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0 Introduction 

A theory of symmetric Markov semigroups on W*-algebras was initiated by 
Albeverio and Hcegh-Krohn in the seventies ([AH-K]), and has recently been 
extensively developed by Davies and Lindsay ([DL1,2]). The setting for this the- 
ory is a semi-finite algebra, g, and symmetry refers to a trace ~- on the algebra. 
The construction and analysis take place on the Segal space L2(, /~, 7) which, 
together with each of the interpolating spaces U'(, /~, 7) (1 _< p < vc), is a sub- 
space of  the topological *-algebra of T-measurable operators acting (as closed 
densely defined operators, by the strong sense product) on L2(, ~ 7-). Tracially 
symmetric.Markov semigroups on the algebra, g correspond to closed Dirich- 
let forms on the Hilbert space L2(. /~, T), permitting the application of quadratic 
form techniques to the analysis of dynamical semigroups on von Neumann al- 
gebras. For an interesting application of  this theory to heat kernel bounds on 
graphs, through ideas from non-commutative differential geometry, see [Da2] 
where SchrSdinger operators are viewed, in various ways, as restrictions of non- 
commutative Dirichlet forms. Each such representation suggests a metric on the 
graph which is then used to define a gaussian-like kernel for comparison with the 
given kernel. Further connections with non-commmutative geometry have been 
revealed by Sauvageot ([Sal,2]) who constructs the transverse heat semigroup 
on a Riemannian foliation W*-algebra and demonstrates a Feller-type property, 
namely invariance of the foliation C*-algebra. 

In the present paper we extend this theory to the context of states on a 
W*-algebra to obtain a fully non-commutative theory. As remarked in [DL2] 
this extension is required for applications to the quantum theory of irreversible 
dynamics, where tracial symmetry corresponds to an infinite temperature approx- 
imation. We work with the Haagerup spaces LP(, "g) and Kosaki's interpolating 
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spaces ([Ha3], [Kos]). Symmetry is defined relative to the symmetric embedding 
of, "g into L2(, Jg) (with respect to the state ~p), and this is crucial for our analysis. 
~-symmetry or KMS-symmetry, for a semigroup (Pt) o n ,  "/~ may be expressed 
formally by 

~y(Pta cr~_i/2(b)) -- ~(o-~/2(a) Ptb) 

where (7 ~~ is the modular automorphism group of ~. It is closely related to 
the physical condition of  detailed balance, however detailed balance is usually 
defined (up to a reversible part) as symmetry with respect to the GNS embedding 
of ,  -~ into .7~o (see e.g. [KFGV]). 

The paper is organised as follows. Section 1 contains our basic definitions 
and notation, and properties of Haagerup spaces and embeddings that are needed 
in later sections. Operators induced f rom,  "~ to LP(, .~) are reviewed in Section 
2, together with KMS-symmetry and the Markov property, both on ,  g and on 
LP(, -Z). The Hille-Yosida relations between resolvent family, generator and con- 
traction semigroup on a Hilbert space are collected for convenience in Section 
3, and in Section 4 the generators of L2-Markov semigroups are characterised. 
The Dirichlet property is introduced in Section 5 where it is shown to charac- 
terise those quadratic forms which generate symmetric L2-Markov semigroups. 
These in turn correspond one to one with KMS-symmetric Markov semigroups 
on,  ~g. In the final section some useful results on form and generator cores, and 
quadratic form characterisations of further positivity, are collected. 

The main results (Theorems 5.7, 5.10 and 6.5) were announced in [GL]. 
Cipriani, in his recent PhD thesis, has also considered non-commutative Dirich- 
let forms, and associated Markov semigroups, in the context of von Neumann 
algebras in standard form ([Cip]). In his approach geometrical properties of the 
counterpart to our map x -~ xA (see Section 4) are exploited. He has developed a 
Perron-Frobenius theory for positivity preserving operators, and has shown that 
hypercontractivity is a sufficient condition on a symmetric Markov semigroup 
for the generator to have a (strictly) positive eigenvector with eigenvalue 0. In 
[DL1] unbounded derivations, in particular generators of integrable automor- 
phism groups, are used to construct Markov semigroups. We hope to return to 
the consideration of the role of such groups, and derivations in the non-tracial 
context in a future article. 

Finally a few words about our notational conventions. We use a ,b ,  .. for 
elements of an algebra ,..~; x ,y ,  .. for measurable operators; S, T, P for linear 
operators on , /g  and LP(, ,g); Dora T for the domain of  T; LP(, /~), DomhT etc. 
for the self-adjoint parts and LP+(, ~g) etc. for the non-negative parts. 

1 Definitions and embeddings 

Let ,  ~ be a a-finite von Neumann algebra acting in a Hilbert space H and co0 a 

faithful normal semifinite weight on.. /g.  We denote b y ,  ~ the crossed product 
, .~ ~ •, where a = {crt}t~ is the modular automorphism group o f ,  ~ with 
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respect to wo- The von Neumann a lgebra ,  "g acts in L 2 ( ~ ; H )  and is generated 
by the operators 7r(a), a C , / g ,  and A(s), s C ~ ,  defined by 

( z c ( a ) ~ ) ( t )  = cr ,(a)((t), 

O , ( s ) ( ) ( t )  = ( ( t  - s ) ,  

where { E L2(> ;H)  and t c I~. Let {0,},c~ be the dual action (of > on ."g) 

and 7- the relatively invariant trace o n ,  Z (thus, 7- o Os = e ~7. for s E ]~). We 

denote b y ,  "g~ the topological . -a lgebra  of all 7.-measurable operators affiliated 

w i t h ,  Z (with the operations of strong addition and strong multiplication and 
with the measure topology). The Haagerup LP-spaces (1 < p _< oc) are defined 
a s  

LP(. g) = {x C.  ' / ~ :  O,(x)  = e - " / P x ,  Vs C ]~}. 

In particular, L'~(, E) = 7r(. g). Define now, for any ~ C . Z.,+, an operator 

k~ c LI+(, Z) by k~ - a~ where ~ is the dual weight of a;. The mapping 
c~ ~-+ k~ extends to a linear bijection ec o f ,  /~. onto L 1 (. Z). If k E L 1 (. "/.), we 
write a~ lbr t~ l(k). A trace-like functional on LI(, ~g), given by tr(k) = wk(1), 
is used to define the p- th  norm on LP(, Z )  for 1 _< p < oc: 

IIx li~ = tr(lx I~) ~/~'. 

