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Introduction. 

Endomorphisms of any algebra A form a monoid 

End(A) under their composition. In this paper we 

investigate the endomorphism monoids of bands, and the 

question of when End(A) determines A6V within a variety V 

of bands. An early result on determination by 

endomorphisms - not of algebras but partially ordered sets 

- is due to L.M. Gluskin [7]. It says that two partially 

ordered sets S and T whose endomorphism semigroups are 

isomorphic must themselves be either isomorphic or anti- 

isomorphic. Analogous results hold for some small 

varieties of algebras, for example, for a variety of 

distributive lattices, see B.M. Schein []9], R. McKenzie 

and C. Tsinakis [14], and by P. Ribenboim [18]; for 

distributive p-algebras see [i], for Boolean rings K.D. 

Magill [13], for semilattices [19], and for Brouwerian 

semilattices [i0] and [21]. In all of these varieties 

there exist at most two non-isomorphic algebras with 

isomorphic endomorphism monoids. B.M. Schein [20] proved 

that there exist at most four non-isomorphic normal bands 

with ismorphic endomorphism monoids. Our aim is to 

generalize the results of B.M. Schein [19,20] to larger 

305 



DEMLOVA and KOUBEK 

varieties of bands. 

A band is an algebra with one binary operation which 

is associative and idempotent. All varieties of bands are 

described by A.P. Birjukov in [3], see also Ch. Fennemore 

[5], or J.A. Gerhard [6]. We show that the variety of 

bands defined by the identity xyx = xy (or xyx = yx) 

contains at most two non-isomorphic bands with isomorphic 

endomorphism monoids (see Theorem 2.2 and Corollary 2.3) 

and the variety of bands defined by the identity xy• = 

= xyz (or zxyx = zyx) - therefore it contains the 

variety of normal bands - possesses at most four non- 

isomorphic bands with isomorphic endomorphism monoids (see 

Theorem 2.9 and Corollary 2.10). 

An extreme counterpart to this property is the notion 

of universality. A concrete category K is called 

universal if a full subcategory of K is isomorphic to 

the category of all graphs and compatible mappings. 

Universal categories possess a very rich structure; for 

instance, for every monoid M and every cardinal 

there exist ~ objects in K whose endomorphism monoids 

are isomorphic to M and which are mutually rigid, see A. 

Pultr and V. Trnkov~ [17]. 

The universality was intensively studied in varieties 

of semigroups. Z. Hedrlin and J. Lambek [9] proved that 

the variety of all semigroups is universal and, 

subsequently, all universal semigroup varieties were 

characterized in [12]. We continue this study by 

investigating universal varieties of algebras adding new 
+ 

operations to semigroups. The algebras (S, , ) obtained 
+ 

from a semigroup (S,.) by adding a unary operation 

satisfying the identities 
++ + + + + 

x = x, x 0x.x = x , and x.x .x = x 

will be called here semigroups with a regular involution, 

or simply regular involution semigroups. (Note that we do 
+ + +  

not require the identity (xy) = y x .) If in addition, 

is idempotent then (X,. ,+) is a regular involution band. 

We prove that regular involution bands are universal (see 
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Theorem 3.5). 

Distributive lattices with added nullary operations 

were investigated in [2] and [ii], where the universality 

of the distributive lattices with three constants was 

demonstrated. This provides an interesting counterpart to 

the fact that at most two non-isomorphic distributive 

lattices possess isomorphic endomorphism monoids. As an 

analogy to this result we prove that the bands with three 

added nullary operations are universal (Theorem 3.10). 

We also investigate the category Band(S) of bands 

with a given structural quotient semilattice S, whose 

morphisms are homomorphisms of bands which induce the 

identity mapping on their common structural quotient 

semilattice, and show that there exists a finite 

semilattice S such that Band(S) is universal (Theorem 

3.11). 

An auxiliary result concerns varieties of unary 

algebras with n operations ~i; i = 0,1 ..... n-i satisfying 

all identities of the form ~i0~0~i = ~i' i = 0,1 ..... n-I 

where ~ is an arbitrary word over the alphabet 

{~0,~i ..... ~n_l}; such a variety is universal if and only 

if n~3 (Theorem 4.7). 

Several interesting questions remain unsolved: 

i) Algebras in a variety V are ~-determined by 

endomorphism monoids where ~ is a cardinal if 

for every monoid M there exist less than 

pairwise nonisomorphic algebras A in V with 

End(A) ~ M. Is it possible to prove that bands 

in a larger variety of bands are ~-determined by 

endomorphism monoids for some cardinal ~? 

2) Characterize minimal universal varieties of 

regular involution bands (or bands with three 

nullary operations). 

3) Characterize the semi]attices S for which 
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Band(S) is universal. Clearly, if the 

semilattice S from Theorem 3.11 is a 

subsemilattice of a given semilattice T, then 

Band(T) is universal. On the other hand, if we 

generalize results of B.M. Schein [20] we obtain 

that Band(S) is not universal when S is a 

finite chain. 

The results of this paper have been presented at the 

conference on Algebraic Theory of Semigroups, 

Szeged(Hungary), 1987. 

i. Preliminaries 

This section recalls basic facts about the structure 

of bands and about endomorphism monoids of bands. 

Classical semigroup notions used in this paper can be 

found in the monographs {4] or [15]. 

THEOREM i.i: The decomposition of a band B into D- 

classes is a congruence o_nn B and the quotient 

semigroup of B by this congruence is a semilattice. 

