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1 Introduction 

An important  problem in affine differential geometry is to classify all the affine 
hyperspheres with constant sectional curvature (abbreviated CSC) Btaschke met- 
ric. This problem has been extensively studied in the recent years. 

The classification has been made in dimension 2 due to works of Radon 
[14], Li and Penn [8], Magid and Ryan [9] and Simon [17]. 

The first result in high dimension for local affine hyperspheres with positive 
definite Blaschke metric was given by Li [7], who proved that an affine hyper- 
sphere with vanishing scalar curvature is either the elliptic paraboloid or affinely 
equivalent to the hypersphere defined by 

(1.1) X 1 X 2 X 3 . . . X n + I  = 1 .  

Then Yu [23] could show that an CSC affine hypersphere in N. + is either a 
quadric or the hypersphere (1.1) with n=3 .  Finally Vrancken et al. [2 t ]  could 
generalize Yu's result to all dimensions by using a technique to simplify the 
Fubini-Pick cubic form. Thus the classification of CSC affine hyperspheres with 
positive definite Blaschke metric was completed. 

The classification problem becomes much more difficult if the Blaschke met- 
ric is indefinite and n>3 .  The only known result was given by Magid and 
Ryan [10]. They showed that an CSC affine hypersphere in IR + with indefinite 
metric and non-zero Pick invariant is affinely equivalent to one of the hyper- 
spheres 

(1.2) (x  2 + x ~ ) ( x  2 + x 2) = 1, 

(1.3) 2 2 2 (xl + x2)(x3- x~,)= 1. 

The case n > 4 remains open. Magid and Ryan gave the following 
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Conjecture. An CSC affine hypersphere in ~"+~ with non-zero Pick invariant 
is affinely equivalent to one of the hyperspheres 

(1.4) ( x  2 - ~ x  2) . . .  (X2s_l-~X2s)X2s+l... Xn+l = 1, 0--< s_<[n-2 1 ]. 

We note that the hyperspheres in (1.4) have flat Blaschke metric and parallel 
Fubini-Pick form. It motivates us to study a class of hyperspheres called canoni- 
cal hyperspheres. A hypersurface f :  M--,IR "+t is said to be canonical if its 
Blaschke metric G is flat and its Fubini-Pick form C is parallel with respect 
to G. By the Bokan-Nomizu-Simon theorem [2] we know that any canonical 
hypersurface is an affine hypersphere. Thus the conjecture of Magid and Ryan 
is equivalent to the following two assertions: 

Assertion (i) Any CSC affine hypersphere with non-zero Pick invariant is proper 
and canonical. 

Assertion (ii) Any proper canonical affine hypersphere is affinely equivalent 
to one of the hyperspheres given by (1.4). 

Our purpose in this paper is to study the canonical hyperspheres. We reduce 
the classification problem of proper canonical hyperspheres to an algebraic clas- 
sification problem of n mutually commutative self-adjoint linear operators in 
IR,+ 1 (with an indefinite inner product) which satisfy some algebraic conditions. 
Then we can show the main 

Theorem. Let f :  IR"--,IR "+1 be a proper canonical qff~ne hypersphere with 
Blaschke metric G. I f  the dimension of the maximal negative definite subspace 
of G is 1, then f is affinely equivalent to the hypersphere (x 2 +x22)x3 ... x ,+1= 1. 

The key point for the proof of this theorem is the following algebraic lemma, 
which is also important in linear algebra. 

Lemma. Let ( , )  be the indefinite inner product in JR" + 1 defined by 

(1.5) (x,x>=-x~+x~+... +xL,, x=~(xl,x2, . . . , X , + l ) ~ R  "+1 

Let A1, A2, ..., A,, be finite mutually commutative self-adjoint linear operators 
in ]R "+1. Then either there is an orthonormal basis {el,e2 . . . . .  e,+l} for ( , )  
such that we have the matrix representations 

Type I. 
ail 0 t 

A i = ~  ai2... 

0 ain+ 1 /  

=(a,t)|174174 O, i=  1, 2 . . . .  , m, ai,elR; 

or 

TypeII. A - {  ail ai2]O(ai3)| \ i = l , 2 , . . . , m ,  ai,elR 
i - \ - a i 2  ail/ 

and aja 4:0 Jbr some j; 

or 
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there exist a basis {x ,y ,e  3 . . . . .  e,+l} with ( x , x ) = ( y , y ) , = ( x , e = ) = ( y , e = ) = O ,  
(x, y )  = 1 and ( e=, et3 ) = 6~,  3 < c~, fl < n + 1, and a positive integer v, 2 < v < n + 1, 
such that we have the matrix representations 

t O  lai2ai3ai4ail 0 0 

Type III .  Ai= ai3 all 
~ i  a,4 ai, "'O(ai"+l)' 

air 0 

i = 1 , 2  . . . . .  m, a i~ lR  and ai~+O Jbr some i. Moreover, (f v=2,  then there is j 
with aj2 = _+ 1 ; / f  v>=3, there isj  such that aj3 = 1 and aj2 =aj4 . . . . .  aj~ =0.  