Additionally, Ilal]~ = UTr l (a)[ I  f o r  a c g ~ ( .  ~). With these norms, LP(. Z) are 
Banach spaces, 7r is an isometric isomorphism o f ,  Z onto L~( .  -g), ~ : c~ ~-~ k~ 

is an isometry of ,  / , .  onto Ll(, g),  and L2(, ~) is a Hilbert space with the scalar 
product (x ,y )  = tr(x*y). 

The spaces LP(. Z)  and the relations between them are independent of the 
choice of 0s0. In particular, we may (and shall) identify , g with L~( .  g).  We 
can also assume tha t ,  g acts in H in a standard way, so that we are given a 
standard form (, ~ ,  H ,  J ,  : ~ )  o f ,  Z. In such representations, corresponding to 
each a; c , Z,,+, there is a unique vector ~ C //~ such that aJ(.) = ( ~ ,  "~ )H.  

Moreover, if a; is faithful then ~ .  is a separating and cyclic vector for .  ~ .  

It is clear from the construction of the crossed product that (with our identi- 

fication o f ,  /~ with 7r(. Z)) 

crt(a ) = A ( t ) a A ( - t ) ,  t 6 II~, a 6 ,  g. 

A useful formula for a~  is given below. 

L e m m a  1.1 Let  cJ r  Z.,+ be fai thful .  Then 

= k ~ a k ~  . 
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Proof  We calculate ([Hal], Theorem 4.7) 

~2(a) = (Dco : Dcoo)tch(a)(Dco : Dcoo) t 

= ( D ~  : D~oo)t(D~o " D ' r ) , a (D~o  " Dv-)_t(D~o " D~'o)-r 

= ( d ~ o ~  i' ( d & ' ~  it 

\ dTr J a k, dTr J = k J a k ~ i "  

[] 

There is a particular standard form of~ Z, which is very well suited to our pur- 
poses, namely (, g, L2(, Z), , ,  L2+(.-g)), with,  g acting on L2(. Z) by left strong 
multiplication ([Ter], Theorem 36). It is clear that the unique vector in L2+(. Z) 

�9 1/2 
corresponding to co is &, . The following important lemma describes the way 
the modular operator A~ acts in L2(. g), for a faithful co C. Z,,+. 

L e m m a  1.2 For any c~ C [0, �89 and a E ,  g, 

z~C~akl/2c~ co . . . .  1/2 c~ = K w a K w  

Proo f  Put S~ = {z C C " 0 < ~z < /3}, S ,  =S~ .  Since the function z ~ k:# 

is analytic on {z C C �9 ~z > 0} (with measure topology o n .  '/,~ see [Terl, 
Lemma 18), the function fl "z  ~-+ tr(b*k[bak~ z) is analytic on the strip S~ ~ for 

any a, b C , Z .  On the other hand, the function f2 " z ~-+ (bk~/2, A~ak~/2)  is 
analytic on the strip S~ and continuous on &/2  ([KaR], Lemma 9.2.12), for any 

a, b r  g.  We have (by Lemma 1.1, noting that J~ = J = *) 

1 
f l ( ~  + it) * it+l~2 -- i t+l~2 = tr(b k~ akw ) = tr(b*kl /2cry(a)k~/2)  

= (bklw/2, kl /20~~ = (bk 1/2, J , j , ~ ( a* ) k3 /2 )  

= + i t ) .  

Since both functions are analytic on S{) 2 and" continuous on {z C C '  !~z = �89 

we have f l ( z )  = f2(z)  for any z E SI~/2 . Since fl and f2 obviously coincide at 
t = 0 the result follows. [] 

In fact it is easy to see that 

f l ( i t )  �9 it it = tr(b h~oah ~ k~o) = tr(b*cr 

= (bkl /2 ,  cr t (a )k l /2 )  = (bkl /2 ,  Z"lcoaKwait .I/2\) 

= f2(it) ,  

so that fl and f2 coincide on &/2.  
We record here a couple of properties of measurable operators and Haagerup 

LP-spaces which will be useful later. 
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L e m m a  1.3 Let  .~//~ be a semifini te yon N e u m a n n  algebra  with fa i th fu l  n o r m a l  

semifini te trace T, and  let x , y , z  C .~//~, with x inject ive and  z having  dense  

range, l f  x . y . z = 0 (strong mult ipl icat ion) ,  then y = O. 

P r o o f  We have x(y .z) = 0 on the T-dense domain o f x y z  (see [Ter], Proposition 
24), which implies y - z = 0. Thus z* �9 y* = 0 and y* = 0, as above. [] 

t2Pt Z ) , p  > 1. Then L e m m a  1.4 Let  x , y ~ ~h ~" 

Proof  Combine x 2 - y2 = �89 - y ) ( x  + 3') + (x + y ) ( x  - y)} with H61der's 
inequality. [] 

Bounded measurable functions on a finite measure space are automatically 
integrable. In the non-commutative context there is a choice of different ways in 
which .  /~ may be embedded in to .  /~.. For our purposes the symmetric embed- 
ding, with respect to a faithful normal state aJ, is the most appropriate: 

, = t. ~ "  a ~-+ ( ~ , .  z ~ / Z a ~ ) H ,  

in view of its positivity. By Lemma 1.2, we get 

i, : a ~-+ tr(k~/2ak~/2 �9 ). 

We shall also need embeddings of ,  g into LP(, /~) and ofLP(. ~)  into LI(, Z). 

We put 
~p = ,,p'~ �9 a E , Z ~ ~ U 2 p  a k ~ / 2 p  

and 

�9 (~) where = 1 + (p 1) - j  ~P = ~t, �9 x E LP(. ~) ~ ,  ,.~1~1/2l"~1/2r"...~ , p~ 

The following lemmas yield some information on the above families of embed- 

dings. 

L e m m a  1.5 (Radon-Nikodym type theorem)  Let  h C Ll+(, "~) be non-s ingular .  

l f O  < x < h I/p with x C �9 g-~ then x = h i /2Pah 1/2p f o r  some  a C , Z+ wi th  

IlaH < I. 

Proof'. ([Sch], Lemma 2.2c) [] 

L e m m a  1.6 For  any p E [1, oc], t,p(. Z+) is dense  in I f ( .  ~Z), tp(, ~Zh) in LP (. ~g), 

and  Cp(. Z)  in L p(, Z). 

