
$emigroup Forum, Vol. 1 (1970), 283-360. 

SURVEY ARTICLES 

THE TRANSLATIONAL HULL 
IN SEMIGROUPS AND RINGS 

Mario Petrich 

A series of lectures delivered at the symposium on 

SEMIGROUPS AND THE MULTIPLICATIVE STRUCTURE OF RINGS 

held at the University of Puerto Rico, 
Mayaguez, Puerto Rico, March 9-13, 1970. 

The translational hull of a semigroup is ex- 
tensively studied and is motivated by its use in the 
theory of (ideal) extensions of semigroups. The con- 
struction of all extensions of a semigroup S by a 
semigroup Q with zero is reduced to finding certain 
functions from the groupoid Q\ 0 into the trans- 
lational hull of S. The case of a weakly reductive 
S receives special attention. Extensions determined 
by a partial homomorphism, strict, pure, dense, and 
cancellative extensions are then discussed. Isomorphism 
properties of densely embedded ideals and applications 
of the latter to various semigroups of partial trans- 
formations and binary relations are presented. The 
translational hull of a regular Rees matrix semigroup 
is studied in detail and some applications thereof to 
semigroups of linear transformations, semigroup 
representations, and dense embeddings are exhibited. 
A development parallel to that for semigroup extensions 
is briefly presented for ring extensions and ex- 
tensions of posers. Similarity with group extensions 
is stressed throughout. The bibliography of 224 items 
is itemized by subjects, including references to ex- 
tensions of semigroups, rings, algebras, posets, and 
algebraic systems. No proofs are given. 
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I. BACKGROUND AND DEFINITIONS 

The translational hull occurs naturally when one 

is concerned with a construction of ideal extensions of 

semigroups. Since ring extensions represent a particu- 

lar case of semigroup ideal extensions, the same con- 

struction, with the obvious modification that all the 

functions in the definition be additive, appears also 

in ring theory (under several names). Pursuing this 

further by consideration of linear associative algebras, 

the next obvious modification is that all the functions 

be also linear, and in the topological (or normed) case 

that they also be continuous (norm, d), etc. In a natu- 

ral way, this makes the translational hull a semigroup, 

a ring, an algebra, etc. This hierarchy has been first 

noted by B.E. Johnson [196]. 
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PETRICH 3 

The subject of group extensions being of wider 

general knowledge, I will from time to time refer to 

the group case for a better understanding of the case 

at hand and for useful analogy. This analogy is quite 

strong and points to the numerous common features of 

these theories. After an extensive discussion of the 

translational hull and ideal extensions of semigroups, 

I will briefly outline the extension theory for rings 

and partially ordered sets. 

The extension problem for groups is as follows: 

given two groups A and B, construct all groups G with 

the property that G has a normal subgroup N such 

that N ~ A, G/N~ B; G is then called an extension of 

A by B. We may identify A with N, B with G/N. 

This problem has been first solved by O. Schreier, for 

a full discussion see Hall ([4], Ch. 15), R~dei ([12], 

w167 50, 51), Specht ([13], Kap. 3.3). His solution is 

known as "Schreier's theorem" and group extensions as 

"Schreier extensions"; as a motivation for the semigroup 

and ring case, I will briefly outline the ideas of this 

solution. If G is given, one takes an arbitrary set 

[b~ of representatives of cosets of A in G and 

makes these act on A by ~: a - bBlab~-r (a E A). 

Hence ~ is the restriction to A of the inner auto- 

morphism of G induced by b~. The mapping 

~: b~A - ~ is a function from the set B of cosets 

of A in G into the automorphism group G(A) of A. 

The function ~ is generally not a homomorphism (if 

the set [b~] can be so chosen that ~ is a homo- 

morphism, G is a split extension and can be obtained 
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4 PETRICH 

as a semidirect product of A and B). Hence a 

function ~: B ~ G(A) can be used as an ingredient in 

the converse problem of constructing G out of A and 

B. The measure of how far ~ is from being a homo- 

morphism is given by a "factor system" which is a 

function 4: B • B ~ A. Indeed, given ~ and 4, 

satisfying certain conditions, every extension of A 

by B can be constructed. 

Now let V be a semlgroup. A nonempty subset S 

of V is an ideal of V if sv,vs E S for all s ES, 

v E V. The Rees quotient semigroup, denoted by Q = V/S, 

is the set V\S = ~v ~ V!v ~ I} together with a new 

symbol 0 under multiplication 

a*b = ab if a,b,ab E V\S 

and all other products are equal to 0 (the zero of 

Q); v is then an ideal extension of S by Q. The 

ideal extension problem for semigroups can be formu- 

lated thus: given semigroups S and Q, where Q has 

a zero~ construct all semigroups V such that V has 

S as an ideal and V/S = Q (with obvious identi- 

fications). In fact, we can take V = S U Q*, where 

Q* = Q\ [0~ and S and Q are supposed to be dis- 

joint, and must find all associative multiplications on 

V which agree with existing products on S and Q* 

and make s an ideal of V. 

For general semlgroup theory I will follow 

Clifford and Preston [2], Ljapln [8], Petrich [9]. 

Ideal extensions occur quite often for the reason that 
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PETRICH 5 

we are frequently interested in building more complex 

semigroups out of some of "simpler" structure and this 

can be sometimes achieved by constructing ideal ex- 

tensions. This approach fails if the semigroup we are 

constructing has no proper ideals. In such a case, one 

may resort to various generalizations of the Schreier 

theory in groups; for such developments or general type 

extensions consult Coudron [18], D'Alarcao [19], 

Hancock [51], [52], Inasaridze [56] - [59], R~dei [96], 

Skornjakov [112], Tamura and Burnell [118], Verbeek 

[125], Wiegandt [129], [130], and numerous papers 

concerning the structure of bisimple inverse semigroups. 

Let V be a semigroup and S an ideal of V. 

Then each v E V induces the functions %v and pv 

as follows 

~v v 
: s -vs, p : s " sv (s E S). 

v 
We write %v as a left and p as a right operator 

and note that for all x,y E S, v,u E V, 

~V(xy) = (xVx)y, (xy)p v = x(ypV), 

x(kVy) = (xpV)y, (kVx)pU = kV(xp u) 

which of course reflects the associative law in V. 

These properties suggest the following definitions. 

Let S be a semigroup and let x,y denote arbi- 

trary elements of S. A function k on S is a !eft 

translation of S if k(xy) = (kx)y, a function p 

on S is a right translation of S if (xY)0 = x(y0); 

and p are linked if x(ky) = (xp)y and in such a case the 
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6 PET~ICH 

pair (A,p) is a bitranslation of S; k and p are 

permutable if (Ax)p = k(xp). It is sometimes con- 

venient to consider a bitranslation as a bioperator on 

S and denote it by a single letter, say w, and write 

x~, wx for any x E S. A set T of bitranslations is 

permutable if for any (k,p),(k',p t) E T, k and pt 

are permutable. 

The set A(S) of all left translations is a semi- 

group under the composition (kkt)x = k(klx), similarly 

the set P(S) of all right translations is a semlgroup 

under the composition x(pp t) = (xp)p I. The subsemi- 

group ~(S) of the direct product A(S) • P(S) con- 

sisting of all bitranslations of S is the trans- 

lational hull of S. 

For every s E S, the inner !eft (right)trans- 

lation induced by s is the function ks(p s) defined by 

k sx = sx (XPs = XS); ~S = (AS'PS) is the inner bi- 

translation induced by s. One verifies easily that 

sW = ~sw' Urns = ~ws (s E s, w E~(s)), 

which shows that the inner part H(S) = INs I s E S} of 

~(S) is its ideal. The mapping 

~ :  s ~ ~ (s E S) 
s 

is the canonical homomorphism of S into ~(S). Then 

is I - i iff S is weakly reductive in the sense 

that ax = bx, xa = xb for all x ~ S implles a = b. 

This condition also insures that any two bltranslations 

of S are permutable. Note the analogy with groups: 

automorphism group - translational hull 
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PETRICH 7 

inner automorphlsms (normal subgroup) - inner bi- 

translations (ideal) 

trivial center - weak reductivity. 

We will encounter further analogy in the case of rings 

and partially ordered sets. 

It is to the point here to say something about 

the terminology, notation, and history of these 

concepts. For translations I mainly follow the no- 

tation introduced by Grillet [44], [45]. A bitrans- 

lation was called by Hochschild [192] in 1947 a multi- 

plication for algebras (where the functions are then 

required to be linear); by Clifford [17] in 1950 a 

pair of linked left and right translations for semi- 

groups; by R~dei [168] in 1954 Doppelhomothetismus for 

rings; byHelgason [189] in 1956 a multiplier for commu- 

tative Banach algebras; by MacLane [160] in 1958 a 

bimultiplication (in the last three the functions are 

also additive); by B.E. Johnson [196] in 1964 a double 

centralizer for semigroups, rings, and algebras; by 

Keimel [215] in 1968 a bihomoth~tie for ordered rings 

(the last two require only the linking condition which 

in the presence of trivial left and right annihilators 

implies the remaining conditions), he also called the 

translational hull the bicentro~de. The translations 

also appear under various names. It would of course 

be useful if some terminology would be generally ac- 

cepted (not to remain behind, I came up with a b_~i- 

translation in Petrich [9] in 1967). 

9.89 



8 PETRICH 

2. BASIC PROPERTIES OF THE TRANSLATIONAL HULL 

This is a small sample of properties of the trans- 

lational hull of arbitrary or special kinds of semi- 

groups. The proofs of most of these properties as well 

as further results on this subject can be found in 

Clifford and Preston ([2], 1.3), B.E. Johnson [196] and 

Petrich ([9], Ch. 2), see also Gluskin [32]. 

Throughout this section, S denotes an arbitrary 

semigroup unless specified otherwise. Besides weak 

reductivity, the condition that occurs frequently in 

consideration of translations is: S is globally 

idempotent if for every a E S there exist x,y E S 

such that a = xy (i.e., S 2 = S). This condition, 

e.g.j insures that every left translation is permutable 

with every right translation; weak reductivity and 

global idempotency are independent conditions. 

With the notation introduced in the previous 

section, 

kka kka' Pa p Pap (aES, kEA(s), pEP(S)), 

and hence with the notation 

r(s) = l a E S], A(S) = [Pa l a S], 

we have that r(S) is a left ideal of A(S) and A(S) 

is a right ideal of P(S). 

PROPOSITION !. i) F(S) = A(S) i ff S has a left 

identity. 

ii) ~(S) = ~(S) iff S has a__nn identity. 

If A is a subsemigroup of S, the idealizer of 
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PETRICH 9 

A in S is the largest subsemigroup of S containing 

A as an ideal, it is given by Is E S I sa,as ~ A for 

all a E A]. By C(S) denote the center of S, i.e., 

C(S) = [c E S I cs = sc for all s E S}. 

THEOREM 2 (Gluskin [32]). I_~f S is weakly reduc- 

rive, then ~(S) is the idealizer of ~(S) i__nn 

A(S) • P(S). 

PROPOSITION ~. I._ff S i__ss weakly reductive or 

~lobally idempotent, then 

C(n(S)) =[(k,p) En(S) I ks=s0 forall sES]. 

In this case, for (k,p) E C(~(S)) and x,y s S 

we have k(xy) = (kx)y = x(ky), cf. centroid of an 

algebra, Jacobson ([5], V. 4.). Let 

~A:~(S) -- A(S), ~p:~(S) - P(S) 

be the projection homomorphisms, and let ~(S) and 

~(S) denote the corresponding images of ~(S) in 

A(S) and P(S), respectively. 

PROPOSITION ~. l__ff S i__ss commutative, then 
~ 

A(S) = A(S), S) = P(S). 

A semigroup S is left reductive if xa = xb for 

all x E S implies a = b, right reductivity is 

defined dually; S is reductive if it is both left and 

right reductive. Thus right reductivity means that the 

mapping s - k is i- I and is hence an isomorphism 
s 

of S onto F(S). 

PROPOSITION ~. The following statements ~K~ valid 

for a left reductive semigroup S. 

291 



I0 PETRICH 

i) ~(S) is the idealizer of A(S) in P(S). 

ii) If ~ ~nd ~ are functions on s satisfvinK 

the linkinK condition x(~y) = (x#)y for a!~ x,y ~ s, 

then ~ E A(s). 

iii) ~p i._~s i- i 

COROLLARY. l_~f S i..~s reducti 

i) n(S) = [(~,#) I~ and 

satisfyin~ x(q~y) = (x~)y 
~ 7( ii) A(S) ~ ~(S) ~ S), 

and hence ~(S) ~ ~(S). 

reductive, then 

are functions on s 

for all x,y E S], 

and i_~f S i__ss also c0mmutative, then 

iii) A(S) ~ ~(S) = C(~(S)) ~ P(S) 

where all isomorphisms are projections. 

We see that for a reductive semlgroup S, the 

linking condition for two functions on S implies that 

they form a bitranslation. Indeed, B.E. Johnson [196] 

defines a "double centralizer" by this single condition. 

Which properties of S carry over to ~(S)? Very few; 

a more pertinent question is: how do properties of S 

influence the properties of ~(S)? 

PROPOSITION 6 (Tamura [116]). S is ~ ri2ht zero 

semigroup iff every transformation o_._n S i__ssa right 

translation iff the identity mapping o_n S is the only 

left translation. 

Thfs shows that the translational hull of a right 

zero semlgroup S is isomorphic to the semlgroup of 

all transformations on the set S written as right 

operators and points to the phenomenon that S and 

~(S) may vary wildly in their properties. 
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THEOREM 7 (Ponizovski [92]). 

semigroup, so is ~(S). 

If S is an inverse 

This theorem fails for regular semigroups. We can 

regard a semilattice both as a semigroup and as a 

partially ordered set. 

n(s). 

PROPOSITION 8. If S is a semilattice, so is 

COROLLARY. If S is a finite semilattice, then 

~(S) is a lattice. 

A homomorphism ~ of a semigroup V into a semi- 

group V' both of which contain S is an S-homo- 

morphism if ~ leaves S elementwise fixed. If I 

is an ideal of S and ~ is an l-endomorphism of S 

mapping S onto I, let ks = sp = s~ for all s E S. 

Then (k,p) is the bitranslation o__nn S induced by ~. 

