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I .  INTRODUCTION 

Given strongly continuous one-parameter semigroups (T(t))t~ 0 

(S(t))t~ 0 on a Banach lattice E , we say that (S(t))t~ 0 domi- and 

r~tes (T(t))t~ 0 provided that 

(1.1) [T(t)s ~ S(t)[s s all s E E , t ~ 0 . 

In this case the semigroup (S(t))t~ 0 necessarily consists os posi- 

tive operators, i.e. it is a positive semtgroup. It is well-known that 

positive semlgroups have interesting properties, e. E. their spectral 

properties and asymptotic behavior can be analysed very well (see Na- 

gel [11]). Some os the results on positive semigroups have consequen- 

ces for a (non-positlve) semigroup (T(t))t~ 0 provided that (1.1) is 
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In case the Banach lattice is u-order complete and 

core for A (i) and (ii) ar__~e equivalent to 

(ill) Re ((slgn?)Af. § ( Ill. B'§ 

f o r  all ~ e D(B')+ . 

D ~ D(A} is a 

for all f e D and 

For semigroups having a bounded generator the existence of a mod- 

ulus and the description of its generator is given by Derndinger [3]. 

For details on the center ~(E) of a Banach lattice (i.e. the set of 

all multiplication operators) we refer to Nagel [11], Chapter C-I. We 

only recall that for order complete Banach lattices the center is a 

projection band in the Banach lattice ~r(E) , thus 

�9 r(E) = ~(E) �9 ~(E) • . Here, ~r(E) denotes the set of all regular 

operators on E , i.e. the linear hull of all positive operators. We 

give a new proof of Derndlnger's result which is based on Chernoff's 

product formula (see Goldstein [5], Thm. 1.8.4). 

PROPOSITION 1.2. Let E be an order complete Banach lattice and let 

(T(t))t~ 0 b_eea semigroup whose generator A i_ssa regular operator. 

~en (T(t))t~ 0 possesses a modulus whose generator A~ is obtained 

as follows: If A Is decomposed such that A = M + B , where 

M C ~(E) , B C ~(E) • then 

A@ =ReH § ]B]. 

Proof : We apply Chernoff's product formula to the function 

F : [0, m) -* ~(E), F(t) := IT(t)[ . In order to differentiate at 0 we 

first note that 

(1.2) IF(t) - lld- tall ~ [T(t) - (Id + tA)[ 

>2 ~" An ~ 22 ~ IAIn ' 
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true. This is obvious for stability results (i.e., convergence to zero 

as t ~ ~). Further examples are ergodic theorems. In fact, Kipnis [9] 

and Kubokawa [10] used this method in order to prove ratio ergodic 

theorems and local ergodic theorems for (non-positive) contraction 

semigroups on L~-spaces. 

In this note we mainly discuss the problem whether for a strongly 

continuous one-parameter semigroup (T(t))t~ 0 there exists a minimal 

dominating semigroup. In case such a semlgroup exists, we call it the 

modutus of (T(t))t~ 0 . We will give some general conditions in Sec.2 

and discuss some concrete examples in Sec.3. In particular, we prove 

that a modulus always exists in case the semigroup is dominated and 

the underlying Banach lattice has order continuous norm or in case the 

semigroup is order contractive and the Banach lattice is an LP-space. 

Moreover. we will describe the modulus for semigroups corresponding to 

retarded differential equations. 

In the rest of this section we recall some results on domination 

of semlgroups which will be needed in Sec.2and Sec.3. At first we 

state the characterization of domination in terms os the resolvents 

and the generators respectively (see Arendt [1] or Sec.C-II.3 of Nagel 

[ I I ] ) .  