This paper is organized as follows. In w 2 we study the canonical  proper  hyper- 
spheres in IR "+ 1. In w 3 we prove the algebraic lemma. In w 4 we give the p roof  
of the main theorem. 

"'" ~vt(~(aiv+ l)@. 
ail/ 

2 Proper canonical hyperspheres in IR" + ' 

Let f :  M - ~ I R  "+l be a proper  canonical  affine hypersphere. By the definition 
we know that its Blaschke metric G is flat and its Fubini-Pick form C is parallel 
with respect to G. We can choose a local coordinate  system (u 1, u 2, ..., u") for 
M such that 

(2.1) G= ~ Gijdu'duJ= ~ e,i(dui) z, e i c { + l , - 1 } .  
i,j=l i = l  

U Thus we have a parallel basis {el, e2, . . . ,  e,} for TM,  ei =cS~u ~ , satisfying 

(2.2) Gi~ = G (ei, e j) = ~'i air. 

Let {Cijk} be the componen ts  of the symmetric  cubic form C with respect to 
the basis {e~}. Since {ei} and C are parallel with respect to G, we know that 

(2.3) Cijk = Cika = C jig = const., Vi,j, k. 

We denote by e ,+l  the equiaffine normal  for M in IR "+ 1. In general there are 
two possibilities to choose the equiaffine normal.  But in order to fix the Blaschke 
metric G we need to fix e ,+ l  such that it is in the same direction of f - f o ,  
where f0 is the center o f f  Then the structure equat ions read: 

n 

(2.4) dei= ~ C~jdUiek+eidule,+l, i = 1 , 2  . . . . .  n, 
j,k-1 

n 
(2.5) de,+1 = - H  y" duiei, 

i = 1  
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where ckj=ekCijk and H is the mean  curvature  of  M in N"  + 1. By the choice 
of  e,+ 1 we k n o w  that  H < 0 ,  so by an affine t rans format ion  we m a y  assume 
that  H = - 1. The apolar i ty  condi t ion gives 

(2.6) ~ i _ C i j -  O, j = 1, 2 . . . . .  n. 
i=1 

We denote  by @1, e2 . . . . .  e , + 0  the matr ix  for the basis {e~}, then (2.4) and (2.5) 
can be writ ten by 

(2.7) d(el ,e2,  . . . , e , + O = ( e l , e 2  . . . . .  e ,+ l  Aidu i , 
i 

where {Ai} are the cons tant  matr ices given by 

/C~1 ... C ~ . . .  C~, O ~  

(2.8) Ai = Cil ... Cii ... Ci, 1 , i = 1 , 2  . . . .  ,n, 

. . .  . . .  o ~  

\ 0  ... ei ... 0 O ~  

where bo th  the ( n +  1)th co lumn and row have only one zon-zero element. By 
differentiating (2.7) we get 

(2.9) [Ai, Aj]=AiAj-AjAI=O , Vi, j ,  

(cf. Li [7]). F r o m  (2.6) we have 

(2.10) tr(Ag) = 0, i =  t, 2 . . . . .  n. 

In order  to rewrite (2.3) as a restricting condi t ion on {Ai} we introduce in 
~ ,  +1 the indefinite inner p roduc t  ( , ) ,  

(2.11) ( x , x ) = ~ l x ~ + ~ 2 x 2 +  .,. +e.,x2+ 2 X n + l ,  

X = t ( X l ,  X 2 . . . . .  Xn + 1 ) e ~ n  + 1 

where {~i} are given by (2.1). Then  we can easily verify that  

(2.12) (A ix ,  y )  = (x ,  A iy  ), Vx, ye lR  "+ 1, . i= 1, 2, . . . ,  n, 

i.e., {A~} are self-adjoint with respect to ( , ) .  Moreover ,  if we denote  ~. 
= ' ( 0  . . . . .  0, 1)e~,  "+1, then {A~} has the p rope r ty  that  {AI~ ,A2~  . . . . .  A,~,~} is 
an o r t h o n o r m a l  basis for ( , )  with de te rminan t  1. 