THEOREM 9 (Petrich [9]). A semigroup S is a 

semilattice iff every bitranslation on S is induced 

by a_.n.n l-end0morphism for some ideal I of S. Such 

ideals I i__n.n ~ semilattice S are characterized b__ Z 

the property: the intersection of I with any principal 

ideal of S i_~s ~ principal ideal. If an l-endo- 

morphism exists it is unique. 

For further information on this subject see Petrich 

([9], 2.4), Sz~sz [113], Sz~sz and Szendrei [114]. 

PROPOSITION IO. If S is left reductive ~d 

right cancellative , then ~(S) is right cance!!ative. 

COROLLARY. If S i_~s cancel!ative, so is fl(S). 
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12 PETRICH 

For isomorphisms between translational hulls, we 

have 

THEOREM ii. Let 8 be an isomorphism of a semi- 

group S onto a semigroup T. For k E A(S), p E P(S), 

let 

it = [k(ts-l)]e, t~ = [(ts-l)p]@ (t ~ T). 

Then k-~[ and p-* p are isomorphisms of A(S) 

onto A(T) and of P(S) onto P(T), respectively. 

The mapping 8: (k,p) -* (k,p) is an isomorphism of 

~(S) onto ~(T) with the prol~erties: 

~s e =~se '  (ws)e = (we) (se) ,  (sw)e = (se)(we) 

(s e s, w E ~(s)). 

l__ff S is weakly reductive or ~loball7 idempotent, then 

i_~s the unique isomorphism o_~f ~(S) onto ~(T) with 

the property ms@ = ~s8 for all s ~ S. 

COROLLARY !. If both S and T are weakly re- 

ductive, then ever ~ isomorphism o_~f ~(S) onto ~(T) 

can be uniquely extended to an isomorphis m o_~f ~(S) 

onto ~(T). 

A result analogous to Theorem Ii is also valid for 

antl-lsomorphlsms and involutorial anti-automorphisms. 

Denoting-by G(S) the automorphism group of S 

(functions written on the right), we have 

COROLLARY 2. If S i~sweakly reductlve and 

simpl e o_r.r 0-simple, then the ~ 8 ~8 is an 

isomorphism o_~f G(s) onto G(~(s)). 

2~ 



PETRICH 13 

Let E(S) denote the group of units of ~(S). If 

(~,p) E E(S) and X and p are permutable, then the 

mapping 6(~,p), defined by sa(~,p) = (~-is)p for all 

s E S, is an automorphism of S, to be called the 

fieneralized inner automorphism induced by (%,p). The 

set ~(S) of all generalized inner automorphisms is a 

subgroup of G(S). If S has an identity and a is 
-i 

contained in its group of units, let sc = a sa for 
a 

all s E S (the inner automorphism induced by a). 

THEOREM 12 ( ~  [9]). If S is weakly re- 

ductive or globally idempotent , then the mapping 

(%,p) - ~(~,p) i_.~s ~ homomorphism o__ff E(S) onto ~(S) 

with kernel E(S) n C(~(S)) so that 

E(S)/~(S) N C(~(S)) ~ ~(S), and 6 = (X,p) ~(X,p)" 

In case that S has an identity, generalized 

inner automorphisms coincide with inner automorphisms, 

and if S is a group, the preceding theorem reduces to 

the familiar theorem in groups. For further properties 

of automorphisms of ~(S) consult Petrich ([9], 2.6). 

The translational hull of an extension of a semigroup 

by another and of a semigroup with an ideal chain has 

been described by Ponizovski [89], [90], of an n-semi- 

group by Hall [50], of a regular Rees matrix semigroup 

and several special classes thereof by Petrich [83], 

[84]. Some related results and certain generali- 

zations have been obtained by Delorme [20], Goralc{k 
v~ 

[41] , Goralclk and Hedrl~n [42] , [54] , Hedrl~n [53] , 

Lallement [65], Ljapin [70], Posey [94], Schein [97], 

Shirjaev [106], Shutov [iii], Tamura [116]. 
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14 PETRICH 

3. IDEAL EXTENSIONS OF SEMIGROUPS 

Let S be an ideal of a semigroup V. I will 

refer to V as an extension of S (since no other 

extensions will be considered) by the semigroup Q = V/S 

with zero. It is assumed that S and Q are disjoint, 

the multiplication in V is denoted by another symbol 

if V is being constructed, but if no confusion is 

likely or if V is already given, it is simply denoted 

by juxtaposition. I will only give some highlights of 

the theory of extensions as developed by Clifford [17], 

Grillet and Petrich [48], Petrich [9]; see also Clifford 

and Preston ([2], 4.4). 

For an extension V of a semigroup S, define 

v kv, ov = ~(V:S): v- T = ( ) (v E V) 

where for every v E V, 

kv v 
s = vx, sO = sv (s E S). 

The function 7 = 7(V:S) is the canonical h0momorphism 

of V into O(S) (in fact, onto a semigroup of permu- 

table bitranslations of S containing n(S)). The 

image T(V:S) of V under 7 is the type of the ex- 

tension V of S. 

PROPOSITION ~ (Grillet-Petric h [48]). Let V b._ee 

an extension of S. Then the canonical homomorphism 

= 7(V:S) extends the canonical homomorphism 

~: S ~ ~(S). l_~f S i sweakly reductive or globally 

idempotent, then 7 is the unique extension of ~ t__oo 

homomorphlsm o.ff V into ~(S). 

296 



PETRICH 15 

PROPOSITION 2 (Grillet [44]). A subset T of 

~(S) i_._sa type of some extension of S iff T is a 

subsemi~roup o___f ~(S) containing ~(S) and in which 

any two bitranslations are permutable. 

Hence the types of extension of a weakly reductive 

or globally idempotent semigroup S coincide with all 

subsemigroups of ~(S) containing ~(S) and are thus in 

i - I correspondence with subsemigroups of ~(S)/~(S) 

containing its zero. A simple Zorn's lerana argument 

shows that every set of permutable bitranslations is 

contained in a maximal one. Subsemigroups of ~(S) 

generated by sets of permutable bitranslations consist 

of permutable bitranslations, so that maximal subsets 

of permutable bitranslations are types of extension. 

It follows that the union of all types consists of 

those (k,p) ~ ~(S) for which k and p are permu- 

table. For a comparable development in rings see 

R~dei ([12], w Types of extension for the group 

case have been introduced by Baer, see Specht ([13], 

Kap. 3.3). 

Conversely, I wish to construct all extensions of 

a semigroup S by a semigroup Q with zero. For any 

semigroup T, a function 8: Q* ~ T is a partial homo- 

morphism if (ab)@ = (a@)(bS) whenever a,b,ab s Q*. 

A function ~ mapping the set [(a,b) E Q x Q lab = 0] 

into s is a ramification function of Q into S. 

PROPOSITION ~ (Yoshida [133]). Let S #nd Q 

J~@ disjoint semigroups, Q with zero. Let 8 b_~e ~ 

partial h~omorphism o_~f Q* onto a set of permutable 
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16 PE TRI CH 

bitranslations of 

fication function of 

satisfyin~ 

(cl) 

(c2) 

(c3) 

(c4) 

(c5) 

On the set 

b_z: 

(MI) 

(M2) 
a,b = 

(M3) 

(M4) 

Then 

S, 8: a -* ~a, and let ~0 be a rami- 

Q into S, ~0: (a,b) -* [a,b], 

8a8 b = ~ if ab = 0, 
[a,b] -- 

[ab,c] ffi [a,bc] if abc ffi 0, ab ~ 0, bc ~ 0, 

[ab,c] = 8a[b,c] if ab @ O, bc = O, 

[a,b]8 c = [a,bc] i_ff ab = O, bc @ O, 

[a,b]8 c = 8a(b,c] if ab = bc = O. 

V = S U Q* define the multiplication * 

'a@ b i_~f a E S, b E Q*, 

8~ if a ~ Q*, b E S, 

[a,b] if a,b ~ Q*, ab = 0, 

ab otherwise. 

v is an extension o_.ff S by Q, and converse!y, 

every extension of S by q can he so constructed. 

If we write 8 a = (ka,pa), then e.g., (C3) can be 

written [ab,c] = %a[b,c], etc. Even though this 

proposition is essentially the disguised associative 

law and the requirement that S be an ideal, it gives 

a general procedure from which various special cases 

can be easily deduced and shows that every extension 

can be expressed by two parameters 8 and ~, so we 

write V~ <S,Q;8,~>. 

PROPOSITION ~. Two extensions V = <S,Q;8,~> and 

V t - <S,Qt;01,~'> are S-isomorphic iff there exists 

298 



PETRICH 17 

an isomorphism # of Q onto Q' such that 9 = #9' 

and [a,b] = [a#,b~]' for all a,b E Q* such that 

ab = O. 

Such extensions V and V' should be considered 

as essentially the same, I call them equivalent. This 

is in line with the customary definition in groups and 

rings; a weaker definition of equivalence of extensions 

can be found in Clifford and Preston [2]. Proposition3 

simplifies considerably in the following important 

special cases: (i) Q has no zero divisors, the ex- 

tension is then given by a homomorphism 9 and (CI) - 

(C5) are vacuous, (ii) S is weakly reductive, the 

corresponding theorem due to Clifford is historically 

the first important theorem on the subject. 

THEOREM 5 (~. Clifford [17]). Let S be a 

weakly reductive semigroup an d Q ~ semigroup with 

zero disjoint from S. Let 9: Q* - ~(S) be a partial 

e a homomorphism, 8: a ~ , with the property that 

8a9 b E ~(S) if ab = O. Define the multiplication , 

o~n V = S U Q* by (MI), (M2), (M4) and 

(M3 l) 9a9 b = ~ if 
c 

Then V 

a .b = c where 

a,b E Q*, ab = O. 

is an extension of S by Q, and conversely. 

s by Q can be so constructed. 

S weakly reductive, the 

is uniquely determined by 

the function 8 according to (CI), further (C2) - (C5) 

are automatically fulfilled, and any two bitranslatlons 

every extension of 

In other words, for 

ramification function ~0 
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18 PETRICH 

of S are permutable. We thus may write V = <S,Q;9>. 

COROLLARY. Two extensions V = <S,Q;6> and 

v' = <S,Qt,01> are equivalent iff there exists an 

isomorphism ~ of Q onto Q~ such that e = ~e I. 

Let V = <S,Q;~,~>; call V a strict extension of 

S if 0 maps Q* into ~(S), pure if ~ maps Q* 

a oa Q. into ~(S)\~(S). For ~ = T(V:S), �9 = if a E 
a 

and T = ~ if a ~ S. Thus V is strict iff its a 

type is ~(S), pure iff a E ~(S) implies a E S 

(definition in Grillet [45]). 

PROPOSITION 6 (Grillet [45]). For an extension V 

of a_~n arbitrar Y semigroup S, the complet e inverse 

image K of n(S) under ~(V:S) is the greatest sub - 

semi~roup of v which is a strict extension of S; 

furthermore V i__ss a pure extension of K. 

COROLLARy. Every extension o__ff S by Q i_ss~ 

pure extension of a strict extension, l_~f Q has no 

proper ideals, a~ extension i__ss either strict or put@. 

Call a homomorphlsm ~ of a semigroup S with 

zero 0 into a semlgroup S ~ with zero 0 ~ pure if 

s~ = 01 iff s = 0. Let V = <S,Q;~ be a pure ex- 

tension of a weakly reductive semigroup S. Consider 

0 as a function from Q* into ~(S)~I(S) and extend 

it to all of Q by letting 9 map the zero of Q 

onto the zero of ~(S)/~(S). Then 0 is a pure homo- 

morphism, and we deduce 

PROPOSITION _7 (Gri!!et [45]). Let S b_ee weakly 

reductive and 0: Q -~ f2(S)/~(s) b_~e a Pure hom 0- 
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morphism. Then V = <S,Q;91Q,> is a pure extension of 

S by Q, and conversely, every pure extension of S 

by Q can be so constructed. 

Keep S weakly reductive and suppose that 

V <S,Q;~> is a strict extension. Then ~ 0~ "I 

Q* ~ S is a partial homomorphism satisfying 

a,b = 

f" a(b'~) (MI") 

(M2 ~) 

(M3 ~ ) 

(M4" =M4) 

(a~)b 

(a~)(b~) 

ab 

if a ~ S, b E Q*, 

if a ~ Q*, b E S, 

if a,b E Q*, ab = 0, 

otherwise 

Conversely, let S be arbitrary and ~: Q* ~ S 

be a partial homomorphism, on V = S U Q* define a 

multiplication according to (MI n) - (M4#). Then V is 

an extension of S by Q said to be determined by the 

partial homomorphism ~. Such an extension is always 

strict, and from above we see that every strict ex- 

tension of a weakly reductive semigroup is of this form. 

PROPOSITION 8 (Petrich [79]). An extension V o___f 

semi~roup S i_.ss determined bya partial homomorphism 

if_._f V has an S-endomorphism iff V has an idempotent 

~ndomorphismwith range S. 

The precise relationship between the two kinds of 

extensions Just considered can be elucidated using a 

concept due to Clifford. Let S be a semigroup, to 

every s E S associate a set Z such that Z are p.d., 
s s 

Z n S = [s~, and let V = U Z with multiplication 
S SES s 
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x*y = ab if x E Z a, y E Z b. Then V is an i__nn- 

flation of S. An extension V of S is an inflation 

of S iff V is an extension of S by a semigroup 

Q, for which Q2 = O, determined by a partial homo- 

morphism. If T ~ S and a E S\ T implies Z a [a~, 

call V an inflation of S over T. 

THEOREM 9 (Grillet-Petrich [48]). Every strict 

extension of S i__ss determined b__ya partial homo- 

morphism ~ff S is an inflation of a weakly reductive 

semigroup R over R\ R 2. l__nn such a case ~(S) ~ R. 

Extensions determined by partial homomorphisms 

are usually easier to handle and exhibit many proper- 

ties not shared by arbitrary extensions. A sufficient 

condition in order to have an extension of this kind is 

given in the next theorem. By E S denote the set of 

all idempotents of S with the partial order e ~ f 

iff e = ef = fe. 

THEOREM i0 CPetrich [79]). Let s b_ea regular 

semigroup, Q a semigrou p with zero disjoint from S 

in which every element has either a__n idempotent left or 

identity. Then an extension V of S b_~ Q i___s 

determined bya p artialh0momorphism iff every element 

of Q* has either a__nidempotent left or right identity 

e for which the set If E ES I f < e} admits a unique 

maximal element. 