Proof.  It is enough to show that k~/2p, ~+k~/2z' is dense in LP+(, Z). For p = 2 it 

follows immediately from Lemma 1.2 and the uniqueness of the standard form 

([Ha2]): 

L2(, ~ ) = J / ~ =  { A 1 / 4 a k l / 2  : a  ~ .  Z+} ={k l /4ak l~ /4"a  E .  g+}--. 
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Now take x C LI+(, "~) and fix c > 0. There is b E ,  Jg+ such that I [ k l / 4 b k  1 / 4  - 
, 1 / 4  , 1 / 4  xl/2112 < c. Let a E ,,~+ be such that ~ aK~ -- bkl/2bll < c. Then, by 

Lemma 1.4 and H61der's inequality, 

Ilk~/2ak~/2 - xHl <- Hkff2ak~/2 - k~/4bk~/2bk~/411~ + Ibk~/4bk~/2bk~/4 - xltl 

--< Ilk~ 1/4 tt4 II k l /4akl /4  - bk~/2b 112 II kl/4114 

+Hkl/4bkl/4 _ x 1 / 2  112 IIk~/abk~/4 + x l / 2  t12 
<_ c + c(2[[xl/2112 + c). 

Thus, c1(, g+) is dense in LI+(, "g). Now fix an arbitrary p C [1, oc[ and let 
x c LP(, ~) .  Then x p E L I ( , / ~ )  so that there is a sequence (b~) in , /;+ 

bl/2k, kl/2 L l, such that . . . . . . . .  --~ x p in and hence also in measure ([Ter], Propo- 
sition 26). It follows by ([FaK], Lemmas 2.5iv and 3.1) or ([Tih], Propo- 

sition 2.3) that (k~/2b~k~/2) l/p --* x as n --, oc in measure and, conse- 

quently, in []-ltp ([Ter], Proposition 26). Since kX~/2b.k~/2 <_ ]lb~ IIk.~, we have 

(k~/2b~k~/2) 1/p < Itb~ H1/pk~/p and by Lemma 1.5 there are a .  ~ .  ~g+ such that 
kl/2 , 1/2 ~o antc~ --~ x as n ~ oc. [] 

Remark The above proof is not the simplest one. The same result follows even 

more easily from the density o f ,  ,~gk~/p in LP(, ~g) (see [Wat]). Nevertheless, our 
method illustrates many important notions of the theory. 

Let us describe now the interpolation LP-spaces of Kosaki ([Kos]). Put 

LP( , /g ,w)  := @~)(LP(. ~g)) and IIx p ( ~  := I I ( , ~ / ) ) - l ( x ) l b , .  

In particular, L l ( , ~ , w )  = L'(. ~ )  and Ilxll<~ ~ = [Ixlll. As proved by Kosaki 

LP( ,~ ,aJ)  = Cl/p(L~ -Z~)), 

where C~(X,  Y) ,  c~ E [0, 1], are the c~-interpolation functors between the Banach 
spaces X and Y given by Calderon 's  complex interpolation method. Note that, 

for 1 _<pj _<p2 < ec, 

LeC(,.~,:o) C LP2(, ~,av)  C LP'(, ~,cv) C L1(, Z )  

and, by ([BELL Theorem 4.2.1), 

IIx ~, <~ _ < Ilxll~7 ~ for x E Lm(,~ ,a~) .  

As a simple consequence, we get continuity of the maps C(p~) and @~). 
The following theorem sumarises the sallient features of these embeddings. 

T h e o r e m  1.7 The fol lowing diagram commutes." 

(wl 

, ~  = 7r(,j/~) Lp , LP(,.,~) 
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Moreover, the mappings c {~}, c{p~} and t ~  ) (1 < p <_ c~) are injective contractions 
with dense ranges, while ~ is an isometric isomorphism. 

Proof The result follows immediately from Lemmas 1.3 and 1.7 and the above 
discussion of interpolation spaces. [] 

2 Linear operators on LP-spaces 

From now on we fix a faithful, normal state r on , ~. c, Cp and ~p will denote 
embeddings with respect to ~ and k~ will be abbreviated to h. Let S be a linear 
mapping of a subspace ~ of LP(, g )  into LP(, ~g), p E [1,cxD]. We say that 
S is real if ~ is *-invariant and Sx* = (Sx)* f o r x  E ~ ;  we say that S is 

positivity-preserving if ~+ := ~ A ,  "~g+ linearly generates ~ and Sx > 0 for 
xc~§ 

Now let T be a linear operator o n . . g .  Define T q'} on ce(Dom T) by 

T{P}(cr~(a)) = cp(Ta) for a E Dom T. 

If T is real, then all the Tq~ are real; if T is positivity-preserving, then so are 
all the T{P}'s. 

If the domain of T is all o f ,  g then T ~p} is densely defined by Lemma 1.6. 
We say that T is p-integrable (with respect to cp) if the induced operator T #'~ is 
LP-bounded, in which case we denote its unique continuous extension to LP(, g )  
by T ~') also. 

Lemma 2.1 I f  T : , ,g -~ , ~g is p-integrable and also bounded, then T is r -  

i n t e g r a b l e  for  any r > p. 

Proof Let T Ipl be the (unique) bounded operator on LP(, f(, ~) such that T lp] o 
t~p = ~p o T Cp}. It is clear that TtP]IL~(, ~g, ~) = T [~1 (we identify T with T{~~ 
By the reiteration property of the complex interpolation method ([BeL], Theorem 
4.6.1), T [rl = T Ip]IU(. "g, ~) is bounded, which implies boundedness of T {~). [] 

If T : , "g ~ �9 ~ is cr-weakly continuous (i.e. ~(, Jg,, Jg.) - ~7(, xg,./g.)_ 
continuous) then one can define the predual map T. :,  ~ .  -+ ,  ,g. by T.co = c~oT. 
Note that T. is automatically bounded, T is also bounded and fiT* l] = II T II ([Ped], 
2.4.12 and 2.3.10). If T is real (positivity-preserving), then 7". is real (positivity- 
preserving), i .e.T.(,  ~g.,h) C ,  'g.,h (T.(,/Z.,+) C ,  -g.,+). 

For such maps the integrability condition can be expressed in terms of the 
predual map. 

Proposit ion 2.2 Let T : . ~ --+ ~ be a-weakly continuous and positivity pre- 
serving. Then T is integrable (i.e. 1-integrable with respect to cp) if and only if 

T .~  < ~/~ for  some ~/ > O. 
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Proof Assume T integrable. In view of the tracial property, g)(a) = tr(hU2ahl/2) = 
tr(cl(a)). Thus, for a > 0, 

II~(Ta)ll~ = IIZ%~l(aO[bl _< IIT")llll~(a)lll = I]T~l)ll~(a). 

