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CAYLEY FUNCTIONS 

David Zupnik 

Communicated by B. M. 3chein 

An indexed function h a on a set S may be viewed as a 
partial groupoid aX S ~ S. In this sense the structure of 
a semigroup is the indexed composite of the structures of 
its inner translations. ~Ii the possible algebraic (orbit@ 
structures of these functions are fully described~ and 
those elements which may serve as index for a potential 
inner translation are specified. 

A considerable part of group theory has developed 

historically through the characterization of inner trans- 

lations as regular permutations I) . The problem of charac- 

terizing inner translations of semigroups was raised by 

Schein [6] and solved by Goral~ik and Hedrl~ [2]~[3~[4]. 

An alternative~ and possibly simpler~ developmenh of the 

subject might still be of interest. It is the purpose of 

the present note to outline such an alternative development 

A preliminary account of these investigations was presented 

at the Seventh International Symposium on Functional 

Equations~ September 1969 (see [8] ). 

In the sequel f will denote a function mapping a non- 

empty set S into itself~ i.e.~ Ran f ~ Dom f = S. For any 

positive integer n~ fn denotes the n th iteraue of f. By 

fo we mean the identity function on S~ so that fOx = x for 

every x e S. Suppose there is an integer s such that 

I) A function f is an inner translation of a group on S 
if and only if f is a regular permutation; i.e.~ Ran f = 
Dom f = S~ f is one-one and fma=a for some a& S implies 
f~x= x for every x e S. The proof for the "only if" part 
of the statement can be found e.g. in Carmichael [13 for 
finite groups; the first complete proof is apparently due 
to Schein [6]. 
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2 ZUPNIK 

Ran fn+l = Ran fn if and only if n ~ s; then s will be 

called the (range)-stabilizer of f. If f has a stabilizer 

s~ then by P2 2) the set 

Bf = {b G Dom flfnbe Ran fs if and only if n ~ s-l} (I) 

is non-empty. Clearly Ran fs = Ran fs+l implies Ran fs = 

Ran fs+c for every c ~ 0. 

In the following three theorems we characterize all 

functions f which are inner translations of some semigroup 

on S; we call such functions Caylev functions. 3) 

THEOREM i. A function f with no stabilizer is a 

Cayley function if and only if there exists an element 

a e S such that for every n ~ 0 r fna ~ Ran fn+l. 

THEOREM 2. Let f be a function with stabilizer s and 

such that f~Ran fs is one-one. Then f is a Cayley func- 

tion if and only if there is a b I E Bf such that fmb I = 

fnb I implies fm+l = fn+l. 

THEOREM 3. Let f be a function with stabilizer s and 

such that f~Ran fs is not one-one. Then f is a Cayley 

function if and only if there is a b I e Bf such that 

fmb I = fnb I implies m = n~ and f has full branches at 

fnb I for every n ~ s-l. 

The last condition in Theorem 3 uses the following 

definition: Let f be a function~ a an element of S and n 

a positive integer. Then f has a full branch at fna if 

there is a sequence x m (m=n~ n-l~.., i, 0 r -i~ ...) of 

distinct elements of S such that fx m = Xm+ 1 for m < n~ 

fx n fna and x n ~ fn-la. The x m = 's themselves are ele- 

ments of the full branch. 

It will be useful to introduce a notation which 

allows us to read the same equation either as involving 

2) Some properties of functions which will be used 
throughout the paper are gathered in the appendix and 
labeled Ply P2~ .... 