The second part of Theorem 9 in Section 2 is a 

particular case of this theorem. For a special case 

see Warne [127]. The condition on Q is a mild one 

(regular semigroups, semlgroups with one sided identity, 

S~ 
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etc.). The question which semigroups admit only ex- 

tensions determined by partial homomorphism answers 

THEOREM II (Clifford [17], Grillet- Petrich [48]). 

Every extension of a semigroup S i_ss determined bya 

partial homomorphism iff every extension of S i__ss 

strict iff S has an identity. 

The extension theory I have heretofore discussed 

is based on translations. For the weakly reductive 

case this theory is quite satisfactory from the point 

of view of construction, properties, classification, 

etc. However, for the general case, as exhibited in 

Proposition 3, all we can do is to essentially rewrite 

the associative law in a more convenient form. Another 

approach to extensions, based on S-congruences, has 

been devised in Petrich and Grillet [88]. I will only 

touch upon this subject and will mainly establish a 

link with densely embedded ideals. 

Let V be an extension of an arbitrary semigroup 

S. A congruence ~ on V is an S-congruence if ~IS 

is the equality relation. The extension V is dense 

if the equality relation on V is the only S-congru- 

ence on V. If ~ is any congruence on V, let 

a(S) = Iv E V Iv ~ s for some s ~ S}. By ~=~(V:S) 

denote the congruence on V induced by T = T(V:S). 

PROPOSITION 1_/2 (Petrich-Grillet [88]). I_~f V i__ss 

an extension of S, then every s-congruent@ own v i__ss 

contained in ~(v:s) and ~(s) i__ss the largest strict 

e_xtension of s contained in V. 
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Summarizing certain properties of extensions we 

have 

THEOREM 13 (Grillet-Petrich [48], [88]). The 

followin~ statements hold for an extension V of ~ 

weakly reductive semigroup S. 

i) g = g(V:S) is the larzest S-conKruence on V. 

ii) V is a strict extension iff ~(S) = V. 

iii) V i_~s~ pure extension iff g(S) = S. 

iv) V is a dense extension iff T(V:S) i_~s I- I 

(and thus an isomorphism int0). 

v) Two dense extensions o___f S are equivalent iff 

they have the same type. 

A dense extension V of S is maximal if for 

every dense extension V' of S containing V as a 

subsemigroup we must have V' = V (i.e., maximal under 

inclusion); in such a case S is a densely embedded 

ideal of V. For another proof of the following im- 

portant theorem see Grillet and Petrich [48]. 

THEOREM I_~4 (G/uskin [32]). A weakly reductive 

semigroup S i__ss a densely embedded ideal of a semi- 

group V Iff 7(V:S) is an isomorphism o_~f V onto 

~(s). 

Since 7(V:S) is the unique homomorphism of V 

into ~(S) which extends ~: S - ~(S) for an ex- 

tension V of a weakly reductlve semigroup S, it 

follows that V is a (maximal) dense extension of S 

iff there exists an isomorphism which extends ~ and 

maps V into (onto) ~(S). If we identify S with 

~(S), then up to equivalence~ the different subsemi- 
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g roups  o f  ~ ( S )  c o n t a i n i n g  n (S)  c o n s t i t u t e  t h e  s e t  

o f  a l l  d e n s e  e x t e n s i o n s  o f  S and D(S) i s  t h e  o n l y  

maximal  one .  I t  f o l l o w s  t h a t  any  two maximal d e n s e  ex-  

t e n s i o n s  o f  S a r e  e q u i v a l e n t  wh ich  i m p l i e s  t h a t  i f  

S i s  a d e n s e l y  embedded i d e a l  o f  V, t h e n  V i s  com- 

p l e t e l y  d e t e r m i n e d  by S up to  an S - i s o m o r p h i s m .  

G l u s k i n  had c o n j e c t u r e d  i n  [32] t h a t  a s emig roup  w h i c h  

i s  n o t  w e a k l y  r e d u c t i v e  c a n n o t  be a d e n s e l y  embedded 

i d e a l  o f  any s e m i g r o u p .  His  c o n j e c t u r e  was p roved  i n  

t he  a f f i r m a t i v e  s e v e r a l  y e a r s  l a t e r ,  v i z .  

THEOREM 15 ~Shevrin [I03], [105]). A semigroup 

which i__ss not weakly reductive cannot b__ee~ densely e__mm- 

bedded ideal of any semigroup. 

Call an extension V of a semigroup S cancel- 

lative if V is a cancellative semigroup. From the 

corollaries to Propositions 5 and i0 of Section 2, 

follows easily 

PROPOSITION 1__6. An extension V of S i__ss 

cancellative iff S is cancellative and the extension 

is dense. Further, V is commutative and cancellative 

iff S is commutative and cancellative and the ex- 

tension is dense. 

COROLLARY ~. Let S b..ee~ cancellative semigroup 

without idempotents and Q = G ~ b_.ee~ group with zero. 

Then there exists a cancellative extension of S by 
w f, 

Q if_~f G i.ss isomorphic with a subgroup o_~f E(S), th@ 

of units of ~(S). 

COROLLARY ~ (Heuer-Miller [55]). Let S be 
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commutative cancellative semigroup without idempotents. 

Then V = S I (S with identity adjoined) is the on!y 

cancellative extension of S b__z~ group with zero iff 

for any a,b E S, aS = bS implies a = b. 

If S has an identity, then it has no proper 

pure hence no dense and hence no cancellative ex- 

tensions. Further results concerning cancellative ex- 

tensions can be found in Heuer and Miller [55] and 

Petrich ([9], 3.7). 

For more information on extensions consult 

Clifford [16], [17], Clifford and Preston ([2], 4.4), 

M.P. Grillet [43], P.A. Grillet [44]- [46], P.A. and 

M.P. Grillet [47], Grillet and Petrich [48], [49], [88], 

Petrich ([9] , Ch. 3), [79] - [82] , Tamura [117] , Tamura 

and Graham [119], Yoshida [133]. For extensions of 

(i) Brandt semigroups see Lallement and Petrich [67], 

Warne [126], [128], (ii) R-semigroups see Hall [50], 

(iii) null semigroups see McNeil [74], [75], Yamada 

[131], [132], (iv) primitive inverse semigroups see 

Ault [14]. Dense extensions of various kinds of finite 

reductive completely 0-simple semigroups and their 

application to the theory of machines have been ex- 

tensively studied by Krohn and Rhodes (LLM, RLM, GM, 

C~M semigroups, see Krohn, Rhodes and Tilson [7]). 

Material closely related to extensions can be found in 

Gluskin [32], Kimura, Tamura and Merkel [63], Schwarz 

[I02], Tamura [I15], Tully [122]. 
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4. DENSELY EMBEDDED IDEALS 

One of the main preoccupations of the Soviet 

schools of semigroups has been finding of abstract 

characteristics of various "concrete" semigroups of 

(partial) transformations. For a given semigroup of 

partial transformations on a set, an abstract charac- 

teristic of S is a system of axioms which an abstract 

semigroup T must satisfy in order that S and T be 

isomorphic. Note that this is precisely the opposite 

of the idea of representation; indeed, if T is an 

abstract semigroup satisfying certain conditions, then 

a homomorphism of T into a "concrete" semigroup of 

relatively familiar structure is called a represen- 

tation of T by elements of S (say, functions, 

matrices etc.). Of particular interest is the case 

when this homomorphism is I - I (i.e., the represen- 

tation is faithful) and even more so when it is also 

onto (e.g., the Rees theorem). In the last case, 

turning things around, T represents an abstract 

characteristic of S. A concrete semigroup can have 

many different abstract characteristics and those of 

simpler form are then preferable. 

In the effort of obtaining abstract charac- 

teristics, the concept of a densely embedded ideal, 

and its variants, has turned out to be a very powerful 

tool. I have defined a densely embedded ideal in terms 

of a maximal dense extension, but the customary defini- 

tion in Soviet literature is expressed in terms of 

homomorphisms. A semigroup A is a densely embedded 

of a semigroup B if A is an ideal of B 
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satisfying (nontrivial homomorphism means it is not 

1 - I): 

a) every nontrivial homomorphism of B induces a 

nontrivial homomorphism of A (of. essential extensions 

in categories), 

b) for every semigroup C containing B and 

different from B, and containing A as an ideal, 

there exists a nontrivial homomorphism of C which 

induces a trivial homomorphism on A. 

This notion was introduced by Ljapin [68] in 1953 

in order to give an abstract characteristic of the semi- 

group F(X) of all transformations (written on the 

left) on a set X as follows: an abstract semigroup S 

is isomorphic to F(X) iff S has a densely embedded 

ideal which is a left zero semigroup of the same cardi- 

nallty as X. This also follows from Proposition 6 of 

Section 2 and Theorem 14 of Section 3. He also gives a 

similar abstract characteristic for the semigroup of 

all partial I - I transformations on X. These are 

the first two of a long list of results of this type, a 

great number of which are due to Gluskln. The idea 

here being that one can characterize a relatively 

complicated semigroup V by finding in it a densely 

embedded ideal of rather simple structure. The inter- 

est in this subject has also been motivated by the 

desire to extend isomorphisms of an ideal to the whole 

semigroup. For the properties of a semigroup V rela- 

tive to its densely embedded ideal S as well as for 

extension of isomorphisms of S to all of V, Theorem 

14 of Section 3 is of crucial importance. Combining 
8m 
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Theorems 14 and 15 of Section 3, we get the fundamental 

result: 

semigroup S 

semigroup V iff S 

i_.ss an isomorphism of 

i_.ss~ densely embedded ideal of a 

i sweakly reductive and T(V:S) 

V onto n(S); 7(V:S) is the 

unique extension of ~: S -- ~(S) to a homomorphism of 

V into ~(S). 

I will merely state a few key theorems on this 

subject, a more systematic treatment can be found in 

Petrich ([9], 3.8, 5.2- 5.4, 6.1- 6.4). The paper 

Gluskln [33] contains a concise summary of a number of 

important results on the subject. 

In light of the above discussion, the next theorem 

can be proved by using Theorem ii of Section 2. 

THEOREM I (Gluskin [32]). Let V be a dense ex- 

tension of a semi~roup S, let s' be ~ densely em- 

bedded ideal of a semigroup V', and let 0 be an 

isomorphism of S onto S'. The n 0 admits an ex- 

tension ~ to a I- I homomorphism of V into V' 

is the unique homomorphism fro m v int 0 v I ex- 

tending 0, and # is onto iff S is a densely em- 

bedded ideal of V. 

COROLLARY I. Le t S be ! densely embedded ideal 

o_~f V. In order that V be isomorphic to a semigroup 

V' i__tt is necessary and sufficient that V' contain ! 

densely embedded ideal S' isomorphic t_.~o s. If so~ 

isomorphism o_~f S ont 0 S' can be uniquely 

~xtended to an isomorphism o_~f V onto v'. 
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COROLLARY 2. l_~f S i_~s~ densely embedded ideal 

o_~f V, then every automorphism 0 of S admits a 

unique extension t_~o a__nn automorphism ~ o__ff V and e 

and ~ have the same order. 

It follows from above that a semigroup V has a 

densely embedded ideal iff V has an identity. It is 

not known if in such a case densely embedded ideals of 

V form a lattice under inclusion. The next result can 

be viewed as a step toward the determination of the 

distribution of densely embedded ideals in a semigroup. 

THEOREM 2 (Petrich [9]). Let S be ! globally 

idempotent densely embedded ideal of V. Then every 

ideal o_~f V containing S i_ss ~ densely embedded ideal 

of V. 

The case in which S is also a (0-) minimal ideal 

of V occurs frequently among various semigroups of 

partial transformations; for it we have 

COROLLARY I. Let S be a densely embedded (0-) 

minimal ideal of V. Then S is contained in every 

(nonzero) ideal of v and every (nonzero) ideal of V 

i_.ss densely embedded in V. 

COROLLARY 2. Let S and S ~ b_~e densely embedded 

(0-) minimal ideals of V and V l, and let T an d T ~ 

mbe sub~emigroups ~of V and V ~ containing S and S ~, 

respectively. Then every i~om0rphism of T ont o T ~ 

maps $ onto S ~ ~nd can be uniquely extended to an 

isomorphis m of v onto v t. 
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COROLLARY 3. 

minimal ideal of 

restricted to S 

versely, every automorphis m of S 

tended t__qo a__nn automorphism of V. 

yields ~(S) ~ G(V). 

Let S b__s a densely embedded (0-) 

V. Then every automorphism of V 

is an automorphism of S, and con- 

can be uniquely e x- 

This association 

I will now discuss some of the principal examples 

of densely embedded ideals. The results just quoted 

can be readily applied to these examples furnishing 

additional information concerning isomorphisms and 

their (unique) extensions. For the remainder of this 

section, let X be an arbitrary nonempty set unless 

specified otherwise. Let W(X) denote the semigroup 

of all partial transformations on X written as oper- 

ators on the left under composition. The zero of W(X) 

is the empty transformation ~. For ~ E W(X), d~ 

denotes the domain of ~, ~ the range. A subsemigroup 

S of W(X) is weakly transitive if D d_.~ = D_r~ = X; 
dES ~ES 

..... separative (also called X-simple) if for any two dis- 

tinct elements x and y of X, there exists ~ E S 

such that either _d~ contains exactly one of the 

elements x, y or x,y E d_~ and ~x @ ~y. 

PROPOSITION ~. A weakly transitive separative 

semizroup is reductive. 

It follows that even though the mentioned con- 

ditions ona subsemigroup of W(X) are relatively mild 

and are usually easy to verify, we obtain in this way 

only a class of reductive subsemigroups of W(X). 

These conditions come in very handy in the following 
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generalization of a densely embedded ideal. 

A semigroup A is a densely embedded subsemi~roup 

of a semlgroup B if A is a subsemigroup of B and 

A is a densely embedded ideal of its idealizer in B. 

We say simply that A is densely embedded in B; this 

is in concordance with the terminology already used for 

ideals. A rather difficult proof establishes the 

following result. The trouble of proving it is well 

worth the effort since it has far reaching conse- 

quences. 

THEOREM 4 (Gluskin [29]). Every weakly transitive 

separativ e subsemigroup of W(X) i_~s densely embedded. 

