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1. Introduct ion 

The s t ructure  of the lattice of varieties of bands has been determined 

by Birjukov [2], Fennemore [3] and Gerhard [6]. The structure of this lattice is 

used here to determine the structure of two related lattices: the lattice LBM 

of varieties of band monoids, and the latt ice LFBM of pseudovarieties of finite 

band monoids. 

In Section 2, a brief description of the lattice LB of varieties of bands 

is given. Then in Section 3, a function Mon from L_B_B to LBM is defined, and 

shown to be a surjective lattice homomorphism. In Section 4, the image of L_.BB 

under Mon is studied, thus determining the s tructure of the lattice LBM. 

In the final section, pseudovarieties of finite band monoids are 

considered. A t rea tment  of the connection between pseudovarieties and 

languages may be found in Lallement [10]. Using some results of Ash's which 

relate varieties, pseudovarieties and generalized varieties, it is shown tha t  the 

lattices LBM of varieties of band monoids and LFBM of pseudovarieties of 

finite band monoids are isomorphic. 

IThis work was done as part of the author's M.Sc. thesis a t  Simon Fraser University, and was 

supported by The Natural Sciences and Engineering Research Council of Canada. 
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2. The Latt ice of Varieties of Bands 

Fennemore has shown in [3] tha t  the varieties of bands in L_BB are each 

determined by one ident i ty  in addit ion to x 2 = x. Because we will be 

considering only varieties of bands,  we will denote by _V(P=Q) the variety of 

bands  satisfying the addit ional  identi ty P--Q, where P and Q are words on the 

a lphabe t  X = {a,d,x,y,x 1 ,x2,... }. Following the notat ion of Fennemore [3], the 

words Rn, S n and Qn, for n > 2, are defined as follows: 

R 2 = R : ( •  = xax~•  l ,  

R 3 = R 3 ( x 1 x 2 x 3 )  = XlX2X3, 

Q2 = Q2(XlX2X3)  = x 2 x 3 x l ,  

Q3 = Qa(xlx2x3) = xlxzx3xlxa' 

S 2 = S 2 ( x l x ~ x 3 )  = x a x l x ~ x  v 

S a = S3(XlX2X3) = XlX2XaXlXaX2X3, 

R n = Rn(xp... ,xn) = Rn.lXn, for n=4,6,... 

R n = Rn(Xl,...,xn) = xnRn.l, for n=5,7,.. .  

Qn = Qn(xv-'-,Xn) = Qn-lXnRn , for n=4,6 .... 

Q .  = qn(xl,...,Xn) = RnXnQn.1, for n=5,7.. .  

S = S ( x v . . . , x )  = S . l x  R ,  for n=4,6,... 

S n = S n ( X l , . . . , X n )  ~--- RnXnSn.1, for n=5,7,.... 

For any word A, (variety V), A*(V*) will denote the dual (variety) of A (V). 

The s t ructure  of the lattice L_BB is shown in Figure 1. The portion of 

the latt ice above the variety V(axya=axaya )  will be referred to as the 

inductively defined par t  of the lattice; the portion below and including , the 

variety V(R3dR3=Q3dQ3 ) will be called the base of the lattice. Identities fpr 

the varieties not  specifically labelled in Figure 1 may be found in Fennemore 

[3]. 

An impor t an t  property of LB is its symmetry.  The lattice is symmetie 

about  a vertical line through V(x=y) ,  in the sense t ha t  the corresponding 
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The Lattice of Varieties of Bands 
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varieties on either side of the line are V(P=Q) and V(P*=Q*), for some 

identity P=Q. This symmetry means that many of the results to be obtained 

in the following section may be "dualized': in any proof involving the words 

P,Q,..., replacing the words by their duals P*,Q*,... throughout will give a 

proof of the "mirror image" or dual result. 

3. The Mapping Mon 

Let M be the variety of all monoids, and let V be any variety of 

bands. Then V ~ M is a variety of band monoids. Thus the mapping Mon 

taking V to V • M, for V in L__BB, is a function from L_B_B to LBM. We show 
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tha t  Mon is a surjective latt ice homomorphism.  The following results will be 

useful. For any collection K of semigroups or monoids, we use SI[K] for the 

class of subdirectly irreducible members  of K. 

