0 such
that

lyll < 8 = le(z +y) —p(z) <, Vze€H

Moreover, from strong continuity of the semigroup S(-), it follows that for every
compact set K C H

lim sup ||S(t)z — z|| =0,
t—0 zeX
so that there exists £ > 0 such that

lyll < é./2 = sup |ly+ S(t)z —=| <6, Vt<i
zeK

Therefore for every t < we have

sup | P(t)p(z) — p(z)| <
zeK

sup /{Mw} lp(y + S(t)z) — p()| N0, Qu)dy+

8|l
2!l 0,Qu)dy < e+ — 7= TrQ,,
el /{nun>6./z}N( Wy s et Tg— A

and the assertion follows as + — 0%
Step 2. Since 5(t) is of negative type, we have

S(t)zll < Lij=|l, Vz€H, Vix0.
Then, if ¢ € UC,(H), Ve > 0 there exists §, > 0 such that Vit € [0, +00)

|2l < 6e/L = |P(t)p(z + 2) — P(t)e(z)| <

[ loly + ()2 + S(1)2) — oly + SN0, Qdy < ¢, Yz € B
Step 3. We state first the following

Lemma 6.3.  Assume that S() is of negative type. Then the family of probability
measures

{N(S(t)z,Q:) : t€[0,4+00), z€ K} (54)
is tight, for every compact set K C H.
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Proof.  Since lim, e ||S(t)l|cwen(ayy = 0, we have that (see [1])

sup Tr @, < +co. (55)
£>0
Therefore the Gaussian measure N(0, Qo ), where

+00
Qoo :/ S(t)QS (t)zdt, ze H
0
is well defined. Now let K C H be a compact set. We recall that the function
[0,+00)x H — R, (t,z)— P(t)p(z)

is continuous, V¢ € UCy(H), then from compactness of K it suffices to prove that
for every sequence {t,} C [0,+0o0) and {z,} C K such that

t, T +oo
as n — +oo

T, > T € H,

we have
N(S(tn)zn, Qr.) — N(0,Qs) asn — +oo. (56)

For every n € N, let us consider the stochastic differential equation

dX(t) = AX(t)dt + dW(t
{ A are 7

and denote by X(t, —t,,z,) its mild solution
t
X (b, —tny Zn) = S(t + tn)zn + / S(t — ) dW(r).
—tn

We remark that X(t,,0,z,) and X(0, —t,, z,) have the same distribution, for every
n € N (see [1]), then, if we show that {X(0,—tn,2.)}n is a Cauchy sequence in
L*(Q, F,P), (56) follows immediately. For n,p € N,p > 0 we have

E ([ X(0, ~tnsps Tnsp) — X(0, ~tn,za)|[?) <

2|15 (tnsp)Tnip — S(tn)zall® + 2E (/_::,, S(—r) ciw(r))2 =

tnip
20| (tnse)nis — S(ta)eall + Tr [ S(r)QS"(r) dr.
QOur claim follows recalling that (55) holds and that, as K is bounded, we have
nkr;lw S(tn)zn = 0. (]

We now conclude the proof of the proposition.
Let KX C H be a compact set and € > 0. Then there exists a compact set
K, C H such that

NSz, Q) (K)>1—¢€ Vie[),4+o0), Yz € K.
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Fix a function ¢ € UC,(H) and a sequence {¢;} C UC,(H) satisfying properties (3)
and choose j5 € N such that

sup |p;(y) —e(y)l <€, Vi jo.
vEK,

It follows
sup [P(t)p;(z) — P(t)p(z)| <

sup [ o) ~ o) V(S()2, Q)dy + sup [ les(y) ~ #w) M(S(1)e, Qu)dy <

e+ ([#illes + ll#lloo)e. .
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