Conversely,  we can show tha t  

Theorem2.1  Let ( x , x ) =  ~ elx 2+x.+12 be an inner product in ]R n+l  with 
i=1 

e.ie { + 1, -- 1}. I f  there exist n matrices {Ai} satisfying (i) (A ix ,  y )  = <x, AiY), 
Vx, y,i; (ii) [Ai, Aj]=O, Vi, j; (iii) t r (Ai )=0 ,  'r (iv) 3~e iR "+1 such that 
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{A1 4, A2 ~ . . . . .  A,  4, ~} is an orthonormal basis for ( , )  with determinant 1, then 
there exists a canonial affine hypersphere f :  ~ "  ~ ~ "  + 1 with the Blaschke metric 

G = ~ ei(dui) 2, where (u 1, u 2 . . . . .  u") are the coordinates Jot ~" .  
i = 1  

Proof Let S = ( A I ~  . . . .  ,A ,~ ,  ~). We define B I = S - 1 A i S ,  i = 1 , 2  . . . . .  n. By (iv) we 
know that  S is an o r thogona l  matr ix  with respect to ( , ) ,  so {Bi} also have 
the propert ies  (i), (ii) and (iii). Moreover ,  if we denote  v=~(0 . . . . .  0, 1)eIR "+1, 
then 

(2.13) B i v = S  1Ai(Su)=S-1(Ai~)-~t(O . . . . .  0 ,1 ,0  . . . . .  0), i = 1 , 2  . . . . .  n. 

F rom (2.13) and the fact that  B~ is self-adjoint with respect to ( ,  } we know 
that 

c:1 . . .  c h  . . .  c:. o \  

(2.14) Bi_~ Cil ... Cii ... Ci, 1 , i = 1 , 2  . . . . .  n, 

. . .  . . .  o ~  

\ 0  ... e~ ... 0 O ~  

j , k for some constants  { ckj} with ej C~k = t~k C~j. F r o m  [B~, B~] = 0 we get in par t icular  
�9 i _ _ ,  j , k e~Cjk--ejC~k. Thus we know that  Cijk=ekCij are  totally symmetric.  N o w  we 
consider the linear system 

(2.15) d(e l ,e2  . . . . .  e , + l ) = ( e l , e 2  . . . . .  e"+~)(~=lBidui)i 

with the initial value condi t ion 

(2.16) det ( e l  ( o ) ,  e 2 ( o  ) . . . . .  en+ 1 (o))= 1. 

This system is complete ly  integrable because of [Bi, B;] =0 .  Given any initial 
values satisfy (2.16) we get an unique solut ion (el,  ea . . . .  , e,+ 1) of (2.15), which 

k k is determined by {Bi} up to linear t rans format ions  in S L ( n +  1). Since Cgi=Cji,  
(?e~ t?ej 

we have ( ? u j -  0ug, so we can get an unique solut ion f :  I R " ~ I R  "+l (up to con- 

stant vectors in lit "+ 1) f rom the equat ion  

(2.17) d f=  ~, eidu i. 
i = 1  

It is clear that  f is de termined by {Bi} up to equiaffine t ransformat ions  in 
iR,+l.  One can easily see that  f is a p roper  canonial  affine hypersphere  with 

Blaschke metric  G =  ~ ei(dui) 2. Q.E.D. 
i = 1  
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Example  2.2 Let J, be the (n+ 1) x (n+ 1) matrix 

,_(o 01> 0>, 
with s copies of (O1 01), s=0 ,  1 . . . . .  [ ~ ] .  We define ( , )  in IR"+' by 

(2.19) ( x , x ) _ _ , x J ,  x = ( _ x 2 + x 2 ) +  ... _}_(__X2s_l_}_X2s)_{ - X 2 s +  1 2  ~_ . . .  _}_Xn+ 1 2  

for x ='(Xl, x2 . . . . .  x ,  + 1)clR" + 1. Let 

. . . . .  i0, t,1 . . . . .  

with s copies of (0, ~ ) .  Then we have (~, ~ ) =  1. So we can extend 4 to an 
orthonormal basis (t/~ . . . . .  t/,, ~) for ( , )  with determinant 1. We write 

1 t ( ~ b i l , ~ a i i )  ' [//2ais),ai2s+l, 1), (2.20t rl, = . . . . .  (V~ b, . . . . . .  a,, + 

i=1 ,2  . . . . .  n, 

and define 

ai 1 
(2.21) A i =  - b l l  

b i l l |  [ als bis\ 
a,l:  ' e ~ - b , ~  a,,) e t a ' 2 s + l ) ~  . e ( A , ~  

then (A1 4, A2~ . . . . .  A,4, 4)=(ql, ~2, "'',qn, 4) is an orthonormal basis for ( , ) .  
Moreover, one can easily verify that {Ai} are mutually commutative and self- 
adjoint with respect to ( , ) ,  i.e., tAiJs=J~A i, and 

t r (Ai )=(2ai l  + ... + 2ais+ai2s+ l + ... +ai,+ O = ( n +  1)(r / i ,4)=0.  