PROPOSITION 3 .h  (Scheim [l l]) :  A band monoid is subdirectly 

irreducible if and only if it is subdirectly irreducible as a band.  

PROPOSITION 3.2: (Gerhard,  [7]): Let V = U v W be any_ join- 

reducible variety in LB~ with the exceptions tha t  V # V(R2=Q2 ) and 

V r V(R~=Q~). Then SI[V] = SI[U u W]. 

PROPOSITION 3.3: Any variety in LB can be expressed as the join of 

a finite number  of join-irreducible varieties in LB. 

PROPOSITION 3.4: Mon is a latt ice homomorphism.  

Proof: Let V and W be any two varieties in L_BB. Then 

(V n W) ~ M -- (V • M) n (W n M), so Mon preserves the meet operation. 

Since any variety is generated by its subdirectly irreducible members,  it suffices 

to show for the join operator  t ha t  

SI[(V v W) n M] = SI[(V n M)v  (W n __)]. 

As long as V v W is not one of the two exceptions ment ioned in Proposit ion 

3.2, we have by Proposit ion 3.1, 

SI[(V v W) P M] 

= s I [ v  v w]  ,~ _M_ 

= (sI[v_] ~ s I [w])  ~ M_ 

= (sI[v_] ~ M) u (s~[w] ~ M) 

= Sl[V :~ M] u s I [ w  ~ 

= Sl i (V  n M) v ( w  ~ M]. 

The two exceptions to Proposi t ion 3.2 occur in the base of L_BB , for 

V(R2=Q2 ) -- V(xa=a)  v V(xy--yx)  and its dual. It is easy to verify t ha t  Mon 

preserves the join operator  in these two cases by direct calculation of the 

images of the varieties involved. 

PROPOSITION 3.5: The homomorphism Mon is surjective. 
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Proof:  Let U be any variet ies of band monoids .  Then U is genera ted  

by SI[U]. As a collection of bands ,  this  set genera tes  a variety V of bands.  

Then  SI[U] c V n M, so U c V .~ M, while conversely all the genera tors  of V 

are mono ids  in U, so V ~ M c U. Therefore  U = N o n ( V ) .  

4. The  Image of Mon 

We begin by inves t iga t ing  a general  proper ty  of any homomorphic  image 

of  LB. For  any lat t ice  _L and  any A c L, we use the  no ta t ion  of _L(A) for the 

sub la t t i ce  of L genera ted  by A. Now let L be any lat t ice,  with 0:LB ~ L 

an)' sur jec t ive  h o m o m o r p h i s m .  Let d be the  set of join- irreducible  e lements  of 

L B, and  for any "V~ c LB, let 

. l(V) = { w  ~ J : w �9 v o ~  w * ~  v L  

Let  T = {V ~ J : v;(V) :~ ~b(W) for any W ~ J (V)} ,  

and S = { , ( V )  : ~ ~ T}. 

P R O P O S I T I O N  4.1: Under  the  above hypotheses :  

(i) L(S) = L 

and (ii) r induces an isomorphism o Z LB(T) onto L. 

Proof:  

3.3, 

(i) For  any F F - ~ L, F = ~(G__) for some G (7 L BB. By Propos i t ion  

G = I V  G. 
- -  i = l  - - J  

for some join irreducibles ~ 1  . . . .  Gt, t .> 1. Then 

_F = r (SL 9_0 = Y,  O(C,). 