Suppose now that T, cp _< 7cp for some 7 > 0. We have IItl(Ta)[]l _< "~11~1(a)11~ 
for every positive a. Thus, T ~1) (defined on tl(, Z)) can be extended, first, by 
continuity, to L~(, ~g), and then, by linearity, to the whole of L1(, ~). Since T ~j) 
is bounded on L~(, 8)  and any element x of L l(, ,Z) is expressible in the form 
~ i k x k  where x l , . . - , x 4  are non-negative and have norm at most Ilxll, T is 
integrable. [] 

Assume again that T is ~r-weakly continuous. The predual map T. can be 
easily transported to Ll(,.'g), and the map obtained is denoted by TIj ). Thus, 
T~l) = t~ o T. o ~c -1 . It is not hard to check that L~(.  Z, w) is T(1)-invariant if 
and only if T is integrable. Moreover, in that case T(j)[L~ g,w) is bounded 
with norm at most HT/1)]]. Since T/~ ) is bounded (with norm equal to ][TI]), 
we get, by interpolation, the T(1)-invariance of all the spaces LP(. Z, w). Putting 
T(p) = ~ 1  oT(1)]Lp(../~, w)Onp we get a family of operators on the spaces LP(. Z), 
similar to T (p) in that T(p) = (Tc~))(P). In fact they stand in adjoint relationship 

(T(P)) *=T(p,) f o r p  < o c  and (T#')). = T(,,,) f o r p  > 1 

A linear operator T : .  ~ --+./~ is called KMS-symmetric (with respect to 
c2), or cp-symmetric, if, for any a, b C,  g, 

tr(h l /2(Ta )h l /2 b ) = tr(ah 1/2(Tb )h 1/2) 

where, as always now, h = k~. 

Proposit ion 2.3 Let T " . .~ ~ ,  /Z be KMS-symmetric. The Jollowing conditions 
are equivalent." 

(a) T is or-weakly continuous," 
(b) T is bounded; 
(c) T is integrable. 

In which case T~,) = T (p) for each p C [1, oo] and ][T0)]] = I ITII. 

Proof (a) ~ (b) As noted earlier, this implication is true even without the 
symmetry assumption. 

(b) ~ (c) Let u be the partial isometry from the polar decomposition of 
h U2(Ta)h ~/~. Then, 

Hhl/Z(Ta)hl/21[ 1 = tr(hl/Z(Ta)hl/2u *) = tr(hl/~ahU~(Tu*)) 

<_ IIh~/eah'/21[~[IYH, 

which implies integrability of  T. 
(c) ~, (a) We have, for a, b ~,//~, 



KMS-symmetric Markov semigroups 599 

tr((Ta)hl /2bh 1/2) = tr(ah U2(Tb)h l /z) = tr(aT{1)(h 1/2bhl/2))" 

Since T {~) is continuous,  L e m m a  1.6 gives 

tr((Ta)k ) ~1~ = t r (a (T  k)) 

for any k C L j (, //). If  a;~ --+ a o ' -weakly i n .  Z, then 

tr((TaA)k ) = tr(aA(T~X)k )) --+ tr(a(T~l)k )) = tr((Ta)k ), 

which implies  o--weak continuity of  T. 
Now,  for all a , b  ~ ,  ~, 

tr(T~l)(hl/2ahl/2)b) = t r (h l /Zahl /2(Tb))  = t r (h l /Z(Ta)hl /2b)  

= t r (TO)(hl /2ahl /2)b) .  

Since both T/i ) and T ~1~ are continuous,  we have T{1) = T/1), which impl ies  
T0, ) : T (p) for e a c h p  C [1, ocl. Moreover ,  ]IT[[ = [ ILl i  = IIrr = IIT<tl, which 
ends the proof. [] 

Proposition 2.4 Let T �9 . Jg -+ . / ,  be bounded and integrable. I f  T is KMS-  
symmetric,  then (T0')) * = T O/) f o r  each p C [1, oc[, with p '  = 1 + (p - 1) -1.  In 

particular,  T ~2) is self-adjoint. Conversely,  if, f o r s o m e p  E [1, oc[, (T{P)) * = T 0''), 
then T is KMS-symmetr ic .  

Proof  It is enough to observe that the condi t ion 

tr(h I/2(Ta)h 1/2b) = tr(ah 1/2(Tb)h 1/2) 

can be written as 

tr(TO~)(hl/2pahl/2p I/~p' l/2p' I/2p J/2p (p'~ ' ' )h " bh ) = tr(h ah T (h I/2p bh I/2p )). 

[] 

We now turn our attention to Markov  operators.  We say that a l inear opera tor  
T ' .  / , - ~ .  g i s M a r k o v  i f 0  < a < 1 implies  0 < Ta < 1, and an opera tor  
S on LP(. ( )  is LP-Markov if  0 < x < h I/p impl ies  0 < Sx < h 1/p. It 

fol lows from Kad i son ' s  inequali ty for posi t ive operators  on normal  e lements  of  
a C*-algebra ,  together  with the Russo-Dye theorem, ([KaR],  10.5.10) that T is 
Markov  if and only if it is a posi t ivi ty preserving contraction.  On the other hand, 
identity preserv ing contract ions on , g are automat ica l ly  posi t ivi ty  preserving 
([BrR], 3.2.6), and therefore Markov.  Markov  usual ly includes the condi t ion of  
identi ty preserving - our condi t ion being merely sub-Markov.  However  we prefer  
to reserve the term conservat ive  for the (extra) condi t ion T1 = 1, fo l lowing  
mathemat ica l  physics  terminology.  