3) Perhaps "Cayley-Suschkewitsch" functions would be 
more appropriate~ as Suschkewitsch was the first to 
generalize Cayley's theorem to semigroups [7 3 . 
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ZUPNIK 3 

binary operations (two-place functions) or as involving 

one-place functions~ e.g. inner translations. We use 

~ukasiewicz notations; in particular then~ the associa- 

tivity equation x.(y.z) = (x.y).z~ or F(x~F(y~z)) = 

F(F(x~y)~z)~ will be written as: 

FxFyz = FFxyz. (2) 

Moreover~ if F is a binary operation on a set S~ and a 6 S~ 

we define Fa to be the one-place function on S such that 

(Fa)x = Fax for every x ~ S. Then (2) may be read as 

(Fx)(Fy)z = (F(Fxy))z for every z E S~ or 

FxFy = FFxy (3) 

which is the regular representation theorem ("Cayley's 

theorem") for semigroups. It follows that a function f is 

a Cayley function if and only if there exists an element 

a s f = S and a semigroup-operation H on S (briefly a 

semigroup H) such that f = Ha. Some additional direct 

consequences of equation (3) are given by: 

LE~e4A !. Let f = Hay where H is a semigroup. Then 

fnH x = (Ha)nHx=H(Ha)nx = Hfnx~ 

and in particular 

Hfn-i a = fn-iHa =fn-lf = fn = (Ha)n 

If we set f = Ha I and fn-la I = a n for all n > 0 r then 

Ha n = Hfn-lal = fn = (Hal)n" 

L~MMA 2. Let f = Ha for some semigroup H. Then 

fma = fna for any m~n ~ 0 implies fm+l = fn+l. 

PROOF. Let f = Ha. Since fma = fna implies Hfma = Hfna 

we have fm+l = fn+l by virtue of Lemma i. 

LEMMA 3. Let f be a Cayley function and let b~x e S 

be such that fm+tx = fmb for some m ~ 0 r t ~ 2. Then 

f = Hb only if Ran fm+2 = Ran fm+l. 

PROOF. Let f = Hb and let fm+tx = fmb. Hence Hfm+tx = 

Hfmb. By Lemma i~ we have fm+tHx = fm+l whence 

Ran fm+l ~ Ran fm+t by PI. Now if t ~ 2 Pl also yields 

Ran fm+t ~ Ran fm+l whence Ran fm+2 = Ran fm+l. 

For x~y in Dom f~ we consider the set N(x~y) of pairs 

(r~q) of non-negative integers such that frx = fqy. If 

N(x~y) is non-empty~ then x and y are said to be in the 

same f-orbit; and in that case we define ~xy via: 

351 



4 ZUPNIK 

~xy = ~xy - ~xy~ (4) 

where ~xy = min{rl(r~q) �9 N(x~y)} and Xxy = 

min{q}f ~XYx = f~ }. 

PROOF OF THEOREM I: Let f have no stabilizer~ i.e.~ 

Ran fn+l ~ Ran fn for every n ~ 0. Hence fm ~ fn whenever 

m and n are distinct. If f =Ha'~ we need by Lemma 2 that 

fma' ~ fna' for distinct m and n~ i.e.~ fma' = fna' 

implies m = n. By Lemma 3~ if fm+tx = fma' for some x~ 

then t ~ i. If t < 1 for any such x then we chose a = a'. 

If there exists x such that fm+ix = fma'~ then we chose a 

to be one such x. Clearly in either case fma = fna implies 

m = n. Now fna & Ran fn+l implies there exists an element 

y such that fn+ly = fna~ which is impossible since a was 

chosen so that fmx = fna implies m ~ n. This proves the 

necessity of the conditions of Theorem i. 

Now suppose that there is an element a ~ S~ which 

satisfies the conditions. We construct a grollpoid H by: 

For every y & S 

I f~ax+ly if x and a are in the same f-orbit 
Hxy 

I x~ otherwise. 

Clearly~ the way a was chosen assures that 6ax ~ 0~ whence 
fSax+l is well-defined. Straightforward computation will 

show that H is a semigroup with f = Ha. Q.E.D. 

L~MMA ~. Let f = Hb where H is a semigroup. If f 

has stabilizer s~ then fS-2b ~ Ran fs. 