Roughly speaking, every "sufficiently rich" sub- 

semigroup of W(X) is densely embedded. To prove the 

same kind of theorem for a subsemigroup B of W(X), 

it suffices to show that the idealizer in W(X) of 

every weakly transitive separative subsemigroup A of 

B is contained in B. This is the essence of the 

proof of several of the following corollaries, all of 

which are due to Gluskln [29]. 

COROLLARY i. Every weakly transitive separatlve ' 

subsemi~roup of the semigroup F(X) of all trans- 

formations on X is densely embed de ~. Th ~ result 

remains valid for the semigroup ET(A) of all endo- 

morphisms of ! universal algebra A w i~h the domain 

T o_ff operators (which my ~ empty). 

Note that for (full) transformations on X, weak 

transitivity of a semIErou p S amounts to U r_~ = X, 
dES 
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separativity is usually expressed by saying that "S 

separates points of X". 

COROLLARY 2. Let G be a group with the domain 
m 

T of operators. Every weakly transitive subsemigroup 

S of ET(G) such that ~x = 1 for all ~ 6 S 

implies x = I, i__ss densely embedded. 

COROLLARY 3. Let V be a vector space over a 

division rin K. Every weakly transitive subsemigroup S 

of the semigroup S(A,V) of all endomorphisms o_~f V 

such that otv = 0 for all ~ E S implies v = 0, i__ss 

densely embedde d. I__nn particular , every transitive 

subsemigroup (and thus every transitive or dense ring 

of linear transformations) o_~f S(A,V) is densely e__mm- 

bedded. 

For 1 - 1 partial transformations, we have simpler 

statements, viz. 

COROLLARY 4. 

of the semigroup 

Every weakly transitive subsemigroup 

V(X) of all 1- 1 partial trans- 

formations o__nn X, i_~s densely embedded. The result 

remains valid for the semigroup D(X) of all I - I 

~ransformations o~n X and the semigroup T(X) of all 

continuous, open i - i transformations of ! topo- 

logical space X into itself. 

Ideals of W(X), V(X) and F(X) can be expressed 

by means of the rank of a partial transformation. We 

then see that the (partial) constants in the first two 

semlgroups form a O-minimal ideal and in the third a 

minimal ideal. For D(X) the ideals are'expressed in 

terms of the defect of a transformation, thls semfgroup 
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also has a minimal ideal. All these (0-) minimal 

ideals are weakly transitive and separative and thus 

COROLLARY 5. Every nonzero ideal of W(X), V(X), 

F(X), D(X) i__ss densely embedded subsemiKroup of the 

respective semigroup and of W(X). 

With the notation of Corollary 3, ideals of 

S(A,V) can be expressed by means of the rank of a 

linear transformation, and the linear transformations 

of rank ~ i form a O-minlmal ideal satisfying the 

hypothesis of Corollary 3, and thus 

COROLLARY 6. Every nonzero ideal of S(A,V) i_.ss 

densely embedded. 

The hypothesis of the last part of Corollary 4 

can he sometimes weakened, viz. 

THEOREM 5 (Gluskin [29]). Let X be the open, 

th e closed unit ball in the n-dimensional Euclidean 

space. Every subsemigroup S o_~f T(X) for which 

[~IX I~ E S] i__ss weakly transitive, i..ss densely embedded 

i~ T(X). l__n Particular, the semigroup To(X ) con- 

sisting o_~f all ~ E T(X) such that the boundaries o_~f 

X and ~X are disloint, i..ss~ densely embedded ideal 

of T(X). 

pROPOSITION 6 (Gluskin [29]). Let X be the 

closed unit dis c i_~n the complex plane, c(x) the semi- 

group o_~f all conformal mappings o~n X, Co(X) the set 

of all ~ E C(X) such that the boundaries o.~f X an._~d 

are disjoint. Than Co(X ) i__ss ~X densely embedded 

 deaZ o f  
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Let 8(X) be the semigroup of all binary re- 

lations on X. The set ~(X) of all a s 8(X) of the 

form ~ ffi A • B for some A, B ~ X (called rectangular 

~Jd~KX relations) is a O-minimal ideal of 8(X). 

Either directly (Zaretski [134]) or using the trans- 

lational hull of R(X) (Petrich [84]), it can be 

shown that R(X) is a densely embedded ideal of 8(X). 

From Corollary I to Theorem 2, we conclude 

THEOREM !. Every nonzero ideal of 8(X) is 

densely embedded. 

Further examples of densely embedded ideals and 

subsemigroups of semigroups of partial transformations 

can be found in Gluskin [26], [27], [29], [31], [33] - 

[35], of semigroups of binary relations in Petrich [84], 

of abstract semigroups in Petrich [87]. For example, 

the canonical image of a commutative cancellative semi- 

group in its quotient group is a densely embedded sub- 

semigroup. Another example is provided by Theorem 9 of 

Section 2: in the semigroup (under intersection) of all 

ideals of a semilattice S the semigroup of principal 

ideals is densely embedded. 

The concept of a densely embedded ideal has been 

generalized in several directions. A left ideal L of 

a semigroup S is an L-densely embedded ideal if it 

satisfies conditions a) and b) (at the beginning of 

this section written for left ideals). Most of the 

results on densely embedded ideals carry over to this 

case, with right reductivity playing the role of weak 

reductivity and the semigroup of left translations the 
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role of the translational hull. For an abstract charac- 

terization of the semigroup of endomorphisms of a quasi 

(or partially) ordered set, the above concepts are not 

suitable. For this purpose Gluskin [32] has introduced 

E-semigroups and E-densely embedded ideals. A E-semi- 

group is a semigroup together with two sets of n-ary 

relations satisfying certain compatibility conditions 

relative to multiplication. A ~-semigroup S is a 

~-densely embedded ideal of a ~-semigroup V if V 

is maximal relative to being a dense extension of S 

satisfying certain conditions pertaining to the 

~-structure of S. These concepts and results are due 

to Gluskin [32]. 

Two more generalizations of a densely embedded 

ideal have been successfully used in Gluskin [35] for 

models. This theory has very varied applications, 

e.g., to quasi or partially ordered sets, complete 

lattices, topological and uniform spaces, abelian 

groups, etc. Here one frequently starts with a certain 

structure and considers some kind of 'bull" for it, 

e.g., the translational hull of a semigroup or a ring, 

completion of a partially ordered set or a uniform 

space, holomorph or a divisible hull of an abelian 

group, etc. It is interesting that these can be put 

under the same roof using the concept of a (general) 

dense embedding. Many of these results can be formu- 

lated for categories satisfying some weak restrictions, 

and certain of them carry over to the injective hull of 

a unital module over a ring. The precise relationship 

among these various 'bulls" for the same structure 
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(e.g., semilattices considered as semigroups, or bands, 

or partially ordered sets, or S-systems) has not yet 

been established (for the injective hull of S-systems 

see Berthiaume [15] and for a related topic see Fort 

[24] ). 

Further results concerning densely embedded ideals 

and various generalizations thereof can be found in 

Gluskin [26] - [36], [38] - [40], Kalmanovich [60] - [62], 

Ljapin([8], VII. 5.6- 5.10), [68], [69], [71], Malinin 

[72], [73], Raben [95], Schein [98], Shutov [IIi], 

Trohimenko [120]. 

5. THE TRANSLATIONAL HULL OF A REGULAR 
REES MATRIX SEMIGROUP 

Whenever a semigroup has a completely (0-) simple 

ideal, we are essentially dealing with an extension of 

a regular Rees matrix semigroup (henceforth the modi- 

fier "regular" will be omitted). This situation occurs 

quite often and warrants a closer look at the trans- 

lational hull of a Rees matrix semigroup. While the 

main sources for this section are Petrich [83], [85], 

[87] for the translational hull and applications to 

representations and Gluskin [27] for semigroups of 

linear transformations, a more systematic treatment 

can be found in Petrich ([9], Chapters 4, 5, 6), [I0]. 

The notes of Krohn, Rhodes and Tilson [7] contain many 

related results for finite semigroups. 

Let I and 

zero, p ffi (pBi) 

M be nonempty sets, G ~ a group with 

a M• l-matrix over G ~ with at least 
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one nonzero entry in each row and column; on the set 

D ffi M X G ~ X I define the multiplication 

(i,a,p)(J,b,~) ffi (i,appjb,~). The semlgroup 

S ffi D / [ ( i , O , p )  I i ~ l ,  p s M] is a ( r e g u l a r )  Rees  

m a t r i x  s e m i g r o u p ,  to  b e  d e n o t e d  by  S = ~ ( I , G , M ; P ) .  

F o r  c o n v e n i e n c e  i t s  z e r o  w i l l  be  w r i t t e n  ( i , O , p )  f o r  

any  i E I ,  p 6 M; P i s  c a l l e d  t h e  s andwich  m a t r i x  and 

G the structure group of S. For a full discussion on 

this subject, see Clifford and Preston ([2], 3.2), 

LJapin ([8], V. w167 

For functions %0 and ~0' mapping subsets (possibly 

empty) of I into G, define the product %0. %01 by: 

(%0. %0')i = (%0i)(%0'i) for all i E d_~0 n _d%0'; if 

~ W(I), define %0~i = ~(~i) for all i ~ d~ for 

which ~i 6 d%0. For a subsemigroup T of W(I), the 

!eft wreath product T w~ G of T and G is the set 

of all (~,%0) where ~ E T and %0 maps d..~ into G 

under the multiplication 
c~ t 

(~,~)(~',~') = (o~v',%0 

THEOREM i (Petrich [83]). For 

the function 

_a: ~ - (~,%0) (~ E A(s)) 

�9 %0'). 

S ffi ~(I,G,M;P), 

wher~ 

_~ -_d%0 ffi [ i ~ Z  I~ . ( i , l ,P )  ~ 0] ,  

I is the identity ~ G, 

~ , ( i , l , ~ )  ffi (c , i ,%0i ,p)  i_! i E _d= 

an isomorphism o_~f A(S) onto W(I) w~ G. 

ticular, 
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k(i,a,B) = (~i,(~0i)a,~) if i E d~, and 0 otherwise. 

One defines the right wreath product G wr Q of 

G and Q, where Q is a subsemigroup of W'(M) (the 

prime always denotes that the functions are written on 

the right) with multiplication (4,6)(~',6') 

= (4 " 64',66t), and obtains an analogous result for 

right translations, viz. an isomorphism 

b_.: P(S) -* G wr W'(M). A simple calculation shows that 

for ak ffi (~,~), pb ffi (4,6), we have (k,p) ~(S) iff 

i E d_~, PB(~i) @ 0 .- ~ E d6, p(B6)i ~ 0 

-~ pg(ffi)(~pi) = (~4)p(~6) i. 

Hence we can write bitranslations of S in the form 

(~,cp;4,6). In fact, # (or ~0) is completely de- 

termined by the remaining three parameters. For con- 

venience write rank (c~,~) = rank ~, rank (4,6)=rank 6, 

then 

THEOREM 2 (Petrich [83]). For S = ~~ 

n(S) -- [(k,p) E ~(S) I rankak = rankbp _< I]. 

The above description simplifies considerably in the 

following special cases. 

COROLLARY i. For S =~4~(I,G,M;P), a Rees matrix 

semiRroup without zero, we have 

A(S) =- F(1) w~ G, P(S) ~-- G wr F'(M) 

n(S) = [(k,p) l_ak = (~,~0), Oh_ = (4,6), P~(~i)(~~ 

= (~#)p(p6)i for all i ~ I, p ~ S~ 

n(s) = n(s) frank ak = ra k pb_ -- I]. 
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If the set of idempotents of such an S forms a 

subsemigroup, then S ~ L • G X R where L(R) is a 

left (right) zero semigroup defined on I(M), and we 

have 

COROLLARY 2. fl(L • G X R) ~ F(L) X G • F'(R). 

As special cases, we get an isomorphic copy of the 

translational hull of a left (right) group, rectangular 

band, left (right) zero semigroup (cf. Proposition 6 of 

Section 2 and the introduction to Section 4). It is 

sometimes useful to know when the projection homo- 
th th 

morphism ~A is I - I. The ~ and~ rows of the 

sandwich matrix P are left ~ if PBi = cP~i 

for some c E G and all i E I. 

THEOREM 3 (Petrich [83]). The following are 

9quivalent o._nn S ~ ,~~ (i) ~A i_~s I- I, 

(ii) ~A l~(S) i_ss i- I, (iii) the identity mapping o__nn 

S as a left translation is linked only t__oo itself, 

(iv) no two distinct rows of P are left proportional, 

(v) S i_~sright reductive. 

The wreath product admits a natural interpretation 

in terms of matrices. For let M(I,G) be the set of 

G ~ all column monomial I X 1-matrices over (i.e., each 

column contains at most one nonzero entry) under the 

usual row by column multiplication (treating the zeros 

in the obvious way). 

THEOREM 4. The function ~: (~,~) - (aij), where 

aij = ~J i_~f J ~ d._~, ~j ffi i, and 0 otherwise, i__ss a__n.n 

!somoKphlsm o_~f W(1) w~ G onto M(I,G). 
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An analogous situation occurs with row-monomial 

matrices M'(G,M), viz. there exists an isomorphism 

of G wr W'(M) onto M'(G,M). 

COROLLARY I. For S ffi ~L~ (%,0) E~(S) 

if f letting A ffi ~a~ and 

We can write an element 

I • with a in the 

elsewhere. 

COROLLARY 2. 

B ffi pbd, we have PA ffi BP. 

(i,a,~) of S as an 

(i,~) position and 0 

If we write the elements and, say, 

left translations of s = ~~ a__ss matrices, 

then the value of a left translation at an element is 

the matrix produc t of the two corresponding matrices. 

Let S =~R,~ By Theorem Ii of Section 2 

every automorphism ~ of S induces an automorphism 

of ~(S). Conversely, since ~(S) is a O-minimal 

densely embedded ideal of ~(S), every automorphism of 

~(S) maps ~(S) onto itself (see Section 4) and hence 

induces an automorphism of S. The association 8 - 8 

is an isomorphism of G(S) onto ~(~(S)). An auto- 

morphism 0 of S is determined by several functions 

between I, G, and M, see Clifford and Preston ([2], 

3.4), one of which is an automorphism ~ of G, 

uniquely determined by 0 up to an inner automorphism 

of G. For convenience I will say that 8 is induced 

by w; a connection among ~, ~, and ~ is given in 

THEOREM 5 (Petrich [9]). Let e be an auto- 

morphism of S = ~~ induced by an auto- 

morphism W of G. Then w is an inner automorphism 
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o_ff G iff 8 is ! generalized inne~ automorphism of 

S iff 8 i_~s an inner automorphism of ~(S). 

