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0 Introduction 

Auslander and Reiten in ([3], 1991) study the notion o f  right and left ~ -  
approximations and o f  minimal right and left if-approximations (with f f  some 
class of  modules). The original ideas for these notions go back to Auslander, 
Smato ([4], 1980). In Enochs, ([11], 1981) these approximations were also 
defined but there they were called g-precovers ,  ff-preenvelopes, i f -covers  
and F-envelopes respectively. 

In this paper we will follow Enochs'  terminology. When every module has 
an ff -precover  for some class o f  module o~, we can use the machinery of  
relative homological algebra developed by Eilenberg and Moore in [8]. I f  R is 
left noetherian and ~ is the class o f  injective left R-modules, then every left 
R-modules admits an d~-cover (i.e. an injective cover) [11]. We use this fact to 
define left derived functors of  Horn (instead o f  the usual right derived functors 
Exff) and denote these functor Extn as in ([14], Enochs, Jenda). 

We will use these extension functors to characterize Gorenstein injective 
modules and to investigate their basic properties. 
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Gorenstein injective modules are rarely finitely generated but can be what 
we call mock finitely generated. The minimal injective resolutions of these 
mock finitely generated modules have properties similar to those of finitely 
generated modules. In fact, many of Bass' arguments in [5] concerning minimal 
injective resolutions carry over verbatim to this situation. We argue that over 
a commutative Gorenstein ring there is a natural way to define extended Bass 
invariants with negative indices. In section 6 we argue that if the module is 
furthermore finitely generated then all of  these invariants are finite. 

We also study finitely generated Gorenstein projective modules and find a 
new way (other than taking duals or syzygies) of  generating indecomposable 
Gorenstein projective modules from other such modules. This involves taking 
orthogonal complements in a free R-module with an inner product. We note 
that for a commutative, local Gorenstein ring, the finitely generated Gorenstein 
projective modules are just the maximal Cohen-Macaulay modules, so our 
results can be applied to their study. 

In the last section we consider the question of the existence of Gorenstein 
injective preenvelopes of  modules. We show that when R is Gorenstein, these 
always exist. When we consider the stable category of modules (with two linear 
maps equivalent if their difference can be factored through an injective module) 
we show that every module has a reduced Gorenstein injective envelope (in 
the stable sense) but which is surprisingly unique up to isomorphism without 
passing to the stable category. 

We note that an important class of Gorenstein rings are the integral group 
rings 7IG where G is a finite group. The Gorenstein injective ZG-modules are 
those which are divisible as Z-modules and the finitely generated Gorenstein 
projective modules are the lattices, i.e. those modules which are free with a 
finite base as Z-modules. Hence the notions of Gorenstein injective and pro- 
jective modules have some relevance to the theory of modular representations 
of  finite groups. 

1 Left derived extension functors 

In this section we consider one of the methods for computing left derived 
extension functors (or extension functors with negative indices). These functors 
will be used in the sequel to characterize and to study Gorenstein injective 
modules. 

Definition 1.1 Let  ~ be a class o f  left R-modules for  some ring R. I f  (9 : 
F ~ M is linear where F C ~ and M is a left R-module, then if9 : F ~ M is 
called an ~-precover  o f  M t f  Hom(G,F)  ~ Hom(G,M)  ---+ 0 is exact for  all 
G C ~ .  If, moreover, whenever f : F ~ F is linear and such that d9 o f = (~, 
f is an automorphism o f  F, then q5 : F ~ M is called an ~ -cover  o f  M. 

If  ~ is some known class of  modules, for example, the class of fiat mod-" 
ules, then an ~-(pre)cover  is called a fiat (pre)cover. 
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~ -p reenve lopes  and ,N-envelopes are defined dually. We follow the same 
conventions with their terminology. We recall 

Theorem 1.2 For a ring R, every left R-module has an injective cover i f  and 
only if  R is left noetherian. (see [11], Theorem 2.1.) 

Remarks. If  R is left hereditary and M a left R-module, then E ~ M with 
E C M the largest injective submodule of  M is an injective cover of  M. In 
[7] there are some less trivial examples. 

It is easy to see that the injective cover o f  any left R-module M is unique 
up to isomorphism. If  4) : E --, M is an injective cover and K is an in- 
jective module, then any linear map E 63 K -~ M agreeing with 4) on E is 
an injective precover. Conversely if  q~ �9 U ~ M is an injective precover 
and f " E  ~ E' ,  g : E '  -*  E are such that 4 ) ' o f  = 4 ) , 4 ) o g  = 4)', then 
4) o g o f = q5 so g o f is an automorphism of  E. Hence K = ker(g)  is an 
(injective) summand of  E '  and E' = f ( E ) |  K is such that 4)'If(E) is an 
injective cover of  M. Consequently, an injective precover 4)' : U -+ M is an 
injective cover i f  and only i f  ker(4)') contains no non-zero summands of  E ' .  

Definition 1.3 I f  N is a left R-module then a complex 

�9 ..--+El -+Eo--+N-~O 

is called an injective resolvent of  N if  each Ei Ls" an injective left R-module 
and if  Jot any injeetive leJt R-module E, the functor H o r n ( E , - )  leaves" the 
sequence exact. 

We note that a complex as above is an injective resolvent if  and only 
if  E0 --~ N, Ej --~ ker(E0 --+ N)  and Ei --~ ker(E/_l --~ Ei-2) for i => 2 
are injective precovers. I f  all these maps are injective covers then we say 
that the complex is a minimal injective resolvent of  N. Then noting that a 
minimal injective resolvent is unique up to isomorphism, we denote Ei in such 
a complex by Ei(N) (recalling that Ei(N) is the i-th term in a minimal injective 
resolution of  N).  

The usual argument shows that an injective resolvent o f  a left R-module N 
is unique up to homotopy and so can be used to compute derived functors. 

If  M and N are left R-modules and 0 --~ M --~ E ~ -~ E 1 ---, �9 �9 �9 is an injec- 
tive resolution and . . .  --~ El ~ E0 --~ N --~ 0 is an injective resolvent, then the 
3rd quadrant double complex (Hom(Ei, Ej))i,j is such that the two associated 
spectral sequences collapse. This implies that we can compute derived functors 
of  Horn using either the injective resolution o f  M or the injective resolvent of  
N when it exists. These left derived funetors will be denoted Ext~(M,N)  or 
simply Extn(M,N)  (instead o f  the usual Ext~(M,N)) .  

From the definition of  Ext0(M,N)  it is clear that there is a natural trans- 
formation Ext0(M,N) --, Ex t~  = Hom(M,N) .  The image o f  Ext0(M,N) 
in H o m ( M , N )  consists o f  those linear maps M ~ N which can be factored 
through an injective left R-module. 