Proposition 2.5 I f  T : , g -+ , Z is Markov  and p-integrable,  then T ~r) �9 
Lr(, g)  --+ Lr(, g)  is Lr -Markov  f o r  each r > p. Conversely,  i f  S : U'(, g)  --~ 

LP(, g )  is LP-Markov, then there exists a unique Markov  operator T : . ~ ~ . ~g 

such that S = T q'). I f  S is bounded, then T is p-integrable.  In any case, S is 

posit ivi ty-preserving.  
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Proof Assume T Markov and p-integrable and let 0 <_ x <_ h l/p for some 
x c LP(, ~). By Lemma 1.5, there is an a E ,  ~g such that x = hl/2pah 1/2p, so 
that 0 _< T(P)x = hl/ZP(Ta)h 1/2p < h 1/p. Now use Lemma 2.1 to end the proof 
of the first part of  the proposition. Conversely, let S be L p-Markov. If a ~ ,  ~/~, 
then 0 < S(hl/2pah 1/2p) <_ h I/p, so that S(hl/2pahl/2p) = hl/2pbh I/2p for some 

b C, "g again by Lemma 1.5. Put Ta = b. By Lemma 1.3, T is well-defined and 
linear. If 0 _< a <_ 1, then 0 _< hl/2Pbh I/2p < h 1/p. By ([Sch], Lemma 2.2e]), 
0 _< b _< 1. Thus, T is Markov and, evidently, S = T (p). The uniqueness of T 
follows directly from Lemma 1.3. The p-integrability of  T for a bounded S is 
obvious. Since T is positivity-preserving, so is S. [] 

To sum up, we have the following 

Theorem 2.6 Let T be a KMS-symmetric Markov operator on . ~g. It follows 
that T is a a-weakly continuous, integrable, positivity-preserving contraction, 
and, for  each p C [1, oc[, T (p) is an LP-Markov, positivity-preserving contraction 
on LP(./g). Moreover, (T(P)) * = T (~') for  p E [1, oc[ and T (2) is self-adjoint. 
Conversely, i f  S is a self-adjoint Markov operator on L2(, ~) ,  then S = T (2) for  
a unique KMS-symmetric Markov operator T on ,/g. In particular self-adjoint 
L2-Markov operators are contractive. 

By common abuse of language, we speak about a symmetric L2-Markov 
operator instead of a self-adjoint LZ-Markov operator. 

3 The Hilbert space theory 

In the sequel, we shall consider non-negative quadratic forms Q defined on a 
dense subspace D o m Q  of a Hilbert space . ~ .  Such a form Q is closed if 
Dom Q equipped with the norm {1" IIQ given by ]Ix I1~ = H x II 2+ Q ( x ) i s  a Hilbert 

space;.It is closable if there exists a closed form Q extending Q, i.e. such that 
Dom Q ~ Dom Q and C)(x) = Q(x)  for x c Dom Q. There exists in such a case a 
closed form Q, called the closure of Q, which is the smallest closed extension of 
Q. Moreover, Dom Q is dense in Dom Q endowed with its Hilbertian structure. 
A form Q is closable if and only if, for any "sequence (xn) in Dora Q, xn ---, 0 
and Q (xn - Xm) --~ 0 imply Q (Xn) --+ O. 

We consider the folowing objects: 

(i) a strongly continuous contraction semigroup (Pt)t_>0 on . ~ ;  
(ii) a strongly continuous contraction resolvent (R~,):~>0 on , ~ ;  
(iii) a densely defined closed linear operator G on , ~  such that ]0, vc[ is con- 

tained in its resolvent set and IIA(AI - G) -1 II -< 1 for A > O. 

By a strongly continuous contraction resolvent we mean a family of (everywhere 
defined) linear operators on , ~  satisfying: 

= ~ .  (a) l imA_~ARAx x f o r x  E .  ~, 
(b) AR~ is a contraction on . ~  for all A > O; 
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(c) RA - R# = (tz - A)RAR~, for all A, t z > 0. 

We have the following, classical theorem, most of which can be attributed to 
Hille and Yosida (see e.g. [Dal]):  

Theorem 3.1 Each of  the objects (i), (ii), (iii) uniquely determines the others 
through the relations: 

1 
G = st. lim - (Pt - 1); G = AI R~- 1. 

t+o t 

R;~ = st. e )'tptdt; RA = (Xl -- G) l 

Pt = st. lim (n/tRn/t)".  
t l - - ~  o c  

The operator G is called the generator of (Pt) and of (R;~). It determines the 
semigroup via the resolvent family. The correspondence is enriched by symmetry 
as follows. 

Proposition 3.2 The correspondences in Theorem 3.1 remain true if  we add the 
assumption of  se!fiadjointness of  all Pt, t > 0 in (i), o f  R;~, A > 0 in (ii), and 
exchange (iii) Jbr 

(iii ~) a se l f  adjoint, non-negative operator H = - G  on ,7-e7. 

In this case, one has Pt = e t .  for  t > 0 (in the sense of  the functional calculus 
for  se!f-adjoint operators), and a fourth ingredient can be added, namely, 

(iv) a closed, densely defined, non-negative quadratic form Q, 

given uniquely by [IH 1/2. i i 2  (and, of  course, determining the other three objects). 

4 Markov semigroups and Dirichlet operators 

We briefly mention the correspondence between Markov properties of a contrac- 
tion semigroup and its resolvent family, and a Dirichlet property for its genera- 
tor, in the absense of symmetry assumptions. Quadratic forms are useful under 
weaker constraints than symmetry, such as sector conditions on the resolvent 
family, Such forms are called coercive - -  the anti-symmetric part being con- 
trolled by the symmetric part. For a recent account of such (Dirichlet) forms and 
their associated processes we recommend [MAR]. 

Some further terminology is needed. An LP-Markov semigroup (1 _< p < oo) 
is a strongly continuous contraction semigroup (Pt)t>o consisting of LP-Markov 
operators. An LP-Markov resolvent family is a strongly continuous contraction 
resolvent (R;~);~>0 such that each AR;~ is LP-Markov. A closed densely defined 
operator G on L2(. g)  is called Dirichlet if G is real and (Gx, (x - hi/Z)+) < 0 

for all x C DOmh G. Finally a Markov semigroup on ,  ~ is a weak*-continuous 
semigroup consisting of Markov operators. 
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With any x E Lh2(, "g) we associate an element xA by the formula 

xA := x - (x - hU2)+ = h 1/2 - (x - hl/2)_.  

Note that xA _< x and xA <_ h 1/2. 

We have the following 

Theorem 4.1 Let  (R:~);~>o be a strongly continous contraction resolvent on 
L2(, "~) with generator G and semigroup (Pt)t>o. The fol lowing conditions are 
equivalent." 

(i) each ARx is Le-Markov; 
(ii) each Pt is L2-Markov; 
(iii) G is Dirichlet. 

Proo f  (i) ::~ (ii) The relations given in Theorem 3.1 imply the equivalence of 
(i) and (ii). 

(ii) =~ (iii) Let P be a single L2-Markov contraction. Then, lbr x E L 2 (. "g), 

( p x , ( x - h l / 2 ) + )  = ( P ( x - h l / 2 ) + , ( x - h l / 2 ) + ) + ( P x A , ( x  hi/2)+) 

<_ (x  - h ~ / 2 , ( x  - h~/2)+) + ( h ~ / 2 , ( x  - h l / 2 ) + }  

= (X, (X -- h l/Z)+). 