Further properties of G(S) concerning maximal 

subgroups, center etc. can be found in Petrich ([9], 

Ch. 4). 

The O-minimal ideals of W(X), ~ V(X), B(X), S(A,V) 

are all reductive completely O-simple semigroups, and 

as we have seen in Section 4, all are densely embedded 

ideals of respective semigroups. The first three have 

trivial structure group which by Theorem 5 implies that 

all automorphisms of W(X), V(X), and 8(X) are inner. 

Many of the general properties of the translational hull 

now yield familiar (or unfamiliar) properties of these 

semigroups with little effort. The case of S(A,V) 

goes along the same lines but the proofs are much more 

involved. It is instructive to give the 0-mlnimal 

ideal S of any of these semigroups T a Rees matrix 

representation, establish an explicit isomorphism of T 

onto ~(S), and prove the desired results within ~(S). 

I will outline this procedure for S(A,V); analogous 

but simpler statements hold for W(X), V(X), F(X), and 

some also for 8(X). For example, one obtains that 

every isomorphism between F(X) and F(X') is induced 

by a blJection of X and X', etc. The first result 

in this direction is that of J. Schreier [i01]. For 

further results consult Gluskin [33], [37], Petrich 

([9], Chapters 4, 6), [84], Popova [93], Shutov [Ii0], 

and for related material Scheln [99], [I00] , 

Shneperman [107] - [109], Vazhenin [123], [124]. 
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Let V be a left vector space over a division 

ring A, to be denoted by (A,V). Let M V be an index 

set of all 1-dimensional subspaces V of V and in 

each V choose a nonzero vector e ; let I be an 
~ V* 

index set of all 1-dimensional subspaces V* of V* 
l 

and in each V* choose a nonzero vector f.. Let D 
1 i 

be the multiplicative group of nonzero elements of A, 

and let G(A,V) = ~~ ,,D,Mv;P ) where PBi = e~f..l 

Let u be the smallestVcardinal greater than dim V, 

and for each 0 < ~ _< ~, let S[(A,V) be the semigroup 

of all endomorphisms (i.e., linear transformations) of 

V of rank < ~; for S (8,V) write S(A,V). For 

either infinite or ~ = ~, let R[(A,V) denote the 

corresponding ring and write R(A,V) for R (A,V). 

Then G(A,V) is a Rees matrix semigroup isomorphic to 

S2(A,V), and the latter, according to Corollary 6 to 

Theorem 4 of Section 4, is a densely embedded ideal of 

s(A,v), so 

THEOREM 6 (Gluskin [27]). S(A,V) ~(G(A,V)). 

A direct proof establishing an isomorphism between 

S(A,V) and ~(G(A,V)) can be found in Petrich [86]. 

The set [S~I0 < ~ ~ ~} constitutes the set of all 

ideals of S(A,V); all nonzero ideals of S(A,V) are 

densely embedded (Corollary 6 to Theorem 4 of Section 4, 

or by Corollary I to Theorem 2 of Section 4 and the 

above Theorem 6). 

A semilinear transformation of (A,V) onto 

(A',V') is a pair (w,a) where ~ is an isomorphism 

of A onto A', a is an additive isomorphism of V 

S~S 
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onto V', and (Sv)a = (6w)(va) for all 8 E A, v ~ V. 

If (w,a) exists, write (A,V) ~ (A',V t) and define 
-I 

~(W,a): ~ " a ~a (~ E S(A,V)); then ~(w,a) is the 

isomorphism of S(A,V) onto S(A',V') induced by 

(~,a). A long and difficult proof establishes 

THEOREM 7 (Gluskin [27]). For dim V > i, every 

isomorphism o_~f S(A,V) onto S(A',V') is induced by 

semilinear transformation o_~f (~,V) onto (A',V') 

~,d is thus ~ rin~ isomorphism of R(A,V) onto 

R(A',V'). 

COROLLARY 1. For  

isomorphism o._~f R~(A,V) 

COROLLARY 2. For 

dim V > i, every multiplicative 

onto R~(A',V') is additive. 

dim V > i an d ~ > I, we have 

S~(A,V) ~ S~(A',V') if f ~ = ~ and (A,V) ~ (A',V'). 

COROLLARY 3. The following conditions are equi- 

valent under the hypothesis dim V > I. (i) A ~ A, 

dim V = dim V', (ii) (A,V) ~ (A',V'), (iii) 

G(A,V) ~ G(A',V'), (iv) S(A,V) ~ S(A',V'), (v) 

R(A,V) ~ R ( A ' , V ' ) .  

If we write the elements of R(~,V) as row finite 

(dim V X dim V)-matrices (using a fixed basis), then 

every automorphism can be written as a product of an 

automorphism of the form (aij) - (aijw) where w E~(A) 

and an inner automorphism. Automorphisms of R~(A,V) 

are then obtained by restriction. 

For further results in this direction see Fajans 

[22], [23], Gluskin [25] - [27], [31], Hotzel [146], 

Kuznecov [64], a systematic treatment can be found in 
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Petrich [I0]. Theorem 7 can be deduced also from its 

ring counterpart (see Jacobson [5], Ch. IV) and a 

theorem of Rickart [169] which implies that for 

dim V > i, R(A,V) is a ring with unique addition in 

the sense of R.E. Johnson [149] (i.e., every multipli- 

cative isomorphism is additive); see also Martindale 

[161], Stephenson [171]. The first theorem of the type 

of Theorem 7 was proved by Eidelheit [141]. Papers on 

semigroups of endomorphisms of a module include Mihalev 

[76], [77], Mihalev and Shatalova [78] and on rings 

Johnson and Kiokemeister [150], Wolfson [182] - [184]. 

A generalization of a semilinear transformation can be 

found in Dotson [21]. An extensive discussion of the 

ring and various groups of endomorphisms of a vector 

space can be found in Baer ([I], Chapters V, Vl), see 

also Plotkin ([ii], Ch. 4). 

I will now apply some of the results at the be- 

ginning of this section to representations of semi- 

groups. For further discussion of this subject consult 

Clifford and Preston ([2], Ch. 3) and Petrich [85], 

[87]. Let S be a semigroup, K the union of some of 

its ~-classes, and let Tr(K) be the trace of K, i.e., 

the set K U 0 with multiplication a*b = ab if 

a R ab, ab ~ h, and 

regular ~-class of 

0-simple semigroup. 

representation T D 

0 otherwise. Then K = D is a 

S iff Tr(D) is a completely 

In such a case, a Rees matrix 

of Tr(D) is obtained as follows. 

Let [R ili E I} and [L I ~ E M} be the set of all 

~- respectively s of S contained in D, let 
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HiD R i n L , suppose that I ~ I ~ M and that 

HII = R 1 n L 1 is a group with identity e. For every 

i E I, fix an element r i ~ Hil , and for every D ~ M, 

fix an element qD E HID. Then T D ~4~~ 

where Ppi ffi qBri if q r i E HII, and 0 otherwise, 

is the sought representation of Tr(D). For every 

' be the i E I, fix an idempotent e i E R i and let r i 

unique inverse of r i in R I for which rir i ei; 

make an analogous selection to get q~qD fD" For 

every s E S, define the functions k s and ps on T D 

by:  ks0 ffi Op s ffi O and 

ks(i,a,D) = (J,r'sr..a,D) j 

(i,a,p)p s ffi (i,aqDsq~,v) 

if SHil ffi Hjl, 

if HIDS ffi HI~, 

and 0 otherwise. A long and rather complicated proof 

yields 

xv 

~(TD) �9 

~OREM 8_ (Petrich [85], [87]). For a regular 

~-class D, the function ~D: s-* (kS,p s) (s E S) i__ss a 

............. is I-I. homomorphism of S into ~(T D) and ~DID 

Moreover, i_~f S i._ss j reKular semigroup, then the image 

o_ff S under i__ss a densely embedded subsemisrou p of 

A semigroup  A can  be  d e n s e l y  embedded i n  a semi-  

g roup  B i f  t h e r e  e x i s t s  an i s o m o r p h i s m  ~ o f  A 

i n t o  B f o r  wh ich  A~ i s  a d e n s e l y  embedded subsemi -  

group o f  B. Us ing  Theorem 8 and summing o v e r  a l l  

~ - c l a s s e s  o f  a r e g u l a r  s e m t g r o u p ,  one can  p rove  
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THEOREM 9 (Petrich [85], [87]). Every regular 

semi~roup can be densely embedded both into the direct 

product of the translational hulls of the traces of its 

different ~-classes and into the translational hull of 

its trace. 

With the same notation, I define the fragment of 

the regular ~-class D of S by F D =~6~ ) 

where Pr% = e if r~ = e, and 0 otherwise. Then 

F D is a Rees matrix semigroup, up to an isomorphism 

independent of the choice of L I and R I. Defining 

~s(~,e,r) = (s~,e,r) if s~ ~ L I 

and 0 otherwise, ~So = 0, and dually 8 s, and mapping 
s s 

s - (~ ,~ ), each of the statements of Theorems 8 and 9 

carries over to this case (by a suitable definition of 

the fragment of S). Further dense embeddings of a 

regular semigroup S into ~(Q) where Q is a Rees 

matrix semigroup with trivial structure group associ- 

ated with the whole semigroup S can be found in 

eetrich [85], [87]. 

For the regular ~-class D, we can write direct 

and dual ~ Sch~tzenberger representations by 

matrices with entries in HII. Hence ~: S--Mt(HII,M) , 

~ : S ~ M(I,HII ) and from Corollary I to Theorem 4 and 

Theorem 8, P[~(s)] = [Mn(s)]P for all s ~ S. The 

function ~D: s -- ~s for all s E S, where r~ s = rs 

if r,rs E R I is a representation ~D: S --W'(RI). 

The mapping ~ which to every matrix A in MI(HII,M) 

associates the R I • Rl-matrix which is obtained by 

substituting each nonzero entry a of A by the inci- 
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dence matrix of a in the right regular representation 

of HII and 0 by the HII • HII zero matrix, is an 

isomorphism of M~(HII,M) into M~(e,RI) and 

MD~ = ~D~ (for ~ see the remark after Theorem 4). 

Ponizovski [91] (see also Tully [121]) essentially 

proved that for a large class of semigroups S every 

transitive representation of S can be factored 

through ~D for some regular a-class D of S. 

Lallement and Petrich [66] have established, roughly 

speaking, that every irreducible representation of a 

finite semigroup S by n• n-matrices over a field 

factors through M D for some regular a-class D of 

S. I will illustrate these remarks and the above 

results by a diagram. In it each loop is a con~nutative 

diagram. �9 (K) denotes the semigroup of nX n- matri- 
n 

ces over a field K and X a nonempty set. The 

broken lines mean "can be completed to a commutative 

diagram" and concern mainly finite semigroups. 

S28 
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~D 
f~(FD) = S ~_ f~(TD) 

P(FD) ~ P(TD) 

1 1 
W'(RI) ...... m W'(X) ~ wr W'(M) 

L L _d I' 

~n (K) ,~. . . 

-Mt(e,R I) ~ ~ "'" ......... M'(HII,M ) 

6. EXTENSIONS OF RINGS 

A rin 8 R is an extension of a ring A by a ring 

B if R has an ideal I for which: I ~ A, R/I ~ B. 

With the usual identification of A with I and B 

with R/I, the extension problem is as follows: given 

rings A and B, construct all rings R having A as 

an ideal and such that R/A = B. A solution to this 

problem has been given by Everett [142]; t~is is an 

analogue of the Schreier theorem for group extensions 

and is referred to as "Everett's theorem". As in the 
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group  c a s e ,  one  c h o o s e s  a s y s t e m  o f  r e p r e s e n t a t i v e s  o f  

t h e  c o s e t s  o f  A i n  R, and ,  a s  i n  t h e  s e m i g r o u p  c a s e ,  

makes them a c t  on A m u l t i p l i c a t i v e l y ,  h e n c e  e v e r y  

r e p r e s e n t a t i v e  i n d u c e s  a b i t r a n s l a t i o n  o f  A. The o n l y  

m o d i f i c a t i o n  i n  t h e  d e f i n i t i o n  o f  t h e  t r a n s l a t i o n a l  

h u l l  ~ (A)  o f  t h e  r i n g  A i s  t h e  a d d i t i o n a l  r e -  

q u i r e m e n t  t h a t  f o r  ( k , p )  E ~(A)  b o t h  k and p be  

a d d i t i v e  ( s t emming  f rom t h e  d i s t r i b u t i v e  l a w ) .  Th i s  

makes ~(A)  a r i n g  i n  an o b v i o u s  way .  Most  o f  t h e  

d i s c u s s i o n  on s e m i g r o u p s  c a r r i e s  o v e r  t o  t h i s  c a s e  w i t h  

e v i d e n t  c h a n g e s  c o n c e r n i n g  t h e  a d d i t i o n .  E v e r e t t ' s  

t h e o r e m  i s ,  h o w e v e r ,  q u i t e  i n v o l v e d  i n  v i e w  o f  t h e  long  

l i s t  o f  r i n g  p o s t u l a t e s  t h e  e x t e n s i o n  r i n g  ha s  t o  

s a t i s f y ;  i n  a d d i t i o n ,  b e c a u s e  o f  h a v i n g  c h o s e n  r e p r e -  

s e n t a t i v e s  i n  d i f f e r e n t  c o s e t s ,  two " f a c t o r  s y s t e m s " ,  

one f o r  a d d i t i o n  and one f o r  m u l t i p l i c a t i o n ,  have  t o  be 

i n t r o d u c e d .  The a d d i t i v e  g roup  o f  t h e  e x t e n s i o n  r i n g  

R i s  an  a b e l i a n  g roup  e x t e n s i o n  o f  t h e  a d d i t i v e  group 

o f  A b y  t h e  a d d i t i v e  g roup  o f  B, and h e n c e  f o l l o w s  

t h e  S c h r e i e r  g r o u p  e x t e n s i o n  t h e o r y .  For  a f u l l  d i s -  

c u s s i o n  o f  r i n g  e x t e n s i o n s  and a p r e c i s e  s t a t e m e n t  o f  

E v e r e t t ' s  t h e o r e m  c o n s u l t  R~de i  ( [ 1 2 ] ,  w167 5 2 - 5 4 ) ,  I w i l l  

g i v e  h e r e  o n l y  some g e n e r a l  i d e a s .  