We will let Ext0(M,N) and -~i~ denote the kernel and cokernel of  

the natural transformation Ext0(M, N )  ~ Ext~ N).  
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If E is an injective left R-module then for any left R-module M, 
Ext i (M,E)  = 0 for i > 1 and Ext~ = Hom(M,E).  From the definition of 

the groups Ext i (M,E)  it is also easy to see that Ex t i (M,E)  = 0 for i > 1 and 
that Ext0(M,E) = Hom(M,E).  Since in this case the natural map Ext0(M,E) 

Ext~ is the identity we also get Ext ( M , E )  = Ext0(M,E) = 0. 
The groups Ext0(M,N) have occurred in the literature. They are what 

Hilton [17] calls the i-homotopy (i for injective) groups and which he denotes 
f f (M,N) .  Hilton also defines higher homotopy groups ffn(M,N) for n > 1. 
From his definition, it is not hard to see that ~ I ( M , N )  ~ Ext0(M,N) and that 
f fn(M,N)  -~ E x t , _ l ( M , N )  for n => 2. However, at the time of Hilton's def- 
initions, injective covers were not yet available and so he did not have the 
alternate method for computing these groups (i.e. using injective resolvents). 

Remark.  With a sign changing trick in mind, the functors Ext~ are also called 
negative extension functors. However, we note that Ext0 and Ext - ~  = Ext ~ = 
Hom are not isomorphic functors in general. 

We will now state the basic properties of the functors Extn. 

Proposition 1.4 I f  0 ~ M ~ --~ M ~ M "  ~ 0 is an exact  sequences o f  left 
R-modules then f o r  any left R-module N there is a long exact  sequence 

�9 .. ---+ E x t l ( M " , N )  ~ EXtl(M,N) ~ E x t l ( M ' , N )  

--+ Ext0(M",N)  ~ Ext0(M,N) --~ Ext0(M' ,N)  ~ 0 

P r o o f  If  - . . E l  ~ Eo --~ N --+ 0 is an injective resolvent of N, let E .  be 
the complex . . .  -~ E1 ~ E0 ~ 0 then 0 --, Horn(M", E . )  --~ Horn(M, E . )  ---, 
Hom(M' ,Eo)  --~ 0 is an exact sequence of complexes. The associated long 
exact homology sequence is the desired sequence. [] 

We note that the long exact sequence has the obvious naturality properties. 

Proposition 1.5 I f  0 --* N t --+ N ---+ N "  ~ 0 is a complex o f  left R-modules 
such that f o r  any injective left R-module E, 

0 ~ Hom(E ,N ' )  --+ Hom(E,N)  --~ Hom(E,.N") --~ 0 

is exact ,  then f o r  any left R-module M there is a long exact  sequence 

�9 . .  --* E x t l ( M , N ' )  --~ Ext l (M,N)  

---, Ext1(M,N") ~ Ext0(M,N')  ~ Ext0(M,N) 

--~ Exto(M,N") ~ O. 

P r o o f  If  0 ~ M ~ E ~ ~ E 1 ~ - . .  is an injective resolution of M and E ~ 
is the complex 0 --+ E ~ ~ E 1 --~ E I ~ E 2 -~ . . .  then we have the exact 

sequence 

0 ~ H o m ( E ' , N  ' )  --* H o m ( E ~  --* H o m ( E ~  ")  --+ 0 
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of complexes. Taking the associated long exact sequence of homologies, the 
claim follows. [] 

Again we note that we have the obvious naturality in the above. 

Proposition 1.6 I f  0 ~ M' --+ M ~ M "  --~ 0 is an exact sequence o f  left 
R-modules, then for any left R-module N there is a long exact sequence 

�9 .. E x t l ( M ' , N )  ~ Ext0(M",N)  ~ Ext0(M,N) 

Exto(M' ,N)  ---+ ~ ( M " , N )  ~ ~ t  (M,N)  

Ex{~ ( M ' , N )  --~ Ext~(M",N)  - ~ . . -  

Proof We have a commutative diagram 

. . . .  Exh (M',N) ---+ Exto(M",N) -~ Exto(M,N) -~ Exto(M',N) -~ 0 

L L L L L 

0 --~ Ext~ ~ Ext~ -~ Ext~ --~ Extl(M",N) . . . .  

with exact rows. Chasing this diagram, the result follows. [] 

Definition 1.7 The sequence above will be called the extended long exact 
sequence of  extension functors. 

Definition 1.8 For a left R-module N, i f  O ~ N ~ E~ --~ E l (N)  --~ . . .  is 
a minimal injective resolution o f  N, and 

�9 .. ~ E l (N)  -~ Eo(N) ~ N ---+ 0 

is a minimal injective resolvent, then the complex 

. . .  ---+ El (N)  --~ Eo(N) ~ E~ -~ E l ( N )  --~. . .  

(with Eo(N) --~ E~ the composition Eo(N) ~ N --+ E~ is called a 
complete minimal injective resolution of  N. 

Proposition 1.9 I f  M is a left R-module and H o m ( M , - )  is applied to 
a complete minimal injective resolution o f  the left R-module N, then the 

homology groups are Exti(M,N), Ext0(M,N), E~~ (M,N)  and Exti(M,N) at 
Hom(M, Ei(N)), Hom(M, Eo(N)), Hom(M,E~ and Hom(E, Ei(N)) re- 
spectively where i ~ 1. 

Proof  This follows from the definitions and from a diagram chasing argument. 
v1 
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Remark .  The homology groups in the Proposition above can also be computed 
by forming the complex 

"'" ---+ PI --~ Po ~ E ~  --~ E l ( M )  --+ "'" 

from a projective resolution - - .  -~ Pl --~ P0 --~ M --, 0 o f  M and the injective 
resolution 

0 ~ M ---+ E ~  ---, E l ( M )  --~ . . .  , 

applying the functor H o m ( - , N ) ,  and computing homology. 

Remark .  Some notational difficulties could be avoided by relabeling the com- 
plex �9 .. ---+ E1 -* E0 ~ E ~ ---+ E l . . . .  as . . .  --~ E -2  ~ E -1 --~ E ~ ~ E I --~ 

- . -  (This procedure is followed with complete resolutions of  Z when com- 
puting Yate homology and cohomology (see K. Brown [6])). Then we would 
get exactly one derived functor of  Hom for each integer n (instead of  two 
for n = 0). We have avoided this practice since it is not consistent with the 
established notation for derived functors. 

2 G o r e n s t e i n  i n j e e t i v e  m o d u l e s  

In this section R will always denote a left noetherian ring. 
In [1], Auslander defines the Gorenstein dimension of a module. We call the 

modules having this dimension 0 the Gorenstein projective modules. Auslander 
shows that over a commutative Gorenstein local ring R, a finitely generated 
module M is Gorenstein projective i f  and only i f  there is an exact sequence 

. . .  __> p - 1  _+ pO __+ p 1 . . .  

of  finitely generated projective R-modules such that M = ker(P ~ --, p l )  and 
such that the dual sequence 

. . .  ___+ p i ,  ---+ p 0 ,  __~ p - 1 ,  ~ . . .  

is also exact. We note that this implies that if  H o m ( - ,  P )  is applied to the 
sequence above and if  P is a projective module, we still get an exact sequence. 
This suggests we make the following: 

Definition 2.1 A left  R -modu le  N is said  to be Gorenstein injective i f  and 

only i f  there is e xac t  sequence 

. . .  __~ E - 1  __~ E O _ _ _ ~  E ~ __~ . . .  

o f  injective left R -modules  such that N = ker(E ~ --+ E l)  and such that f o r  

any  injective left  R -modu le  E, H o m ( E , - )  leaves the complex  above exact.  
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We note that if  N is Gorenstein injective, then the complex 

O_~ N __~ EO ~ E l _~ . . .  

is an injective resolution of  N and - . .  -+ E -2 ~ E -1 --~ N --+ 0 is an injective 
resolvent of  N. Hence we get 

Proposi t ion 2.2 A left R-module N is Gorenstein injective i f  and only i f  Jbr 
any module Q which is projective or injective all o f  the 9roups Ext i (Q,N),  

Ext i (Q,N)  Jor i >= 1 and Ext0(Q,N),  ~ t  ( Q , N )  vanish (i.e. = 0). 