Hence, for all x C DomhG, 

(Gx,  (x - h'/2)+} = l)mo ~ } (Ptx - x ,  (x - h'/2)+} < O. 

(iii) ~ (i) Let x C L2(, "g) and y = AR;~x. If x < h 1/2, then 

A ( y , ( y - h l / 2 ) + }  = ( A y - G y , f y  h l / 2 ) + } + ( G y , ( y - h l / 2 ) + )  
_< A(x,(y -- hi/2)+) < A(hl/2,(y - hi/2)+}. 

Thus, II(Y- hl/2)+ll -< 0, which means tha ty  <_ h 1/2. I f x  _> 0, then - n x  < h 1/2, 
which implies - n y  <_ h 1/2 for all n C ~ .  Consequently, y >_ 0. [] 

Thus, in the Hille-Yosida correspondence' of  Theorem 3.1, the generator is 
Dirichlet if and only if the semigroup (and resolvent family) are Markov. 

5 Dirichlet forms and symmetry 

A non-negative quadratic form Q on L2(. g )  with dense domain Dom Q is called 
R-Dirichlet  (or simply Dirichlet) if: 

(a) Q is real - in other words D o m Q  is *-invariant and Qx* = Qx for x c 
Dora Q; 

(b) x+, xA C DOmh Q for x E DOmh Q; 
(c) Qx+ <_ Qx and QxA <_ Qx for x E Domh Q. 
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L e m m a  5.1 Le t  S be s y m m e t r i c  L2-Markov .  It f o l l o w s  that Qs : x ~ L2(./Z) 
(x ,  (I  - S ) x )  is a Dir ich le t  f o r m .  

P r o o f  By assumption, S is a self-adjoint, positivity-preserving contraction. 
Hence, Q := Qs is a non-negative, real quadratic form on L2(, "g). We have, 
for x E Lh2(. Z), 

Q x - Q x + = Q x _  - 2 ( x+ , ( l  S ) x  ) = Q x _  + 2 ( x + , S x _ )  > 0  

using once more the fact that the inner product of non-negative operators is 
necessarily non-negative. Further, since x = (x - hl/2)+ - (x - h l /2 )_  + h 1/2, 

QxA Qx + Q ( x  - hi/2)+ - 2((x - hi/2)+, (I S ) x )  

Qx  - Q ( x  - hi~2)+ - 2((x - h l / 2 ) + , S ( x  - h 1/2) ) 

- 2 ( ( x  - h 1/2)+, (I S ) h l / 2 ) .  

Thus, Sh 1/2 < h I/2 yields QxA < Qx.  [] 

This easily implies that the form generator of a symmetric Markov semi- 
group is Dirichlet. The converse result that Dirichlet forms generate L2-Markov 
semigroups is proved by a series of Lemmas as in [DLI]. 

L e m m a  5.2 I f  x C L2+(. L ) a n d y  C L](. Z),  then 

P r o o f  We have 

Ily+ll~ 2<x,y+> ~ ]lyl[2 2 -  2 ( x , y ) .  

I]yll~ - 2(x,y) - I ly+f  + 2 {x ,y + )  

= H>,_ll2§ 

> O. 

[] 

Lernma 5.3 l f  x , y  c L](. Z) and  x < h 1/2, then 

IlYAII 2 - 2(x,y/~) < Ily[l~ - 2(x,y) .  

P r o o f  We have 

I[yl[~ - 2 ( x , y )  - HS - (Y - h'/2)+11~ + 2 ( x , y  - (y - hl /2)+) 

= H(Y - hl/2)+L[~ +2(y  - (y - h l / 2 ) + , ( y  - hi/2)+) - 2(x, (y - hi~2)+) 

= (2y - (y - hi~:)+ - 2(x h I/2) - 2h 1/2,(y  - hl /2)+) 

= (2(h 1/2 - x )  + (y - h l /Z )+ , (y  - hi~2)+) 

> O. 
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Lemma 5.4 Let Q be a non-negative, closed, real, densely defined quadratic form 
on L2(, Z) and H the self-adjoint, non-negative real operator o n  L2(, ~/~) such that 
O = [[H 1/2. I[ 2. Letx  E L2h(, Z), A > O, y = A(AI +H)-~x  andz C DomhQ with 
IIz 112 - 2(x ,  z) _< t[Y tl 2 - 2(x ,  y). It follows that Qz <_ Qy implies z = y. 

Proof Note that Ax = Ay +Hy, so that (x ,y)  = Ilyll~ + A-1Qy. Thus, if Qz <_ Qy, 

] ] ( l + A - I H ) l / 2 ( y - z ) ] ] ~  = ( x , y ) - Z ( x , y ) + [ I z ] ]  2 + A - I Q z  

< ( x , y ) - 2 ( x , y ) + l l y l l 2 + A - I Q y  

= O~ 

which implies  z = y.  [] 

P r o p o s i t i o n  5.5 Let Q be a closed Dirichlet form on L2(. Z) and H the corre- 
sponding non-negative operator. It follows that, Jbr all A > O, ARA = (I + AH) 1 
is L2-Markov. 

Proof This fol lows immedia te ly  from 5.2, 5.3 and 5.4. [] 

Lemma 5.6 A self-adjoint Dirichlet operator G on L2(. Jg) is necessarily non- 
positive. 

Proof It is enough to show that (x ,Gx)  <_ 0 for all x c DomhG.  Put nx in 
place of  x in the definit ion of  a Dir ichlet  operator  to obtain 

( G x , ( x -  Lhl/2)+) ~ O for x ~ DomhG, n e l l . .  
n 

Since Ilx - ylt z - [Ix+ - y+H 2 = IIx - y - I I  2 + 2tr(x+y_ + x _ y + )  _> 0, if we let 
n --+ oc we have (Gx,x+) < 0 for  any x C DomhG.  If  we exchange  x f o r - x  in 
the defini t ion of  a Dir ichle t  operator ,  we obtain 

l_hl/2)_ (Gx, (x + ) >_ 0 for x C DOmh G,  n E ['.~. 
n 

Hence  (Gx,x_)  >_ 0 for x C D o m h G ,  and the result  fol lows.  [] 

T h e o r e m  5.7 The Jbllowing conditions are equivalent: 

(i) (Pt)t>o is a symmetric L2-Markov semigroup; 
2 (ii) (RA)A > 0 is a s3mmetric L -Markov resolvent family; 

(iii) - H  is a self-adjoint Dirichlet operator; 
(iv) Q is a closed Dirichlet form. 