Proof: See, for instance, [15].m 

The semilattice S determined by the decomposition 

of a band B into D-classes is called the structural 

semilattice of B. We shall always assume that the 

structural semilattice is a meet semilattice. For an 

element beB we will denote the image of b in the 

canonical homomorphism of band B onto S by D b. For an 

element s6S denote by B the D-class of B 
s 

corresponding to s. We assume that an abstract monoid 

End(B) of a band B is given. Then we obviously obtain 

LEMMA 1.2: Every constant mapping of B into itself 

is an endomorphism of B. An element c6End(B) is a 
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constant homomorphism i_ff and only if it is a left 

zero of End(B). �9 

In what follows, an element b6B will be identified 

with a constant endomorphism with image {b}. By Lemma 

1.2, we can thus recognize the underlying set from 

End(B), as the set of all left zeros of End(B). 

Furthermore, End(B) is determined uniquely as a 

transformation monoid up to a strong isomorphism - see the 

following proposition.(See also [20].) 

PROPOSITION 1.3: For every f6End(B) we have Im f = 

= {c; c is a left zero of End(B) and f0d = c for 

some d6End(X) }. Moreover, for f6End(B) we have 

f(d) = c if and only if f0d = c. 

Proof is clear.m 

Therefore in the following for simplicity of notions 

we shall assume that if B 1 and B 2 are bands with 

isomorphic endomorphism monoids then End(B I) = End(B 2) 

and hence the underlying sets of both bands are the same. 

B.M. Schein proved 

THEOREM 1.4120]: Tf B I, B 2 are two bands with 

End(B I) = End(B 2) then the decompositions into D- 

classes of both bands are the same and structural 

semilattices of both bands are either isomorphic o_[r 

anti-isomorphic (that is dual) chains.m 

LEMMA 1.5120]: Let B be a band with a two-element 

subset ACB. Then A is a subsemilattice of B if 

and only if A is not a subset of any D-class and 

there exists fcEnd(B) with Im f = A.m 
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By means of Theorem 1.4 and Lemma 1.5 B.M. Schein 

proved 

THEOREM 1.6: There exist at most four normal bands 

with isomorphic endomorphism monoids.m 

In the following section we generalize Schein's 

theorem. 

2. The left distributive bands. 

The aim of this section is to investigate 

endomorphism monoids of bands from the variety V of all 

left distributive bands. We recall that a band B is 

called left distributive if B satisfies the identity 

xyxz = xyz. We recall that this variety is the join of the 

variety of normal bands and the variety of semilattices of 

left zero-semigroups, see [5]. In the following we assume 

that a band B from the variety V is given. Then we 

have 

LEMMA 2.1: For a mapping f:B--~B and for an element 

x6B the followinq are equivalent: 

a__) for every y6B we have f(y) = xyx; 

b__) f is an idempotent endomorphism of B and for 

u6B we have u6Im f if and only if the set 

{u,x} is a subsemilattice of B with u~x. 

Proof: Assume that a) holds. Then 

f2(y) = xxyxx = xyx = f(y) 

for every y6B and therefore f is idempotent. Since 

f(yz) = xyzx = xyxzx = xyxxzx = f(y)f(z) for every y,z6B 

we conclude that f is an endomorphism of B. Assume that 

u~[m f. Then u = xux implies u = ux = xu, hence {u,x} 

is a subsemilattice of B with u~x. Thus b) holds. 

Assume that b) holds. Then u6Im f if and only if 

u = xux and this is equivalent with there exists y6B 
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with u = xyx. Thus Im f = {xyx; y6B}. Hence for every 

yeB we have f(xyx) = xyx. Since xeIm f we have 

f(x) = x and thus for every y6B we conclude 

f(y) = xf(y)x = f(x)f(y)f(x) = f(xyx) = xyx 

and a) is proved.m 

THEOREM 2.2: For every monoid M there exist at most 

two non-isomorphic semilattices B of left zero 

semigroups with End(B) ~ M. If two non-isomorphic 

semilattices of left zero-semigroups have isomorphic 

endomorphism monoids then their structural 

semilattices are anti-isomorphic chains. Thus 

algebras in the yariety of all semilattices o_ff l_eft 

zero-semigroups are 3-determined by endomorphism 

monoids. 

Proof: Let End(B) be an endomorphism monoid of a 

semilattice of left zero-semigroups B. Then for every 

x,y6B we have xyx = xy. If we apply Theorem 1.4 we 

determine the decomposition of B into D-classes and the 

structural semilattice S except when S is a chain. If 

S is a chain then S is determined up to an anti- 

isomorphism, and we proceed with each semilattice 

separately. Assume that S is a structural semilattice of 

B then by Lemma 1.5, we obtain for every x6B the set 

{u6B; {x,u} is a subsemilattice of B with x~u} = 

= {xyx; ycB}. Lemma 2.1 completes the proof because for 

every x,ycB we determine xy. If a structural 

semilattice of B is not determined uniquely and we find 

a band for both semilattices then these two semilattices 

of left zero-semigroups can have isomorphic endomorphism 

monoids. (If for the semilattice S and some x~B there 

exists no idempotent endomorphism f satisfying the 

condition b) from Lemma 2.1 or if there are at least two 

such idempotent endomorphisms then no band BcV with the 

structural semilattice S and End(B) exists.)u 
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COROLLARY 2.3: Algebras in the variety o_ff all 

semilattices of right zero-semigroups are 3- 

determined by endomorphism monoids. Thus for every 

monoid M there exist at most two non-isomorphic 

semilattices B of right zero-semigroups with 

End(B) ~ M. If two non-isomorphic semilattices of 

right zero-semigroups have isomorphic endomorphism 

monoids then their structural semilattices are anti- 

isomorphic chains. 

