RESEARCH ARTICLE

ON FINITE 2-TRIVIAL MONOIDS Howard Straubing Communicated by G. Lallement

In this note I give several characterizations of the family J of finite monoids with one-element 2-classes. The proof uses techniques from the theory of finite automata and depends upon a theorem of Imre Simon [2] which describes the family of recognizable sets whose syntactic monoids are in J.

For details concerning the automata-theoretic notions used here, the reader is referred to the books by Eilenberg $[1]$, especially Chapter VIII of Volume B.

Let J be the family of all finite monoids with oneelement 2 -classes. That is, J consists of all finite monoids M such that if asb = t and ctd = s for some $a, b, c, d, s, t \in M$, then $s = t$. J is closed under submonoids, homomorphic images and finite direct products; that is, J is an M-variety $[1, vol. B]$.

Let Σ be a finite alphabet and Σ^* the free monoid generated by Σ . A recognizable subset A of Σ^* is said to be piecewise testable if A is in the boolean closure of the family of subsets of Σ^* of the form $\sum^* \sigma_i \sum^* \sigma_j \cdots \sigma_i \sum^*$, where $\sigma_i \in \Sigma$ for i = 1, ..., p. Let M(A) be the syntactic monoid of A. Simon's Theorem is: A recognizable subset A of Σ^* is piecewise testable iff $M(A) \in J$.

 β denotes the commutative semiring $\{0,1\}$ - multiplication and addition in β are defined by the formulas $1.1 = 1$, $1.0 = 0.1 = 0.0 = 0$, $0.0 = 0$, $0 + 1 = 1 + 0 = 1 + 1 = 1$. For each $n \ge 1$, $\beta^{n \times n}$ denotes the collection of all $n \times n$ matrices over β . $\beta^{n \times n}$ is thus a finite monoid under matrix multiplication; $s^{n \times n}$ may also be viewed as the monoid of all binary relations on a set with n elements. Let

107

STRAUBING

 $L_n = {\mathbf{m} \in \mathcal{B}^{n \times n} \mid m_{i,i} = 1 \text{ for } i = 1, \cdots, n}.$ L_n is a submonoid of $s^{n\times n}$; in terms of relations it is the monoid of all reflexive relations on a set with n elements. Let $\mathcal{X}_n = \{m \in \mathcal{L}_n | m_{i,i}=0 \text{ for } j \leq i\}$. \mathcal{X}_n is also a submonoid of $s^{n \times n}$; it consists of all upper triangular matrices in L_n . Observe that $s^{n \times n} \times s^{n' \times n'}$ embeds in $_{R}$ (n+n') $x(n+n')$ under the map which sends the pair of matrices (m, m') to the matrix $\left(\frac{m|O}{O|m} \right)$. When restricted to $X_n \times X_{n}$, this map gives an embedding of $x_n \times x_n$, in x_{n+n} .

$q \leq q'$ implies $qs \leq q's$ for all $q,q' \in S$, s $\in S$.

PROOF. (a) \Rightarrow (b). Let M \in J. Since every M-variety is generated by the syntactic monoids it contains $[1, vol.B,]$ chapter VIII] there exist finite alphabets Σ_1,\cdots,Σ_k and recognizable sets $A_i \subseteq \Sigma_i^*$ such that $M \blacktriangleleft M(A_1) \times \cdots \times M(A_k)$. By Simon's Theorem, each A_i is piecewise testable, and thus each $M(A_i)$ in turn divides a direct product $M(B_{i,j}) \times \cdots \times M(B_{i,r})$, where each $B_{i,j}$

108

STRAUBING

is of the form $\Sigma_i^* \sigma_{\gamma} \Sigma_i^* \sigma_{\gamma} \cdots \sigma_{\rho} \Sigma_i^*$. Since, as remarked above, X_n X_{n} , $\subseteq X_{n+n}$, it suffices to show that each such $M(B_{i,j})$ divides some X_n . A nondeterministic automaton which recognizes $B = \sum^* \sigma_A \sum^* \cdots \sigma_B \sum^*$ is given by the state diagram

$$
\longrightarrow^{\mathcal{Q}}_{q_1} \xrightarrow{\sigma} \mathcal{Q}^{\Sigma}_{q_2} \xrightarrow{\sigma} \cdots \xrightarrow{\sigma} \mathcal{Q}^{\Sigma}_{q_{p+1}} \xrightarrow{\sigma}
$$

To this automaton is associated a homomorphism $\mu : \Sigma^* \to \mathcal{K}_{n+1}$ defined by

$$
(\sigma\mu)_{TS}
$$
 =
$$
\begin{cases} 1 & \text{if } r = s \\ 1 & \text{if } \sigma = \sigma_T \text{ and } s = r + 1 \\ 0 & \text{otherwise} \end{cases}
$$

for each $\sigma \in \Sigma$, $1 \leq r$, $s \leq p+1$. It is easy to check that $w \in \Sigma^*$ is accepted by the automaton iff $(w\mu)_{1,p+1} = 1$. Thus, $B = X\mu^{-1}$, where $X = \{m \in \mathcal{K}_{p+1}|m_{1,p+1} = 1\}.$ It follows that $M(B) \leq \mathcal{K}_{p+1}$. (b) \Rightarrow (c). This is immediate, since $x_n \subseteq x_n$ for all n. (c) \rightarrow (d). It suffices to show that L_n is a monoid of transformations of the kind described in (d). Let Q be the set of all row vectors (a_1, \dots, a_n) with each a_i \in B. The ith coordinate of q \in Q is denoted q_i. A partial order on Q is defined by $q \leq q'$ iff $q_i' = 1$ implies $q_i = 1$ for i = 1, ...,n. l_n acts on the right of Q by ordinary matrix multiplication. The action of d_n on Q is faithful, for suppose $s, s' \in \mathcal{L}_n$ and $s \neq s'$. Then there is some pair of indices i,j such that $s_{i,i} = 1$ and $s_{i,i} = 0$ (or vice-versa). Let

STRAUBING

q be the vector such that $q_i = 1$ and $q_k = 0$ for all $k \neq i$. Then $(qs)_{j} = 1$ and $(qs')_{j} = 0$, so $qs \neq qs'$.

If $s \in \mathcal{L}_n$ and $q_i = 1$, then (since $s_{i,i} = 1$), $qs_i = 1$. Thus $qs \leq q$. If $q \leq q'$, $s \in S$, and $(q's)_i = 1$, then there is an i such that $q_i^1 = 1$ and $s_{i,j} = 1$. But then $q_i = 1$, so $(qs)_{j} = 1$. Thus qs < q's. It follows that $(Q, \mathbf{L}$ is a transformation monoid with the required properties.

 $(d) \implies (a).$ Let S be a monoid of transformations of the kind described in (d) . Let $s,t \in S$, and suppose there are $a, b, c, d \in S$ such that $a s b = t$, $c t d = s$. For any $q \in Q$, $qa \leq q$, so $qt = q$ asb $\leq qa$ s $\leq qs$. Likewise qt < qs. Thus qs = qt for all q ϵQ . Since S acts faithfully on Q , $s = t$. Thus $S \in \underline{J}$, and consequently any divisor M of S is in J .

REFERENCES

- 1. Eilenberg, S., Automata, Languages and Machines, Academic Press, New York, 1974 (vol. A) and 1976 (vol. B).
- 2. Simon, I., Piecewise Testable Events in Automata Theory and Formal Languages, 2nd GI Conference, Springer Lecture Notes in Computer Science 33 (1975) 2q4-222.

Reed College Portland, Oregon

Received March 7, 1979 and in final form May i, 1979.