Proof. If  N is Gorenstein injective and i f  

. . .  __+ E -1 _~ EO_+ E 1 __+... 

is as in Definition 2.1, and then for any left R-module Q we apply H o m ( Q , - )  
to the complex we get a complex whose homology groups are the Exts we want 
to argue vanish if  Q is projective or injective. I f  Q is projective, they vanish 
since the original complex is exact. I f  Q is injective, they vanish because of  
our hypothesis on the original complex. 

Conversely suppose N is such that the extension groups in our hypothesis 
all vanish. Let 0 -~ N -~ E ~ ~ E l - - +  . . .  be an injective resolution and 
�9 .. --~ El --~ E0 --~ N --* 0 be an injective resolvent of  N. Then . . .  -+ 
E1 ~ E0 ~ E ~ ~ E l -*  "- '  is a complex and the extension groups can 
be computed by applying H o r n ( Q , - )  and computing homology. If  Q = R 
these groups vanish and so we see the complex is exact. I f  Q is injective 
and we apply H o r n ( Q , - )  we also get an exact sequence. Then noting that 
N = ker(E ~ --~ E 1 ) we see that N is Gorenstein injective by the Definition 
2.1. [] 

The argument in the Proposition above also gives 

Corol la ry  2.3 A left R-module N is Gorenstein injective i f  and only i f  its 
complete injective resolution 

�9 .. ~ E l ( N )  -~ Eo(N) ~ E ~  -+ E ( N )  ---~... 

is exact and remains exact whenever H o r n ( E , - )  is applied to it f o r  any 
injective module E. 

Proo f  Immediate. [] 

It is also convenient to restate this result as 

Corol la ry  2.4 A left R-module N is Gorenstein injective i f  and only i f  its 
minimal injective resolvent 

. . .  --~ E l ( N )  --~ Eo(N)  ~ N -~ 0 

is exact and i f  Ex t i (E ,N)  = O for  i > 1 and E any injective left R-module. 
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Proo f  It is easy to check that these conditions are equivalent to the conditions 
on the complete injective resolution of  N of  the previous Corollary. [] 

We note that Corollary 2.3 and Definition 2.1 say that i f N  is Gorenstein in- 
jective, then each of  ker (E i (N)  ---* Ei+I(N))  for i >= O, ker(Ei+l(N)  ---+ E i (N) )  
for i -> 1 and ker(E0(N) ~ E l ( N ) )  is Gorenstein injective. In particular for 
any such N, E ~  and ker(E0(N) ~ N)  are Gorenstein injective. Also 
Eo(N) ---* N is surjective. 

Proposit ion 2.4 I f  N is a Gorenstein injective left R-module and L is a left 
R-module having f in i te  injective or projective dimension, then Ex t i (L ,N)  = 

Ex t i (L ,N)  = O f o r  i > 1 and ~ ( L , N )  = Ext0(L,N) = 0. 

Proo f  Use induction on the dimension, Proposition 2.2 and the extended long 
exact sequences. [] 

For a ring R and R-modules M and N,  HomR(M,N ) (or simply H o m ( M , N ) )  
denotes the equivalence classes of  maps f " M ~ N with f and g equivalent 
i f  and only if  f - g  can be factored through an injective module. Mod is 
the category whose objects are the left R-modules and whose morphisms are 
these equivalence classes (denoted If]). Note that h : M --~ N can be factored 
through an injective if and only if it can be factored M ~ E ~  ---, N and if 
and only if it can be factored M --~ Eo(N)  --* N.  Also note that Hom(M,N)  is 

precisely Ext ( M , N ) .  H o m ( M , M )  is denoted E. nd(M).  We recall that a module 
N is said to be reduced if it has no non-zero injective submodules. 

Theorem 2.5 Let  N be a reduced Gorenstein injective R-module and let N C E 
be an injective envelope. Then L = E / N  is a reduced Gorenstein injective 
module and E --~ N is an injective cover. For any f �9 N --* N let 

0 --~ N ~ E ~ L --~ 0 

i s  ; ~,q 
0 --~ N ~ E ~ L ~ 0 

be a commutat ive  diagram. Then the map [ f ]  H [g] f r o m  End N to End L is 
well-defined and is an isomorphism. 

P r o o f  From earlier remarks we know L is Gorenstein injective. Now let/~ be 
an injective module. Then 

Hom(E,  E)  ~ Hom(/~, L) --~ Ext '  (/~, N )  

is exact. But Ext l ( /~ ,N)  -= 0 since N is Gorenstein injective. Hence E ~ L is 
an injective precover. Since ker(E --~ L) = N contains no non-zero injective 
submodules, it is in fact an injective cover. 

The argument that the map [ f ]  -~ [g] is a well-defined injective homo- 
morphism is standard. Since E --+ L is an injective cover, we easily see that it 
is also surjective. [] 
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Remark 2.6 From the above we deduce the easy but useful conclusion that 
N - - 0  if and only if L = 0 .  

Corollary 2.7 I f  N is reduced and Gorenstein injective, the set of  f E End N 
such that [ f ]  = 0 is a two sided ideal of  EndN contained in the Jacobson 
radical of  End N. 

Proof The set of  such f 
for any such f ,  1 + f  is a 

N C E be an injective 
of  f ,  let • : E --, E agree 

0 

0 

is then commutative. Since E --~ L is an injective cover, 
phism of  E. Hence 1 + f is an automorphism of  N. [] 

is clearly a two sided ideal. We need to argue that 
unit o f  EndN,  i.e. is an automorphism of  N. Letting 

envelope and letting N -~ E ~ N be a factorization 
with g. The diagram 

--~ N---~ E ~  L ~ 0 
.L l + f  .~ 1+~ ~. 1 

--* N---~ E ~  L --+ 0 

1 + 0 is an automor- 

We recall that a module N is strongly indecomposable if End N is a local 
ring. 

Corollary 2.8 N is the direct sum of  n non-zero indecomposable modules i f  
and only if  L is too. Moreover N is (strongly) indecomposable i f  and only i f  
L is (strongly) indecomposable. 

Proof This results from the isomorphism End N ~ End L, the fact that 
ker(EndN -~ E n d N )  and ker(EndL --+ End) are contained in the Jacobson 
radicals of  End N and End L respectively and the familiar connection between 
decompositions of  a module and idempotents in the endomorphism ring of  that 
module. [] 

Corollary 2.9 I f  M and N are reduced Gorenstein injective left R-modules, a 
linear map f : M --~ N is an isomorphism if  and o n l y / f [ f ]  is an isomorphism. 

