RESEARCH ARTICLE

ON FINITE 2-TRIVIAL MONOIDS Howard Straubing Communicated by G. Lallement

In this note I give several characterizations of the family \underline{J} of finite monoids with one-element *g*-classes. The proof uses techniques from the theory of finite automata and depends upon a theorem of Imre Simon [2] which describes the family of recognizable sets whose syntactic monoids are in \underline{J} .

For details concerning the automata-theoretic notions used here, the reader is referred to the books by Eilenberg [1], especially Chapter VIII of Volume B.

Let \underline{J} be the family of all finite monoids with oneelement 2-classes. That is, \underline{J} consists of all finite monoids M such that if asb = t and ctd = s for some a,b,c,d,s,t \in M, then s = t. \underline{J} is closed under submonoids, homomorphic images and finite direct products; that is, \underline{J} is an M-variety [1, vol. B].

Let Σ be a finite alphabet and Σ^* the free monoid generated by Σ . A recognizable subset A of Σ^* is said to be <u>piecewise testable</u> if A is in the boolean closure of the family of subsets of Σ^* of the form $\Sigma^* \sigma_1 \Sigma^* \sigma_2 \cdots \sigma_p \Sigma^*$, where $\sigma_i \in \Sigma$ for $i = 1, \cdots, p$. Let M(A) be the syntactic monoid of A. Simon's Theorem is: <u>A recognizable subset A of Σ^* is piecewise testable</u> iff M(A) $\in \underline{J}$.

 \mathcal{B} denotes the commutative semiring $\{0,1\}$ — multiplication and addition in \mathcal{B} are defined by the formulas $1 \cdot 1 = 1$, $1 \cdot 0 = 0 \cdot 1 = 0 \cdot 0 = 0$, 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1. For each $n \ge 1$, $\mathcal{B}^{n \times n}$ denotes the collection of all $n \times n$ matrices over \mathcal{B} . $\mathcal{B}^{n \times n}$ is thus a finite monoid under matrix multiplication; $\mathcal{B}^{n \times n}$ may also be viewed as the monoid of all binary relations on a set with n elements. Let

STRAUBING

$$\begin{split} \mathbf{x}_n &= \{\mathbf{m} \in \mathcal{B}^{n \times n} \mid \mathbf{m}_{\text{ii}} = 1 \quad \text{for } i = 1, \cdots, n\}. \quad \mathbf{x}_n \quad \text{is a sub-} \\ \text{monoid of } \mathcal{B}^{n \times n}; \quad \text{in terms of relations it is the monoid} \\ \text{of all reflexive relations on a set with } n \quad \text{elements.} \\ \text{Let } \mathbf{x}_n &= \{\mathbf{m} \in \mathbf{x}_n \mid \mathbf{m}_{ij} = 0 \quad \text{for } j < i\}. \quad \mathbf{x}_n \quad \text{is also a sub-} \\ \text{monoid of } \mathcal{B}^{n \times n}; \quad \text{it consists of all upper triangular} \\ \text{matrices in } \mathbf{x}_n. \quad \text{Observe that } \mathcal{B}^{n \times n} \times \mathcal{B}^{n' \times n'} \text{ embeds in} \\ \mathcal{B}^{(n+n') \times (n+n')} \quad \text{under the map which sends the pair of} \\ \text{matrices } (\mathbf{m}, \mathbf{m}') \quad \text{to the matrix } \left(\frac{m \mid \mathbf{0}}{\mathbf{0} \mid \mathbf{m}'} \right) . \quad \text{When} \\ \text{restricted to } \mathbf{x}_n \times \mathbf{x}_{n'}, \quad \text{this map gives an embedding of} \\ \mathbf{x}_n \times \mathbf{x}_{n'} \quad \text{in } \mathbf{x}_{n+n'}. \end{split}$$

THEOREM	. Let	M be a	finite	monoid.	Then	the	following
<u>are equ</u>	ivalent	:					
<u>(a)</u>	$M \in J$.						
(b)	$M \prec x_n$	for so	ome n	<u>></u> 1.			
(c)	$M \prec L_n$	for so	ome n	<u>></u> 1.			
<u>(d)</u>	M≺s,	where	S is	a monoid	of tra	nsfo	rmations
	acting	faithfu	illy on	the righ	tofa	<u>fin</u>	ite
partially-ordered set Q such that							
		<u>qs ≤ q</u>	for a	11 q €Q,	s€ŝ	5;	

 $q \leq q'$ implies $qs \leq q's$ for all $q,q' \in S, s \in S$.

