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1 Introduction

An important problem in affine differential geometry is to classify all the affine
hyperspheres with constant sectional curvature (abbreviated CSC) Blaschke met-
ric. This problem has been extensively studied in the recent years.

The classification has been made in dimension 2 due to works of Radon
[14], Li and Penn [8], Magid and Ryan [9] and Simon [17].

The first result in high dimension for local affine hyperspheres with positive
definite Blaschke metric was given by Li [7], who proved that an affine hyper-
sphere with vanishing scalar curvature is either the elliptic paraboloid or affinely
equivalent to the hypersphere defined by

(1.1) X1 XyXg. Xpp1=1.

Then Yu [23] could show that an CSC affine hypersphere in IR* is either a
quadric or the hypersphere (1.1) with n=3. Finally Vrancken et al. [21] could
generalize Yu’s result to all dimensions by using a technique to simplify the
Fubini-Pick cubic form. Thus the classification of CSC affine hyperspheres with
positive definite Blaschke metric was completed.

The classification problem becomes much more difficult if the Blaschke met-
ric is indefinite and n=3. The only known result was given by Magid and
Ryan [10]. They showed that an CSC affine hypersphere in IR* with indefinite
metric and non-zero Pick invariant is affinely equivalent to one of the hyper-
spheres

(1.2) (xT+x)(x3+x3)=1,

(1.3) (xT+x3)(x3—x3)=1.

The case n=4 remains open. Magid and Ryan gave the following
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Conjecture. An CSC affine hypersphere in R™*! with non-zero Pick invariant
is affinely equivalent to one of the hyperspheres

1
(1.4) (24 x3) . (X5 1+ X3 ) X501 Xy 1 =1, 0§s§[7ﬁ2;].

We note that the hyperspheres in (1.4) have flat Blaschke metric and parallel
Fubini-Pick form. It motivates us to study a class of hyperspheres called canoni-
cal hyperspheres. A hypersurface f: M —R"*! is said to be canonical if its
Blaschke metric G is flat and its Fubini-Pick form C is parallel with respect
to G. By the Bokan-Nomizu-Simon theorem [2] we know that any canonical
hypersurface is an affine hypersphere. Thus the conjecture of Magid and Ryan
is equivalent to the following two assertions:

Assertion (i) Any CSC affine hypersphere with non-zero Pick invariant is proper
and canonical.

Assertion (i) Any proper canonical affine hypersphere is affinely equivalent
to one of the hyperspheres given by (1.4).

Our purpose in this paper is to study the canonical hyperspheres. We reduce
the classification problem of proper canonical hyperspheres to an algebraic clas-
sification problem of n mutually commutative self-adjoint linear operators in
R"*! (with an indefinite inner product) which satisfy some algebraic conditions.
Then we can show the main

Theorem. Let f: R"—R**! be a proper canonical affine hypersphere with
Blaschke metric G. If the dimension of the maximal negative definite subspace
of G is 1, then f is affinely equivalent to the hypersphere (x§ +x3)x3...x,,,;=1.

The key point for the proof of this theorem is the following algebraic lemma,
which is also important in linear algebra.

Lemma. Let {, ) be the indefinite inner product in R**" defined by
(1.5) (x,xy=—x3+x34+ . +x2,,  x="x1,Xg, e Xy DER™TL

Let A, A,, ..., A, be finite mutually commutative self-adjoint linear operators
in R"*. Then either there is an orthonormal basis {e,,e;, ..., e, 1} for {,)
such that we have the matrix representations

a;, 0

da; . , .
Typel. A= 2 =(a;)®)®D ... D(Ainr1), i=1,2,...,m a,eR;

0 Ain+1

or

Type I1. A,-=< a"al “"2>®(ai3)®...@(ai"+l), i=1,2,...,ma,cR
— 42 il
and a;,*0 for some j;

or
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there exist a basis {x,y,es,...,e,.,} with {x,x>={y, y>=<{x,e,> =<y, e,>=0,
{x,y>=1and {e,,e;)=0,5,3<0, f<n+1, and a positive integer v, 2<v=n+1,
such that we have the matrix representations

iy iy Qi3 iy ... Gy
0 g, 0 0 ... 0
0 a3 g
Type I1I.  A4,= T ; @0 1)s
ype i () ai4 a;, 0 ®(a1v+l)® @(am+1)
0 a;, 0 diq
i=1,2,...,ma,cR and a;,%+0 for some i. Moreover, if v=2, then there is j
with a;; =+ 1;if v=3, there is j such that aj;=1and aj,=a;,= ... =a;,=0.