Thus by Theorem 2.1 we know that (A 1, A2, . . . ,  A,) define a proper canonical 

affine hypersphere x: IR"--+IR "+1 with G =  ~ [ - ( d u 2 i - l ) 2 + ( d u Z i )  2] 
i=1  

q- ~ (dui) 2. 
i = 2 s + 1  

Now we show that x is affinely equivalent to the hypersphere given by 
(1.4). Let 

(2.22) S = ( A 1 4  . . . . .  A ,~,~) ,  B i = S - 1 A , S  

as in the proof of Theorem 2.1. We get a solution 

(2.23) (el, e2 . . . . .  e,+ 0 = e x p  Aiu i S 
i 1 
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of (2.15) with the initial value condi t ion det (el (o), e 2 (o) . . . . .  e, + ~ (o))= det (S)= 1. 
Since x is an affine hypersphere  with H = - 1 ,  we may  assume that  x=e ,+~ .  
By (2.22) and (2.23) we have 

(2.24) x =t(xI 'X2 . . . . .  x"+ l)=e"+ l =exp( ~ Aiui) 

Thus f rom (2.21) we get 

1 1 ~. a o b~J]u~](O], 
\(X2Jx2j )= ]~-2~1 exP (i= l (--bij  a lj] ] \~2]  

x a - ~ f n + l  exp i= aiju i , j > 2 s + l .  

j = l , 2  . . . . .  s;  

So we h a v e  

. "t{X2j - 1~ 2 (X2j--1Ar-X2j)=(X2j I,A,2jJ~ X2 j ] = ~  

and 

exp (2i_~ 1 aijui) , j =  1,2, .. . ,  s, 

(X2-I-X2)'"(X2s 1 ~-X2s)X2s+l ""Xn+l = 2 s (  g/-~- l) -n~-! exp tr(A,)u i 
Xi = 1 

n + l  

= 2 S ( n +  1) 5 

Note that  s = 0 gives the hypersphere  (1.1). 

Remark 2.3 F r o m  the fundamenta l  t heorem of equiaffine geomet ry  we know 
that to determine all the canonical  p roper  hyperspheres  is equivalent  to deter- 
mine all the constant  solutions {C,jk} and { e l } e { + l , - - 1 }  for the quadrat ic  
equation system 

t2.25) 
n 

er (C~k,. C i,,,r - C~j,. Ck,.,,.) = --  ~ ek (a~i ak,,, - -  c5~,,, a~j) 
r = l  

~ c,. C,.,.j = 0 
r = l  

Cij k = Cji k ~ Cik j. 

[~4 -1 ]  
For any s = l , 2  . . . .  , [ ~ 2 - 1  we get solutions {Cijk} and {e,i} for (2 .25)by (2.19), 

(2.21), (2.22) and (2.14). Thus  the assert ion (ii) in w 1 claims that  all solutions 
for (2.25) can be defined by this way. 
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3 The proof of the algebraic lemma 

In order  to prove the main theorem we establish first the algebraic lemma 
stated in w 1. 

Let {A~} = {A1, A2 . . . . .  Am} be finite mutual ly  commutat ive  and self-adjoint 
linear operators  in 11t "+1 with respect to the Lorentz  inner product  ( , ) ,  

(3.1) ( x , x ) = - x ~ + x ~ +  ... +x,+1,2 x=e(xl , x2 , ..., x ,  + 1)e~- "+1 �9 

Let 112"+~=lR"+a| be the complexification of  IR "+1. We can extend ( ,  
to the Hermit ian Lorentz  inner product  in (17"+ ~ defined by 

(3.2) 
n 

( z , w ) = - z l w l  +zzw2+ ... +z ,+ lw ,+l  

for z = ' ( z l , z  z . . . . .  Z,+l) and w='(wl ,  wz, ..., W,+ l) in (U "+t. We extend {Ai} to 
the real linear operators  in II;" + 1 by 

(3.3) Ai(x + l / /~  l y)= Aix  + l / - - 1 A i y  , Vx, y~lR "+1 

It is easy to see that  for any z, w in tE" + ~ we have 

(3.4) (Aiz ,  w ) = ( z ,  Aiw),  i =  1,2, ..., m, 

i.e., {Ai} are real self-adjoint operators  in II2 "+ 1. 

Proposit ion3.1 Let W c I E  "+1 be a complex invariant subspace of {A~} with 
dim W >  1. Then for any j, given any eigenvalue 2~ of Aj there exists a common 
eigenvector 11~ W o f  {Ai} such that A jr 1 = 2jr I. 

Proof We may  assume that  j =  1. Let x~ ~ W be an 2~-eigenvector of A1, i.e., 
A1Xl = 21Xl. We define 

W1 = span~ {xl ,  A2x1,..., Ak2x1 . . . .  }. 