PROPOSITION I.I. Let (T(t))t~ 0 be a strongly continuous semiKrou p o_nn 

the Banach lattice E with ~enerator h and let (S(t))t~ 0 be a 

positive semIKrou p with Kenerator B . Re s K assertions are 

equivalent:  

( i )  (S( t ) ) t~  0 dominates (T( t ) ) t~  0 

(ii) There is ~o E ~ such that 

IR(~,A)f] s R(h,B)[s for a l l  

(i:e. (i.I) holds). 

f e E , ~ o .  
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hence  lim F(t) -[Id § tA l = O. 
t 

t-r 

Moreover ,  f rom t h e  d e c o m p o s i t i o n  A = M + B e ~(E) $ ~(E) • 

lows that Id + tN and t-B are orthogonal, hence 

(1.3) 

ThUS we c o n c l u d e  

l i d  § tA[ = l i d  § tX[ + t ' l B [  �9 

lim F(t) - Id (1.2)= nm lid + tAl - Id (1.3)= 
t t 

t-r t-r 

= IBI § 

The last equality follows from the fact that 

space C(Z) and that the function ~: C(K) d C(K) , f -+ {fl 

(Fr6chet-) differentiable at 

a l l  f C C(K). 

C h e r n o f f ' s  p r o d u c t  f o r m u l a  now y i e l d s  t h a t  t h e  semigroup  

generated by Re N + IB[ satisfies 

S ( t ) f  = lim IT( t ){nf i f  e E )  . 

This obviously implies t h a t  ( S ( t ) ) t 2  0 is t h e  modulus of  

it fol- 

IBI § lim l id  + tM[ - I d  

t 
t--r 

~(E) is isomorphic to a 

is 

1 with derivative IX~l)f = Re f for 

(s(t))t2 0 

( T ( t ) ) t ~  O- 

Kipnis [9] and Kubokawa [i0] have shown t h a t  all strongly contin- 

uous contraction semigroups on L1-spaces possess a modulus. But Kip- 

nis gives an example of a strongly continuous semigroup on gP 

(1 ~ p < m) which does not have a modulus. We briefly sketch this ex- 

ample: 

1 .3 .  L e t  E = ~P(N) (1 ~ p < w) and l e t  t he  o p e r a t o r  A 

given by the infinite matrix 

be 
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0 - I  0 0 
1 0 0 0 
0 0 0 - 2  
0 0 2 0 

A := 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

If we t a k e  t h e  maximal domain 

t h e n  A 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 - 3  0 0 
3 0 0 0 
0 0 0 - 4  
0 0 4 0 

e t c .  

DCA) := ( f ePc ); Afc  ) . 

generates the semigroup (TCtJJt~ 0 , which is given by 

cos t -sin t 0 0 0 0 
s i n  t c o s  t 0 0 0 0 

T ( t )  = 0 0 c o s  2 t  - s i n  2 t  0 0 
0 0 s i n  2 t  co s  2 t  0 0 
0 0 0 0 cos  3 t  - s i n  3 t  
0 0 0 0 s i n  3 t  c o s  3 t  

This semlgroup does not possess a dominating semigroup. 

In f a c t ,  ]cos  k t [  + I s i n  k t  I (k e ~) i s  a n  e i z e n v a l u e  o f  

Thus a dominating semigroup (S(t))t~ 0 must satisfy 

I~(t}ll = IIs(t~)nll ~ (Icos -~-I + I s i n  " ~ ' l )  n - 

For n ~- we deduce that HS(tJH ~ e kt . Since k e ~ is 

we obtain a contradiction to the boundedness of S(t) . 

e t c .  

[T(t) l .  

arbitrary 

2.  EXISTENCE OF THE MODULUS OF A ONE-PARAMEI'ER SEMIGR(R~P 

Only for few Banach lattices E it is true that every operator 

T e ~(E) possesses a modulus : Roughly speaking E has to be isomor- 

phic either to an Li-space or a space C(K) with K Stonian (see 

Cartwright-Lotz [2]). The analogue problem in the setting of one-para- 

meter semlgroups (i.e. the existence of a minimal dominating semlgroup 

for every one-parameter semlgroup on a fixed Banach lattice) is not 

v e r y  i n t e r e s t i n g .  I n  f a c t ,  s i n c e  e v e r y  i n f i n i t e  d i m e n s i o n a l  L ~ s p e c e  

c o n t a i n s  ~ t  a s  a c o m p l e m e n t e d  s u b l a t t i c e ,  K i p n i s '  examp le  shows t h a t  

on a n  i n f i n i t e - d i m e n s i o n a l  L t - s p e c e  t h e r e  a l w a y s  e x i s t  o n e - p a r a m e t e r  
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semlgroups which do not have any dominating semigroup. Moreover, on 

spaces C(K) , K Stonian, every one-parameter semlgroup has a bounded 

generator (see Sec.A-II.3 of Nagel [11]), thus Derndinger's result can 

be applied. These observations show that one has to restrict the class 

of semigroups in order to obtain interesting results on the existence 

of the modulus of a semigroup. 