This paper is organized as follows. In § 2 we study the canonical proper hyper-
spheres in R"*'. In § 3 we prove the algebraic lemma. In § 4 we give the proof
of the main theorem.

2 Proper canonical hyperspheres in IR *!

Let f: M ->IR"*! be a proper canonical affine hypersphere. By the definition
we know that its Blaschke metric G is flat and its Fubini-Pick form C is parallel

with respect to G. We can choose a local coordinate system (u', u?, ..., u") for
M such that
2.1) G= ) Guduldu'=Y gdu), egel{+1, —1}.

i,j=1 i=1

. é
Thus we have a parallel basis {e, e,,...,e,} for TM, e;= /

a_u‘ satisfying

2.2 G;i=Gle;, e)=¢9;;.

Let {C;;} be the components of the symmetric cubic form C with respect to
the basis {e;}. Since {e;} and C are parallel with respect to G, we know that

(2.3) Cii=Cy;=C;=const, Vij,k.

We denote by e,,, the equiaffine normal for M in R"*!. In general there are
two possibilities to choose the equiaffine normal. But in order to fix the Blaschke
metric G we need to fix e,,; such that it is in the same direction of f—f,,
where f, is the center of f. Then the structure equations read:

(2.4) de;= Y Chdu'e,+eduie,,, i=1,2...,n,

Jik=1

{2.5) de,y=—H Y du'e,

i=1
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where C¥;=¢,C,;, and H is the mean curvature of M in IR**'. By the choice
of e,,; we know that H<0, so by an affine transformation we may assume
that H= — 1. The apolarity condition gives

(2.6) Y Ch=0, j=1,2,...,n.
i=1

We denote by (e, e,, ..., e,.,) the matrix for the basis {e,}, then (2.4) and (2.5)
can be written by

X .3, st )= (ersenvens ) 3 At
i=1
where {A4;} are the constant matrices given by

cL ...ch..cLo

(2.8) A= " Cii oo Gy 1 , i=1,2,....n,
n. Ch . C O
0 ... g .. 00

where both the (n+ 1)th column and row have only one zon-zero element. By
differentiating (2.7) we get

2.9) [A;, A]=A;A;—A;4,=0, Vij,
(cf. Li [7]). From (2.6) we have
(2.10) tr(4)=0, i=12,...,n.

In order to rewrite (2.3) as a restricting condition on {A4;} we introduce in
RR"*! the indefinite inner product < , >,

(2.11) (X, Xy =g X2+ E,X3+ ... +e,x2+x2, |,
X=YX1, X5, .0y Xpp 1) ER" Y,

where {¢;} are given by (2.1). Then we can easily verify that
(2.12) {Aix, yy=4x, A;y>, ¥x,yeR""! -i=1,2,...,n,

ie, {4;} are self-adjoint with respect to <, ). Moreover, if we denote ¢
=%0,...,0, 1)eR"*1, then {4;} has the property that {4,& A4,¢&, ..., 4, ¢ is
an orthonormal basis for {, > with determinant 1.

Conversely, we can show that

Theorem 2.1 Let {x,x)= Y &x7+x2,, be an inner product in R**' with
i=1

ge{+1, —1}. If there exist n matrices {A;} satisfying (i) {A;x, yD>=<x, 4;y:

Vx, p,0; (i) [An A]=0, Vij; (i) tr(d)=0, Vi: (v) IEeR"* ' such that
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{4, 8 AL, ..., AL E) is an orthonormal basis for {, ) with determinant 1, then
there exists a canonial affine hypersphere f: R"—R"*! with the Blaschke metric

n
G=Y &(du’)* where (u',u?, ...,u") are the coordinates for R",
i=1

Proof. Let S=(A, ¢, ..., A& ). We define B;=S"14,S,i=1,2,...,n By (iv) we
know that § is an orthogonal matrix with respect to <, >, so {B,} also have
the properties (i), (i)) and (iii). Moreover, if we denote v=40,...,0, 1)eR"**?,
then

(213) Biv=S"A(Sv)=85"'(4,8=40,...,0,1,0,...,0), i=1,2,....n.