Proof: If (B,.) is a semilattice of right zero- 

semigroups then (B,e) where xsy = y.x is a semilattice 

of left zero-semigroups such that End(B,.) and End(B,s) 

are isomorphic. We apply Theorem 2.2.m 

We recall several well-known facts about the variety 

V of left distributive bands. Every semigroup B6V is a 

subsemigroup of a product of a semilattice of left zero- 

semigroups and a right zero-semigroup. Thus for x,y6B 

from the same L-class of B (i.e. if xy = x, and yx = y) 

and for every zs with D ~D we have zx = zy. Hence 
X Z 

for every u,v6B we have xuvx = xuvy = xuxvy = xuxyvy 

because D )D . This fact is often used in the following 
X X U V  

without a reference. In the sequel we assume that End(B) 

is given. If we know a structural semilattice then by 

Lemma 2.1 we can determine the product xyx for every 

x,yeB this fact is also used without any reference. 

LEMMA 2.4: Let A be a left-zero subsemigroup of B 

and let f be an idempotent endomorphism of B with 

Im f = {axa; aeA, x6B}. Then T = {xeB; f(x) = axa} 
a 

is a right ideal for every aeA and the followinq 

hold: 

a) U{Ta; a6A} = B, 

b) if Ys b for a,b6A then aya = byb. 

Proof: Assume that f is an idempotent endomorphism 

of B with Im f = {axa; aeA, x6B}. For every a6A 
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define T = {y6B; f(y) = aya}. First we show that a) a 

holds. Choose y6B. From the properties of Im f it 

follows that there exists a6A with f(y) = af(y)a. Hence 

f(y) = af(y)a = f(a)f(y)f(a) = f(aya) = aya because a = 

aaa6Im f and f is idempotent. Thus y6T and a) is a 

proved. We prove that T a is a right ideal. Let ys a, 

zs then f(yz) = f(y)f(z) = ayabzb = ayza for some boA 

and hence yz6T . Since B is a band we have a6T for a a 

every a6A. Further for every Y6TanT b where a,b6A we 

have aya = f(y) = byb whence b) holds.n 

LEMMA 2.5: Let A be a left zero-subsemigroup o_ff B 

and let {Ta; a6A} be a family of right ideals 

satisfying a) and b) from Lemma 2.4 and such that 

a~T for every aEA. Then a mapping f defined a 

f(y) = aya for a6A, yeT a is an idempotent 

endomorphism o_ff B. 

Proof: Assume that we have a family {T ; aeA} of 
a 

right ideals satisfying a), b), and such that a6T for a 

every as By Condition b) the mapping f is a correctly 

defined partial mapping. By a) f is a total mapping. 

Since acT for every a6A we have f(a) = a for every a 

a6A and since T is a right ideal we have for every a 

y6T that aya6T . Since aayaa = aya we conclude that a a 

f is idempotent. We show that f is an endomorphism. Let 

y6T a, z6T b for a,b6A. Since T a is a right ideal we 

obtain that yzET a and hence f(yz) = ayza = ayabzb = 

= f(y)f(z).m 

COROLLARY 2.6: Let A be a left zero-subsemigroup of 

B such that for every distinct a,b6A there exists 

no x6B with axa = bxb. If there exists an 

idempotent endomorphism f of B with Im f = {axa; 

a6A, x6B} then for every idempotent mapping g:A-~A 

there exists an idempotent endomorphism h:B--~B with 

hfA = g and Im h = {g(a)xg(a); a6A, x6B}. 
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Proof: By Lemma 2.4 {T = {xEB; f(x) : axa}; aeA} a 

is a family of right ideals satisfying a) and b). We show 

that TaNT b = 0 if a,b are distinct elements of A. 

Indeed, if YeTanT b then aya = f(y) = byb and by the 

assumption a = b. Therefore TaNT b = 0. For every aeIm g 

define S a = U{Tb; beA, g(b) = a}. Then {Sb; beIm g} is 

a family of right ideals with beS b for every b6Im g 

because f(a) = a for every aeA. By a) and b) we 

conclude that {Sb; beIm g} also satisfies a) and b) (to 

prove b) we use that TaAT b = 0 if a,b are distinct 

elements of B). If we apply Lemma 2.5 we obtain the 

required statement.i 

In the following we define a pseudo D-partition; this 

notion describes the basic properties of D-classes. First 

we give auxiliary notions. If P is a decomposition of a 

set A, then for aeA denote by P(a) the set of 

containing a. An idempotent endomorphism f of B is 

called A-determined, where A is a subset of B, if Im 

f = {axa; a6A, x6B}. Let D be a D-class of B. A pair 

= (E,F) of two decompositions of D is called a pseudo 

D-decomposition if the following conditions hold: 

I) for every FeF, EEE we have IFNEI = I; 

2) for every A~FeF there exists an A-determined 

endomorphism of B; 

3) for every endomorphism f of B we have that 

x,yeIm f implies that E(x)nF(y),E(y)nF(x)gIm f; 

4) for every A-determined endomorphism f and C- 

determined endomorphism g, where A~F, C~E for some 

FeF,E6E with AAC % 0 there exists an AeC-determined 

endomorphism h where AeC = {x6D; 3a6A, 3c6C with 

{x} = E(a)DF(c)}; 

5) if f is an A-determined endomorphism for some 

AgF6F then for every aeF we have E(a)~f-l(f(a)); 

6) for a,beD we have E(a) = E(b) whenever axa = 

= byb for some x,yeB; 
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7) if a,bs with {axa; x6B}N{bxb; x6B} = 0 then 

for every E'EE we have {cxc; xEB}n{dxd; x6B} = 0 where 

{c} = E'NF(a), {d} = E'NF(b). 