THE01~ 2.1. Let (T(t))t~ 0 be a strongly continuous one-parameter 

semiHroup o naBanach lattice E with order continuous norm. If there 

i s~ dominatln H stror~zly continuous semiHroup then there exists a mod- 

ulus of . . ..fTft~t~ 0 . 

Proof: Let (S(t))t~ 0 be a semlgroup which dominates (T(t))t~ 0. We 

fix t ~ 0 and denote the set of all partitions of the interval [0, t] 

by ~t 

(i.e. ~t :--({to' tl' t2 ..... tn) : n C ~, t0=0 ~ t I ~ ... ~ tn=t ~)- 

For ~ = {t0, tl, t 2 ..... tn) C IT t we define 

T (t) := [T(tn-tn_l)[OlT(tn_l-tn_2)[o...o[T(t2-tl)[O[T(tl)[ . 

Note that E is order complete and T(tk-tk_l) is dominated by 

S(tk-tk_l) . hence [T(tk-tk_l) [ exists (see Schaefer [12], Chap. IV, 

Prop.l.2). The net (T(t))~t is upward directed and we have 

T(t) ~ S(tn-tn_l) o S(tn_l-tn_2) o...o S(t2-tl) o S(tl) = S(t) 

for every T C H t- 

Since E has order continuous norm it follows that for f E E+ 

T#Ct)f :--llm T(t)f = sup T(t)f exists. 

Te~t ~t 

Extending T#(t) to a linear operator on E , we have 

IT( t )  l ~ T # ( t )  ~ S ( t )  . Thus in  o rder  to  show t h a t  ( T # ( t ) ) t ~  0 i s  the  

modulus of  ( T ( t ) ) t ~  0 we have  to show t h a t  T#( t+s )  -- T # ( t ) T # ( s )  f o r  
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all s,t ~ 0 and that t ~ T#(t) is strongly continuous at t = O. 

Given t,s ~ 0 , w I C Ht ' w2 C E s we have 

T i(t)oT 2(s ) = T a(t+s ) for a suitable partition wa C Et+ s 

Moreover, the partitions w3 obtained in this way are cofinal 

hence we have for f E E+ 

T#(t)oT#(s)f = sup [ T 1(t ) ( sup T 2(s)f ) ] 

~i e3/t  w2CE s 

= sup T w ( t + s ) f  : w e ~t+s 

= T # ( t + s ) f  . 

Et+ s , 

(Here we used that 

In 

Tw(t ) Is order continuous which follows from the 

assumption that E has order continuous norm.) 

It remains to prove strong continuity at t = O. 

From [T(t)f 1 ~ T#(t) Ifl g s(t) lf I we deduce for f E E+ 

T # ( t ) f  - f ~ S ( t ) f  - f 

and f - T # ( t ) f  ~ f - [ T ( t ) f [  ~ I f  - T ( t ) f ] .  

I t  f o l l o w s  t h a t  [ T # ( t ) f  - f [  ~ [ S ( t ) f  - f l + [ T ( t ) f  - f l -  

Since both, (T(t))t~ 0 and (S(t))t~ 0 are strongly continuous 

follows that 

lim Iz#(t)f - fl = O. 
t-g) 

It 

rl 

2.2: As can be seen from the proof of Thm. 2.1 it suffices to 

assume that E is order complete and there is a dominating semlgroup 

consisting of order continuous operators. 

In the result above we had to assume that there exists a domina- 

ting semlgroup. In many concrete examples this condition can be 

verified easily (see also Section 3). In the followlng we show that 
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for certain semigroups on LP-spaces a dominating semlgroup always 

exists. Then Thm. 2.2 implies that these semigroups possess a modulus. 