From (2.13) and the fact that B; is self-adjoint with respect to ¢, > we know
that

cL ..ch...cL o0
.. ChLCL
(214) Bi= i1 Cu Cm
.. ChH ool 0

0 ... & ... 0 0

for some constants {C};} with ¢;C}, =, C};. From [B;, B;] =0 we get in particular
& Ch=¢;C},. Thus we know that C,;; =¢,C¥; are totally symmetric. Now we
consider the linear system

(2.15) dlej,es,....en01)=(ey, €z, ...,e,,H)(Z Bidui)
i=1

with the initial value condition
(2.16) det (e,(0), e5(0), ..., e, (0))=1.

This system is completely integrable because of [B;, B;]=0. Given any initial
values satisfy (2.16) we get an unique solution (e, e,, ...,e,.,) of (2.15), which

is determined by {B;} up to linear transformations in SL(n+1). Since C§;=C¥,,

e; Oe; . .
we have -8—5: 3 £, 50 we can get an unique solution f:IR" - IR"*! (up to con-
u u

stant vectors in R”* ') from the equation

(2.17) df = 2 e;du,

i=1
It is clear that f is determined by {B;} up to equiaffine transformations in

R"*!, One can easily see that f is a proper canonial affine hypersphere with

Blaschke metric G= )’ ¢(du)>. Q.E.D.

i=1
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Example 2.2 Let J; be the (n+1) x (n+ 1) matrix

-1 0 -1 0
(2.18) Js=(0 1)@..4@(0 1)@(1)...@0)

with s copies of<_01 ?), s=0,1,..., [n-;l]. We define ¢, > in R"*! by

(219) o xd>="xJx=(=xi+xP)+ ... +(=x5 1 +x3)+ X311+ .. X34
for x="(0x;, X5, ..., Xy )ER" "1, Let

1

= 0,1/2), .-, (0,]/2), 1, ..., DeR"*!
zl/m«o,l/z) ©0,1/2) e

with s copies of (0, ]/E). Then we have <& E>=1. So we can extend £ to an
orthonormal basis (4, ..., #,, ¢) for {, > with determinant 1. We write

(220) H; :V—%‘:{ t(l/ibil ’ Viail)v s (I/Ebis’ ‘/iais% Aizs+15 -5 din+ l)s

i=1,2,...,n,

and define

) b. ) b.
(2.21) A,.=<“‘1 ”)ea...@(f” af)@(aizm)@---®(Ai,.+1)-

—bi; ay b is

then (A, & AL ¢, ..., A, ¢, E)=M1, 12, -, 1y, &) 1s an orthonormal basis for (, ).
Moreover, one can easily verify that {4;} are mutually commutative and self-
adjoint with respect to {, >, i.e., ‘4;J;=J A4;, and

tr(A)=Q2a;; + ... +2a;,+ 85541+ ... T A )=+ 1){n;, H=0.

Thus by Theorem 2.1 we know that {4,, A,, ..., 4,) define a proper canonical

affine hypersphere x: R"S>R"!' with G=)Y [—(du? ") +(du?)’]

i=1

+ Y (dudr

i=2s+1

Now we show that x is affinely equivalent to the hypersphere given by
(1.4). Let

(2.22) S=(A,& ..., A58, B,=S"'4,S

as in the proof of Theorem 2.1. We get a solution

(2.23) (el,ez,...,e,,H):exp(Z Aiui)S

i=1
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of (2.15) with the initial value condition det (e, (0), ,(0), ..., e, (0))=det (S)=1.
Since x is an affine hypersphere with H= —1, we may assume that x=e¢,, .
By (2.22) and (2.23) we have

(2.24) x="%{,%x,, ...,x,,+1)=e,,+1=exp(z Aiui)é.

i=1

Thus from (2.21) we get

’621

So we have

Xqio 2 " ; .
(x§j—1+x%j):(x2j—1,x2j)( jcjzjl):n—i—l exp({Zl aijul)a i=12,...s,

and

(3 4+x3) . (3,1 +XE) Xags 1o X =250+ 1) exp(Z tr(Ai)”i)
i=1
=2(n+1)""T

Note that s=0 gives the hypersphere (1.1).