A pair of decompositions D = (E,F) on a D-class D 

of B is called trivial if the decomposition E is 

universal (i.e. E has exactly one class) and the 

decomposition F is identical (i.e. every class of F is 

a singleton). A pair of decompositions D = (L,R) on a D- 

class D of B is called an LR-deeomposition if L is a 

decomposition of D into L-classes and R is a 

decomposition of D into R-classes. 

PROPOSITION 2.7: Let D be a D-class of B. Then the 

LR-decomposition is a pseudo D-partition. 

Proof: It is well-known that Condition i) holds. We 

prove Condition 2). Let As Since B satisfies the 

identity xyxz = xyz we obtain that B is a subsemigroup 

of BIXB 2 where B 1 is a semilattice of left zero- 

semigroups and B 2 is a right zero-semigroup. Denote by 

~ the restriction of the i-th projection on B, i6{i,2}. 
l 

Choose an idempotent mapping g:B2--+B 2 such that Im g = 

~2(A) and choose a = (al,a2)r Define a mapping f:B--~B 

as follows: 

for x = (Xl,X2)6B set f(x) = (alxl,g(x2). 

We prove that f is an idempotent endomorphism of 

B. For x = (Xl,X2), y = (yl,Y2)EB we have f(x)f(y) = 

= (alxl,g(x2))(alYl,g(y2)) = (alxlalYl,g(x2)g(y2) ) = 

= (alxlYl,g(x2Y2)) = f(xlYl,X2Y 2) = f(xy) because g is 

an endomorphism of B 2. Further ff(x) = f(alxl,g(x2)) = 

= (alalxl,g(g(x2))) = (alxl,g(x2)) = f(x). Thus f is an 

idempotent endomorphism. Since for every b = (bl,b2)eA 

we have b I = a I and for every x = (Xl,X2)6B we have 

bxb = (blXlbl,b2x2b 2) = (alXl,b 2) we conclude that 

f(bxb) = bxb because g(b 2) = b 2. On the other hand, for 

x = (Xl,X2)6B, if f(x) = (alxl,g(x2)) then for b = 
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= (al,g(x2))6A we obtain f(x) = bxb. Whence f is A- 

determined and 2) is proved. 

Since for every x,y6D we have that every 

subsemigroup C of B containing x,y contains also 

L(x)nR(y) and L(y)nR(x) and since for every 

endomorphism f of B we have that Im fAD is a 

subsemigroup of B we conclude 3). To prove 4) assume 

that B is a subsemigroup of BIXB 2 where B 1 is a 

semilattice of left zero-semigroups, B 2 is a right zero- 

semigroup. Let f be an A-determined endomorphism, g be 

a C-determined endomorphism where A~ReR, C~L6L with 

AAC % 0. Denote by ~i' i = 1,2 the restriction of the i- 

th projection from B to B i. Since CgL6L we conclude 

that ~20g is a constant mapping. Let fl be an 

idempotent mapping from B 2 into itself with Im fl = 

= ~2(A), then flo~2 is a homomorphism from B into B 2. 

By the properties of the product we obtain that there 

exists an endomorphism h:B--~B with ~10h = ~10f, ~20h = 

= fl~ �9 By a routine calculation we obtain that h is 

AeC-determined and 4) is proved. To obtain 5) it suffices 

to notice that every endomorphism of B preserves the 

decomposition into L-classes. If we use that B is a 

subsemigroup of the product of a semilattice of left zero- 

semigroups with a right zero-semigroup we obtain 

Conditions 6) and 7) by a direct inspection. Thus the LR- 

decomposition is a pseudo D-partition.m 

PROPOSITION 2.8: Let D~B be a D-class. Then the 

trivial pair o_ff decompositions is a pseudo D-- 

partition. Moreover, there exist at most three 

distinct pseudo D-partitions of D. If there exist 

three different pseudo D-partitions then the LR- 

decompositio n is not trivial. 

Proof: By a direct inspection a trivial pair of 

decompositions is a pseudo D-partition. By Proposition 2.7 

the LR-decomposition is a pseudo D-partition. Let D = 

= (L,R) be the LR-decomposition. Assume that D_~' = 

316 



t 
DEMLOVA and KOUBEK 

= (L',R') is a non-trivial pseudo D-decomposition of D 

different from D. By Conditions 2) and 3), for every 

A~RER and for every d6D if there exists an AU{d}- 

determined endomorphism of B then either A is a 

singleton or deR. Hence for every x6D either R_~' (x) = 

= R(x) or R_~'(x)~L(x). By Condition 5) in the former case 

we conclude that D = D' which is a contradiction, and 

therefore we assume that for every x6D we have 

R'(x)~L(x). Assume that D'_~' = (L",R") is a pseudo D- 

partition different from D and that R',R" are non- 

trivial. Choose x6D, by Condition i) IR~'(x)I ,IR"(x)t >i 

and if R_~' # R'_~' then by Conditions 2) and 3) we have 

R'(x)gL'__'(x) and R'~'(x)~L'(x). Choose y6R'(x), z6R'_~'(x) 

