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RESEARCH ARTICLE
ON FINITE Z-TRIVIATL MONOIDS

Howard Straubing
Communicated by G. Lallement

In this note I give several characterizations of the
family J of finite monoids with one-element g-classes.
The proof uses techniques from the theory of finite
automata and depends upon a theorem of Imre Simon [2]
which describes the family of recognizable sets whose
syntactic monoids are in J.

For details concerning the automata-theoretic notions
used here, the reader is referred to the books by
Eilenberg [1], especially Chapter VIII of Volume B.

Let J be the family of all finite monoids with one-
element g-classes. That is, J consists of all finite
monoids M such that if asb =t and ctd = s for some
a,b,c,d,s,t €M, then s = t. J 1is closed under sub-
monoids, homomorphic images and finite direct products;
that is, J is an M-variety [1, vol. B].

Let £ be a finite alphabet and L' the free monoid
generated by Z. A recognizable subset A of 2 is
said to be piecewise testable if A is in the boolean
closure of the family of subsets of Z* of the form
Zfoqifcz ---032*, where 0; €& for i = 1,---,p. Let

M(A) De the syntactic monoid of A. Simon's Theorem is:
A recopnizable subset A of ' s piecewise testable
iff M(A) €J.

2 denotes the commutative semiring {O,’l} — multi-

plication and addition in £ are defined by the formulas
11 =1, 10 =0+1=0:0=0, 0+0 =0,

0+1 =140 =141 = 1. For each n > 1, g

denotes
the collection of all n xn matrices over £B. Frxn is

thus a finite monoid under matrix multiplication; AR
may also be viewed as the monoid of all binary relations

on a set with n elements. Let
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%:{méﬁnxnlmii=’l for i=1,+--,n}. £ is a sub-

monoid of ann; in terms of relations it is the monoid
of all reflexive relastions on a set with n elements.

Let %, = {(m e.enlmij =0 for j <i}. X, 1is also a sub-

monoid of ann; it consists of all upper triangular
1 1
matrices in =£n Observe that B"*% x 87 " embeds in

' 1
B(n+n x(n+n') under the map which sends the pair of

matrices (m,m') to the matrix (%-}%,) . When
restricted to X, XX s this map gives an embedding of

KnxKnv in ’(n+n|°
THEOREM. Let M be a finite monoid. Then the following
are equivalent:

(a) Me€d.

(v) M<Xn for some n > 1.

(¢) ML, for some n > 1.

(1) M=<S, where S is a monoid of transformations

acting faithfully on the right of a finite

partially-ordered set Q such that

gs < g for all g€Q, s€8S;

g £ q' implies gs < aq's for all q,q' €8,s¢8.

PROOF. (a)==p(b). Let M€J. Since every M-variety is
generated by the syntactic monoids it contains [1, vol.B, -
chapter VIII] there exist finite alphabets Zj,--- .2

and recognizable sets A4; € 2; such that
ML M4, ) x+-» xM(4). By Simon's Theorem, each A; is
piecewise testable, and thus each M(Ai)‘ in turn divides

a direct product M(Biq) %X+« XM(B.

ip)s where each B, .

J
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* * *
is of the form ;0,2;0, +-+ 02, . Since, as remarked

above, X, XX, € X it suffices to show that each

n+n'?

) divides some X.. A nondeterministic

such M(Bi o

J
* * *
automaton which recognizes B = 2)012 ---oﬁa is given

by the state diagram

@, = =
G, o, cee % > —_—
To this automaton is associated a homomorphism

*
TR Xp+1 defined by

Y

if r = s

D

(Gu>rs = if o=0, and s =r+1
0 otherwise
for each o0 €2, 1<r, s <p+1. It is easy to check
that w€X is accepted by the automaton iff

(Wp)q,p+q =1, Thus, B = =", where
X = {mexy, almy o g = 1. Tt follows that MBI X4
(b)=¥(c). This is immediate, since X, S, for all n.

(c)=%(d). It suffices to show that £, is a monoid of

transformations of the kind described in (d). Let @ be
the set of all row vectors (aq,---,an) with each

aj; €B. The ith coordinate of g €Q is denoted gj. A
partial order on @ is defined by g £ q' iff qi =1
implies q4 =1 for i =1,---,n. &£, acts on the

right of Q by ordinary matrix multiplication. The
action of £, on Q is faithful, for suppose s,s' €£n

and s # s'. Then there is some pair of indices 1i,]
! .

such that s;5 =1 and Sij = 0 (or vice-versa). Let
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g be the vector such that g; =1 and g = 0 for all
X £ i. Then (qs)j =1 and (qs')j =0, so gs # gs'.

If s€«#£, and g =1, then (since 8,5 = 1),

gsy = 1. Thus qs < q. If q9<q', s€85, and
(g's)j = 1, then there is an i such that ¢ =1 and

s;3 = 1. Bubt then gq; =1, so (qs)j = 1. Thus

gs < g's. It follows that (Q,zn) is a transformation

monoid with the required properties.

(a)=P(a). Let S be a monoid of transformations of the
kind described in (d). Let s,t €S, and suppose there
are a,b,c,d €5 such that asb =t, ctd = s. For any
q€Q, qa <q, s0 gt = qasb < gas < gs. Likewise

gt £ gs. Thus gs = gt for all g €Q. Since S5 acts
faithfully on Q, s = t. Thus &8 ¢J, and consequently
any divisor M of S is in J.
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