Remark 2.3 From the fundamental theorem of equiaffine geometry we know
that to determine all the canonical proper hyperspheres is equivalent to deter-
mine all the constant solutions {C,;} and {¢}e{+1, —1} for the quadratic
equation system

(2.25) Z CirC jmr Cijermr):_SiSk(éijékm_éimakj)
Y &C,,;=0
r=1
Cijk:Cjik:Cikj'

n+1
2

(2.21), (2.22) and (2.14). Thus the assertion (ii) in § 1 claims that all solutions
for (2.25) can be defined by this way.

For any s=1, 2, ,[ } we get solutions {C;;,} and {g;} for (2.25) by (2.19),
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3 The proof of the algebraic lemma

In order to prove the main theorem we establish first the algebraic lemma
stated in § 1.

Let {4;}={A4,,A4,, ..., A,,} be finite mutually commutative and self-adjoint
linear operators in R**! with respect to the Lorentz inner product , ),

B oxd=—x24+x34+ . +x2, X=Xy, X5, .., X, )R

Let €""'=R"*'®C be the complexification of R"*!. We can extend ¢, )
to the Hermitian Lorentz inner product in €"*! defined by

(32) <29W>:_ZIWVI+ZZW;+"'+Zn+1wn+1

for z="zy,25,...,2,4,) and w="(w,, w,, ..., w,,,) in C""'. We extend {4} to
the real linear operators in C"*! by

(3.3) Ax+)/—1y)=A;x+)/ 14,9, Vx,yeR" "
It is easy to see that for any z, w in €"*! we have
(3.4) {A;z,wy={z, A;w), =12, ...,m,

ie., {4;} are real self-adjoint operators in €** .

Proposition 3.1 Let W< @' be a complex invariant subspace of {A;} with
dim W 2 1. Then for any j, given any eigenvalue A; of A; there exists a common
eigenvector ne Wof {4;} such that A;n=4;n.

Proof. We may assume that j=1. Let x,e W be an A,-eigenvector of A4,, ie,
Ay xy=24,x;. We define

Wy =spang{x,, A;xy, ..., A5x,...}.

Then W, is a subspace of W with dim W;>1. Since 4, W, cW,, A, has an
eigenvector x,eW, and x,=p,(4,)x, for some polynomial p,. Similarly 4,
has an eigenvector x;=p;(43)x,=p;3(A45)p,(4,)x, in the invariant subspace
W, =spang{x,, A3x,, ..., A5 x,,...}. Since {A4,} are finite, by repeating this pro-
cess we will get an eigenvector Xx, of A,, Xn,=p.(AmXn-1= .
=Pl A ) Pm—1 (Am— 1) ... p2(A3) x, . Since {4;} are commutative and x; is an eigen-
vector of A4;, i=1,2,...,m, we know that x,, is a common eigenvector of {4
such that 4, x,,= 4, x,,. Q.E.D.

Proposition 3.2 Let &,neC"*! be A-, p-eigenvalue of A; respectively. If A+ L.
then (&, 3> =0.

Proposition 3.3 Let V<R""' be an invariant subspace of {A;}. Le
neVRCcC"*! be a common eigenvector of {A;}. If {n,n>=*0, then there is
a real common eigenvector xeV (x=Ren or Imy) such that A;x=A;x, i;eR.
i=1,2,...,m, and {x,x)>=+0. Moreover, we have the orthonogal decomposition
V=Rx@®x*, where x'={yeV|{y,x>=0} which is also an invariant subspact

of {Ai}.
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Proposition 3.2 and 3.3 follow immediately from the fact that {4} are self-adjoint
and that {, ) is a Hermitian inner product.

Proposition 3.4 Suppose that {z,z>={z,w)=<{w,w)>=0 for z, w in C**', then
z and w are linearly dependent.

Proof. Let z="(z,,25,...,2,41) and w="(w,,w,,...,w,. ;). Then we can find
(ky,k,)=#0 in @€* such that k;z, +k,w;=0. Since <k z+k,w, k;z+k,w)=0,
we conclude from (3.2) that k,z+k,w=0. Q.E.D.

It is clear that we have an irreducible orthonogal decomposition
(3.5) R =V,®V,®...®V,,

where V,, k=1,2, ..., 7, are irreducible invariant subspaces of {4;} with dim ¥,
>1.