Two e x t e n s i o n s  R and R '  o f  a r i n g  A a r e  

equivalent if there exists an A-isomorphism of R onto 

R e (i.e., leaves A elementwise fixed) which maps the 

cosets of A in R onto the cosets of A in R e. 

Given rings A and B, a function 8 Of B onto a 

set of permutable bitranslatlons of A (8:b-8 b E ~(A)) 

and two functions [ , ], < , >: B • B -- A, on R ffi BXA 

3~ 
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define an addition and multiplication by: 

(a,a)+(b,~) = (a+b,[a,b] +~+~), 

(a,~)(b,~) ffi (ab,(a,b>+Sa~+@8 b+~). 

If the three functions satisfy certain conditions, R 

is an extension of A by B where A is identified 

with [(0,@) I~ E A] and B with the quotient R/A; 

write R ffi E(~;[ , ], ( , 7). Conversely, every ex- 

tension of A by B is equivalent to an extension of 

this form. 

The following discussion is more reminiscent of 

the theory of group extensions developed by Baer (see 

Specht [13]) than the Schreier-Everett approach to ex- 

tensions. These results are largely due to me and are 

as yet unpublished. Let R be an extension of a ring 

A by a ring B. Choose a set of representatives [b~] 

of the cosets of A in R and let 8 map b + A 

onto the bitranslation of A induced by b (by left 

and right multiplication as in the case of semigroups). 

Let ~ be the natural homomorphism of ~(A) onto 

~(A)/II(A). Then the function x(R:A) = 8~ is a homo- 

morphism of B into ~(A)/n(A) independent of the 

choice of representatives [b~], and is hence an in- 

variant of the extension. Weak reductivity in semi- 

groups corresponds to the condition ~(A) = 0 where 

~(A) = [a E A Iax = xa = 0 for all x E A] is the 

annihilator of A. For this case, Everett's theorem 

simplifies to 

THEOREM i. For the rinks A and B with 

~(A) I O, let X: B ~ ~(A)/~(A) b e~ homQmorphism, 
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8: B --O(A) (with 8: b - 85 ) be any function for 

which 8 ~ = 0, 89 = X, and define [ , ] and < , > by: 

ffi 8 a 8 b 8 a+b ffi 8a8  b 8 ab  ~[a,b] + - ' ~<a,b> - (a,b E B) 

Then the ring E(9;[ , ],< , >) define d above is up t_oo 

equivalence the only extension R of A by B for 

which x(R:A) ffi ~; we denote this extension by E(~). 

C pnversely , every extension of A bv B is equivalent 

to an extension of the form E(X). 

We see that for ~(A) ffi 0, an extension is com- 

pletely determined by a single homomorphism 

B - ~(A)/~(A); different choices of 8 yield different 

but equivalent extensions, so E(X) actually repre- 

sents the equivalence class of extensions determined by 

If we consider equivalent extensions as equal, we ~o 

get 

COROLLARY !- 

i) x(E(x ) : A) ffi X if X ~ Hom(B,~(A)/~(A)), 

ii) E0<(R:A)) = R if R is an extension of A. 

Without identification and keeping the same no- 

tation, we have 

COROLLARY 2 (cf. MacLane [160]). There exists a 

I- I correspondence between the set of classes of 

equivalent extensions of A by B an d 

Horn(B, 0 (A)/n(A) ). 

Defining strict and pure extensions and 

7 = 7(R:A): R- ~(A) as for semigroups, analogous 
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results to those in semigroups hold. In addition 

PROPOSITION ~. For an extension R o_~f any ring 

A b__ya ring B, 

i) R i.ss a strict extension iff X(R:A) i_.ss the 

zero homomorphism iff O: B - n(A), 

ii) R i..ss a pure extension iff X(R:A) i._ss i- I 

iff O b E ~(A) implies b = O. 

COROLLARY. ~0r ~I(A) = 0, all strict extensions 

o_~f A by B are equivalent to their direct sum A �9 B, 

and the classes of pur e extensions correspond to iso- 

morphisms o_~f B into ~(A)/n(A). 

For an extension R of A by B, let 

~R(A) = [r E R lra = ar = 0 for all a ~ A]. Then 

~R(A) = ker ~(R:A) = [(a,~) 18 a = ~_~] 

and the subring S(R:A) of R generated by A and 

~R(A) is the maximal strict extension of A contained 

in R. If also ~(A) = O, then S(R:A) is equivalent 

to A �9 ~R(A). For any A, if R is equivalent to 

A~ B, we say that A is a direct summand of R. 

THEOREM 3. A ring A is a direct summand in 

every strict extension iff ~(A) = O. 

COROLLARY (Szendrei [173]). A ring A i_~s ~ 

direct su~nand in every extension iff A has an 

identity. 

An extension R of an arbitrary ring A is 

essential if A has nonzero intersection with every 

nonzero ideal of R (corresponds to dense extensions 

in semigroups). 
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PROPOSITION ~. Every pure extension of A i_~s 

essential, the converse holds if ~(A) = 0. 

PROPOSITION ~. Let ~(A) = 0. An extension R 

of A is essential iff 7(R:A) is i- i, and 7(R:A) 

i._ss then a__nn isomorphism o_ff R onto a subrlr~ of ~(A) 

c0ntainlng N(A) (cf. Proposition ~). TWo essential 

extensions o._ff A are equivalent iff they have the same 

type. Hence the classes of equivalent essential ex- 

tensions can be identified with subrin~s of ~(A) co ~- 

taining ~(A) and are thus in a I- I correspondence 

with suhrings o_~f ~(A)~(A). 

As in the case of semigroups, the existence of a 

maximal essential extension of A is equivalent to 

~(A) = 0 (announced in Shevrin [104]) and if a maximal 

essential extension exlsts, it is essentially equal to 

~(A). Defining an essential extension of a group G 

analogously, the corresponding result holds, viz. the 

existence of a maximal essential extension of G is 

equivalent to the triviality of its center and if a 

maximal essential extension exists, it is essentially 

the automorphism group G(G) (announced in Gluskin 

[38]). 

PRQ~OS~ION ~. Every extension of A by B i__ss 

subdlrect product of B and an essential extension 

of A. ~ ~(A) = 0, an extension R of A by B 

i_!s ! subdirect product of B and the type of R. 

Hence for ~(A) = 0, every extension of A by B can 

b__e embedded i_n B �9 ~(A). 
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The last property is reminiscent of the role of the 

wreath product in group extensions. As in groups, one 

defines a split extension of a ring by another ([ , ] 

and < , > can be chosen to be the zero functions). The 

usual embedding of a ring A into a ring R with 

identity, first published account of which is that by 

Dorroh [140], is a split extension of A by the ring 

Z of integers. However, R may lose many desirable 

properties A might have. Hence one may have to take 

some other ring instead of Z. For the case ~(A) = 0, 

the canonical homomorphism ~: A - ~(A) provides an 

embedding into a ring with identity, or one may take 

the subring of ~(A) generated by n(A) and i. If 

A is commutative and ~(A) = O, then ~(A) is also 

commutative. It is easy to see that ~(A) inherits 

from A such ring properties as '%o zero divisors", 

"semiprime", "prime". For further information on this 

subject see Arhipov [135], Brown and MacCoy [137], 

Fuchs and Halperin [143], Fuchs and Rangaswamy [144], 

Funayama [145], Kohls [151], [152], Nagata [164], 

Szendrei [172], Tomaso [179], Weinert [180]. 

For the material concerning general extensions of 

rings consult Aumercier [136], Chew Kim Lin [138], 

R.E. Johnson [148], Kohls [153], MacLane [159], [160], 

R~dei [167], Snider [170]; for holomorphs and the 

translational hull see van Leeuwen [155] - [157], Petrich 

[165], Pollak [166], R~dei [168], Szendrei [174] - [175], 

Weinert and Eilhauer [181]. The translational hull of 

and extensions of and by a cyclic ring have been de- 

termined by Mueller and Petrlch [162] - [163]. Ex- 
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tensions of (topological) algebras, their bitrans- 

lations and uses in analysis have been studied by Buck 

[185], Busby [186], [187], Fell and Goldman [188], 

Hochschild [192], Kohls and Lardy [194] - [195], 

B.E. Johnson [196]- [198], Reid [199], see also 

Helgason [189] - [191], Ju-Kuei Wang [193], Wendel [200], 

[201]. Some related subjects can be found in Dlab 

[139], R.E. Johnson [147], Kohls and Lardy [154], 

Loonstra [158], Szep [176]- [178]. 

7. EXTENSIONS OF PARTIALLY ORDERED SETS 

This is a brief outline of the theory of extensions 

of partially ordered sets, mainly followingBanaschewski 

[203] and Bruns [208], modified in such a way as to 

exhibit a strong analogy with the theories of extension 

considered heretofore. The general references for this 

section are Fuchs [3] and Jaffard [6]. 

A binary relation ~ on a set Q is a quasi-order 

if ! is reflexive and transitive, a partial order if 

it is also anti-syn~netric, and the set Q is then said 

to be a quasi-ordered set or a partially ordered set 

(henceforth poset), respectively. A subset I (possi- 

bly empty) of a quasi-ordered set Q is an ideal 

(Anfang, initial segment, lower class) of Q if for 

any x,y ~ Q, x j y, y E I implies x E I; for any 

a E Q, the ideal (a) = {x E Q Ix j a] is the 

principal ideal generated by a. Let ~(Q) be the 

poser of all ideals, ~(Q) the poset of all principal 

ideals of Q under set inclusion. For quasi-ordered 
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sets Q and Q~, a mapping ~ of Q into Q~ is an 

o-homomorphism if for any x,y E Q, x ! y implies 

x~ ~ yq0. Call the mapping 

~: a - (a) (a E Q) 

the canonical o-homom0rphism of Q into ~(Q). Then 

is i- I iff j is anti-symmetric, i.e., Q is a 

poset. In this context, anti-symmetry corresponds to 

weak reductivity in semigroups. A function ~ of a 

poset P into a poset P~ is an o-isomorphism if for 

all x,y E P, x ~ y iff x~ ~ y~ (which implies that 

is 1- i). Hence if P is a poset, then the ca- 

nonical o-homomorphism ~: P ~ ~(P) is an o-iso- 

morphism. 

I will limit myself to posets, even though some of 

the material that follows carries over to quasi-ordered 

sets. Let the following notation be fixed: E is a 

poset and P is a nonempty subset of E which is con- 

sidered as a poset under the induced ordering; we say 

that E is an extension of P. Call the mapping 

= T(E:P): e ~ (e)n P = {p EP I pie} (e ~ E) 

the canonical o-homomorphism of E into ~(P); the 

image T(E:P) of E under ~ is the type of the ex- 

tension. Then ~ is the unique o-homomorphism of E 

into ~(p) extending the canonical o-isomorphism 

~: P ~ ~(P). The poset P is join (meet) dense in E 

if every element of E is the join (meet) of some 

subset of P, in such a case, E is a join (meet) dense 

e_xtension of P (superior (inferior) extension). The 
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poset E is a complete extension of P if E is a 

complete lattice. I will discuss (i) join dense, 

(ii) meet and join dense, (iii) complete join dense 

extensions. Let E' be another extension of P; we 

write E ~ E t if there existsan o-isomorphism ~ of 

E into E' leaving P elementwise fixed, and E ~ E' 

if ~0 is also onto and say that E and E' are equi- 

valent extensions of P. Then ~ N = is a quasi-order, N 

is an equivalence relation, ~- is stable relative to 

N, so that 4__ induces a quasi-order on the equivalence 

classes of ~ to be denoted by the same symbol. 

THEOREM i (Bruns [208]). An extension E o__[f P 

is join dense iff T(E:P) is an o-isomorphism of E 

into Q(P). 

THEOREM 2 (Bruns [208]). 

E and E' of P, E 4_ E' iff T(E:P) _c T(E':P). 

COROLLARY I. Two joi n dense extensions of P are 

equivalent iff they have the same type. 

COROLLARY 2. The classes of equivalent join dens____~e 

extensions of P under 4 form a poser o-isomorphic 

with the power set of the difference set f~(P)\II(P) 

(and is thus a complete atomic Boolean lattice). 

For any subset A of P let Ma (Mi) be the set 

of all upper (lower) bounds of A in P. Hence 

Mi Ma A = n (p) where the intersection of the empty 
A_C(p) 

family is P; A is normal if A = Mi Ma A, let N(P) 

denote the poset of all normal subsets of P. For 

a E P, we have (a) = Mi Ma [a] = Mi Ma (a) so 
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(a) 6 N(P), and using the above formula we conclude that 

N(p) c_ N(P) c_ ~(e). 

THEOREM 3 (Banaschewski [203], Bruns [208]). An 

extension E of P is meet and ioin dense iff T(E:P) 

is an o-isomorphism of E into N(P) (i.e., the type 

T(E:P) consists exclusively of normal sets). 

There are several corollaries of this theorem 

analogous to those of Theorem 2. The poset N(P) is 

the normal (also Dedekind-MacNeille or MacNeille) com- 

pletion of P; we will see below that it is indeed 

complete. This leads us to complete extensions; to put 

them in proper perspective, I will consider first a 

more general situation. 

Let 3 be a nonempty family of subsets of a set 

X. If for every x E X, the set ~ = n F belongs to 
xEF 

3, then 3 induces a quasi-order _< on X by: x _< y 

iff % _c Qy. Conversely, if _< is a quasi-order on 

X, then the family 3 = [(x) Ix ~ X] induces the given 

quasi-order _<. This correspondence is I-i, in it 

partial orders correspond to the families for which 

= Qy implies x = y, equivalence relations to 

partitions. A family 3 is a closure system on P if 

~t c 3 implies Q F E 3 (for 3' = @, we get 
F~ t 

X 6 3); 3 is a kernel system on 

U F E 3 (for 3 ~ = @, we get @ E 3). Thus 3 is a 
FE3 t 

closure kernel system iff 3 is a complete ring of 

sets. Further, 3 is a closure extension of ~(P) if 

is a closure system on P containing n(p). 
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PROPOSITION 4. 