Then W1 is a subspace of  W with dim W 1 > 1. Since A 2 WI c WI, A2 has an 
eigenvector xz~W1 and x2=P2(A2)xx for some polynomial  P2. Similarly A3 
has an eigenvector x3=P3(A3)xe=P3(A3)pz(A2)x 1 in the invariant  subspace 
Wz=spanr A3x 2, ..., Ak3x2 . . . .  }. Since {Ai} are finite, by repeating this pro- 
cess we will get an eigenvector x,, of  Am, x,,=p,,(Am)xm_l . . . .  
= p,,(A,,)p,,_ 1 (A,._ 1)'" P2 (A2)xI" Since {Ai} are commuta t ive  and x i is an eigen- 
vector of A~, i =  1, 2 . . . . .  m, we know that Xm is h c o m m o n  eigenvector of {Ai} 
such that A1xm=21x, , .  Q.E.D. 

Proposition 3.2 Let r  "+1 be 2-, #-eigenvalue of Aj respectively. I f  2 oe fi, 
then (~, tl) = O. 

Proposi t ion3.3 Let V ~IR "+1 be an invariant subspace of {Ai). Let 
r /~V|  "+1 be a common eigenvector of {Ai}. I f  (q,q)+-O, then there is 
a real common eigenvector x ~ V  ( x = R e r  1 or Imrl) such that A~x=2ix,  2~F,. 
i= 1, 2 . . . . .  m, and (x,  x ) + 0 .  Moreover, we have the orthonogal decomposition 
V = ~ x @ x  • where x •  which is also an invariant subspace 
of {A,}. 
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Proposition 3.2 and 3.3 follow immediately from the fact that {Ai} are self-adjoint 
and that ( , )  is a Hermitian inner product. 

Proposition 3.4 Suppose that (z,  z ) =  (z,  w ) =  (w, w ) = 0  for  z, w in 112 "+ 1, then 
z and w are linearly dependent. 

Proof Let z = t ( z l , z z , . . . , z , + O  and w=~(Wl,W2 . . . . .  w,+0. Then we can find 
(k l , k2)+O in t17 2 such that k l z l + k 2 w l = O .  Since ( k l z + k 2 w ,  k l z + k 2 w ) = O ,  
we conclude from (3.2) that k ~ z + k z w = O .  Q.E.D. 

It is clear that we have an irreducible orthonogal decomposition 

(3.5) ~ , " +  ~ = V l |  V2 |  .. .  | V,,, 

where Vk, k = 1, 2 . . . . .  3/, are irreducible invariant subspaces of {At} with dim Vk 
>_I. 

Proposition 3.5 There exists at most one k such that dim Vk > 1. 

Pro(~ Since ( , )  is nondegenerate in each Vk and the maximal negative definite 
subspace of ( , )  has dimension 1, we know that all but one V k are positive 
definite subspaces. Since any positive definite invariant subspace of {A~} with 
dimension greater than 1 is reducible, so there is at most one k with dim V k 
> 1. Q.E.D. 

Thus we can find an orthonormal subbasis {e,.+l, ev+2 . . . . .  en+ t} for R , + I  
consisting of common eigenvectors of {At} such that we have the orthonogal 
decomposition 

(3.6) ]R"+ l = Vo@IRev+ l @ ... @lRe,+ l, 

where V o is an irreducible non-positive definite invariant subspace of {Ai} of 
dimension v. 

If dim Vo = 1, then {At} is of Type I as in the lemma in w 1, i.e., {A~} can 
be simultaneously diagonalized. In the rest of this section we will always assume 
that dim V 0 > 2. It follows from Proposition 3.3 that 

Proposition 3.6 Let  rl~ Vo| be any common eigenvector of  { Ai}, then (rl, t l )=0 .  

Proposition 3.7 Each Aj  : V o --* Vo has either (i): only two non-real dual eigenvalues 
)~j and 2j ; or (ii): only one real eigenvalue 2j. 

Proof Let Zj and llj (2j4: Pi) be two eigenvalues of Aj  : Vo ~ Vo. By Proposition 3.1 
we have two common eigenvectors ~ and q of {A~} in Vo|  such that A ~  = 2~-~, 
Aiq =#jq.  Then Proposition 3.6 implies that (4, 3) = (q, q) =0.  Thus by Proposi- 
tion 3.4 we have (~,r/)4=0. So by Proposition 3.2 we have 2 j=~ j .  Therefore, 
A~:V o ~  V o has either (i): only two non-real dual eigenvalues Zj and 2j; or 
(ii): only one eigenvalue 2j. In case (ii) 2j must be real since Aj is real. Q.E.D. 