Proposition 3.5 There exists at most one k such that dim V, = 1.

Proof. Since ¢, ) is nondegenerate in each ¥, and the maximal negative definite
subspace of ¢, > has dimension 1, we know that all but one V, are positive
definite subspaces. Since any positive definite invariant subspace of {4;} with
dimension greater than 1 is reducible, so there is at most one k with dim ¥,
>1. Q.E.D.

Thus we can find an orthonormal subbasis {e,,;,€,,,...,€,4} for R"*1

consisting of common eigenvectors of {4;} such that we have the orthonogal
decomposition

(3.6) R""'=V,®Re,, ®...®Re,,,,

where V is an irreducible non-positive definite invariant subspace of {4;} of
dimension v.

If dim Vy==1, then {A4;} is of Type I as in the lemma in § 1, ie.,, {4;} can
be simultaneously diagonalized. In the rest of this section we will always assume
that dim ¥, = 2. It follows from Proposition 3.3 that

Proposition 3.6 Let ne V,®C be any common eigenvector of {A;}, then {n,n>=0.

Proposition 3.7 Each A;:V, =V, has either (i): only two non-real dual eigenvalues
4;and A;; or (ii): only one real eigenvalue 4;.

Proof. Let A;and u; (4,4 p;) be two eigenvalues of 4;:V, - V;,. By Proposition 3.1
we have two common eigenvectors & and  of {4} in ¥,®C such that 4;&=4;¢,
%_1,»11 = ;0. Then Proposition 3.6 implies that <, £) = (5, #) =0. Thus by Proposi-
tion 3.4 we have (& n)=0. So by Proposition 3.2 we have A;=j;. Therefore,
A;:Vy—V, has either (i): only two non-real dual eigenvalues A; and Z;; or
(i): only one eigenvalue A;. In case (i) 4; must be real since 4; is real. Q.E.D.

Definition 3.8 {A4;} is said to be (i): of Type 11 if there is j such that 4;:V, >V,
has two non-real dual eigenvalues Ay and A;; (ii): of Type IN if each A;:V, — V,
has only one real eigenvalue /,.
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Proposition 3.9 If {A;} is of Type 11, then dim V,=2. Moreover, there exists
a basis {e,, e,} for Vo with {e,,e,>= —{e,,e,)=—1 and {e,, e;> =0 such that

b
‘), i=1,2,...,m;

i

a;

() Atere=ter e )

a

{
where a;, b,eR and at least one b, is non-zero.

Proof. Let neV,®Q be a common eigenvector of {4;}. We may assume that
Am=4m, i=1,2,...,m. We write n=x+]/—1y with x, yel;,. Since some of
A; are non-real, we know that x and y are linearly independent. By Proposi-
tion 3.6 we have {n,n)=<{x,xy>+ <y, y>=0. Then it follows from Proposition

34 that {n,7)=<{xx>—<{y,y>+2)/ —1<{x,y>=*0. By letting {=pn with

4=%% we have (Re& Iméd>=0. Since <& E>=0, <(Red
Re &= —Imé, Im &) is non-zero. Thus we may assume {=e,+]/—1e; and

{ey,ep=—{e,,e,0=—1, {e|,e,>=0. By letting lizai+]/~— ib,- we get (3.7).
Since V=spang {e,,e,} is an invariant subspace of {4;} and V n V*+={0}, by
the irreducibility of V, we know that V,=V. Q.E.D.

In the rest of this section we assume that {4} is of Type IIl. Let V, be
as in (3.6) and 4, as in Definition 3.8 we have

Proposition 3.10 Let y be the smallest positive integer such that (A;— A1)’ =0
inVy foralli=1,2, ..,m, then y<3.

Proof. Let xeV,®C be a common eigenvector of {A4;}, then A;x=4ix,
i=1,2,...,m. Since {4;} and {4;} are real, we may assume that xeV,. By the
definition of y we can find j and ueV, such that (4;,— ;1) 'u+0. We define
y=(A;— ;1) ?u. If y=4, then 2y—42=7, we have (y, y>=(u,(A;— 2;1)*" " *u)
=0 and {(y,x>=0. But Proposition 3.6 implies {x, x>=0, we conclude from
Proposition 3.4 that y =kx for some keR. Thus (4;— 4, )y =(A;— A1)~ 'u=0,
we get a contradiction. Q.E.D.