N(P) 

f2(P) 

~(P). 

In the poset of all subsets of P, 

is the smalles t closure system containing H(P), 

is the ' smallest closure kernel system containing 

THEOREM 5 (Banaschewski [203]). An extension E 

of P is a complete join dense extension iff ~(E:P) 

is an o-is0morphism of E onto a closure extension of 

~(P). 

THEOREM 6 (Banaschewski [203], Bruns [208]). The 

following conditions on an extension E of P are 

equivalent: 

E is a maximal ~oin dense extension of P. 

E is a maximal join dense complete extension 

i) 

ii) 

P. of 

iii) T(E:P) is an o-isomorphism of E onto ~(P). 

iv) For every p E P, A ~ E, if p ~ suPEA then 

p ~ a for some a E A. 

The next theorem says, roughly, that for join 

dense extensions, "complete" pulls in the opposite 

direction from "meet dense" and that the normal com- 

pletion is the only "extension" they have in common. 

THEOREM 7 (Banaschewski [203], Bruns [208]). The 

follo~ing conditions on an extension E of P are 

equiva!ent: 

i) E is a minimal complete extension of 

ii) 

of P. 

P. 

E is a minimal ~oin dense complete extension 
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iii) E is a maximal join and meet dense extension 

of P. 

iv) E is u_~ t__oo equivalence unique join and meet 

dense complete extension of P. 

v) T(E:P) is an o-isomorphism of E onto N(P). 

Which posets P have the property that some of 

the sets ~(P), N(P), ~(P) coincide? Since ~ ~ ~(P) 

E ~(P), these two are always different, but we and 

have 

PROPOSITION 8 (Banaschewski [203]). 

n(P) = n(P) U [r 

PROPOSITION 9. 

lattice. 

iff P is dually well-ordered. 

N(P) = ~(P) iff P is a complete 

For categorical characterizations of some of these 

extensions see Banaschewski and Bruns [204], and for 

further information Schmidt [223], [224]. 

To every closure system corresponds a closure 

operator and conversely. Hence join dense complete 

extensions can be identified first with closure systems 

and then with closure operators. If P is a partially 

ordered semigroup (or universal algebra) a closure 

operator satisfying certain compatibility conditions 

can be used to construct extensions of P which are 

themselves semigroups (or universal algebras), for this 

topic see Bleicher and Schneider [206], Bleicher, 

Schneider and Wilson [207], Burgess and McFadden [209], 

Clifford [210] - [212], Krishnan [217], [218]. Essenti- 

ally the same idea is used in the abstract theory of 
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ideals, see Aubert [202], Fuchs [214], Lorenzen [219]. 

For extensions of ordered rings and semigroups, consult 

Bigard et Keimel [205], Fuchs [213], Keimel [215], 

Kohls [216], Lugowski [220] - [222]. 

BIBLIOGRAPHY 

Books and Lecture Notes 

The following is just a sample of books and 

lecture notes which contain further or full information 

on various subjects I have touched upon. In most of 

them references for further reading can be found. 

I. BAER, R. Linear algebra and projective geometry, 
Academic Press, 1952. 

2. CLIFFORD, A.H. and G.B. PRESTON, The algebraic 
theory of semigroups, Math. Surveys No. 7, Amer. 
Math. Soc., Providence, Vol. I, 1961; Vol. II, 
1967. 

3. FUCHS, L., Partially ordered algebraic systems, 
Addison-Wesley, Reading, 1963. 

4. HALL, M., The theory of groups, MacMillan, 
New York, 1959. 

5. JACOBSON, N., Structure of rings, Amer. Math. 
Soc. Colloq. Publ. Vol. 37, Providence, 1956. 

6. JAFFARD, P., Les syst~mes d'id~aux, Dunod, Paris, 
1960. 

7. KROHN, K., J. RHODES and B. TILSON, Lectures on 
finite semigroups, Vol. I and II, The Univ. of 
California at Berkeley, 1967. 

8. LJAPIN, E.S., Semigroups, Fizmatgiz, 1960 (in 
Russian); English translation: Amer. Math. Soc., 
2nd edition 1968. 

9. PETRICH, M., Topics in semigroups, The 
Pennsylvania State University, 1967. 

342 



PETRICH 61 

i0. PETRICH, M., Semigroups and rings of linear 
transformations, The Pennsylvania State 
University, Summer 1969. 

Ii. PLOTKIN, B.I., Automorphism groups of algebraic 
systems, Nauka, Moscow, 1966 (in Russian). 

12. R~DEI, L., Algebra, Vol. I, Pergamon Press, 
Oxford-New York, 1967. 

13. SPECHT, W., Gruppentheorie, Springer, 1956. 

Semigroups 

This is a list of all papers I am aware of con- 

cerning the translational hull, (ideal) extensions, 

densely embedded ideals, and some closely related sub- 

jects. 

14. AULT, J.E., Extensions of primitive inverse semi- 
groups, Doctoral Dissertation, The Pennsylvania 
State University, 1970. 

15. BERTHIAUME, P., The injective envelope of S-sets, 
Canad. Math. Bull. 10(1967), 261-273. 

16. CLIFFORD, A.H., Semigroups admitting relative 
inverses, Ann. of Math. 42(1941), 1037-1049. 

17. , Extensions of semigroups, Trans. 
Amer. Math. Soc. 68(1950), 165-173. 

18. COUDRON, A., Sur les extensions de demi-groupes 
! �9 

reclproques, Bull. Soc. Roy. Sci. LiSge 37(1968), 
409-419. 

19. D'ALARCAO, H., Idempotent separating extensions 
of inverse semigroups, J. Austr. Math. Soc. 
9(1969), 211-217. 

20. DELORME, M., Sur la platitude des demi-groupes 
de fractions, C.R. Acad. Sci., Paris 269(1969), 
630-632. 

21. DOTSON, W.G., Jr., A note on generalized semi- 
linear transformations, Math. Mag. 43(1970), 
147-149. 

343 



62 PETRICH 

22. FAJANS, V.G., Isomorphisms of semigroups of 
invertible linear transformations leaving a 
conus invariant, Izv. Vys. Uch. Zav. Mat. 12(91) 
(1969), 93-98 (in Russian). 

23. , Isomorphisms of semigroups of affine 
transformations, Sibirski Mat. Zh. 9(1970), 193- 
198 (in Russian). 

24. FORT, J., El~ments injectifs (ou compl~ments) 
dans les treillis modulaires, S~m. Dubreil-Pisot, 
Univ. de Paris 1963/64, no. 5, 23pp. 

25. GLUSKIN, L.M., On semigroups of matrices, Izv. 
Akad. Nauk SSSR 22(1958), 439-448 (in Russian). 

26. , Semigroups and rings of linear 
transformations, Doklady Akad. Nauk SSSR 127 
(1959), 1151-1154 (in Russian). 

27. , Semigroups and rings of endo- 
morphisms of linear spaces,lzv. Akad. Nauk SSSR 
23(1959), 841-870 (in Russian); Amer. Math. Soc. 
Translations 45(1965), 105-137. 

28. , Transitive semigroups of trans- 
formations, Doklady Akad. Nauk SSSR 129(1959), 
16-18 (in Russian). 

29. , Ideals of semigroups of trans- 
formations, Mat. Sbornik 47(1959), 111-130 (in 
Russian). 

30. , Densely embedded ideals of semi- 
groups, Doklady Akad. Nauk SSSR 131(1960), 1004- 
1006 (in Russian). 

31. , Semigroups and rings of endo- 
morphisms of linear spaces II, Izv. Akad. Nauk 
SSSR 25(1961), 809-814 (in Russian); Amer. Math. 
Soc. Translations 45(1965), 139-145. 

32. , Ideals of semigroups, Mat. 
Sbornik 55(1961), 421-448; Correction: ibid. 
73(1967), 303 (in Russian). 

33. , Semigroups of transformations 
(autoreferat of the doctoral dissertation), Usp. 
Mat. Nauk 17(106)(1962), 233-240 (in Russian). 

344 



PETRICH 63 

34. GLUSKIN, L.M., On dense embeddings, Dopovidi 
Akad. Nauk Ukrain. RSR 8(1962), 1003-1006 (in 
Ukrainian; Russian and English summaries). 

35. , On dense embeddings, Mat. Sbornik 
61(1963), 175-206 (in Russian). 

36. , Algebras of multiplace functions, 
Mezhv. Nauch. Simp. Obsh. Alg.,Tartu (1966), 32- 
37 (in Russian). 

37. , Automorphisms of semigroups of 
binary relations, Mat. Zap. Ural. Gos. Univ. 6, 
no. 1(1967), 44-54 (in Russian). 

38. , Dense embeddings in groups, lOth 
All-Union Algebra Coll. Summary of abstracts and 
papers 2(1969), 16-17 (in Russian). 

39. , On bi-ideals of semigroups, Izv. 
Vys. Uch. Zav. Mat. (in Russian) (to appear). 

40. , Dense embeddings in function 
algebras, Dopovidi Akad. Nauk Ukrain. RSR, Series 
A (in Ukrainian; English sun~nary) (to appear). 

v/ 

41. GORALCIK, P., On translations of semigroups III. 
Transformations with increasing and trans- 
formations with irregular surjective part, Mat. 
Cas. 18(1968), 273-282 (in Russian). 

42. GORALC{K, P. and Z. HEDRL~N, On translations of 
semigroups II. Surjective transformations, Mat. 
Cas. 18(1968), 263-272 (in Russian). 

43. GRILLET, M.P., On strongly strict extensions of 
semigroups (to appear). 

44. GRILLET, P.A., Sur les extensions id~ales d'un 
demi-groupe, S~m. Dubreil-Pisot, Univ. de Paris 
18(1964/65), no. I, 27 pp. 

45. , Extensions id~ales strictes 
et pures d'un demi-groupe, S~m. Dubreil-Pisot, 
Univ. de Paris 18(1964/65), no. II, 21 pp. 

46. , The completion of partial semi- 
groups and the existence of ideal extensions (to 
appear). 

47. GRILI~T, P.A. and M.P. GRILLET, On strict ex- 
tensions of semigroups (to appear). 

345 



64 PETRICH 

48. GRILLET, P.A. and M. PETRICH, Ideal extensions of 
semigroups, Pacific J. Math. 26(1968), 493-508. 

49. , Free products of 
semigroups amalgamating an ideal, J. London Math. 
Soc. (to appear). 

50. HALL, R.E., The structure of certain commutative 
separative and commutative cancellative semi- 
groups, Doctoral Dissertation, The Pennsylvania 
State University, 1969. 

51. HANCOCK, V.R., On complete semimodules, Proc. 
Amer. Math. Soc. 11(1960), 71-76. 

52. , Commutative Schreier semigroup 
extensions of a group, Acta Sci. Math. Szeged 
25(1964), 129-134. 

I 
53. HEDRLIN, Z., Commutative systems as generalized 

semigroups, Doklady Akad. Nauk SSSR 164(1965), 
483-486 (in Russian). 

I vl 
54. HEDRLIN, Z. and P. GORALCIK, On translations of 

semigroups I. Periodic and quasi-periodic trans- 
formations, Mat. Cas. 18(1968), 161-176 (in 
Russian). 

55. HEUER, C.V. and D.W. MILLER, An extension problem 
for cancellative semigroups, Trans. Amer. Math. 
Soc. 122(1966), 499-515. 

56. INASARIDZE, H.N., Extensions of semigroups, Soob. 
Akad. Nauk Gruz. SSR 33(1964), 263-269 (in 
Russian). 

57. , Extensions of regular semi- 
groups, Soob. Akad. Nauk Gruz. SSR 39(1965), 
3-10 (in Russian). 

58. , Extensions of semigroups with 
zero, Soob. Akad. Nauk Gruz. SSR 41(1966), 513- 
520 (in Russian). 

59. , Extensions of commutative 
inverse semigroups, Soob. Akad. Nauk Gruz. SSR 
46(1967), 11-18 (in Russian). 

346 



PETRICH 65 

60. KALMANOVICH, A.M., Semigroups of partial endo- 
morphisms of a graph, Dopovidi Akad. Nauk Ukrain. 
RSR, no. 2(1965), 147-150 (in Ukrainian;Russian 
and English summaries). 

61. , The semigroup of one-to-one 
partial endomorphisms of a graph, Vest. Harkov. 
Gos. Univ. Ser. Meh.-Mat. 33(1967), 54-64 (in 
Russian). 

62. , Densely embedded ideals of 
semigroups of multivalued partial endomorphisms 
of a graph, Dopovidi Akad. Nauk Ukrain. RSR, no. 5 
(1967), 406-410 (in Ukrainian; Russian and English 
summaries). 

63. KIMURA, N., T. TAMURA and R. MERKEL, Semigroups 
in which all subsemigroups are left ideals, 
Canad. J. Math. 17(1965), 52-62. 

64. KUZNECOV, V.I., On h-isomorphisms of a semigroup 
with a densely embedded completely simple ideal, 
Dopovidi Akad. Nauk Ukrain. RSR, no. ii (1964), 
1429-1431 (in Ukrainian; English summary). 

65. LALLEMENT, G., Demi-groupes r~guliers, Annali 
Mat. pura ed appl. 77(1967), 47-130. 

66. LALLEMENT, G. and M. PETRICH, Irreducible matrix 
representations of finite semigroups, Trans. 
Amer. Math. Soc. 139(1969), 393-412. 

67. , Extensions of a 
Brandt semigroup by another, Canad. J. Math. 
(to appear). 

68. LTAPIN, E.S., Associative systems of all partial 
transformations, Doklady Akad. Nauk SSSR 88(1953), 
13-15; Correction: ibid 92(1953), 692 (in 
Russian). 

69. , Abstract characteristic of certain 
semigroups of transformations, Uch. Zap. Len. 
Gos. Ped. Inst. 103(1955), 5-30 (in Russian). 

70. , On representations of semigroups 
by partial transformations, Mat. Sbornik 52(1960), 
589-596 (in Russian). 

347 



66 PE TRI CH 

71. LJAPIN, E.S., On conditions for dense embedding 
in semigroups, Uch. Zap. Len. Gos. Ped. Inst. 
238(1962), 3-20 (in Russian). 