<u>PROOF</u>. (a) \Longrightarrow (b). Let $M \in J$. Since every <u>M</u>-variety is generated by the syntactic monoids it contains [1, vol.B, chapter VIII] there exist finite alphabets $\Sigma_1, \dots, \Sigma_k$ and recognizable sets $A_i \subseteq \Sigma_i^*$ such that $M \prec M(A_1) \times \dots \times M(A_k)$. By Simon's Theorem, each A_i is piecewise testable, and thus each $M(A_i)$ in turn divides a direct product $M(B_{i1}) \times \dots \times M(B_{ir})$, where each B_{ij}

STRAUBING

is of the form $\Sigma_i^* \sigma_1 \Sigma_i^* \sigma_2 \cdots \sigma_p \Sigma_i^*$. Since, as remarked above, $\mathcal{X}_n \times \mathcal{X}_{n'} \subseteq \mathcal{X}_{n+n'}$, it suffices to show that each such $\mathbb{M}(\mathbb{B}_{ij})$ divides some \mathcal{X}_n . A nondeterministic automaton which recognizes $\mathbb{B} = \Sigma^* \sigma_1 \Sigma^* \cdots \sigma_p \Sigma^*$ is given by the state diagram

$$\xrightarrow{Q^{\Sigma}} \begin{array}{c} Q^{\Sigma} \\ \xrightarrow{q_1} \xrightarrow{q_1} \xrightarrow{q_2} \begin{array}{c} Q^{\Sigma} \\ \xrightarrow{q_2} \xrightarrow{q_2} \end{array} \\ \xrightarrow{q_2} \xrightarrow{q_2} \cdots \xrightarrow{q_{p+1}} \begin{array}{c} Q^{\Sigma} \\ \xrightarrow{q_{p+1}} \end{array} \end{array}$$

To this automaton is associated a homomorphism $\mu: \Sigma^* \to \mathcal{K}_{p+1} \quad \text{defined by}$

$$(\sigma\mu)_{rs} = \begin{cases} 1 & \text{if } r = s \\ 1 & \text{if } \sigma = \sigma_r & \text{and } s = r+1 \\ 0 & \text{otherwise} \end{cases}$$

for each $\sigma \in \Sigma$, $1 \leq r$, $s \leq p+1$. It is easy to check that w $\in \Sigma^*$ is accepted by the automaton iff $(w\mu)_{1,p+1} = 1$. Thus, $B = X\mu^{-1}$, where $X = \{m \in \chi_{p+1} | m_{1,p+1} = 1\}$. It follows that $M(B) \prec \chi_{p+1}$. (b) \Rightarrow (c). This is immediate, since $\chi_n \subseteq \ell_n$ for all n. (c) \Rightarrow (d). It suffices to show that $\boldsymbol{\ell}_n$ is a monoid of transformations of the kind described in (d). Let Q be the set of all row vectors (a_1, \cdots, a_n) with each $a_i \in B$. The ith coordinate of $q \in Q$ is denoted q_i . A partial order on Q is defined by $q \leq q'$ iff $q'_i = 1$ implies $q_i = 1$ for $i = 1, \dots, n$. \mathcal{L}_n acts on the right of Q by ordinary matrix multiplication. The action of $\boldsymbol{\ell}_n$ on Q is faithful, for suppose s,s' $\in \boldsymbol{\ell}_n$ and $s \neq s'$. Then there is some pair of indices i,j such that $s_{i,j} = 1$ and $s'_{i,j} = 0$ (or vice-versa). Let

STRAUBING

q be the vector such that $q_i = 1$ and $q_k = 0$ for all $k \neq i$. Then $(qs)_j = 1$ and $(qs')_j = 0$, so $qs \neq qs'$.

If $s \in \mathbb{Z}_n$ and $q_i = 1$, then (since $s_{ii} = 1$), $qs_i = 1$. Thus $qs \leq q$. If $q \leq q'$, $s \in S$, and $(q's)_j = 1$, then there is an i such that $q'_i = 1$ and $s_{ij} = 1$. But then $q_i = 1$, so $(qs)_j = 1$. Thus $qs \leq q's$. It follows that (Q,\mathbb{Z}_n) is a transformation monoid with the required properties.

(d) \rightarrow (a). Let S be a monoid of transformations of the kind described in (d). Let s,t \in S, and suppose there are a,b,c,d \in S such that asb = t, ctd = s. For any q \in Q, qa \leq q, so qt = qasb \leq qas \leq qs. Likewise qt \leq qs. Thus qs = qt for all q \in Q. Since S acts faithfully on Q, s = t. Thus S \in J, and consequently any divisor M of S is in J.

REFERENCES

- Eilenberg, S., <u>Automata, Languages and Machines</u>, Academic Press, New York, 1974 (vol. A) and 1976 (vol. B).
- Simon, I., <u>Piecewise Testable Events</u> in <u>Automata</u> <u>Theory and Formal Languages</u>, <u>2nd GI Conference</u>, Springer Lecture Notes in Computer Science 33 (1975) 214-222.

Reed College Portland, Oregon

Received March 7, 1979 and in final form May 1, 1979.