Definition 3.8 {At} is said to be (i): of  Type II if there is j such that Aj  : Vo --* Vo 
has two non-real dual eigenvalues 2j and 2j; (ii): of  Type III if each A~:Vo ~ Vo 
has only one real eigenvalue 2~. 
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Proposition 3.9 If {Ai} is of Type II, then dim Vo=2. Moreover, there exists 
a basis {el, e2} for Vo with <ex, ex> = - ( e 2 ,  e2> = - 1 and <el, e2> = 0  such that 

(3.7) al bil, i=1 ,2 ,  . . . , m ;  Ai(el,e2)=(el,ez) - b /  ai/ 

where ai, b i e r  and at least one bi is non-zero. 

Proof Let qe V0| be a common eigenvector of {Ai}. We may assume that 

Airl=2/q, i = 1 , 2  . . . .  ,m. We write q = x + ] / ~ l y  with x, yeVo. Since some of 
2/ are non-real, we know that x and y are linearly independent. By Proposi- 
tion 3.6 we have (tl, r l>=(x,x>+(y,y)=O. Then it follows from Proposition 

3.4 that Q l , # > = < x , x > - ( y , y > + 2 ~ / - l ( x , y ) # O .  By letting ~=pr /  with 

f/> we have (Re  3, Im ~> =0.  Since (3, ~> = 0, (Re  ~, 

Re ~ > = - ( I m 4 ,  Im ~> is non-zero. Thus we may assume ~ = e l + ] ~ - -  1 e2 and 

@1, e x ) = - ( e 2 ,  e2> = - 1 ,  @1, e2> =0.  By letting 21=a/+]//-~-lbi we get (3.7). 
Since V=span~ {el, e2} is an invariant subspace of {A/} and V c~ V J-= {0}, by 
the irreducibility of V o we know that V o = V. Q.E.D. 

In the rest of this section we assume that {A/} is of Type IIl. Let Vo be 
as in (3.6) and 2/as  in Definition 3.8 we have 

Proposition 3.10 Let 7 be the smallest positive integer such that (A/- ) . f i )~=0 
in V o for all i = t, 2, ..., m, then ,,, < 3. 

Proof Let xeVo| be a common eigenvector of {Ai}, then Aix=2ix, 
i=  1, 2 . . . . .  m. Since {A/} and {)~/} are real, we may assume that x e  V o. By the 
definition of 7 we can find j and ueVo such that (Aj-2jI)r-~u#O. We define 
y=(Aj--2jl)~-2u. If ~ >4,  then 2 7 - 4 > ~ / ,  we have (y, y> = (u, (Aj--)~jI)2"~-4u) 
= 0  and ( y , x > = 0 .  But Proposit ion 3.6 implies ( x , x > = 0 ,  we conclude from 
Proposition 3.4 that y = kx for some kelR. Thus (Aj -2~  I)y=(A~--2jl)Y-~u=O, 
we get a contradiction. Q.E.D. 

Proposition 3.11 Suppose that 7=2 ,  then dim 1/o=2. Let j satisfy (Aj-2j I )#O 
in Vo, then there is a basis {x,y} for Vo with <x,y>=l and (x ,x>=(y,y>=O 
such that 

(3.8) Ai(x,y)=(x,y)|-,~'/)' ai]\ i= 1,2 . . . . .  m; aielR; a j :  + t .  
\ v  

Proof Let x~Vo be a common eigenvector of {Ai}. Then Aix=2ix,  i= 1, 2, ..., m, 
and (x,  x> =0.  Let ueVo with (u, x> #0,  then u and x are linearly independent. 
Since <(Ai-2iI)u , x ) = 0  and <(Ai--2iI)u, (Ai-2iI)u)=O, we have by Proposi- 
tion 3.4 that (Ai -2 i l )u=b/x ,  i = 1 , 2  . . . . .  m; biElR. Thus V=span•{u,x} is an 
invariant subspace of {Ai} with Vc~ V I =  {0}. By the irreducibility of Vo we have 
Vo = V, so dim Vo=2. Since (A j -2 j l )#O in Vo, we have (A~--)ojI)u=bjx#O. 
By modifying u we may assume <(Aj-2j l)u, u> = e e {  + i, - 1}. Then by modify- 

ing x we have ( u , x > = l .  Now let y=u (u,u> 2 x, we get (x ,x>=(y ,y> =0 
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and ( x , y ) = l .  Moreover ,  (A~--;tfl)y=agx for some ai~lR, i = 1 , 2  . . . . .  m, and 
a t=e .  Q.E.D. 