Proof. I f  f is an isomorphism, then i f - l ]  = [ f ] - I  Conversely, suppose [ f ]  
is an isomorphism and that [ f ] - I  = [g]. Then [g o f ]  = [idg]. Then since the 
image of  g o f in E n d M  is a unit, g o f is a unit in En__ddM. Similarly f o g 
is a unit in End N, so f is an automorphism of  M. [] 

Proposition 2.10 I l L  is a reduced Gorenstein injective module and E-- ,  L is 
its injective cover, then E --+ L is surjective, K = ker(E --~ L) is reduced and 
Gorenstein injective and K C E is an injective envelope. 

Proof. As noted earlier, E --~ L is surjective. To argue that K C E is essential, 
note that if E C E is injective and K n E = 0 then E is isomorphic to a 
submodule o f  E/K ~ L. Since L is reduced, this means E = 0. [] 

Remark 2.11 I f  N is a reduced Gorenstein injective module, let 

(A) . .-  --* E l ( N )  ~" Eo(N) --* E~ -+ E l ( N )  --~ ' "  



620 E.E. Enochs, O.M.G. Jenda 

be its complete minimal injective resolution. Let K i  = ker(Ei (N)  ~ E i - I ( N ) )  

for i _> 1, K0 = ker(E0(N) ~ E ~  and K i = ker (E i (N)  ~ Ei+a(N)) for 
i > 0. Then from the above, the complex (A) is a complete minimal injective 
resolution o f  each of  the modules K i and K i for i > 0. Also for any i, Ki = 0 
if and only if N = 0 and K i = 0 if  and only if N = 0. 

Corollary 2.12 I f  N ~-0 is reduced and Gorenstein injective, then N has infinite 
injective and projective dimensions. 

P r o o f  Using the notation above, we see that if any K i = 0 for i > 0, then 
N = 0, hence inj. dim N = ~ .  

Also for i => 1, 

0 --0 Ki ---+ E l (N)  ~ E i - I ( N )  --+ "." --~ Eo(N)  ~ N --~ 0 

is a partial minimal injective resolution o f  Ki, so Extl(N, K o ) ~  Exti+2(N, Ki). 
Since 0 --~ Ko -~ Eo(N)  ~ N ~ 0 does not split, Extl(N, Ko)4=0. Hence 

Ext i+2(N, - )# :0  for any i => 0 and so proj. d imN = oc. [] 

Theorem 2.13 Let  0 ~ N '  ~ N --~ N "  --~ 0 be an exact  sequence o f  left 
R-modules. I f  N '  and N "  are Gorenstein injective then so is N. I f  N '  and N 
are Gorenstein injective, then so is N".  I f  N and N "  are Gorenstein injective 
then N '  is Gorenstein injective i f  and only i f  Ext'(E, N ' )  = 0 f o r  all injective 
left R-modules E. 

P r o o f  If  N '  is Gorenstein injective then ExtI (E,N ' )  = 0 for all injective E by 
Proposition 2.2. Also if Ext~(E,N ' )  = 0 for all injective E then 

0 ~ Hom (E, N ' )  -~ Horn (E, N )  ~ Hom (E, N " )  ~ 0 

is exact for all injective E. But if  this is so we get the extended long exact 
sequence o f  Sect. 2. When we have this sequence, then by Proposition 2.2 
we see that if any two of  N' ,  N or N"  are Gorenstein injective, so is the 
third 0. [] 

3 Resolutions and resolvents 

We again assume all rings R are left noetherian. We show how conditions on 
a ring R guarantee that injective covers occur in minimal injective resolutions 
and how other conditions guarantee that injective envelopes occur in minimal 
injective resolvents. 

We will use these results to show that for some rings R there is an no so 
that if we know the tail 

En(M)  --, En+1(M ) ---, . . .  

of a minimal injective resolution for n > no we can reconstruct the tail 

EnO(M) ---, Eno+I(M ) --.+ . . .  --+ En(M)  ~ En+I(M) --~ . . .  
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(so that if no = O, we can reconstruct the whole minimal injective resolution). 
We have a similar result concerning minimal injective resolvents. 

We note that in the previous section we had similar but stronger results 
when M was reduced and Gorenstein injective. 

Proposition 3.1 Le t  R be a left noetherian ring such that proj. dim E < n f o r  

all in]ective left R-modules  E. Then i f  M is a left R-module  and we let 

0 -~ M -~ E ~  -~ E l ( M )  . . . .  -~ E l ( M )  ~ C i+l -*  0 

be exact  Jor all i >__ O, then E l ( M )  --+ C i+J is an injective precover Jor  all 

i >= n and is an in]ective cover i f  i > n. Also, C i f o r  i > n is reduced. 

P r o o f  The fact that E x t i ( E , M )  : 0 for i > n immediately gives that E i ( M )  
C i+l is an injective precover for i > n. In particular En(C)  -+ C n+j is a 

precover. If E C C n+l is injective then we can complete 

E 

�9 " .L 

En(C)  --~ C "+l 

If E + 0  this would contradict the minimality of the resolution, hence C "+j is 
reduced. 

But now C "+1 = ker(E "~I -+ C"+2). Since E "+1 ~ C "+2 is a precover, it 

has a summand E (say with E ~+1 = EC~)E') with E ~ C "~2 a cover and E ~ in 
the kernel of E n+2 ~ C n + 2 .  But then E ~ C C "+1 = ker(E "+l -+ E~+2). Since 

C n§ is reduced, E '  = 0 and so E "+l ~-+ C "+2 is a cover. The same argument 
then works for E i --~ C i+l when i > n. [] 

Corollary 3.2 I f  M , N  are left R-modules  and 

0 --~ M ~ E ~  --~ . . .  ~ E l ( M )  --~ C i+1 ~ 0 

and 
0 ~ N --+ E ~  --~ . . .  --+ E i ( N )  ---+ D i+l --~ 0 

are exact  f o r  all i > O, then i f  i >~ n and i f  f : C i+l --+ D i+l is any 

homomorphism,  there exis t  maps  E ~ ( M )  -+ E " ( N )  . . . .  , E l ( M )  ---* E i ( N )  such 

that 
E n ( M )  ~ . . .  --~ E l ( M )  --~ C i+l ~ 0 

,L .L .L.r 
E n ( N )  --~ . . .  --~ E l ( N )  ---+ D i+l --~ 0 

is commutative.  
Furthermore i f  f is an isomorphism, then each o f  the map En+I(M)  

En+I(N)  . . . . .  E i ( M )  ~ E l ( N )  above is too. 

P r o o f  This follows immediately from the preceeding proposition and the def- 

initions of precovers and covers. [] 

We note that there is an analogous result for projective resolutions (see 
Proposition 5.1 of [12]) of finitely generated modules over local Gorenstein 
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rings. A different proof o f  this result can be given using the methods of  
Sect. 5. 

Remark.  3.3 If  M is finitely generated and R is commutative Gorenstein of  
finite dimension n, then using the methods of  section 6 it can be argued that 
each C i+l for i > n is the direct sum of  a finite number of  indecomposable 
modules. 

Corollary 3.4 I f  the resolution 

0 ~ M ~ E ~  --+ E l ( M )  ~ . . .  

is eventually periodic, then the complex 

En+I(M ) --~ En+2(M) ---+ . , .  

is periodic (cs Eisenbud [10] f o r  a similar result concerning minimal projec- 
tive resolutions over hypersurface rings). 