PROPOSITION 2.3. Let CTCt))t~ 0 bee a_ strongly continuous semigroup on 

an L p- space Cl ~ P < oD) and assume tha t  it is quasi-contractive 

with respect to th._~e regular nor m (i.e. there exists w E ~ such that 

I~Ct)ll r := I l lTCt)l l l  ~ e " t  f o r  a n  t ~ o ) .  The n  a d~minatin~ semi= 

group exists. 

Proof: Considering (e-WtT(t))t~O if necessary we may assume that 

w = O. We use the notations introduced in the proof of Thin. 2.1. By 

assumption the operators TTCt ) are contractions. Thus for 

0 ~ f s E = LPCl.t) the set 

I TTCt)f : T s ~t ) is normbounded C by Ilfll ) and u p ~ r d  di~ected .  

The Monotone Convergence Theorem implies  t ha t  

T # ( t ) f  := lim T C t ) f  e x i s t s .  

T~ff t 

Moreover. J~#(t)] l ~ 1 and lTCt) l ~ T#Ct) for every t ~ O. 

As in the proof of Thin. 2.1 we conclude that (T#Ct))t~ 0 has the 

semigroup property. To prove strong continuity we make use of the in- 

equal i ty  

I lf l? + I~11 p ~ I I f+~ l? .  ~ l i d  for  0 ~ f ,S r LP(;J.) . 

I n  f a c t . . i n c e  we have ITCt) f l  ~ T#Ct) l f l  f o r  a l l  f s E . i t  f o l -  

lows tha t  

IllTCt)f[[I p + I ~ # ( t ) J f l -  [TCt)f[]~ p ~ J~#Ct) lf]Jl p ~ []fliP. 

H e n c e  lira [~#Ct) l f l -  nTct)fnnu lira [llfl - unl-ct)fntf] l 'p 
t-~O t-40 

I t  fo l lows  t h a t  

lima T ~ ( t ] f  = lira [ T ( t ) f [  -- f s every  f s E~ O 

t~O t~O 
- T  

= 0 .  
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Thus t e T#(t) is strongly continuous at t = O. 

In the final result of this section we show that addlng a multl- 

plicatlon operator to a generator does not cause difficulties when one 

is looking for a modulus os the corresponding semigroup. We recall 

that the center ~(E) os a Banach lattice is the set of all operators 

on E which are dominated by a multiple of the identity operator. In 

case E =LP(~) the center consists of all bounded multiplication 

operators. Z(E) is always a commutative subalgebra os ~(E) and if 

E is order complete then for fixed f s E the operator 

g ~ (sign f)g is an element of the center. It follows that for 

M 6 Z(E) and f E E we have (sign s = M((sign f)f) = MIf I . Thus 

if A is any operator and g C ~(E) then 

ReCCsign f)CA+M)f) : ReCCsig n f)Af) + ReCMIf[) 

= ReCCsign s (f  E DCA)). 

So we obtain the following result as an immediate consequence of Prop. 

1.1. 

PROPOSITION 2.'I. Let A be the ~enerator of a stror~ly continuous 

one-parameter semi~roup on an order complete Banach lattice E and 

take M e ~(E). Then the semi~roup ~enerated by A possesses a modu- 

lus i_s and only if the semi~roup generated by A + M has a modulus. 

In case the moduli exist, their generators satisfy 

(A + M)# = A# + ReM . 
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3.  SOME EXAMPLES 

At  f i r s t  we c o n s i d e r  s e c o n d  o r d e r  d i f f e r e n t i a l  o p e r a t o r s  on  

LP(~ n )  (1 ~ p < ~)  . L e t  A b e  d e f i n e d  a s  f o l l o w s  : 

n n 

7 > ~ (3.1) Af = a i j  axiOx~f + b i ~ii f + c ' f  
t , j = l  i=l 

f e D(A) := C:(~ n) 
i 

We assume that the coefficients satisfy the following conditions : 