with y,z # x. By Condition 2) there exist an {x,y}- 

determined endomorphism f and an {x,z}-determined 

endomorphism g of B. Let {u} = L'(y)nR__'(z). Then by 

Condition 4) there exists an {x,y,z,u}-determined 

endomorphism h of B. By Condition 6) ({yvy; v6B}U{uvu; 

vcB})n({xvx; veB}U{zvz; veB}) = 0 and {xvx; v6B}n{zvz; 

v6B} = 0 and by Condition 7) we obtain also {yvy; 

v6B}n{uvu; v6B} = 0. Therefore we can apply Corollary 2.6 

and we conclude that there exists an {x,y,z}-determined 

endomorphism of B, this contradicts Conditions 2) and 3). 

Therefore R_~' = R" and whence D' = D'_~'. The proof is 

complete.m 

THEOREM 2.9: Algebras in the variety V of all left 

distributive bands are 5-determined by endomorphism 

monoids, thus for every monoid M there exist at 

most four non-isomorphic left distributive bands B 

with End(B) ~ M. 

Proof: Let End(B) be given. By Theorem 1.4 there 

exist at most two non-isomorphic semilattices which can be 

structural semilattices of B. Furthermore we know the 

decomposition of B into D-classes. For a structural 

semilatice by Lemma 2.1 for every xr we determine an 

endomorphism fx such that fx(y) = xyx for every 
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y6B. Whence for a given D-class we can find all pseudo D- 

partitions and by Proposition 2.8 there exist at most two 

decompositions to L- and R-classes. Let D I, D 2 be two D- 

classes of B with D2gBDIB. If x,y are distinct 

elements of D 1 which belong to the same R-class, then 

for every ueD 2 we have that xux,yuy are distinct 

elements of D 2 belonging to the same R-class. Hence the 

decomposition of D 1 into L- and R-classes determine the 

decomposition of D 2 into L- and R-classes. Since for 

every two D-classes D I, D 2 of B the set BDIBnBD2B 

contains a D-class we conclude that for every semilattice 

S which can be the structural semilattice of B there 

exist at most two decompositions to L- and R-classes. To 

finish the proof it suffices to show that f and the 
x 

decompositions to the L- and R-classes determine the left 

translation of x. Let yeB, then {xy} = L(xyx)NR(yxy), 

thus xy is uniquely determined. Since for every 

structural semilattice and every decomposition to L- and 

R- classes we determine the multiplication uniquely, the 

proof is complete.m 

COROLLARY 2.10: Algebras in the variety V of all 

right distributive bands are 5-determined b_x 

endomorphism monoids, thus for every monoid M there 

exist at most four non-isomorphic right distributive 

bands B with End(B) ~ M. 

Proof: If (B,s) is a right distributive band then 

the opposite band (B,.), where a.b = bea, is left 

distributive and both bands have the same endomorphism 

monoids. Theorem 2.9 completes the proof.l 

REMARK: Let (S,^) be the semilattice isomorphic to 

the natural numbers with the operation meet, let (S,v) 

be the opposite semilattice. Let A be a non-singleton 

set and let (A,*) be the left zero-semigroup and (B,0) 

be the right zero-semigroup. Then the following semigroups 

(S,^)x(A,*), (S,^)• (S,v)~(A,*), (S,V)• are 
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non-isomorphic normal bands with the same endomorphism 

monoids. Therefore Theorem 2.9 and Corollary 2.10 cannot 

be improved.m 

3. Universal constructions 

First we show that the variety of regular involution 

bands is universal. To this end we use the following 

theorem (proved in the Appendix). 

THEOREM 3.1: There exists a universal full 

subcateqory K of the category A(I,I) o__f unary 

algebras with two operations such that for every pair 

(A,~A,~A), (B,~B,~ B) of objects o_ff K there exists 

no mapping f:A--~B with ~B ~ = f~ and ~B0f = 

f0~A.m 

Choose two elements x,y that are not elements of any 

algebra in K. For every object (A,~,~) from K define 

~(A) = ({x,y}dA• ,+) with the binary operation 

defined by: 

y.x = x.x = x, x.y = y.y = y, 

(a,i). (b,j) = (a,i).x = (a,i).y = (a,i) for every 

a,b6A, i,j6{0,1}, 

x. (a,0) = y.(a,0) = (a,0), x. (a,l) = (~(a),0), 

y. (a,l) = (~(a),0) for every a6A, 

+ 

and the unary operation defined by: 

+ + 

x = y, y = x, and (a,i) + = (a,l-i) for every a6A, 

ie{0,1}. 

LEMMA 3.2: ~,(A,~,~) is a regular involution band. 

Proof: The operation is clearly idempotent, and 

Ax{0,1} is the set of left zeros of ~(A,~,~). Further, 

{x,y} is a right zero-subsemigroup of ~(A,~,~). From 
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{x,y}. (Ax{0,1}) = Ax{0} and x. (a,0) = y. (a,0) = (a,0) 

for every a6A we easily verify that is associative. 
+ 

It is easy to verify that satisfies the required 

identities. Thus ~,(A,~,~) is a regular involution band.i 

For every homomorphism f:(A,~,~)-~(B,~,~) in K 

define a mapping ~f from ~(A,~,~) into ~(B,~,~) by 

~f(x) = x, ~f(y) = y, and ~f(a,i) = (f(a),i) for 

every a6A, is 

LEMMA 3.3: #f is a homomorphism from ~(A,~,~) 

into ~(B,~,~) for every homomorphism 

f:(A,~,~)-~(B,~,~). Furthermore, 4, is an embedding 

functor from K into the category of regular 

involution bands. 