If the  G. 's  are all in T, then  F c L(S),  and we are done. If G. r T for 

some 1 < i < t, it is because ~P(Gi) = ~(___Wi) for some W G J(G_i ). If W or 

its dual  is in T, we replace G. by W. or W.* in the  expression for F above; if 
- - I  - - t  - - 1  

not ,  we replace W i by this  same process.  Since the  collections J_(Gi) , 

1 r i < t, are all finite,  we eventual ly  end wi th  F_ expressed as a join of 

e l ement s  of the  form r wi th  the G__i's all in T. Hence F e L_(S), so 

_L = _L(S). 
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(ii) When r is restriced to the set T, it forms a bijection from T to S: 

it is clearly surjective, and if ~(V1) = r for V1, V2, ~ T, then V1, V 2 

are join-irreducibles with neither properly contained in the other or in the dual 

of the other,  forcing V I = V  2. Hence on LB(T)  ~p induces a latt ice 

homomorphism.  

Hence to examine the image LBM of LB under Mon, it suffices to 

identify T, the set of join-irreducible varieties ~ in L B such tha t  

Mon(V) r Mon(W_) for any join-irreducible variety W_ properly contained in V 

or its dual. We begin with the base of LB_B , which contains eight join-irreducible 

varieties. These are V(x=y)  and V__(xy=yx), and _V(ax=a), V(ax=axa) ,  

_V(Rz=Q3 ) and their duals. Using the notat ion V M ( P = Q )  for the variety of 

band monoids satisfying the identi ty P = Q ,  we note tha t  

V ( P = Q )  ~ M__ = VM(P=Q) .  

PROPOSITION 4.2: (i) VM(ax=a)  = V_MM(xa=a) = VM(x=y)  

(ii) VM(ax=axa)  = V___MM(R3=Qz), an__dd dually. 

Proof: (i) Trivially, V_MM(x=y) = V M ( x = I ) .  Let M be any monoid in 

VM(ax=a)  or in VM(xa=a) .  Then for any m r M, the subst i tu t ion x = m  and 

a = l  results in m = l ,  so M satisfies the identi ty x = l .  

(ii) Because the corresponding inclusion is t rue for varieties of bands,  we 

h a v e  

VM(ax=axa)  ~ VM(R3=Q3 ). 

Let M be any monoid in VM(R3=Q3),  so tha t  M satisfies the identi ty 

X1X2X 3 = X1X2X3XlX 3. Let m,n c M. The subst i tu t ion x I = m, x z = n, and 

x 3 = 1 produces mn = mnm from this identity.  Therefore M is in 

VM(ax=axa) ,  and the equality follows. 

PROPOSITION 4.3: The image of the base of LB is as shown in 

Figure 2_. 

Proof: Let T" be the subset of T whose members  come from the base 

of L._BB. By Propositions 4.2 and 4.3, we have 

T" c {V(x=y),  __V(xy=yx), V(xa=axa) ,  V(ax=axa)} .  
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F i g u r e  2: The Image of the Base of L.BB 

y MM(ax=axa) ~ VM(• 

~lVM(xy=YxvM(x 1) ) 

Clearly _VM(x=y) c VM(xy=yx). We will show that VM(xy=yx),  V M_M(xa=axa), 

and VM(ax=axa) are all distinct. This will show that T" equals the set shown 

above and the result then follows from Proposition 4.1. 

From the structure of LB, there is a semigroup A which is in 

V(ax=axa) but not in V(xa=axa) or in V(xy=yx).  If A is a monoid, then 

VM(xa=axa) r VM(ax=axa) # VM(xy=yx).  If A is not a monoid, let M be 

the monoid A u {l}. Then M does not satisfy xa=axa  or xy=yx. Let 

m,n c M, and consider the substitution x=m and a=n in the identity xa=axa.  

]f neither m nor n is 1, then m n =  nmn; if r e= l ,  then mn = n = nmn; if 

n = l ,  then mn = m = nmn. In each case, the identity xa=axa is satisfied by 

M. so M is in VM(xa=axa).  

We now look at. the inductively defined part of the lattice LB. The 

join-irreducible varieties here are V(Rn=Sn) and their duals for n > 3, and 

V(Rn=Q,  ) and their duals for n > 4. The following proposition establishes a 

rather technical result which will allow us to prove that 
* 4 '  

VM(Rn=Q~ ) = VM(R l = S . , )  for n > a. 