Proposition3.12 Suppose that ;~=3 and j satisfies (Aj-;~jl)Z+O in V o. Then 
there is a basis {x,y, e3, ...,e,} for V o with ( x , x ) = ( y , y ) = ( x , e , ) = ( y , e , ) = O ,  
(x, y) = 1 and (e,, ea) = 6,t~, 3 <-_ ~, fl < r, such that we have the matrix representa- 
tions 

i ai2 ai3 ai4  . . .  ai,,'~ 
2 i 0 0 0 \ , )  

(3.9) Ai = a! 4 2i i= 1, 2 .... , m, 

air 0 2 i 

and aik~lR with aj3 = 1, aj2 = a j 4  = ... = a j ~ = 0 .  

Proof Let x~Vo be a c o m m o n  eigenvector for {A~}, then A~x=2ix for all i 
and (x,  x )  =0 .  Let u~Vo with (Aj-2jI)2u~O. Since ( (Aj-2 j l )u ,  x) =0 ,  we know 
by Proposi t ion 3.4 that  v=(Aj--2fl)u satisfies (v, v)  +0 .  We claim that (v, v) >0 .  
Otherwise we have (v, v ) < 0 ,  then we have the o r thonoga l  decomposi t ion V o 
=P, vOv • Since ( , )  is negative definite in Rv ,  it must  be positive definite 
in v I. But xev • and ( x , x ) = 0 ,  we get a contradict ion.  Thus by modifying 
u we may  assume that  (v, v ) =  1. By Proposi t ion 3.4 and the fact that  , /=3  
we know that ( A j - 2 j ) 2 u = k x + O  for some k~lR, so by modifying x we may  
assume that k = l ,  i.e., ( u , x ) = ( v , v ) = l .  N o w  let y = u - � 8 9  
3 (u, v)Z]x and e3=v- �89  (u, v)x, we have 

(3.10) ( x , x ) = ( y , y ) = ( , x ,  e3)=(y,  e3)=O , ( x , y ) = ( e 3 , e 3 ) = l .  

We define W =  span~ {x, y, e 3 }  , then W ~ W • = {0} and Vo = W Q  W • Since ( , )  
is indefinite in W, it must  be positive definite in W • So Aj: W • ~ W • is diagona-  
lizable. We can choose an o r thonorma l  basis {e4, e5 . . . . .  ev} for W • such that 
Aje~=2je~, ~ = 4 , 5  . . . . .  v. Thus {x,y, e3,e4, ..., e,,} is a basis for V 0. By Proposi-  
tion 3.4 we know that  (Ai -2 i I )2e ,=ki ,x  for some ki~elR, i = 1 , 2  . . . . .  m; so 
( (Ai-  2i I) e,, (Ai - 2i 1) e , )  = (e~, ki~ x)  = 0. Again  by Proposi t ion 3.4 we get 

(3.11) (Ai--2iI)e,=ai~x, ai,~lR, i = 1 , 2  . . . . .  m; c~=3,4 . . . . .  v. 

v 

Using the formula Aiy=(Aiy ,  y ) x + ( A i y ,  x ) y +  y' (Aiy, e~)e ~ and (3.11) we 
get ~ - 3 

(3.12) Aiy=aizx+2iy+ ~ ai~e~, i = 1 , 2  . . . . .  m, a i 2 = - ( A i y ,  y ) .  
7 = 3  

Thus (3.11) and (3.12) imply (3.9). Fur thermore,  we have (A j -2 j I ) y=v  
- � 8 9  so we get aj3=l and ajz=aj4 . . . . .  a~-~=0. Q.E.D. 

Thus the algebraic lemma follows from the or thonoga l  decomposi t ion  (3.6), 
Proposit ion 3.9, 3.11 and 3.12. 
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4 The proof of the main theorem 

Let f :  M ~ F.." + ~ be a p roper  canonical  affine hypersphere  and G its Blaschke 
metric. We assume that  the maximal  negative definite subspaces of  G have 
dimension 1. Then as in w 2 we know that  there exist n mutual ly  commuta t ive  
linear opera tors  {A~} in IR "+1 which are self-adjoint with respect to the Lorentz 
inner p roduc t  ( , ) ,  

(4.l) < x , x > =  - -x2 -~x22-{  - 2 Xn+l )@lRn+l .  . . .  - } -Xn+l ,  x ~ - t ( x 1 , x 2 ,  . . . ,  

Moreover ,  {A~} satisfy also the propert ies  (i): t r (Ai)=0,  i =  1,2 . . . . .  n; and  (ii): 
3~e lR  "+~ such that  { A ~ , A 2 4  . . . . .  A,~,~} is an o r thonorma l  basis for IR "+t 
with respect to ( ,  >. 

We know from the algebraic l emma in w 1 that  {Ai} have three possible 
types, namely  the Type  I, II  and III.  