PROOF. Suppose there exists an element x e S such that 

fS-2b = fSx. By Lemma 3 this implies that Ran fs-i = 

Ran fs+l~ and hence by P1 that Ran fs-i = Ran fs which 

contradicts the fact that the range-stabilizer of f is s. 

Note the two possibilities: i) fS-lb e Ran fs 

whence b e Bf [cf.(1)]. In this case we define b s to be 

fS-lb~ 2) fS-lb ~ Ran fs but fs-lfb e Ran fs. In this 

case we define b to be fSb. We denote in this case fb 
s 

= fS-lbl~ = (which is in Bf) by bl~ so that b s and Hb n fn 

(Lemma i). 

In general if x I e S then we denote fnx I by Xn+ 1 �9 
L~4A 5. Let f~H~b be as in Lemma 4. Then for every 

n ~ 1 there exists a sequence of elements a e Ran fs 
s-n 
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ZUPNIK 5 

such that fas_ n = as_n+ 1 and fas_ 1 = b s- 

PROOF. By P2 Ran(f~Ran fs) = Dom (flRan fs)~ whence by P3 

there exist elements x n & Ran fs such that fnx n = b s for 

every n > 0. A sequence {as_n} may then be chosen~ using 

Axiom of Choice if necessary. Once the element as_ 1 has 

been chosen~ we extend the sequence {aml to all m ~ 0 by 
= fn+l a defining as+ n s-i for n ~ 0. Note that this 

implies that a m = b m for m ~ s. 

PROOF OF TH~)REM 2. If f = Hb~ then Lemma 4 estab- 

lishes the existence of an element b e S such that 

fS-2b ~ Ran fs while Le~aa 2 shows that fmb = fnb implies 

fm+l = fn+l. If b e Bf we chose b to be the element b I in 

the statement of the theorem. If b ~ Bf we chose fb as b I. 

In either case b I clearly satisfies the conditions of the 

theorem. This proves the necessity. 

To prove sufficiency~ let f~b I be as in the statement 

of the theorem. Then for every x e S there exists a 

smallest integer m (0 ~ m ~ s) such that fmx & Ran fs and 

a unique element px - Ran fs (since f Ran fs is one-one) 

such that fmpx = fmx. This defines a function p with 

Dom p = S~ Ran p = Ran fs 2 p = p~ and 

pIRan p = p~ p = f~ fs. 

Hence p(f[Ran fs) = f~Ran fs. 

Since f~Ran fs is not only one-one~ but a permutation 

(by P2)~ the iterates (flRan fs)n are well defined for all 

integers n. It follows that (f[Ran fS)mp(f[Ran fS)np = 

(flRan fs)m+np for all integers m~n. Clearly px = y 

implies fSx = fSy~ whence by P4 fSp = fs. And since fSp = 

(fS~Ran p)p = (fSlRan fS)p = (f~Ran fS)Sp~ it follows that 

fs = (f~Ran fs)sp. 

For x ~ S let dx = ~blX + 1 [see (4)] . Define a 

groupoid H on S by: 

For every y % S 
fdXy 

Hxy = (flRan fS)~y 

x 

if ~blX < s-l~ 

if ~blX ~ s-l, 

if x and b I are not in the 
same f-orbit. 

Making use of the relations between the functions f and p 
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6 ZUPNIK 

indicated above one easily establishes that for a (as 
n 

defined in Lemma 5) Ha n = (f~Ran fS)np~ Hb n = fn and in 

particular Hb I = f. Straightforward computation will show 

that H is a semigroup~ which proves our theorem. An alter- 

nate simpler method to prove that H is a semigroup is out- 

lined at the end of the proof for Theorem 3. 

PROOF OF THEOREM 3. If f = Hb for some semigroup H 

and some b 6 S then exactly as in the proof of Theorem 2~ 

we notice that either b or fb e Bf. We chose b I to be 

whichever of b~fb is in Bf~ and set fnb I = bn+ I. By 

Lemmas 4 and 5 there exists a sequence {anl such that 

fa n = an+ 1 for every integer n~ and a n = b n for every n ~s. 