P r o o f  Any isomorphism C m ~ C 'n+p for m > n + 1 and p > 0 induces an 
isomorphism C n+~ --~ C n+l+p by Corollary 3.2. [] 

The following proposition is analogous to proposition 3. t but using injective 
resolvents in place of  injective resolutions. There is an interesting difference in 
the indices for which the results hold. 

Proposition 3.5 Let  R be left noetherian and suppose R is o f  f in i te  injective 
dimension n over i tsel f  (on the left). For a left R-module, let 

�9 . .  ---~E2 ---+El --~Eo----~M----~O 

be a minimal  injective resolvent and let Ci = coker(Ei+2 --+ E i+ I ) .  Then 
Ci ---+ Ei is an injective envelope f o r  i > n - 1, C~-2 --+ En-2 is an injection 
and Ci is reduced f o r  i > n -  1. 

P r o o f  We can compute E x t i ( R , M )  using either an injective resolution of  R or 
an injective resolvent of  M. We have the injective resolution 

0 --* R --~ E~ --* . . .  ~ E"(R)  --~ O. 

Since H o m ( - , M )  is left exact, we see that E x t i ( R , M )  = 0 for i > n -  1. 
Computing using an injection resolvent o f  M, 

�9 "" "-+E2 ---~ E1 ---+ Eo ---* M --~ 0 

we see that this means that 

. .  " ~ En+l ---* En --~ En-I --~ En-2 

is exact. This gives that Ci = coker(Ei+2 ~ Ei+I  ) ~ Ei is an injection if 
i > n -  2. Now we claim that i f  i > n - 1 then Ci is reduced. For by the 
definition o f  the injective resolvent, Ei --* Ci- i  is an injective cover with kernel 
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Ci. But we know the kernel of  an injective cover has no non-zero injective 
submodules. 

So to show that for i > n - 1, Cz C Ei is an injective envelope note that 
if  E C Ei is injective and Ci A E = 0 then E i --+ Ci- 1 maps E isomorphically 
into Ci 1. Since Ci-1 is reduced, E = 0 and so Cz C Ei is an injective 
envelope. [] 

Corollary 3.6 I f  M and N are left R-modules and 

0 --, Ci --, El (M) --~ .. ~ Eo(M) -~ M ~ 0 

and 

0 --+ Di -~ Ei(N) ~ . . .  ---+ Eo(N) ~ N ~ 0 

are exact sequences with i > n - 2 ,  then i f  f �9 Ci ~ Di is any homomorphism, 
then there exists a commutative diagram 

O ~ Ci -~ E i - i ( M )  ---+ . . .  ~ En 2(M) 

0 ~ Di --+ E i - I ( N )  --+ "'" --~ En-e(N)  

Furthermore i f  f is an isomorphism, then so are the maps Ei(M) --, Ei(N) 

for  i > n - 1 .  

Proo f  The proof  is analogous to that o f  Corollary 3.2. [] 

4 The existence of Gorenstein injective modules 

We show that if  R is a Gorenstein ring, then minimal injective resolutions and 
resolvents can be used to generate Gorenstein injective modules. 

Definition ( Iwanaga [8]) A ring R is said to be n-Gorenstein (n > O) i f  R is 

right and left noetherian and i f  R has finite sel f  injective dimension at most 
n on either side. R is said to be Gorenstein i f  it is n-Gorenstein for  some n. 

Examples. Any regular local ring is Gorenstein. I f  R is n-Gorenstein and G 
is a finite group, the group algebra RG is also n-Gorenstein ([9], Eilenberg, 
Nakayama).  I f  Q is a finite quiver whose connected components either have 
no cycles or are cycles with no multiple edges then the path algebra RQ over a 
Gorenstein ring is Gorenstein ([13], Enochs, Herzog). From this it follows that 
the algebra of  lower triangular matrices over a Gorenstein ring is Gorenstein 
and that the group algebra RZ is Gorenstein when R is Gorenstein. We recall 

Theorem ([8], Iwanaga) I f  R is n-Gorenstein and M is an R-module (left or 

right) then the following are equivalent: 

a) proj. d i m M  < cx~ 
b) proj. d i m M  < n 
c) inj, d i m M  < 
d) i n j . d imM < n 
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Theorem 4.2 If R is n-Gorenstein and 0 ~ M ~ E ~  ---* �9 �9 �9 is a minimal 
injective resolution o f  the left R-module M and C i = ker (E i (M)  -* Ei+I(M))  

f o r  i > 0, then C i is Gorenstein injective f o r  n > i and is reduced i f  i > n. 

P r o o f  We consider C "+1. By Proposition 3.1, C "+l is reduced and 

0 ~ C n+l ~ En+I(M) ~ . . .  ~ EJ(M)  ~ C j+l --+ 0 

for j > n + 1 is not only a (partial) minimal injective resolution of  C n+l 
but also a (partial) minimal injeetive resolvent of  C ./+1. Now we paste this 
sequence together with a minimal injective resolvent of  C ~+1 and get 

�9 .. -~ E l (C  "+1) 4 E o ( C  n+l ) ~ En+I(M) ~ . . .  ~ E J ( M )  ~ C j + l  ~ 0 

If  we take j sufficiently large and apply Prop. 3.5 we see that this sequence is 
exact. Since j > n + 1 is arbitrary, we see that the long exact sequence 

. . .  -~ EI (C  ~+l ) --+ E0(C ~+I ) ---+ En+I(M) --~ . . .  

is exact. Also H o m ( E , - )  leaves this complex exact for any injective left R- 
module E. It is obviously a complete minimal injective resolution of  C "+l. 
Hence C ~+1 is a Gorenstein injective module. For i = n, we have 0 --, C" -+ 
E n ( M )  --~ C n+l --, 0 exact with C n+l Gorenstein injective. Since Ext 1 (E, C n) = 
Extn+l(E,M) = 0 for any injective module E, an appeal to Proposition 2.11 
gives that C" is Gorenstein injective. 

Theorem 4.3 I f  R & n-Gorenstein and 

�9 . .  ~ E l ( M )  --~ Eo(M)  -~ M ---+ 0 

is a minimal  injective resolvent with Ci = coker(Ei+z(M) --~ Ei+I(M))  f o r  
i >= 0 then i f  i > n - 2, Ci is Gorenstein injective and i f  i > n - 2 it is also 
reduced. 

P r o o f  The proof is analogous to the proof  of  the preceeding Theorem. 

Corollary 4.4 For a left R-module N the fol lowin9 are.equivalent: 

1) Ext I (N,M) = 0 f o r  all Gorenstein injeetive modules M;  

2) E x t i ( N , M ) =  0 f o r  a f i x e d  i > 1 and all Gorenstein injective mod- 
ules M;  

3) Ext0(N,M) = 0 f o r  all Gorenstein injective modules M; 

4) Ext0(N,M) = 0 f o r  all Gorenstein injective modules M;  
5) E x h ( N , M )  = 0 f o r  all Gorenstein injective modules M; 

6) E x t i ( N , M )  = 0 f o r  a f i x e d  i ~ 1 and all Gorenstein injective mod- 
ules M; 

7) N has f in i te  injective dimension; 

8) N has f in i t  projective dimension; 
9) N has f in i t e  injective dimension at most  n; 

10) N has f in i te  projective dimension at most  n. 
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P r o o f  We argue that 1) =~ 2 ) ,3 ) ,4 ) ,5 )  and 6). We can assume M is re- 
duced. We consider the complete minimal injective resolution and let M '  = 
coker(E0(M)--~ E ~  As shown in Proposition 2.10, this resolution is also 
a complete minimal injective resolution o f  M'.  But 

0 = Ext l (N,M 1 ) = Ext2(N,M) so Ext2(N,M) = O. 