PROPOSITION 4.4: Let n > 4. Le.__tt __M be a monoid with identity 

element 1, and let al, ..., and be any elements of M. Then 

and 

Rn(a3,a2,1,al,a4,ah,...,an.1) = R:.l(al,...,an.1) , 

Qn(aa,a2,1,al,a4,ah,...,an.1) = S:.l(al,... ,an.l). 

Proof: We use induction on n. For n=4, we have 
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an d  

Q4(a3, a2, 1 ,al)  
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= a3a2 la  1 

= a3a2a 1 

= R3(al ,a2,a3)  

Thus  the  resu l t  holds  for n = 4 .  

-- a3a21a31ala3a2]a  1 

= a3a21a3]a la3a2]a  1 

= S3(al,a2,a3).  

Now assume  t h a t  the  resul t  of the  p ropos i t i on  is t rue  for all k such 

t h a t  4 < k < n. T h e n  when  n is odd,  we have  

Rn(a3,a2, l ,a l ,a4,as , . . . ,an.1)  = an. lRn. l (a3,a2,1 ,a l~a 4 ..... an.2) 

= an. lR: .2(a l , . . . ,an .2)  

= R: . l (a l , . . . , an .x) .  

Now using the  induc t ion  hypothes i s  aga in  and  the  resul t  j u s t  es tab l i shed  for R n 

when  n is odd,  we have  

Q~ 

The  proof  for n even is very s imilar .  

P R O P O S I T I O N  4.5: For  all n 

and  dual ly .  

R~ ,al,.-.a,_2)%lQ._~(a3,av 1,al,...a..2) 

Rn.1 (al , . . . ,an.1)an.lSn.2 (a 1 ..... an_ 2 ) 

S: . l (al , - . - ,an.1)-  

> 3, V M ( R = Q , )  = V M ( R n . , = S  a) , 

Proof:  Since V M ( R n . x = S . 1 )  is c o n t a i n e d  in V M ( R n = Q n ) ,  only the  

oppos i te  inclusion need be proved.  For  n = 3 ,  th i s  follows f rom Propos i t ion  4.2. 

Now let  M be any  mono id  in V M ( R n = Q , ) ,  where  n > 4. We mus t  show 

tha t  if an, . . . ,a , .  1 are any n-1 e l ement s  of M, t h e n  
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* S* R _,(al, . . . ,an.l)  = �9 n . l (a l , - . - ,a , . l ) .  

Since n > 4, Proposition 5.1 says that 

R:.l(al, . . . ,an.l) = Rn(aa,a2,1,a4,...an.1) 

and 

S:.l(al,...,an_l) ---- Qn(a3,a2,1,a4,...a,_l). 

But since M is in _V(R =Q. ) ,  

Rn(a3,a2,1,al,...,an_l) = Qn(a3,a2,1,al,...,an.1), 

and thus 

R* * n_,(al,...~an.1) = Sn.l(al,...,an.1) 

Therefore for any n > 3, VM(Rn=Q,  ) = VM(Rn.I=S ~). 

We show next tha~ tile collapsing under Mon established in the previous 

proposition is all the collapsing that occurs for the join-irreducibles. 

PROPOSITION 4.6: For n > 3, VM(Rn.I=Sn.,) �9 V M(Rn=Sn) , and 

VM(R = S )  # VM(R~=S~). 

Proof: Gerhard has constructed in [8] a subdirectly irreducible monoid 

Bn, for n > 3, which generates the variety V(P=Q) ,  where in his terminology, 

PTnQ , PRn*Q, and P~n* Q. In terms of Fennemore's identities, used here, this 

means that for n odd, B generates the variety V(Rn=Sn) while B is not in 

V(R =Q,) ,  and dually for n even. Hence 

V M ( R n = Q ,  ) = VM(Rn. ,=S~_,)~ V M ( R  =S  ), 

and dually. This establishes the required proper inclusions for tile left-hand side 

of the lattice. 

Now suppose that  for n odd, B n was in both V__(Rn=Sn) and V(R:=S : ) .  