Proposition 3.11 Suppose that y=2, then dim Vy=2. Let j satisfy (A;—2;1)*0
in Vy, then there is a basis {x,y} for Vo with {(x,y>=1 and {x,x)={y,y>=0
such that

i a;
(3-8 Ag(x,y)=(x,y)<0' j) i=1,2,...,m; geR; ag;=+1

Proof. Let xeV, be a common eigenvector of {A4;}. Then A;x=A;x,i=1,2,...,m.
and (x, x>=0. Let ueV, with {u, x> =+0, then u and x are linearly independent.
Since <(4;~—4;Hu, xp =0 and {(A;— 4;Du, (4;— 4;)ud> =0, we have by Proposi-
tion 3.4 that (4;,— A4, Nu=b;x, i=1,2,...,m; b;elR. Thus V=spang{u, x} is an
invariant subspace of {4;} with Vn V*={0}. By the irreducibility of ¥, we have
Vo=V, so dim V,=2. Since (4;,—A;1)+0 in V,, we have (4;—A;Nu=>h;x=*0.
By modifying u we may assume {(A4;—4; u, u) =¢e{+1, —1}. Then by modify-
Cu, up

ing x we have (u,x)>=1. Now let y=u—=x, we get (x,x)>={y,y>=0
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and {x,yy>=1. Moreover, (4,—4;I)y=a;x for some ¢;eR, i=1,2,...,m, and
a;=¢e QED.

Proposition 3.12 Suppose that y=3 and j satisfies (A;—4;1)*%0 in V,. Then
there is a basis {x,y, es, ..., e, for Vo with {x,x) =y, y>=<x, e,> =y, e,> =0,
(x,yy=1and {e,,e5) =05, 350, B=r, such that we have the matrix representa-
tions

i @y Qi3 Oig .. dgy
04 0 0 .. 0

(3.9) A= SZj 4 A o i=1,2,....m,
(:) a:iv 0 A

and ageR witha;3=1,a;,=a;,= ... =a;,=0.

Proof. Let xeV, be a common eigenvector for {A4;}, then A;x=21;x for all i
and {x, x) =0. Let ue V;, with (4;— 2,1 u=0. Since {(4;— 4;1)u, x> =0, we know
by Proposition 3.4 that v=(A;— A, I)u satisfies (v, v) # 0. We claim that {v, v) >0.
Otherwise we have (v, v) <0, then we have the orthonogal decomposition
=Ruv@®v'. Since {, ) is negative definite in Ruv, it must be positive definite
in v*. But xevt and <{x,x>=0, we get a contradiction. Thus by modifying
u we may assume that (v,v>=1. By Proposition 3.4 and the fact that y=3
we know that (4;,—4;1)>u=kx=+0 for some kelR, so by modifying x we may
assume that k=1, ie, (u,x)>=<v,v)=1. Now let y=u—3<u,vDv—[3<u,uy
—3<u,vd?]x and e;=v—1 {u, v) x, we have

(310) <x’x>=<yaY>=<X,93>=<y,€3>=0» <x’J’>=<e3s‘33>=1~

We define W=spang{x, y, e}, then W W+={0} and Vo=W®W™. Since {, )
is indefinite in W, it must be positive definite in W*. So A;: W+ - W is diagona-
lizable. We can choose an orthonormal basis {e,,es, ..., e,} for W+ such that
Aje,=Aje,, 2=4,5,...,v. Thus {x, y,e;,e,,...,e,} is a basis for V;,. By Proposi-
tion 3.4 we know that (4;,—A;1)*e,=k;,x for some k;, ,eR, i=1,2,...,m; so
{A;— A De,, (A — 4, D e,y =<e,, ki, x> =0. Again by Proposition 3.4 we get

3.11) (A;— A De,=a,x, a,eR, i=1,2,....,m; a=3,4,...,v.

Using the formula A;y=<{A4;y, y>x+<A4;y,x>y+ Y, {A;y,e,>e, and (3.11) we
get =3

{3.12) Aiy=apx+2y+ Y age,, i=12....m a,;={Ay>.