(3.2)- aij a r e  r e a l - v a l u e d  bounded d i f f e r e n t i a b l e  functions on 

which have bounded second order derivatives; 

(aijCX))l~i,j~ n is symmetric 

(i.e.m.l~ll2 ~ ~ aijCx)~i~ j 
i , J  

suitable constant m > 0); 

are bounded dlfferentiable functions 

and  u n i f o r m l y  e l l i p t i c  on ~n 

f o r  a l l  x , [  e ~n  and  a 

b i on  ~n h a v i n g  

b o u n d e d  d e r i v a t i v e s ;  

- c i s  a b o u n d e d  c o n t i n u o u s  f u n c t i o n  on  ~n .  

I t  i s  w e l l - k n o w n  t h a t  u n d e r  t h e s e  a s s u m p t i o n s  t h e  c l o s u r e  o f  

t h e  

A 

g e n e r a t o r  o f  a n  a n a l y t i c  s e m i g r o u p  on  LP(~ n )  (see F a t t o r i n i  i s  

[ 4 ] ) .  I n  c a s e  a l l  c o e f f i c i e n t s  a r e  r e a l - v a l u e d  t h e  c o r r e s p o n d i n g  s e m i -  

g r o u p  i s  p o s i t i v e .  F o r  c o m p l e x - v a l u e d  c o e f f i c i e n t s  b i a n d  c we 

h a v e  t h e  f o l l o w i n g  r e s u l t :  

The  s e m i g r o u p  g e n e r a t e d  by  t h e  c l o s u r e  o f  A h a s  a modu lus ,  i t s  

g e n e r a t o r  i s  t h e  c l o s u r e  o f  

n 

A#f = aij ~iax j 
i, J=l 

DCA#) := ~C ~n) . 

We m e n t i o n e d  a b o v e  t h a t  t h e  c l o s u r e  o f  

A# d e f i n e d  a s  f o l l o w s :  

n 

>___ ~ f + Re(bi) ~ii f 

I=1 

+ R e ( c ) . f  

A# g e n e r a t e s  a p o s i t i v e  s e m i -  
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group .  Moreover  we have 

ee(slgn ~ of } 
~i (x) 

~:-LCx) if fCx) / o 
@x i 

0 if f(x) = o 

@~f-@~:f-]" Re(sign s [CRe bi)-~1]) which implies that Re(sign f[b i @x i ) = __ 

Using the identity Re(slgn f c.f) = Re(sign f (Re c)-f) we obtain 

(3.3) Re(sign f Af) = Re(sign f A#f) , f E D(A) = D(A#). 

From Prop. 1.1 (ili) we conclude that every semigroup which dominates 

the semigroup (T(t))t~ 0 generated by A also dominates the semi- 

group ( T ~ ( t ) ) t ~  0 g e n e r a t e d  by A# . S i n c e  A# g e n e r a t e s  a p o s i t i v e  

semigroup  i t  f o l l o w s  t h a t  ( T # ( t ) ) t ~  0 i s  t he  modulus of  ( T ( t ) ) t ~  0 �9 

In the same way one can determine the modulus of Schr~dir~er 

semigroups with complex potentials. We only sketch the result. On the 

LP(~ n) (1 ~ p ( m} we consider the SchrDdinger operator B space  

g i v e n  by 

(3.4} 

Here,  A 

Bf =Af-Vf , f e| } g 

d e n o t e s  t h e  L a p l a c t a n  and we assume t h a t  the  p o t e n t i a l  V 

s a t i s f i e s  V C L~oc(~n ) and ReV ~ c f o r  some c o n s t a n t  c E ~ . Kato 

has  shown ( s e e  Kato [6 ]  o r  Nage l  [11 ] ,  C - I I ,  E x . 4 . 7 )  t h a t  under  t h e s e  

a s s u m p t i o n s  t h e  c l o s u r e  of  B g e n e r a t e s  a s t r o n g l y  c o n t i n u o u s  s e m i -  

g roup  ( S ( t ) ) t ~  0 on  LP(~ n)  . The semigroup  ( S ( t ) } t ~  0 i s  p o s i t i v e  

i f  V i s  r e a l - v a l u e d .  As above  one can  show t h a t  f o r  c o m p l e x - v a l u e d  