72. MALININ, V.V., On the semigroup of stochastic 
matrices, First All-Union Symp. Theory Semigr. 
Sverdlovsk (1969), 53-55 (in Russian). 

73. , Abstract characteristic of the 
semigroup of stochastic matrices, Mat. Nauch.- 
Tekh. Konf. issue 2, Izd. VVITKY, Leningrad 
(1969), 65-71 (in Russian). 

74. McNEIL, P.E., The structure of certain semigroups 
with two idempotents, Doctoral Dissertation, The 
Pennsylvania State University, 1968. 

75. , Group extensions of null semigroups, 
Duke Math. J. (to appear). 

76. MIHALEV, A.V., Isomorphisms of the semigroup of 
endomorphisms of modules, I, Algebra i Logika 
5(1966), 59-67, (in Russian). 

77. , Isomorphisms of the semigroup of 
endomorphisms of modules, II, Algebra i Logika 
6(1967), 35-47 (in Russian). 

78. MIHALEV, A.V. and M.A. SHATALOVA, Automorphisms 
and antiautomorphisms of the semigroup of 
invertible matrices with nonnegative elements, 
Mat. Sbornik 81(1970), 600-609 (in Russian). 

79. PETRICH, M., On extensions of semigroups de- 
termined by partial homomorphisms, Nederl~ Akad. 
Wetensch. Indag. 28(1966), 49-51. 

80. Sur certaines classes de demi- 
groupes Ill, Acad. Roy~ Belg. CI. Sc. 53(1967), 
60-73. 

81. , Inflation of a completely 0-simple 
semigroup, Bull. Soc. Math. Belg. 19(1967), 
42-54. 

82. , Congruences on extensions of semi- 
groups, Duke Math. J. 34(1967), 215-224. 

83. , The translational hull of a com- 
pletely O-simple semigroup, Glasgow Math. J. 
9(1968), i-ii. 

348 



PETRICH 67 

84. PETRICH, M., Translational hull and semigroups 
of binary relations, Glasgow Math. J. 9(1968), 
12-21. 

85. , Representations of semigroups and 
the translational hull of a regular Rees matrix 
semigroup, Trans. Amer. Math. Soc. 143(1969), 
303-318. 

86. , The semigroup of endomorphisms of a 
linear manifold, Duke Math. J. 36(1969), 145-152. 

87. , Certain dense embeddings of regular 
semigroups,Trans. Amer. Math. Soc. (to appear). 

88. PETRICH, M. and P.A. GRILLET, Extensions of an 
arbitrary semigroup, J. reine angew. Math. (to 
appear). 

89. PONIZOVSKI, I.S., Inverse semigroups with a 
finite number of idempotents, Doklady Akad. Nauk 
SSSR 143(1962), 1282-1285 (in Russian). 

90. , On semigroups with given ideal 
chains, Mat. Sbornik 61(1963), 377-388 (in 
Russian). 

91. , Transitive representations by 
transformations of a class of semigroups, 
Sibirski Mat. Zh. 5(1964), 896-903 (in Russian). 

92. , A remark on inverse semigroups, 
Usp. Mat. Nauk 20(126)(1965), 147-148 (in 
Russian). 

93. POPOVA, L.M., Semigroups of partial endomorphisms 
of a set with a relation, Sibirski Mat. Zh. 4 
(1963), 309-317 (in Russian). 

94. POSEY, E.E., Endomorphisms and translations of 
semigroups, M.A. Thesis, University of Tennessee, 
1949. 

95. RABEN, A., On densely embedded ideals in 
categories, Research in Algebra, Coll. of papers, 
Saratov Univ. (1969), 41-51 (in Russian). 

96. R~DEI, L., Die Verallgemeinerung der Schreierschen 
Erweiterungstheorie, Acta Sci. Math. Szeged 14 
(1952), 252-273. 

349 



68 PETRICH 

97. 

98. 

99. 

i00. 

I01. 

I02. 

I03. 

104. 

i05. 

106. 

107. 

108. 

SCHEIN, B.M., On translations in semigroups and 
groups, Volzhski Mat. Sbornik 2(1964), 163-169 
(in Russian). 

, Atomic semiheaps and involutory 
semigroups, Izv. Vys. Uch. Zav. Matematika, no. 3 
(1965), 172-184 (in Russian). 

, Representation of semigroups, First 
All-Union Symp. Theory Semigr., Sverdlovsk (1969), 
79-89 (in Russian). 

, Ordered sets, semilattices, dis- 
tributive lattices and Boolean algebras with 
homomorphic endomorphism semigroups, Fund. Math. 
68(1970), 31-50. 

SCHREIER, J., Uber Abbildungen einer abstrakten 
Menge auf ihre Teilmengen, Fund. Math. 28(1937), 
260-264. 

SCHWARZ, S., Semigroups in which every proper 
subideal is a group, Acta Math. Sci. Szeged 21 
(1960), 125-134. 

SHEVRIN, L.N., On densely embedded ideals of 
semigroups, Doklady Akad. Nauk SSSR 131(1960), 
765-768; Correction: ibid. 164(1965), 1214 (in 
Russian). 

, Densely embedded ideals of semi- 
groups and associative rings, Semigroup Symposium, 
Smolenice, Czechoslovakia, 1968 (in Russian). 

, Densely embedded ideals of semi- 
groups, Mat. Sbornik 79(1969), 425-432 (in 
Russian). 

SHIRJAEV, V.M., On the semigroup of pairs of 
inner translations of a semigroup, Vesci Akad. 
Nauk BSSR, Ser. fiz.-matem, n. no. 4 (1969), 
99-107 (in Russian). 

SHNEPERMAN, L.B., Semigroups of endomorphisms of 
quasi-ordered sets, Uch. Zap Len. Gos. Ped. Inst. 
238(1962), 21-37 (in Russian). 

, Semigroups of continuous 
functions, Doklady Akad. Nauk SSSR 144(1962), 
509-511 (in Russian). 

350 



PETRICH 69 

i09. 

ii0. 

IIi. 

I12. 

113. 

114. 

115. 

116. 

I17. 

118. 

119. 

120. 

121. 

122. 

SHNEPERMAN, L.B., Semigroups of continuous trans- 
formations and homeomorphisms of a simple arc, 
Doklady Akad. Nauk SSSR 146(1962), 1301-1304 (in 
Russian). 

SHUTOV, E.G., On semigroups of almost identical 
transformations, Doklady Akad. Nauk SSSR 134 
(1960), 292-295 (in Russian). 

, On translations of semigroups, Usp. 
Mat. Nauk 19(118)(1964), 215-216 (in Russian). 

SKORNJAKOV, L.A., Left chained semigroups, 
Sibirski Mat. Zh. 11(1970), 168-182 (in Russian). 

l 

SZASZ, G., Die Translationen der Halbverb~nde, 
Acta Sci. Math. Szeged 17(1956), 165-169. 

l 

SZASZ, G. und J. SZENDREI, "Uber die Translationen 
der Halbverb~nde, Acta Sci. Math. Szeged 18(1957), 
44-47. 

TAMURA, T., The theory of construction of finite 
semigroups II, Osaka Math. J. 9(1957), 1-42. 

, Notes on translations of a semigroup, 
K-Odai Math. Sem Rep. 10(1958), 9-26. 

, Decomposability of extension and its 
application to finite semigroups, Proc. Japan 
Acad. 43(1967), 93-97. 

TAMURA, T. and D.G. BURNELL, A note on the ex- 
tension of semigroups with operators, Proc. 
Japan Acad. 38(1962), 435-438. 

TAMURA, T. and N. GRAHAM, Certain embedding 
problems of semigroups, Proc. Japan Acad. 40 
(1964), 8-13. 

TROHIMENKO, V.S., On algebras of multiplace 
partial transformations, Trudy Mol. Uch. Mat. i 
Meh., Izd. Saratov. Univ. (1969), 136-142 (in 
Russian). 

TULLY, E.J., Representations of a semigroup by 
transformations on a set, Doctoral Dissertation, 
Tulane University, 1960. 

, Semigroups in which each ideal is a 
retract, J. Austr. Math. Soc. 9(1969), 239-245. 

351 



70 PETRICH 

123. 

124. 

125. 

126. 

127. 

128. 

129. 

130. 

131. 

132. 

133. 

134. 

VAZHENIN, Yu. M., Directed transformations of an 
arbitrary ordered set, First All-Union Symp. 
Theory Semigr., Sverdlovsk (1969), 8-9 (in 
Russian). 

, Semigroups of inf-endomorphisms 
of ordered sets, Mat. Zap. Ural. Gos. Univ. 7, 
no. i (1969), 23-34 (in Russian). 

VERBEEK, L.A.M., Semigroup extensions, Doctoral 
Dissertation, Delft, 1968. 

WARNE, R.J., Extensions of Brandt semigroups, 
Bull. Amer. Math. Soc. 72(1966), 683-684. 

, Extensions of completely 0-simple 
semigroups by completely O-simple semigroups, 
Proc. Amer. Math. Soc. 17(1966), 524-526. 

, Extensions of Brandt semigroups and 
applications, Illinois J. Math. 10(1966), 652- 
660. 

WIEGANDT, R., On complete semi-groups, Acta Sci. 
Math. Szeged 19(1958), 93-97. 

On complete semi-modules, Acta Sci. 
Math. Szeged 19(1958), 219-223. 

YAMADA, M., Construction of finite commutative 
semigroups, Bull. Shimane Univ. 15(1965), i-ii. 

, Con~nutative ideal extensions of null 
semigroups, Mem Fac. Lit. Sci. Shimane Univ. I 
(1968), 8-22. 

YOSHIDA, R, Ideal extensions of semigroups and 
compound semigroups, Mem. Res. Inst. Sci. Eng. 
Ritumeikan Univ. 13(1965), 1-8. 

ZARETSKI, K.A., Abstract characteristic of the 
semigroup of all binary relations, Uch. Zap. Len. 
Gos. Ped. Inst. 183(1958), 252-263 (in Russian). 

352 



PETRICH 71 

Rings 
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tensions of rings, holomorphs of rings, adjunction of 

an identity, rings of endomorphisms of a module, rings 

with unique addition, and some closely related topics. 
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references for further study. 
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subject. It can hopefully be used as a starting list 

of references for a study of extensions of partially 

ordered sets, extensions of partially or fully ordered 

algebras and in particular semigroups, and abstract 

ideal theory. 

202. 

203. 

204. 

205. 

206. 

AUBERT, K.E., Theory of x-ideals, Acta Math. 107 
(1962), 1-51. 

BANASCHEWSKI, B., H~llensysteme und Erweiterung 
von Quasi-Ordnungen, Zeitschr. Math. Logik 
Grundl. Math. 2(1956), 117-130. 

BANASCHEWSKI, B. and G. BRUNS, Categorical 
characterization of the MacNeille completion, 
Archiv Math. 18(1967), 369-377. 

BIGARD, A., et K. KEIMEL, Sur les endomorphismes 
I . I 

conservant les polaires d'un groupe retlcule 
archim~dien, Bull. Soc. Math. France 97(1969), 
381-398. 

BLEICHER, M.N. and H. SCHNEIDER, Completions of 
partially ordered sets and universal algebras, 
Acta Math. Acad. Sci. Hung. 17(1966), 271-301. 

358 



PETRICH 77 

207. 

208. 

209. 

210. 

211. 

212. 

213. 

214. 

215. 

216. 

217. 

218. 

219. 

BLEICHER, M.N., H. SCHNEIDER and R.L. WILSON, 
Permanence of identities on algebras (to appear). 

BRUNS, G., Darstellungen und Erweiterungen 
geordneter Mengen. I. J. reine angew. Math. 209 
(1962), 167-200. 

BURGESS, D.C.J. and R. McFADDEN, Systems of ideal 
in partially ordered semigroups, Math. Zeitschr. 
79(1962), 439-450. 

CLIFFORD, A.H., Naturally totally ordered 
commutative semigroups, Amer. J. Math. 76(1954), 
631-646. 

, Completion of totally ordered 
commutative semigroups, Duke Math. J. 26(1959), 
41-59. 

, Completions of partially ordered 
semigroups, Semigroup Symp., Smolenice, 
Czechoslovakia, 1968. 

FUCHS, L., On the ordering of quotient rings and 
quotient semigroups, Acta Sci. Math. Szeged 22 
(1961), 42-45. 

, On partially ordered algebras, II, 
Acta Sci. Math. Szeged 26(1965), 35-41. 

KEIMEL, K., Le centro~de et le bicentro~de de 
l~ certains anneaux retlcul~s, Comptes Rendus, Acad. 

Sci., Paris 267 (1968), 589-591. 

KOHLS, C.W., Ordered extensions of ordered rings, 
Duke Math. J. 35(1968), 567-574. 

KRISHNAN, V.S., Les alg~bres partiellement 
! 

ordonnees et leurs extensions, Bull. Soc. Math. 
France 78(1950), 235-263. 

. , Contribution a l'~tude des 
algebres partiellement ordonn~es et de quelques 
structures abstraites, Doctoral Dissertation, 
University of Paris, 1952. 

LORENZEN, P., Abstrakte Begr'dndung der multi- 
plikativen Idealtheorie, Math. Zeitschr. 45(1939), 
533-553. 

359 



78 PETRICH 

220. 

221. 

222. 

223. 

224. 

LUGOWSKI, H., Die Charakterisierung gewisser 
geordneter Halbmoduln mit Hilfe der 
Erweiterungstheorie, Publ. Math. Debrecen 13 
(1966), 237-248. 

, Uber gewisse Erweiterungen von 
positiv geordneten Halbmoduln, Publ. Math. 
Debrecen 15(1968), 303-310. 

, Uber geordnete (kommutative) 
Halbmoduln mit der Eigenschaft (a<b=~x(a+x =b)), 
Semigroup Symp., Smolenice, Czechoslovakia, 1968. 

SCHMIDT, J., Einige grundlegende Begriffe und 
S~tze aus der Theorie der H~llenoperatoren, Ber. 
Math. Tagung Berlin (1953), 21-48. 

, Zur Kennzeichnung der Dedekind- 
MacNeilleschen H~lle einer geordneten Menge, 
Archiv Math. 7(1956), 241-249. 

Department of Mathematics 
Pennsylvania State University 
University Park, Pennsylvania 
USA 

Received March 9, 1970 

16802 

3~ 