Variations of  this procedure gives 2), 3) ,4) ,5) ,  and 6) and also each of  the 
implications 2) =~ 1), 3) ~ l)  . . . . .  6) =~ 1). 

We now argue 1) =~ 9). Let 0 --+ N -~ E ~  --~ . . .  --+ E" 1 (N)  

C" ~ 0 be exact. By theorem 4.2, C" is Gorenstein injective. By 6) then, 
Ext,(N, C ") = 0. Computing Extn(N, C ") from the complex 

Hom(En+ t (N), C n ) -~ Hom(E ~ (N), C ~ ) -~ Hom(E n- l (N),  C ~ ) 

we see that C n is a retract of  E"(C), i.e. C n is injective and hence C n = En(C) .  

Now 7), 8),9),  10) are equivalent by Iwanaga and 8) =~ 1) by Proposition 
2.4. [] 

5 Gorenstein projective modules 

In this section we will briefly indicate how a modification o f  our approach 
gives results about Gorenstein projective modules. 

In this section we let R be left and right noetherian and all modules be 
finitely generated. 

For a left R-module M, a linear map M ---+ P is called a projective pre- 
envelope if for any linear map M -+ p ,  with P~ projective can be factored 
through M ~ P. This is easily equivalent to P* ~ M* being onto (with M* = 
Hom(M,R)).  It is not hard to check that if q~l . . . . .  q~s generate M*, then 

M --+ R ~ (with x -*  (dpl(x), .,(Os(X)) 

is a projective preenvelope of  M. 

Definition 5.1 A complex  

O---~ M -~ p ~  p I --+ 

& called a project ive  resolvent o f  M i f  each pi & a project ive module  and  i f  f o r  

each project ive  module  P ,  the f une to r  H o m ( - , P )  m a k e s  the complex  exac t  (or 

equivalently,  . . .  --~ p1 .  __~ pO. ~ M* --~ 0 is e x a c t  wi th  M* = Hom(M,R)). 

Using projective preenvelopes, such as resolvent for M can be constructed. 
If  

. . .  ---~ pz  ---~ p i --~ po ---+ M --, O 

is a projective resolution o f  M then 

' ' "  --+P1 --*P0 __~p0 ___. p1 ---+ . . .  
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is called a complete resolution of  M. We note that these coincide with the 
complete resolutions used in group homology and cohomology (see Brown, 
Cohomology of  Groups [6], p. 131). 

Now by example 3.5 of  [14], left derived functors of  H o m ( - , - )  can be 
defined and computed. They are denoted EXtn(M,N)  (these should not be con- 
fused with the Extn(M,N) ' s  o f  Sects. 2, 3 and 4 and are computed using either 
a projective resolvent o f  M or a projective resolution of  N).  Here there is a 
natural transformation 

Ext0(M,N) ~ Ext~  

with kernel and cokernel denoted Ext0(M,N) and ~ - t ~  Then as in Sect. 
2, it can be seen that there are extended long exact sequences which arise 
whenever 0 --* M ~ ~ M ~ M ~ ~ 0 is an exact sequence such that 0 
M '~* ~ M*  --+ M'* ---+ 0 is exact or whenever 0 --~ N ~ ~ N -~ N ~' ---+ 0 is 
exact. 

Definition 5.2 A left R-module  M is said to be Gorenstein project ive i f  

Exti(M, Q) = Exti(M, Q) = 0 f o r  i > 1 and Ext0(M, Q) = ~ ~  Q) = 0 
.for all modules Q which are either injective or projective. 

Then there are results concerning Gorenstein projective modules analogous 
to those of  Sect. 2 concerning Gorenstein injective modules. 

Although modules M will have projective precovers and preenvelopes, they 
may not have covers and envelopes. If, for example, R is local, then they will 
have covers and envelopes and all the results o f  Sects. 3,4 and 5 will have 
counterparts for Gorenstein projective modules. 

However, even without this assumption, weakened versions of  these results 
hold. This usually means substituting preenvelope and precover for envelope 
and cover and dropping hypotheses and conclusions concerning reduced mod- 
ules (in this setting, meaning no non-zero projective summands).  

Remark .  I f . . .  -~ P1 ~ P0 --~ p0 ~ pl  ~ . . .  is the complete resolution of  M, 
then M is Gorenstein projective if  and only if this resolution and its algebraic 
dual is exact. From this it follows that M* is also Gorenstein projective. It also 
follows that M is reflexive. 

Remark .  I f  G is a finite group and R = Z G  then it is well known that R is 
1-Gorenstein. I f  M is a finitely generated left R-module then it can be argued 
that M is Gorenstein projective if  and only if M is a free Z-module. Similarly 
M (without finiteness assumptions) is Gorenstein injective if and only if  it is 
divisible as a Z-module.  This and stronger results are in [16]. 

We now assume R is a local ring and right and left noetherian. We let G 
be a Gorenstein projective module, then as noted above, G* is also Gorenstein 
projective, and i t 's  not hard to see that G ~ R~ is a projective envelope if  and 
only if (RP) * -~ R l~ ~ G* is a projective cover. I f  we use the inner product 

(rl . . . . .  r#) �9 (s1 . . . . .  s~) = ~ r i s i  



Gorenstein modules 627 

on R/~ and if G C R/~ is a submodule of  R/~, we will let G • = {(sl . . . .  ,s/t)] 
(s~ . . . . .  s#) ~ R# and (r~ . . . . .  rp)(sj . . . . .  s/~) = 0 for all (rl . . . .  , r#) C G}. Then 
G • is a sub-module o f  R fj as a right R-module. For a right submodule H C 
R/~, •  is defined in a similar fashion. Clearly G C •  •  for any such G. 

Theorem 5.5 I f  G c R [~ is a projective envelope o f  the reduced Gorenstein 
projective module G, then •  •  = G, Furthermore G • (up to isomor- 
phism) does not depend on the embedding G C R/~. Also G • is reduced and 
Gorenstein projective. 

Proo f  By the remarks above, R/~ --~ G* is a projective cover. Its kernel is G • 
so by lemma 5.3, G • is reduced and Gorenstein projective and G • C R/~ is a 
projective envelope. Repeating the argument, •  •  is a reduced Gorenstein 
projective module and •  •  C R/~ is an envelope. Clearly ( • 1 7 7  • = G • 

Taking the dual o f  

0--+ G • ---~R It ~ G* - ~ 0  

we get 
0 4 G ~ R  # ~ G  • 

exact. The corresponding exact sequence for •  •  is 

0 -~ •  •  --~ R # -+ ( • 1 7 7  • -- G • -+ 0 .  