+ 

Proof: Clearly, ~f commutes with the operation 

From the definition of ~f and ~(A,~,~) it follows that 

it suffices to verify that ~f(x).~,f(a,l) = ~f(x. (a,l)) 

and ~f(y).~,f(a,l) = ~,f(y. (a,l)) for every a6A. This is 

equivalent with f(~(a)) = ~(f(a)) and f(~(a)) = 

~(f(a)); both equations hold because f is a 

homomorphism. The rest is obvious.m 

Next we prove that ~ is full. Assume that (A,~,~), 

(B,~,~) are objects of K, and g:~,(A,~,~)-~(B,~,~) is 

a homomorphism. First we show that g(A•215 If 

there exists an a6A such that g(a,i)c{x,y} for some 

ie{0,1} then g(a,l-i)s also g(a,i) = x if and 

only if g(a,l-i) = y because g commutes with +. If 

g(a,i) = x, then x = g(a,i) = g((a,i). (a,l-i)) = 

= g(a,i).g(a,l-i) = x.y = y - this is a contradiction. If 

g(a,i) = y then a contradiction is obtained by exchanging 

(a,i) for (a,l-i). Thus g(Ax{0,1})CBx{0,1}. If g(x) = 

= (a,i) then g(y) = (a,l-i), and the contradictory 

(a,i) = g(x) = g(y.x) = g(y).g(x) = (a,l-i). (a,i) = 
+ 

= (a,l-i) follows. Hence g(x)6{x,y}. From x = y and 
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+ 

y" = x we have that g({x,y}) = {x,y}. Since (a,i) + = 

= (a,l-i) for every aeA (or aeB) and i6{0,i}, we 

conclude that there exists a mapping h:A-~B with 

g({(a,0),(a,l)}) = {(h(a),0),(h(a),l)}. From 

{x,y}. (Ax{0,1})~Ax{0} it follows that g(a,0) = (h(a),0) 

and thus g(a,i) = (h(a),i) for every a6A, i6{0,i}. For 

every a6A we have (h(~(a)),0) = g(~(a),0) = 

= g(x. (a,l)) = g(x).g(a,l) = g(x). (h(a),l) and, 

analogously, (h(~(a)),0) = g(y).(h(a),l). 

If g(x) = y then g(y) = x, and 

(h(~(a)),0) = y. (h(a),l) = (@(h(a)),0), 

(h(~(a)),0) = x. (h(a),l) = (~(h(a)),0). 

In this case ho~ = ~0h and h0~ = ~oh, but by the 

defining property of K such an h does not exist. Thus 

g(x) = x, g(y) = y and (h(~(a)),0) = x. (h(a),l) = 

= (~(h(a)),0) and (h(~(a)),0) = y. (h(a),l) = 

(~(h(a)),0). Hence h0~ = ~oh and ~0h = ho~, so that h 

is a homomorphism and ~h = g. We obtain 

PROPOSITION 3.4: ~ is a full embedding of K into 

the variety o_ff regular involution bands.s 

THEOREM 3.5: The variety o_ff regular involution bands 

is universal. 

Proof: Combine Theorem 3.1 and Proposition 3.4.m 

Next we aim to show that the variety of bands with 

three added nullary operations is universal. For this 

purpose we use the following theorem (proved in the 

Appendix). Recall that 3 = {0,1,2}. 

THEOREM 3.6: The variety V of unary algebras with 

three operations ~i" i63 fulfilling identities 

~i~176 = ~i' for every i63 and for every word 

in the alphabet {~i; i63} is universal.m 

Let (A,~i; i63) be an algebra from V, and let 
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AAZ = 0 where Z = {(xi,Yi); i,j~3}. Denote X = {xi; 

i63}, Y = {Yi; i63}. Set ~(A,~i; i63) = (ADZ, �9 , (xi,Yi); 

i63) where the binary operation is defined as 

follows: 

(v,w). (v',w') = (v,w') for v,v'eX, w,w'cY, 

a.b = a-z = a for a,beA, zEZ, 

(xi,Yj).a = ~i(~j(a)) for i,j~3, a6A. 

LEMMA 3.7: ~(A,~i; i~3) is a band. 

Proof: Clearly, is idempotent. By a direct 

calculation we verify that is also associative because 

for every i,j63, and for every word ~ over {~i; i63} 

we have ~i0~0~j = ~io~j.m 

For a homomorphism f:(A,~i; i63)--+(B,~i; i63) 

define ~f as follows: 

for zeZ set ~f(z) = z, 

for aeA set ~f(a) = f(a). 

PROPOSITION 3.8: ~ is an embedding functor from 

into the variety of bands with three nullary 

operations. 