V t h e  semig roup  ( S ( t ) ) t ~  0 has  a modulus .  I t s  g e n e r a t o r  i s  t he  

Schr~dir~er operator obtained by replacing in (3.4) the potential V 

by its real part. 
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The second  c l a s s  o f  examples  we c o n s i d e r  a r e  semigroups  c o r r e s -  

pond ing  to  r e t a r d e d  d i f f e r e n t i a l  e q u a t i o n s .  I n  t h e  f o l l o w i n g  we use  

t he  i d e a s  o f  K e r s c h e r  and Nagel  ( s e e  K e r s c h e r - N a g e l  [7 ]  o r  Nagel  [ 11 ] ,  

Sec .  B - I V . 3 ) .  

L e t  F be  a Banach l a t t i c e .  Then E := C ( [ - 1 , O ] , F )  . t he  space  

o f  a l l  c o n t i n u o u s  F - v a l u e d  f u n c t i o n s  i s  a Banach l a t t i c e  a s  w e l l  ( i n  

t he  c a n o n i c a l  way) .  We c o n s i d e r  a semigroup  ( S ( t ) ) t ~  0 w i t h  g e n e r a t o r  

B on F and an operator ~ C ~(E,F) . The operator AB, ~ on E . 

defined as 

__AB. f = f' with D(AR.~)__ := .~ f e CI([-I,O],F): f(O) E C3.5) DCB). 

f'(O) = Bf(O) + ~(f) 

generates a semigroup (TB,~(t))t~ 0 on E . For f E D(AB,~) and 

t ~ 0 x(t) := (TB,~(t)f)(O) gives the solutions of  the F-valued 

retarded differential equation 

x(t} = Bx(t) + ~(xt) , xo = f . 

where x t e E denotes the function s e x(t+s) . -1 ~ s ~ 0 . 

Now the following holds. 

I.EMMA 3.1. l.~f B ~enerates a positive semi~roup o_n F and if ~ is 

positive operator then the semi~roup (TB,~(t))t~ 0 I sposltive. The 

converse is true if we assume that ~ has no mss at zero. 

Here, ~ has no mass at zero if for every e > 0 there exists 6 ) 0 

such t h a t  [~( f ) [ ]  ~ e 'Hf[[  f o r  a l l  f C E w i t h  s u p p ( f )  ~ [ - ~ . 0 ]  . 

For  t h e  p r o o f  we r e f e r  t o  K e r s c h e r - N a g e l  [ 7 ] .  

We i n t r o d u c e  t h e  f o l l o w l r ~  n o t a t i o n s :  

(3 .6)( i )  e~ s C [ - 1 . 0 ]  i s  g i v e n  by 

s e [ - 1 . 0 ]  ; 

e ~ ( s )  := e hs  f o r  ~ e C . 
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(ii) f | u e E denotes the function s e f(s)*u for u C F 

and f C C[-1.0] ; 

0 

(iii) H A E ~(E) is defined by HAg(s) := J e)~{s-t}g(t) dt . 

S 

g e E  , s e [ - 1 , 0 ]  , ~ e r  ; 

(iv} ~A E ~(F) is defined by ~ACu) := ~(egx | . u E F , 

~er . 

Now the spectra os AB.~t and B+~ A coincide and one can describe the 

resolvent of AB.~t : 

(3.7) RCA.AB.,)E = e~ A | RCR.B+p~A)Cg(O ) + pRAg ) + HAg . 

)~ e p(B+p~A) . g e E . 

Wi th  t h i s  e x p l i c i t  r e p r e s e n t a t i o n  o f  t he  r e s o l v e n t  one can p r o v e  the  

f o l l o w i n g  (see a l s o  Ke rsche r -Nage l  [ 8 ] ) :  

PROPOSITION 3 . 2 .  Le_./.t ( S , ( t ) ) t l  0 , ( S 2 ( t ) ) t l  0 b..eesemtgroups on  F 

w i t h  ~ e n e r a t o r s  Bi , B2 r e s p .  and  l e t  ~l  , ~2 E E ( E , F ) .  I_~s 

( S , ( t ) ) t 2  0 d o mi n a t e s  ( S 2 ( t ) ) t ~  0 and I f  ~ ,  domina t e s  ~z ~ben 

(TB: ,~  ( t ) ) t l  0 domina t e s  ( T B 2 , ~ 2 { t ) ) t 2  0 . 