Then the commutative diagram 

0 ~ G ~  R # --~G • ~ 0  

II JJ 
0 - ~ •  •  R# ~ G  •  

gives G = •177  
We see that G • does not depend on the embedding G --~ R # by noting 

that for two such embeddings f : G --~ R l~ and g : G --~ R ~ we have an 
isomorphism R i~ ~ R ~ over G, so u = / / .  Then the two exact sequences 

O __-~ K ---~ RI~ f~ G* ___~ O 

and 

O--~L---+Rt~Y_~G*__~O 

are isomorphic, so K ~ L. But K and L are the G •  for the corresponding 
embeddings. 

Remark. The 0-Gorenstein rings are the quasi-Frobenius rings. Over quasi- 
Frobenius rings all modules are Gorenstein injective. If  I C R is a left (right) 
ideal o f  the quasi-Frobenius ring R and the inner product on R is multiplication, 
the result •  •  = I ( ( •  • = I )  is well-known. 

We note that if G is Gorenstein projective and 

�9 "---~P1 --~Po---+G---+O 
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is a minimal projective resolution of  G and 0 -+ G ~ p0 __~ p1 . . .  is a minimal 
projective resolvent o f  G, then the complete projective resolution 

�9 ' '  -*P1  --+P0 __~p0 __~p1 ~ . . .  

can be regarded as the complete resolution of  any of  the Ci's with Ci = 
ker(Pi ~ Pi-1)  for i > 1 or the terms Co or C i for i > 0 defined in a similar 
manner. 

The proof would use the following two lemmas: 

Lemma 5.3 I f  G is Gorenstein projective and reduced and R [~ ---+ G is a 
projective cover with kernel K,  then K is" reduced, Gorenstein projective and 
K C R t3 is" a projective envelope. 

Lemma 5.4 I f  K is reduced and Gorenstein projective and K C R IJ is a 
projective envelope and G = Rt3/K then G is reduced and Gorenstein projective 
and R~ --. G is a projective cover. 

6 Mock finitely generated modules 

When R is commutative and noetherian, we define the mock finitely generated 
modules. We are mainly interested in Gorenstein injective modules which are 
mock finitely generated. Using earlier results we can see that there is a natural 
way of  defining generalized Bass'  invariants with negative indices of  modules. 
In this section we will show that if R is Gorenstein and the module is finitely 
generated, then these invariants are finite. 

In this Section R will always be commutative and noetherian. The functors 
Ext i (M,N)  will be those of  Sect. 2. 

Definition 6.1 An R-module N is said to be mock  f ini tely generated i f  
f o r  any f ini tely  generated R-module M each o f  Ex t i (M,N) ,  Ex t i (M,N)  Jor 

i > 1, Ext0(M, N )  and E-x-i~ N )  are f ini tely  generated R-modules. 

Remark.  We chose this terminology, since the modules we will study which 
are mock finitely generated will rarely be finitely generated. 

Using the extended long exact sequence we have 

Proposition 6.2 I f  0 ~ N '  --~ N ~ N "  --~ 0 is an exact  sequence o f  R-mod- 
ules left exact  by H o m ( E , - )  f o r  any injective module E then i f  any two q]" 
N',  N or N "  is mock  f ini tely  generated, then so is the third. 

Proo f  Immediate. 

We are mainly interested in mock finitely generated modules which are 
Gorenstein injective. I f  N is Gorenstein injective and 

O-*  N- -~  E~ C --* O and O---~ K---+ Eo(N) ---~ N --~ O 

and exact, then again using the extended long exact sequence and the fact that 

Ext i (M,E)  -- Exti(M,E) = Ext0(M,E) = E-xt~ = 0 
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for all i > 1 and all injective modules E we see that N is mock finitely 
generated if and only if C is, and if and only if K is. 

Proposition 6.3 I f  R is an n-Gorenstein and N is Gorenstein injective, then N 
is mock f initely generated i f  and only (f./br every f ini tely generated Gorenstein 

projective module M, each o f  Ext i (M,N),  Ext0(M,N), Ext (M,N) ,  and 
Ex t i (M,N)  are f initely generated (Jor all i > 1 ). 

Proo f  I f  M is finitely generated and if 

O ~ K --~ P n - 1  --~ " "  --+ P1 ---+ Po -~ M -~ O 

is exact with each Pi finitely generated and projective, then by the counterpart 
o f  Proposition 4.2 (or by Auslander [1]) K is Gorenstein projective. But each 

of  Exti(P,N),  Ext i (p ,N) ,  Ext0(P,M),-----~) Ext ( P , N )  is 0 when P is projective by 
Proposition 2.2. Since there is an extended long exact sequence of  the Ext 's  
for each short exact sequence in the first variable of  the Ext 's,  we see that 

in order for each of Ext i (M,N) ,  Exti(M,N),  Ext0(M,N), =---0 Ext ( M , N )  to be 
finitely generated (i > 1), it is necessary and sufficient that these module by 
finitely generated when M is replaced by K. [] 

Corollary 6.4 For a Gorenstein injective module N the following are equi- 
valent." 

a) N is mock  f ini tely generated 
b) Ex t I (M,N)  !f  f ini tely generated.for all f initely generated Gorenstein 

projective modules M. 

Proo f  a) =~ b) is trivial. To argue b) =~ c), note that if  M is as in b) and if 
0 --+ K -~ R ~ ~ M ~ 0 is exact with a c~ finite, then K is finitely generated 
and Gorenstein projecitve and E x t i ( K , N ) ~ -  Ex t i~ l (M,N)  for i > 1. So it is 
easy to get Ext i (M,N)  = 0 for all i > 1. 

I f  0 --+ M ~ R [~ --~ C -~ 0 is exact with fl finitely and M --~ R l~ is a 
projective preenvelope, then C is Gorenstein projective and finitely generated. 
Then using the extended long exact sequence and Proposition 2.2 it is easy to 

get E~-t~ = Ext i (M,N) = 0 (i > 1). [] 

Theorem 6.5 I f  R is n-Gorenstein and N is f ini tely generated and 

0 --~ N --~ E~  ~ E l ( N )  --~ . . .  --+ E i - I ( N )  ~ C i -~ 0 

is exact, then C i is mock  f ini tely generated j o r  i > n. 

Proof  By Theorem 4.2, any such C i is Gorenstein injective. Let M be finitely 
generated. Then E x t l ( M , C  i) TM Exti+a(M,N) and so Ex t l (M,C  i) is finitely 
generated. By Corollary 6.4 this completes the proof. [] 

Proposition 6.6 I f  N is mock f ini tely generated and Gorenstein injective and 
0 ~ N ---+ Eo(N) ~ L ~ 0 and 0 ~ K --+ Eo(N) --~ N -+ 0 are exact, then K 
and L are mock  f ini tely generated. 
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Proof  Letting M be a finitely generated module, we consider the extended 
long exact sequences associated with the two short exact sequences (in the 
second variable). Since all terms in the sequence with an injective module 
as the second variable vanish, we see that each of  L and K is mock finitely 
generated. [] 

We note that K and L above are also Gorenstein injective. 
Now we let C = C ~ in Theorem 6.5 above. Taking a minimal injective 

resolution of C and a minimal injective resolvent o f  C, we relabel the El(C) 
in the obvious way and have the complex 

. . .  __+ E - 2 ( C )  --+ E - I ( C )  ~ E~ --~ E l ( C )  --~ . . .  