But now with flRan fs assumed to be not one-one~ we 

can show that f must have full branches at b n for every 

n ~ s. To do this we first show that Ha_ib n ~ bn_ 1 for 

every n ~ i. We consider first the case b e Bf. Then 

f = Hb I. Suppose Ha_ib n = bn_ I. This would imply 

HHa_Ib n = Ha_iHb n = Ha_ifn = (Ha_if) fn-i = Hbn_ 1 = fn-i . 

Hence by P4~ (Ha_if) IRan fn-i = Ha_l(flRan fn-l) = 

fOlRan fn-i which is impossible since flRan fn-i being 

an extension of fJRan fs is not one-one. Therefore~ 

Ha_ib n ~ bn_ I. This shows that Ha_l ~ Hb m for any posi- 

tive integer m~ whence a_l ~ bm~ and the a n are distinct 

from any b m and from each other. Hence the terms of the 

sequence {antn ~ s-l~ are the elements of a full branch 

of f at b . 
s 

Now fS+iHa_ib n = HfS+la_ib n = Hbsb n = fSbn = bn+s 

whence TblHa_ib n (briefly~ tn) exists~ and 0 < tn ~ s+l~ 

for every n > i. Therefore the terms of the sequence 

{Hambiim < ti-l~ for any given i ~ 1 form a full branch of 

f at bi+ti_l. Note that (i+ti-l) cannot be smaller than s~ 

since the existence of a full branch of f at b I for i < s 

will cause b I not to be an element of Bf. Therefore tl = s 

or tl = s+l~ i.e.~ Ha_ib I is an element of a full branch of 

f at either b s or bs+ I. To assure the existence of a full 

branch of f at b n for every n > s it is necessary that the 

equation n = i + ti - 1 is solvable for every n > s. This 
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ZUPNIK 7 

follows without difficulty once we show ~hat t(i+l) ~ ti 

for every i ~ i~ which we do as follows: 

From ftiHa_ibi = bi+ti_l ~ we have 

HftiHa_lbi =ftiHa_lI~ i =ftiHa lfi  =Hbi+ti_l=fi+ti 1. 

Hence ftiHa ibi+l = ftiHa_iflb I = fi+ti-lb I = bi+ti ~ 

whence t(i+l) ~ ti. 

Finally we note that the existence of full branches 

of f implies that for distinct m and n fn ~ fm. Hence 

the necessity of the condition fmb I = fnb I implies m = n 

follows from Lemma 2. This completes the proof for the 

case b e Bf; and the proof for the case fb e Bf is 

entirely similar. 

PROOF OF SUFFICIENCY. Let f~b I be as in the state- 

ment of the theorem. Then the elements any n < s are the 

elements of a branch of f at bs; and for every i ~ i~ we 

pick one full branch at bs+ i and label its element ami ~ 

m < s so that fami = am+l~ i for m < s-l~ and fa s 1 
- ~i = as+i" 

Now by the Axiom of Choice there exists a function g such 

that Dom g = Ran f~ gx = y implies fy = x~ and which has 

the following properties: 

Ran(g~Ran fs) c Ran fs - -  

gami = am_l~i~ 
I bn_ if n < s~ 

gb n = 
[as_l~n_ s if n ~ s~ 

ga n = an_ 1 for n < s. 

Let dx = ~blX + 1 [see (4)]. Define a function p on 

S by: 
ao dx if TblX < s-l. 

px = 

gqfq for any other x e S~ where q > 0 is 
the smallest integer such that 
fqx ~ Ran fs. 

Note that for f as in the theorem TblX < s-i implies 

dx >i I~ so that a0~dx is well defined. 