Proof: For  A e R the  o p e r a t o r  ~ A  domina t e s  

and  s u f f i c i e n t l y  l a r g e  A we o b t a i n  from 

CA - B + ~) = CA - B)(Id - R(A,B)o~) that 

n----O 
m 

~ [R(A'BI)~IA] n R(A,Btl[u[ 
n=O 

= .(x.B,+~,x)lul. 

~2A - So fo r  u C F 
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The operator H h is positive for ~ e ~ and so we have for 

IRC~.As~.~}fl = I% | RC~.B:~)CfCO) + ~ f )  + ~ f l  

~x | IRC~.n:~)CfCO) + ~ f ) l  + I~ f l  

~ | Rc~.si+~l~)lfCo) + . 1 ~ 1  + H~lrl 

% | RCX.B:~,x)CIfCO)I + ~,s~lrI) + ~ l f l  

= R C X , % , , ~  ) l f l  �9 

Now the  a s s e r t i o n  f o l l o w s  from Prop.  1 . 1 C i i  ) .  

feE: 

Kerscher and Nagel C[8]) conjecture the following: 

If B# generates the modulus of the semlgroup generated by B , if 

has no mass at zero and if I~I exists then 

CTB#,]~]Ct))t~ 0 is the modulus of (TB,~Ct))t~ 0 . 

We now will show that this is true if F is finite-dlmensional. In 

t h i s  c a s e  B i s  a r e a l  n x n - m a t r i x .  B = C b i j ) l ~ i . j ~ n  and  ~ i s  

g i v e n  by  a n x n - m a t r i x  ( ~ i j ) l ~ i , j ~ n  of measures ,  i . e .  

~iJ e cC[-I,O]}' = MC[-I,O]} . Without loss of generality we can as- 

sume that ~iJ has no mass at zero {otherwise we change bij ). Then 

the following holds: 

PROPOSITION 3.3. Le__~t B = (blj) b ea real nxn-matrixand ~ = (~lj } 

be a nxn-matrix of measures havin~ no mass at zero. The semigroup on 

C([-1,0],~ n) = (C([-I,O])) n generated b_z AB, ~ has a modulus and its 

~enerator i s s ~ i v e n b ~  CAB.~) # = ~#.1~1" {Here I~l = cl~l j l )  and 

B# = Cbij#) i ,_~s~ivenbY b i j  # = Ibljl i_~ i ~ j and bii ~ = bii ). 

P r o o f :  We g i v e  a l l  d e t a i l s  f o r  the  o n e - d i m e n s i o n a l  case .  The n e c e s s a r y  

modifications for the n-dimemsional case are obvious. 

At first we assume b (= b~1 ) = 0 . Let {SCt)}t~ 0 be a semigroup 
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which dominates (To,~(t))t20 and let C be its generator. We re- 

call that (To.~(t})t~ 0 satisfies (see Sec. B-IV.3 of Nagel [11J) 

I f(x+t) if x+t ~ 0 

(3.8) (To,~ (t)f)(x) = rx+t 
s + v-I < T o , ~ C s ) f ' ~ ) d s  i f  x+ t  0 

0 

We c l a i m  t h a t  f o r  f i x e d  a < 1 , f E E+ , f s t r i c t l y  p o s i t i v e  t h e r e  

e x i s t s  to  = toCc~,f) > 0 such t h a t  

C3.9) To,a]~]Ct)f ~ sct)f for all 0 ~ t ~ to �9 

In fact, if x+t ~ 0 we have 

(3.8) (3.S) 
( T o , a l ~ [ f ) C x )  = fOx+t) = (To,~ tCt ) f )Cx)  ~ (sct)f)(x) 

since (sct))t~ 0 dominates (To,~Ct))t~ 0 ~Ioreover, since f is 

strictly positive, we have (f, 1~[) ) 0 hence there exists h o E E , 

]ho] ~ f such  t h a t  

�9 ( f . l ~ l ) =  ~ �9 sup ( ( h . ~ )  : Ihl K f ) < (ho.~) .  