If  {A~} is of Type  I, then there is an o r thono rma l  basis {e~,e2 . . . . .  e,,+~} 
for IR" + ~ such that  we have the matr ix  representa t ions  

(4.2) Ai=(ail)@(ai2)O ...@(ai,,+l) , i = 1 , 2  . . . . .  n. 

By the p roper ty  (ii) we know that  A~,A 2 . . . . .  A, are linearly independent ,  so 
the matr ix  

(4.3) 31" = 

a l l  a 1 2  . . .  a L n + l \  

�9 aT+  ) 
\ a ; 1  a,2 ... a ~ , + l /  

n + l  

has rank  n, i.e., the kernal  o f T :  N. "+ 1 ~ I R "  has d imension 1. N o w  let ~ =  ~ 4~e~. 

By the p roper ty  (ii) we have ~= 

n + l  

<Ai~,~>=ail(-~21)+ ~ ai~(~a) 2=0, 
C(=2 

i =  1,2, .. . ,  n. 

T h u s  t(_ 2 2 2 ~L,42 . . . . .  4 ,+ l )ekerqF.  But the p roper ty  (i) implies that 
t(1, 1, . . . ,  1)eker  qI', so there is k ~ ,  such that  ( - 3 2 ,  r . . . ,  (2+ d = k ( 1 ,  1 . . . . .  l). 
I t  is impossible for (~, ~ > =  1. Thus  {Ai} cannot  be of  Type  I. 

Let  {Ai} be of Type  II. Then there is an o r t h o n o r m a l  basis {el, e2, - - . ,  en+ 1J 
for ~,"+ 1 such that  we have  the mat r ix  representa t ions  

=( ai, ai2]O(ai3)G... O(ai,+ 1), i= 1, 2 . . . . .  n. (4.4) Ai 
\ - - a i 2  a i l  / 

n + l  

Let ~ =  ~ ~e~ .  By the p roper ty  (ii) we have 
5 = 1  

n + l  

(A,~, ~5 = a , ,  (~2--~Z)+a~2(- -24~ ~z)+  ~ a,~(r 1 = 0 ,  
5 = 3  

i = 1 , 2  . . . . .  n. 
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We define "IF by (4.3), then t ( 4 ~ - 4 2 ,  - 2 4 ~  42, 42 . . . . .  42+ 0 e k e r  qI '. But the p r o p -  
erty (i) implies that  ~(2,0, 1, . . . ,  1)ekerqF, so there is k e l R  such that  ( 4 2 - 4 2 ,  

, 4 , + 0 = k ( 2 , 0 , 1  . . . . .  1). Thus  41=0 .  F r o m  ( 4 , 3 ) = 1  we get 
f i = ( n + l )  -1.  By changing  e~ to - e ,  if necessary we may  assume tha t  

, 1 ( ] ~ e 2 + e 3 +  ... + e , + l ) .  As we know in E xa mple  2.2 that  {Ai} deter-  

mine the p r o p e r  canonica l  hypersphere  

(4.5) (x~ -I- X 2 ) X 3 . . .  X n +1  = 2 (n + 1) " ~  

Finally we assume that  {Ai} is of Type  III .  Then by the a lgebra ic  1emma we 
have a basis {x,y, e3, ..., e ,+ l}  such that  we have the mat r ix  represen ta t ions  
as in the l emma in w 1. We write 

(4.6) Ai=ailTl+ai2T2-+-...+aln+lTn+l, i = 1 , 2  . . . . .  n, 

n + l  

and 4 = 4 1 x + 4 2 y +  ~ 4~e~. By the p rope r ty  (ii) we have 
~ = 3  

n + l  

( A ~ 4 , 4 ) =  ~ a i ~ ( T ~ 4 , 4 ) = 0 ,  i = 1 , 2  . . . .  ,n. 

Thus t((7] 4, 4)  . . . . .  (T ,  + 1 4, ~ ) ) e k e r  T ,  where "IF is defined by  (4.3). But the p rop -  
erty (i) implies tha t  ~(v, 0 . . . .  ,0, 1, . . . ,  1 )eker  1", and  we k n o w  tha t  d im (ker ~ )  = 1, 
so there is ke lR  such tha t  ( ( T  1 4, 4)  . . . . .  (T ,+  1 4, 4))  = k(v, 0 . . . .  ,0,  1 . . . . .  t), where 
we have v - 1  copies of 0. Since v > 2 ,  we get 0 = ( T 2 4 , 4 ) - - ( 4 2 x ,  4 ) = ~ = 0 ,  
i.e., 42=0 .  So we have (4, x ) = 4 2 = 0  and (Ai4, x )=(~ ,a i l x )=O,  i = 1 , 2  . . . . .  n. 
it is imposs ib le  because  of  the p r o p e r t y  (ii). 

Thus  we comple te  the p r o o f  of  the main  theorem.  
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