We define a groupoid H by: For every y e s 
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8 ZUPNIK 

Hxy = 

-fdXy if ~blX < s-l~ 

fdXpy if ~ blX = s-i and dx ~ O~ 

g-dXy if ~ blX = s-i and dx ~ 0~ 

Has_t fc-s if ~boX > s-l~ where t = ~blX 

and c= ~blX+ I. 

x if x and b I are not in the same 
f-orbit. 

Hamb i = ami for every m < s~ and every b i- 

Essentially~ H has been defined by specifying Hx for 

every x e S. Note that although Dom gn ~ Dom f~ we have 

Dom gnp = Dom p = S; this is because Ran p ~ Ran fs 

Ran fn ~ Dom gn 

From the above definition we have Ha = fnp if n ~ 0 
n 

= = fn and in particular Hb I =f. and Ha n g-np if n ~ 0; Hb n 

It remains to prove that H is a semigro~p. It would be 

possible but very laborious to prove this directly. It is 

much simpler to prove the equivalent condition (Hx)(Hy) = 

H(Hxy). To do this we require the following easily veri- 

fied relations between f~g~p and k x where k x is the 

constant function with value x. 

RI. fnp = fn if and only if n ~ s. 

R2. pfnp = pfn. 

R3. pgnp = gnp. 

fn-mp if n-m ~ 0 

R4. fngmp = gm-np if n-m ~ 0. 

R5. Hykx = ~yx" 

We shall outline part of the argument (the remainder is 

similar). From the definition of a it follows that 
ml 

T blami blam i fi = s-m~ ~ = s+i-l~ whence Hami = Ha m 

= Ha Hb = HHa b . 
m 1 ml 

Let n < s. Then applying RI.~ resp. R2~ we have: 

=Hf s'-n =HHb a . Hbs_nHan = fs-nfnp = fSp = fs = Hb s an s-n n 

Has_nHan = fS-npfnp = fS-npfn = Ha = Hfs-n a = 
s-n~n on 

s-n 
=Hf pa n = H Has_nan" 
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Let m+n-u > 0 > n-u. Then 

HamnHa_u v = fmpfngUpfV 

= fmpgU-npfV (using R4) 

= fmgU-npfV (R3) 

= fm+n-UpfV (R4) 

= Ham+n_u~ v = Hfman_u~ v = Hfmpan_u~ v = Hfmpfna_u v =HHamna_u v. 

Finally we note that~ if x is not in the same f-orbit with 

bl~ neither is fx = HblX; we have~ 

HblHx=Hblk x=k~Dlx = HHblX (R5). 

Theorem 3 immediately yields the following corollary~ 

which is a generalization of Theorems III 6.8~ 6.9~ 6.11 

in [ 4 ] .  
THEOREM 4. The semigroup H has a subsemigro~p H' 

with a magnifying element a~ i.e. ~ a is an element such 

that Ran H'a = Dora H'a~ and H'a is not one-one~ if and 

only if (i) there exists an element a_l such that 

HaHaa_l = a (i.e.~ Haa_l is a right identity for the 

particular element a)~ (ii) Ha_la ~ Haa_l ~ and (iii) the 

subsemigroups generated by a and a_l are each infinite. 

If (i)~ (ii)~ and (iii) hold then H' = HI(Ran Ha) 2 

APPENDIX 

In the following~ f~g~h are arbitrary functions from 

some non-empty set S into S. 

PI. Ran fg = Ran(flRan g) ~ Ran f. In particular~ 

Ran fn+c c Ran fn c ~ 0. 

P2. A function f has stabilizer s > 0 if and only if 

i) Dom(flRan fs) = Ran(flRan fs) = Ran fs. 

2) There exists an element b e Ran f such that 

fnb ~ Ran fn+l for 0 < n < s. 

P3. Let Ran f = S. Then for every x e S~ and for every 

positive integer n~ there exists an element X_n such that 

fnx = x. 
-n 

P4. fh = h if and only if f~Ran h = h~ h~ where h ~ is 

the identity function on S; fh = f if and only if hx = y 

implies fx = fy for all x~y e S. 
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