Here, Pt, RA, H and Q are interconnected as in Theorem 3.1 and Proposition 3.2. 

Proof Since symmetr ic  Markov  operators  are contract ions,  the equiva lence  of  (i), 
(ii) and (iii) is given by Theorem 4.1. L e m m a  5.5 y ie lds  (iv) =:~ (ii). Assume  (i). 

By L e m m a  5.1, Qt :x  ~-+ t -1 (x, (I - P t ) x )  is Dirichlet .  Put C)x = l im suptio Q t x  

for x E L2(, /g) .  Then Q = 0 [ Dom Q, hence Q is Dirichlet .  [] 
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This settles the L 2 situation. In order to relate back to the algebra we need 
to tie up the respective topologies. 

Proposition 5.8 Let (Pt) be a weak*-continuous, uniJormly p-integrable semi- 
group on , ~. Then (Pt (p)) is a strongly continuous semigroup on LP(, Z). Con- 
versely, if (St) is a (strongly continuous) LP-Markov semigroup, then the semi- 
group (Pt) on . Z such that St = (P~P)) for  each t (given by Proposition 2.5) is 
weak *-continuous. 

Pro(?f. For all a C . ~ and y C 12 / (. /~) 

((P~P) - l )hl /2pah' /2p,y)  = ((P, 1)a,hl/2Pyh'/2P) ~ 0 as t + 0, 

by weak*-continuity of (Pt). Weak continuity of (p~,/) follows now from Theo- 
rem 1.7 and supt IIP}Z'/ll < oc. Hence ([Dal], Proposition 1.23), (P~))) is strongly 
continuous. Conversely, if (St) is U'-Markov, then, by Proposition 2.5, the corre- 
sponding semigroup Pr is Markov, hence uniformly bounded. Note that, for any 
a C, / ~ a n d y  c L  p(,  g), 

(Pta - a,h~/2pyh 1/2p) = (S,(hU2pah 1/2p) hl/2I'ahl/2t',y) --~ 0 as t .L 0. 

As before, use Theorem 1.7 to end the proof of the proposition. [] 

Corol lary 5.9 Let (Pt) be a semigroup of  KMS-symmetric Markov operators and 
(St) the corresponding semigroup of  symmetric LZ-Markov operators. Then (Pt) 
is weak*-continuous if  and only if (St) is strongly continuous. 

To sum up, we have the following 

Theorem 5.10 Let,  /~ be avon  Neumann algebra with faithful, normal state ~. 
There is a bijective correspondence between KMS-symmetric Markov semigroups 
on. ~ and closed Dirichlet forms on L2(, ~). 

6 More on Dirichlet forms and positivity 

In this final section we verily that the Dirichlet property refines to characterise 
stronger forms of positivity for KMS-symmetric Markov semigroups, and give 
some useful results on cores of Dirichlet forms. 

Proposition 6.1 Let Q be a non-negative closed real densely defined quadratic 
.form on L2(, ~) such that QxA <_ Qx for  x E L2+(. Z). It follows that Q is Dirichlet. 

Proof By Lemmas 5.3 and 5.4, AR~x < h  1/2 for allA > 0 a n d x  < h  1~2.The 
same kind of reasoning as that used in the proof of Theorem 4.1 (iii) ==~ (i) shows 
that x > 0 implies AR~x > O. Thus, AR~ is Markov and one gets (ii) in Theorem 

5.7, so Q is Dirichlet. [] 

L e m m a  6.2 Let x,  y C L~, (, g), then 

I[xA - YAII2 -< I[ x - Y l I 2  
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Proof We have 

IIx - y t l  2 - I Ix , ,  - y A I I  2 

= (2(x - y) , (x  - hU2)+ - (Y - h V 2 ) + ) - t l ( x - h l / 2 ) + - ( Y - h U 2 ) +  112 2 

= (2{(x - h U2) - (y - hi /2)}  - {(x - h~/2)+ - (y - hl/2)+},  

(X -- hi/2)+ -- (y -- hi/2)+} 

= ( ( x - h l / 2 ) + - ( y - h l / 2 ) + + 2 { ( y - h l / 2 ) _  - ( x - h i / 2 ) _ } ,  

(x -- hl /2)+ - (y - hi/2)+} 

= I I (x  - - h i / 2 ) +  - ( Y  - h l / 2 ) + H 2 + 2 { K ( Y  - h i ~ 2 ) - , (  x - h i / 2 ) + }  

+ ((x - h J/2)_,  (y _ h 1/2)+} } 

> 0. 

[] 

As  in the tracial  case, the algebraic condi t ion (on a quadrat ic  form) of  being 
Dir ichle t  may  be de-coupled  f rom the analyt ic  requirement  of  being closed,  as 
the next  result  demonstrates .  

T h e o r e m  6.3 If  Q is Dirichlet and closable, then Q is Dirichlet. 

Proof For  x C D o m Q ,  let (xn) be a sequence in D o m Q ,  converging  to x 
in the quadrat ic  form norm H �9 I1 , By L e m m a  6.2, (Xn)i ~ XA, SO by lower  

semicont inui ty  of  Q, 

Q x f  < l i m i n f Q ( x ~ ) i  _< l imin fQxn  = Qx. 
n ---~ o o  n ~ o o  

Apply  Proposi t ion 6.1 to end the proof  (or observe that the above  argument  

appl ies  also to x+ since IIx+ - y+II2 ~ IIx - yll2 ). [] 

The next result  provides  defining domains  for  (form) generators  of  symmetr ic  

Markov  semigroups.  

P r o p o s i t i o n  6.4 Let G ~') denote the LP-generators of  a KMS-symmetric Markov 
semigroup (Pt) (weak*-generator in the case.p = oc ). I f  C is any subset o f  
Dom G (~ which is weak*-dense, and invariant under each Pt, then h I/2pch I/2p 
is a core for  G(P), for  1 < p < oe. Moreover hl/4Chl/4 is a core for  the corre- 

sponding Dirichlet form on L2(, ,~). 