Then 

B n c V(RB=Sn)c" V(R:=S~) 

= V(Ro.~=S_~)  v V(R ~=S_, ) .  

Since B n is subdirectly irreducible, by Proposition 3.2, B would be in one or 

the other of these last two varieties. Since B n generates V(Rn=Sn) , this is 

impossible. 
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By dualizing the above argument ,  s tar t ing wkh  g n generating 

V(P*=Q*) where B n generates V_(P=Q), we obtain the results for the right- 

hand side of the lattice. 

As a result of Proposit ions 4.3, 4.5, and 4.6, we conclude tha t  T 

contains precisely the following varieties: V(x=y) ,  V(•  V(ax=axa )  and 

V(xa=axa )  from the base, and ~'(Rn=Sn) and its dual, for n > 3. The lattice 

LBM is then isomorphic to the sublatt ice of LB generated by T. This proves 

the following: 

PROPOSITION 4.7: The s t ructure  of the latt ice LBM of all varieties 

of band monoids is as shown in Figure 3. 

F i g u r e  3: The Latt ice of Varieties of Band Monoids 

oBM 

VM(R~=S~) VM(R4=S4) 

VM(R3=S3) VM(R3=S ~) 

V_MM(a• VM(x~=~• 

I VM(~=~) 

5. The Lattice of Pseudovariet ies of Band Monoids 

Having determined the  s t ruc ture  of the lat t ice LBM of varieties of band 

monoids, we may now try to relate it to pseudovariet ies of band monoids. Ash 

has shown in Ill t ha t  any pseudovariety is precisely the class of finite members  

of some generalized variety. In part icular ,  if V is a variety in LBM, then the 
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collection Fin(V) of finite monoids in V is a pseudovariety.  We denote by 

LFBM the lattice of pseudovarieties of finite band monoids. Then we may 

define a function Fin from LBM to LFBM by let t ing Fin take V to Fin(V),  

for any V in LBM. We show now tha t  Fin is in fact a lattice isomorphism, 

thus determining the s t ructure  of the latt ice LFBM. We do this by showing 

tha t  Fin is a bijection with the property tha t  both it and its inverse are order- 

preserving. 

PROPOSITION 5.1: Let V and W be any two varieties in LB. Then 

Fin(V) c Fin(W) if and only if V c W. 

Proof: One direction is trivial.  Suppose _V is not contained in W, so 

there is a monoid M in V which is not in W. Then there are dist inct  

equations P = Q  and H=K such t ha t  "~" = V M(P- -Q)  and __W = VM(H=K) .  

Since M is not in W, there exist al,. . . ,a n c M (for some integer n) such tha t  

H(a 1 ..... a )  7s K(al,. . . ,an). Let N be the free band monoid on {al,...,a }. By 

[9], N is a finite band monoid, satisfying P = Q  but  not H=K; i.e., in Fin(V) 

but  not in Fin(W).  

PROPOSITION 5.2: The mapping Fin is a latt ice isomorphism from 

LBM onto LFBM. 

Proof: Let _V be any pseudovariety of band monoids in LFBM. By the 

results of Ash, [1], we know tha t  V must  consist of F in(W),  where W_ is the 

generalized variety generated by V, and tha t  W must  be the union of some 

directed family D of varieties from the latt ice LBM. 

Suppose tha t  the directed family D is a finite one. Then the union W___ 

of members  of D is jus t  a variety U in LBM, and we have V = Fin(U). 

If D is not a finite directed family, there are only two possibilities for 

the union W of members  of D. This union may by all of BM; in this case we 

have V = Fin(W) = Fin(BM).  Otherwise,  W must  be the class of all band 

monoids which are contained in some proper subvar ie ty  of BM. Clearly then 

Fin(W) is contained in Fin(BM).  But  also any finite band monoid is contained 

in some proper subvariety of B___MM, [5], and so F in(BM) is contained in Fin(W).  

Therefore V = Fin(__W) = Fin(BM).  
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Hence Fin is surjective. By the previous proposition, it is also injective, 

and it and its inverse are both order-preserving. 
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