Additionally, since ~ has no mass at zero we can require that 

ho(O) = fCO). By continuity there is a t o > 0 such that 

R e ( T o , ~ t ( s I h o , ~ )  ~ a ' (To.a l~l(S)f . l~l )  f o r  

0 K s ~ t o . Then f o r  t ~ t o , x+ t  ~ 0 we o b t a i n  

(3.8) x+t 
( S ( t ) f ) ( x )  ~ ( T o , ~ ( t ) h o ) ( x )  = ho(O) + ~ ( T o , ~ ( s l h o , u ) d s  

0 
x+t  

f(o) + ; (To.al~l(S)f.a[~l)ds 
0 

( 3 . 8 )  
= (To,a]Lt ] ( t ) f ) ( x )  

By now the  c l a i m  ( 3 . 9 )  i s  e s t a b l i s h e d .  Hence f o r  f E D ( A o . a [ ~ [ ) +  . f 

strictly positive and ~ C D(C')+ we have 

< Ao,a[~lf . ~ ) = lira < To'a[~[Ct)f - f 
t-~) t 

(3.9) S(t)f -f 

t-~O 

.~) 
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= llm ( f S(t)'~- ~ ) 
�9 t 

t-~) 

= (f,C'~). 

Consequent ly 

( (~-Ao,a[pl)f , ~ ) : ( f , (~-C'~)) for f c D(Ao,aI~])+ . 

f strictly positive and ~ C D(C')+ 

Taking f = R(~,Ao,a];~])g , ~ = R()%C)'@ ( g C E+ , g strictly posi- 

tive , ~ C E+ ) we obtain for sufficiently large R E ~ : 

( R ( R . C ) g  , , ) = ( g . R ( ~ . C ) ' *  ) ~ ( R(;~.Ao.aIuI)g , #, ) . 

Since every positive element can be approximated by strictly positive 

elements we conclude that R(R,C) ~ R()~,Ao.aI~[ ) for sufficiently 

large )~ C nl . From (3.7) It follows that the right hand side tends 

towards R()%Ao, [D[) as a -~ 1 . Thus from Prop. 1.1 we conclude that 

(S(t))t~ 0 dominates (To, ip[(t))t~O . By Prop. 3.1 (To, [pl(t))t~O 

dominates (To,~(t))t~ 0 . hence It Is the modulus. 

In case b ~ 0 we consider the operator S c ~(E) , (Sf)(x) := 

ebXf(x) . A simple calculation yields 

(3.10) S -I o (Ab, ~ - b,Id) o S = AO, v with v := S'~ . 

Since S Is a lattice isomorphism we have 

(Ab, p - b . I d ) #  = (S o AO, v o s - l ) #  = S o (Ao ,v )  # o S - I  

= s o Ao. I~ l  o s - I  = % .  I~*l - b . I d  

(note  tha t  I~'1 = I s ' ~ l  = S' I~1 }-  Thus from Prop. 2 .6  we deduoe 

(Ab,~*)# = % ,  I~1 " 

In  t h e  n - d i m e n s i o n a l  c a s e  (n  ~ 2 )  t he  t r a n s f o r m a t i o n  S : ( C [ - 1 . O ] )  n -* 

( C [ - I . O ] )  n I s  g i v e n  by 

bllX 
( s f ) i { x )  := (e f i { x ) )  (1 ': i ~ n) 

where  b i t  i s  t h e  t - t h  d i a g o n a l  e l e m e n t  o f  t h e  m a t r i x  B . Then t h e  

a rgumen t  g i v e n  above  shows t h a t  we o n l y  h a v e  to  c o n s i d e r  t h e  c a s e  
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b ~  = b 2 2  = . . .  = b = O .  nn 

[] 
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