=3

Thus (3.11) and (3.12) imply (3.9). Furthermore, we have (4;,—4;I)y=v
—3<{u,v)x=e;,s0 we getag;;=1anda;,=a;,= ... =a;,=0. Q.E.D.

Thus the algebraic lemma follows from the orthonogal decomposition (3.6),
Proposition 3.9, 3.11 and 3.12.
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4 The proof of the main theorem

Let f: M —R""" be a proper canonical affine hypersphere and G its Blaschke
metric. We assume that the maximal negative definite subspaces of G have
dimension 1. Then as in § 2 we know that there exist » mutually commutative
linear operators {4;} in R"*" which are self-adjoint with respect to the Lorentz
inner product {, ),

(4.1) x> =—x3+x3+ o+ x2y, X=UX1,Xg, e Xee ) ERYTL

Moreover, {A;} satisfy also the properties (i): tr(4)=0, i=1,2,...,n; and (ii):
J¢eR"* ! such that {4, & A,¢, ..., A,& &) is an orthonormal basis for R™™!
with respect to {, .

We know from the algebraic lemma in § 1 that {4;} have three possible
types, namely the Type I, II and 1L

If {4;} is of Typel, then there is an orthonormal basis {e,,e;,...,¢,. )
for R"*! such that we have the matrix representations

4.2) A=(a,)®(0)D ... ®(@ips ), i=1,2,..,n

By the property (ii) we know that A,, A4,, ..., 4, are linearly independent, so
the matrix

dyy A1z - Qynt
(4.3) T= Azy A - G244
anl anZ ann+1
n+1
has rank n, i.c., the kernal of T: R"*! - IR" has dimension 1. Now let &= " e,
By the property (ii) we have a=1
n+1

CAE E=a, (= &)+ Z 2,(£)?=0, i=12,...,n
a=2

Thus {(—¢&2,&2,...,¢82, DekerT. But the property (i) implies that
1,1, ..., heker T, so there is keR such that (—¢&1,83, ..., &7, )=k(1,1, ..., ).
It is impossible for (¢, &> =1. Thus {4;} cannot be of Type L.

Let {4,} be of Type IL Then there is an orthonormal basis {e;, e, ..., €41
for R"*1 such that we have the matrix representations

a; a; .
4.4) Ai=( ! 2)®(“i3)®"'®(ain+l)a i=1,2,...,n
—4diz Gy
n+1
Let ¢= ) &,e,. By the property (ii) we have
a=1

n+1

<Aié3 é>:ail(6%_5%)+ai2(—25152)+ z aia(éa)zzoa i= 1’ 2’ R
a=3
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We define T by (4.3), then (&3 — &2, —2¢&, &5, &3, ..., &2, )eker T. But the prop-
erty (i) implies that (2,0, 1, ..., I)eker T, so there is keR such that (£3—¢&2,
~2&1&,, 83,80 )=k(2,0,1,...,1). Thus &, =0. From { &>=1 we get
k=(n+1)"'. By changing e, to —e, if necessary we may assume that

s
Il

: ﬁ(ﬂezj%fr ... +e,1q). As we know in Example 2.2 that {4,} deter-
mine the proper canonical hypersphere

4.5) (24X %50 %, =2(n+1)""7.

Finally we assume that {A4;} is of Type III. Then by the algebraic lemma we

have a basis {x,y,es,...,e, 1} such that we have the matrix representations
as in the lemma in § 1. We write

(4.6) Ai=ay Ti+a, T+ o +ap Ty, i=1L2,0000,
n+1
and =&, x+¢&,y4+ Y &,e,. By the property (i) we have
a=3
n+1
CAEE>= 3 a,T,EE=0, i=1,2,..,n
a=1

Thus (T &, &), ... T, 41 & Ed)eker T, where T is defined by (4.3). But the prop-
erty (i) implies that ‘(v,0, ..., 0,1, ..., 1)eker T, and we know that dim (ker T)=1,
so there is keR such that ({(T, &, &>, ... (T, & E)=k(v,0,...,0,1, ..., 1), where
we have v—1 copies of 0. Since v=2, we get 0={T,¢, E> =&, x, ED=E2=0,
ie, ¢,=0. So we have (£, x>=¢,=0and {A4;&, x>={¢, a;,,x>=0,i=1,2,...,n
It is impossible because of the property (ii).

Thus we complete the proof of the main theorem.
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