Proof: Any homomorphism f commutes with ~i for 

every i63; using the defining identity V we obtain 

that ~f is a homomorphism. The rest is obvious.m 

To prove that ~ is full let g:~(A,~i; 

i63)--+~(B,~i; ie3) be a homomorphism for some algebras 

(A,~i; i63), (B,~i; i63) from V. Then g(xi,Y i) = 

= (xi,Y i) for every i63 because (xi,Y i) are nullary 

operations. Whence g(z) = z for every zeZ because Z 

is a subalgebra generated by {(xi,Yi); i63}. Suppose that 

for some aeA we have g(a) = (z,y I) with zeX. Then 

(z,y I) = g(a) = g(a. (Xl,Y2)) = g(a).g(xl,Y 2) = 
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= (z,yl). (xl,Y 2) = (z,y2), a contradiction. Analogously, 

if g(a) = (z,v) for some aeA, zeX, veY\{y I} then 

(z,v) = g(a) = g(a. (xl,Yl)) = g(a).g(xl,Y I) = 

= (z,v). (xl,Y I) = (z,yl), and again we obtain a 

contradiction. Hence g(A)r For every aeA, i63 we have 

g(~i(a)) = g((xi,Yi).a) = g(xi,Yi).g(a) = (xi,Yi).g(a) = 

= ~i(g(a)). Hence g~A is a homomorphism from (A,~i; 

i63) into (B,~i; i63) with ~g~A = g. Thus we conclude 

that: 

PROPOSITION 3.9: ~ is a full embedding of V into 

the variety of bands with three nullary operations.w 

THEOREM 3.10: The variety of bands with three nullary 

operations is universal. 

Proof: Combine Theorem 3.6 and Proposition 3.9.| 

Finally, for a given semilattice S we shall 

investigate a category Band(S) of all bands with the 

semilattice S and all homomorphisms h:B--+B' sas 

)~B' for every s6S. Let S = {Sl,S2,S3,s4,s 5} be a h(Bs s 

semilattice with Sl,S2,S3>S4>S5 . 

THEOREM 3.11: The category Band(S) is universal. 

Proof: For any algebra (A,~i; i63)eV, let ~J'(A,~i; 

i63) be an extension of ~(A,~i; i63) by three new 

idempotent elements {u ; i63} and let the operation 
1 

extend that of t|~(A,~i; i63) as follows: 

ui.u j = (xi,Y j) for i,j63, i % j 

ui.(xj,y k) = (xi,Yk), (xj,Yk)'U i = (xj,y i) 

i,j,k63 

a.u i = a, ui.a = ~i(a) for i6, a~A 

for 

By a routine calculation we easily obtain that 

~'(A,~i; i63) is a band over the semilattice S. For a 
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homomorphism f:(A,~i; i63)--+(B,~i; ie3) define ~'f to 

be an extension of ~f by ~'f(u i) = u i for every i63. 

Clearly ~'f is a homomorphism and therefore it is a 

morphism of Band(S). Thus ~' is an embedding functor 

from V into Band(S). 

To prove that ~' is full, let g:~'(A,~i; 

i63)--+~'(B,9i; i63) be a morphism of Band(S). Then 

obviously, g(u i) = u i for every i63. Hence g(t) = t 

for every teZ because Z0{ui; i63} is a subalgebra of 

~' (A,~i; i63) generated by {ui; i63}. Now we apply 

Proposition 3.9 to conclude that ~' is full. Theorem 3.6 

now completes the proof.s 

4. Appendix. 

We prove Theorem 3.1 using the following result by Z. 

Hedrlln and A. Pultr [8]. 

THEOREM 4.118]: The variety A(I,I) of all unary 

algebras with two operations is universal.m 

For any (A,~,~)eA(I,I) we now define A(A,~,~) = 

= (Ax6,~,~), where 6 = {0,1,2,3,4,5}, 

for every aeA, ~L(a,0) = (~(a),2), gL(a,l) ~ (~(a),3), 

for i = 2,3 u(a,i) = (a,i+2), 

for i = 4,5 u(a,i) = (a,i-2), 

for i = 0,1,3,4, ~(a,i) = (a,i+l), 

for i = 2,5 ~(a,i) = (a,i-2). 

For any homomorphism f:(A,~,~)--+(B,~,~) define 

Af(a,i) = (f(a),i) for every aeA, i66. 

LEMMA 4.2: A is an embedding functor from the 

variety A(I,I) into itself.m 

Next we prove that A is full. Let 
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g:A(A,~,~)--~A(B,~,~) be a homomorphism. Since g has to 

map every cycle of u onto a cycle of u, and analogously 

for ~, for every aeA there exist bl,b2,b3,b46B such 

that 

g({(a,i); i = 0,1,2}) = {(bl,J+k); j = 0,1,2} 

either k = 0 or k = 3, 

g({(a,i); i = 3,4,5}) = {(b2,J§ j = 0,1,2} 

either k = 0 or k = 3, 

g({(a,2),(a,4)}) = {(b3,J+k); j = 0,2} 

k = 2 or k = 3, 

g({(a,3),(a,5)}) = {(b4,J+k); j = 0,2} 

k = 2 or k = 3. 

where 

where 

where either 

where either 

These properties yield b I = b 3 and b 3 = b 2 = b 4. 

Hence there exists a mapping h:A-~B such that 

g({a}x6)C{h(a)}x6. Since g({(a,3),(a,5)})~g({(a,i); i = 

= 3,4,5}) for every aeA, it follows that g(a,4) = 

= (h(a),4). Then g({(a,2),(a,4)}) = {(h(a),2),(h(a),4)} 

and, therefore, g(a,2) = (h(a),2). Since g commutes with 

9, g(a,i) = (h(a),i) for every i66. Moreover, for every 

as (e(h(a)),2) = ~t(h(a),0) = ~t(g(a,0)) = g(gt(a,0)) = 

= g(~(a),2) = (h(~(a)),2) and (~(h(a)),3) = it(h(a),l) = 

= n(g(a,l)) = g(u(a,l)) = g(~(a),3) = (h(~(a)),3). Hence 

h:(A,~,~)-~(B,~,~) is a homomorphism with Ah = g as was 

to be shown. 