Given any prime ideal P C R, we use Bass' procedure in [5] and apply the 
functor H o m ( R / P , - )  to this complex. The homology modules over the result- 
ing complex are vector spaces over k(P)  (the field of  fractions o f  R/P). Again 
following Bass' ideas, we call the dimensions o f  these vector spaces the gener- 
alized Bass invariants o f  N. For the obvious reasons, the dimension of  the k-th 
homology module is called the k + (n + 1 ) generalized Bass invariant of  N. 
For k > 0 it is immediate that these are the usual Bass invariants of  N. 

Now we note that the procedure we have described "commutes" with taking 
localizations, i.e. applying the functor S -1 - f o r  any multiplicative S C R. 

If  we then appeal to Theorem 6.5 and Proposition 6.6, we see that if N is 
finitely generated, then the generalized Bass invariants o f  N will all be finite. 

7 Covers and envelopes by Gorenstein injective and projective modules 

In this section we consider the question of  the existence of  certain envelopes, 
preenvelope, covers and precovers. 

For a ring R, we let Mod be the category o f  left R-modules and let Mod 
be the stable category o f  left R-modules described in Sect. 2. 

Our main result is 

Theorem 7.1 I f  R is a Gorenstein ring, then in Mo6 every module M has 

a reduced Gorenstein injective envelope. I f  [ f ]  : M --+ K and [g] : M --* L 
are two such envelopes, then any h : K --~ L such that [ f ]  o [h] = [g] is an 

isomorphism in Mod. 

Proof  Let R be n-Gorenstein. Let M be a left R-module and let 

0 --~ M --~ E ~  ~ . . .  --~ En(M)  --o C --~ 0 

be a partial minimal injective resolution. Then by Theorem 4.2, C is Gorenstein 
injective. Let 

0 -~ K ~ E , ( C )  - + . . .  --+ Eo(C) ~ C -~ 0 

be a partial minimal injective resolvent with K = ker(En(C) --+ En-I (C)) .  
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Then by Corollary 2.3, this sequence is exact. The diagram 

0--- ,  M --+ E ~  - - + . . . - - +  E " ( M ) - - +  C - - ~  0 

vm v ~ II (1) 
0- -~  K - - ,  E n ( C )  - - -~ ' . . - -+  E o ( C ) - - ~  C - - ~  0 

can be completed to a commutative diagram. By Proposition 2.10, K is reduced 
and Gorenstein injective. We want to show that I f ]  : M ~ K is the desired 
envelope. 

Now suppose L is reduced and Gorenstein injective and that M --~ L is 
linear. 

Then we can complete the diagram (with exact rows) 

0 - + M - - - *  E ~  - ~ . . . - - - ~  E n ( M ) - +  C---+ 0 

1 ~7 ~7 V (2) 

0 ~ s - - ,  E ~  ~ . . .  - ~  E " ( L )  ~ D - +  0 

to a commutative diagram. Then using the map C ~ D and Corollary 2.3 we 
see that we can complete the diagram 

0- -~  K - ~  E , ( C )  - + . . . - - ,  E o ( C )  --~ C ~ 0 

v v v l ( 3 )  

0 -+ L --+ E ~  --~ . . .  ~ En(L) ~ D -- ,  0 

to a commutative diagram. 
Using (1) and (3) we get a composition M --+ K --+ L by pasting the two 

diagrams together. 
Since this composite diagram and (2) have the same map C + D it is 

a standard argument (lifting maps uniquely up to homotopy) that the original 
map M --~ L and the compositions M --+ K -~ L give the same element of  
Hom(M, L). 

This shows that our map M --+ K (in Mod) is a preenvelope. To show 
that it is an envelope, let [ f ]  : M -+ K be as above and let [g] : K -+ K be 
such that [g] o [ f ]  = [ f ] .  We want to show that [g] in an isomorphism. By 
Corollary 2.9 we must show that g is an isomorphism. 

We complete the diagram 

0 --~ m ~ E ~  --~ . . .  --~ E " ( M )  ---, C --~ 0 

I s  l 1 II 
0 --, K --~ E o ( C )  ~ . . .  ---, E o ( C )  ---, C ~ 0 

t g  ? ~i V h 

0 --~ K --* E o ( C )  --~ . . .  --~ E o ( C )  ~ C --~ 0 

to a commutative diagram. Then again by homotopy [g] o [ f ]  = [ f ]  implies 
[h] = [idc]. Then by Corollary 2.9, h is an isomorphism. Hence g : K --* K is 
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an isomorphism. If  M ~ K and M --~ L are two such envelopes and if 

M 

K L 
/ / 

l and M 
\ \ 

L K 

are commutative diagrams in Mod then by the above K --~ L ~ K and L -+ 
K --+ L are isomorphisms in Mod. Hence L and K are isomorphic in Mod by 
Corollary 2.9. [5 

R e m a r k .  If  R is commutative and M finitely generated, then by the results of  
Sect. 6, K can be seen to be mock finitely generated. 

Theorem 7.2 I f  R is a Gorens te in  ring then every  lef t  R - m o d u l e  M has  a 

Gorens te in  in jec t ive  preenve lope .  

P r o o f  We suppose R is n-Gorenstein and consider the diagram 

0 --+ M ---, E ~  --~ . . .  --+ E n ( M )  --~ C -'~ 0 

t I II 
0 ~ K - §  E , ( C )  --~ Eo(C)  --~ C - - ,  0 

constructed as above. We regard this diagram as a double complex and form 
the associated complex 

0 -~  M --~ K | E ~  --~ . . .  ---, E o ( C )  0 C ~ C -~  0 

With the first filtration on the double complex we see that El term is 0. Hence 
the associated complex above is exact. Note that the complex has 0 -~ C -~ 
C --~ 0 an exact subcomplex, so the quotient complex 

0 - ~  M --~ K | E ~  ~ . . .  ~ E o ( C )  --, 0 

is also exact. Letting 

0 ~ M - - ~ K O E ~  - -~L --~'0 

be exact, we see that L has finite injective dimension. 
Hence if N is Gorenstein injective, Ext l (L,N)  = 0 by Proposition 2.4. This 

implies that 
Hom(M | E ~  --* Hom(K,N)  ~ 0 

is exact and so that 
M --~ K | E ~  

is a Gorenstein injective preenvelope of  M. [] 

R e m a r k s .  Theorem 4.2 and the dual of  Theorem 1.1 of  [2] give another proof 
of  this result. In [16] it is shown that in fact every left R-module has a 
Gorenstein injective envelope. 
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A Gorenstein  injective resolution o f  M is a complex 0 --~ M --~ K ~ 
K 1 ---+ . - .  with each K i Gorenstein injective and such that H o m ( - , K )  leaves 
the complex exact for all Gorenstein injective modules (so the complex is in 
fact exact). It can be shown that i f  R is n-Gorenstein  every M has a Gorenstein 
injective resolution of  the form 0 ~ M --~ K ~ --~ . . . .  K" ~ 0. 

Some of  the results in this paper were announced at the China-Japan First 
International  Sympos ium on Ring Theory in Guil in,  China during October  2 0 -  
25, 1991. A small port ion of  this paper (essentially Proposit ion 3.1 and its 
Corollaries)  have appeared in the proceedings o f  that conference.  Those results 
are included here for completeness.  
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