PROPOSITION 4.3: A is a full embedding.m 

Finally we prove: 

LEMMA 4.4: Let (A,~,~), (B,~,~) be unary @igebras. 

Then there exists no mapping h:Ax6-~Bx6 such that 

h * ~ t  = ~ * h  a n d  h * ~  = ~ * h .  

Proof: Let f:X--+X, g:Y--~Y, h:X--+Y be mappings such 

that h~ = g0h. Then h maps every cycle of f of 

length m onto a cycle of g of length n where n 
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divides m. Since every cycle of ~ has length 2 and 

every cycle of ~ has length 3 we conclude that there is 

no h for which h0~ = 90h would hold.m 

The proof of Theorem 3.1 is now complete.m 

To prove Theorem 3.6, we show that there exists a 

full embedding 8 of A(I,I) into the variety V. For 

any (A,~,~)eA(I,I) set 8(A,~,~) = (Ax6,~,~,T[) where 

the operations u,~,~ are defined for all a6A by: 

~(a,0) = ~(a,l) = (a,0), u(a,2) = u(a,3) = ~L(a,4) = 

= (a,2), u(a,5) = (~(a),2), ~(a,0) = ~(a,l) = 

= ~(a,5) = (a,l), ~(a,2) = ~(a,3) = (a,3), ~(a,4) = 

= (~(a),l), n(a,0) = T[(a,l) = n(a,4) = (a,0), 

~(a,2) = ~(a,3) = n(a,5) = (a,3). 

For a homomorphism f: (A,~,~)--+(B,~,@) set 

8f(a,i) = (f(a),i) for every a6A, i66. 

LEMMA 4.5: 8 is an embeddinq functor from the 

variety A(I,I) into V. 

Proof: It is easy to see that u,?,q are idempotent. 

Also, every operation maps the image of any other 

operation bijectively onto its own. Hence 8(A,~,~)6V. It 

is obvious that 8 is an embedding functor.R 

LEMMA 4.6: 8 is a full embeddin 9 from A(I,I) into 

V. 

Proof: Let g:8(A,~,~)-~8(B,~,~) be a homomorphism. 

Observe that ~(x) = r[(x) = x for some x6Ax6 (or x6Bx6) 

if and only if x = (a,0) for some a6A (or a6B). Hence 

there exists a mapping f:A--~B such that g(a,0) = 

= (f(a),0). From ~(a,0) = 9(a,l) = (a,l) we conclude 

that g(a,l) = (f(a),l). Further, for x6Ax6 (or x6B• 
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~(x) = q(x) = x just when x = (a,3) for some a6A (or 

a6B). Thus g(a,3) = (f'(a),3) for some mapping f':A-~B. 

From ~t(a,3) = ~(a,2) = (a,2) we obtain g(a,2) = 

= (f'(a),2). We also have T[(a,4) = (a,0), ~t(a,4) = (a,2) 

and n - l ( a , O )  = { ( a , O ) , ( a , 1 ) , ( a , 4 ) } ,  ~ L - l ( a , 2 )  = 

= {(a,2l,(a,3),(a,4)}Ul(b,5); ~(b) = a} for aEA (or 

a6B). The intersection of these sets is the singleton 

{(a,4)}; whence f = f' and g(a,4) = (f(a),4). 

Analogously, 9(a,5) = (a,l), q(a,5) = (a,3) and ?-l(a,l) 
-i 

= {(a,0),(a,l),(a,5)}U{(b,4); ~(b) = a}, TL (a,3) = 

= {(a,2),(a,3),(a,5)} for aeA (or a6B), and the 

intersection of these sets is the singleton {(a,5)}; 

whence g(a,5) = (f(a),5). Finally, (f(~(a)),l) = 

= g(~(a),l) = g(~(a,4)) = ~(g(a,4)) = ~(f(a),4) = 

= (~(f(a)),l) and (f(e(a)),2) = g(~(a),2) = g(~t(a,5)) = 

= u(g(a,5)) = u(f(a),5) = (~(f(a)),2) for every atA, 

thus f commutes with ~ and ~. Therefore f is a 

homomorphism from (A,~,~) into (B,~,~) with 8f = g, 

so that 8 is a full embedding.m 

The proof of Theorem 3.6 follows from Theorem 4.l.a 

A. Pultr and J. Sichler [16] proved that the variety 

of A(I,I) determined by the identities ~0~0~ = ~ and 

9.~.~ = ~ where ~ is an arbitrary word in {~,~} is 

not universal. Therefore the variety V is the minimal 

universal variety of unary algebras fulfilling this type 

of identities. Precisely, we have: 

THEOREM 4.7: Let V be a variety o_ff unary algebras 

with n operations ~0'el ..... ~n-i whose defining 

identities are all identities of the form ~i0~0~i = 

= ~i for every i = 0,i ..... n-i and every word 

over the alphabet {~0,~i ..... On_l } . Then V is 

universal if and only i_ff n>3.m 

The second author acknowledges the support of NSERC. 
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