Proof This fo l lows f rom [Dal ] ,  1.24, 4.15 and [BrR], 3.1.7 . [] 

Now let M,  denote  the a lgebra  of  n x n matr ices  acting on C n, and 7-~ 
the usual  t race on Mn. By the uniqueness  of  the modular  au tomorph i sm group, 

~ ( n )  
a t = idn | cry, where  id,, is the identi t i ty mapping  on M,,, w 6 , ~Z.,+ is 
faithful and w (m := ~-, | w (see, e.g. [Str], sect ion 3.9, formula  (2)). Let  7c (~ 
and A (n~ correspond to 7r and A, but  with M~ |  and w (~) in place o f ,  ~-g~ 
and w, respect ively .  If  we ident i fy L 2 ( R ; C  ~ | H )  with C ~ | L 2 ( R ; H ) ,  then 

7r (~) = idn | 7r and A(m(s) = 1~ | A(s), s 6 R, where 1~ is the unit of  Mn. As 
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an easy consequence, we get M~ |  'Z = (M~ |  ~Z)~ Moreover, the dual action 
is given by 0~ n) = id, | LP(M~ | ~) = M, | Z) f o r p  E [1,cx~], and 

the dual weight of ~(~) is ~(~). Thus, k,~,, = In | k,~ for each w c ,  Z . ,  which 
implies that tr (~) = -r, ~ t r .  For a quadratic form Q on L2(, -Z) let Q(~) denote the 
quadratic form on L2(M, ~ ,  ~) = M, | L2(. ~) = M,(L2(, ~)) given by 

Dom Q(~) = M~ | Dom Q, Q(n)((xij )) = Z Qxij. 
id 

If S is a bounded operator on L2(. Z), then, in the notation of Lemma 5.1, 

( Q s )  (n) = Qs~ .... (*) 

where S (n) = id, | S. 

We say that a non-negative, densely defined quadratic form on L2(, Z) is 

(i) n-Dirichlet, if Q(") is Dirichlet; 

(ii) completely Dirichlet, if it is n-Dirichlet for all n. 

We say that an YL-Dirichlet form is ',Z-Dirichlet, if it satisfies 

(i) Ix] c D o m Q  f o r x  c D o m Q ;  

(ii) Qlxl < Qx for x E D o m Q .  

(n + 1)-Dirichlet forms are n-Dirichlet, but there are elementary examples 
showing that the converse is false for non-commutative algebras. The importance 
of this notion is demonstrated by the following result. 

Theorem 6.5 Let Q be the Dirichlet form on L2(, /J) corresponding to a symmet- 
ric Markov semigroup (Pt) on, ~. Then Q is n-Dirichlet if and only if each Pt is 
n-positive. 

In view of the relation (*) the proof of  the corresponding result in [DL1] 
carries over to the non-tracial context without change. We may also view ',C- 
Dirichlet as a condition of 1 �89 - -  the proof of the tracial case again 

carrying over to the present context. 

Theorem 6.6 Let Q be a quadratic form on L2(, ~Z). If Q is 2-Dirichlet, then Q 
is C-Dirichlet. 

We have therefore characterised completely positive KMS-symmetric  Markov 

semigroups by their form generators. 

Acknowledgement. The authors are grateful for support from the London Mathematical Society, the 
British Council, Warsaw and the Polish Committee for Scientific Research (KBN grant # 2 1152 91 
Ol). 



608 S. Goldstein, J.M. Lindsay 

References 

[AH-K] 

[BeLl 

[BrR] 

[Cip] 

[Dal] 
[Da2] 

[DLI] 

[DL2] 

[FaKI 

[GLI 

[Hal] 

[Ha2] 

[Ha3] 

[Kosl 

[KaR] 

[KFGV] 

[MAR] 

[Pedl 
[Sall 

[Sa2] 

[Sch] 

[Str] 
[Ter] 

[Tikh] 

[Wat] 

S. Albeverio, R. H0egh-Krohn: Dirichlet forms and Markov semigroups on C*-algebras. 
Commun. Math. Phys. 56 (1977) 173-187 
J. Bergh, J. L6fstr6m: Interpolation Spaces, An Introduction. Springer-Verlag, Berlin 
(1976) 
O. Bratelli, D.W. Robinson: Operator Algebras and Quantum Statistical Mechanics I. 
Springer-Verlag, Berlin (1979) 
F. Cipriani: Dirichlet Forms and Markovian Semigroups on Standard Forms of von Neu- 
mann Algebras . PhD Thesis, SISSA Trieste (October) 1992 
E.B. Davies: One-parameter semigroups Academic Press, London (1980) 
E.B. Davies: Analysis on graphs and noncommutative geometry J. Funct. Anal. 111 
0993) 398-430 
E.B. Davies, J.M. Lindsay: Non-commutative symmetric Markov semigroups. Math. Z. 
210 (1992) 379M.11 
E.B. Davies, J.M. Lindsay: Superderivations and symmetric Markov semigroups. Com- 
mun. Math, Phys 157 (1993) 359-370 
T. Fack, H. Kosaki: Generalized s-numbers of r-measurable operators. Pacific J. Math. 
123 (1986) 269-300 
S. Goldstein, J.M. Lindsay: Beurling-Deny conditions for KMS-symmetric dynamical 
semigroups. C.R. Acad. Sci. Paris, Sdr. I 31"/ (1993) 1053-1057 
U. Haagerup: Operator valued weights in von Neumann algebras I. Math. Scand. 43 
(1978) 99-t  18 
U. Haagerup: The standard form of von Neumann algebras. Math. Scand. 37 (1975) 
271-283 
U. Haagerup: /,:'spaces associated with an arbitrary yon Neumann algebra. In, Algebres 
d'Opdrateurs et leur application en Physique Mathematique, Colloques Internationaux du 
CNRS no. 274 (1979) 175-184 
H. Kosaki: Applications of the complex interpolation method to avon  Neumann algebra 
(Non-commutative/P-spaces) J. Funct. Anal. 56 (1984) 29 78 
R.V. Kadison, J.R. Ringrose: Fundamentals of the theory of operator algebras I1. Aca- 
demic Press, Orlando (I 986) 
A. Kossakowski, A. Frigerio, V. Gorini, M. Verri Quantum detailed balance and KMS 
condition Commun. Math. Phys. 57 (1977) 97-110 
Z-M. Ma, M. R6ckner: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. 
Springer Verlag, Berlin (1992) 
G.K. Pedersen: Analysis Now. Springer Verlag, New York (1989) 
J-L. Sauvageot: Quantum Dirichlet forms, differential calculus and semigroups. In: Quan- 
tum probability and applications V. Proceedings, Heidelberg 1988. Accardi,L., yon Wal- 
denfels, W. (eds.). (Lect. Notes Math., vol. 1442, pp. 334-346) Springer Verlag, Berlin 
(1990) 
J-L. Sauvageot: Semi-groupe de la chaleur transverse sur la C*-algebre d'un feuilletage 
riemannien. C.R. Acad. Sci. Paris, Sdr. I 310 (1990) 531-536 
L.M. Schmitt: The Radon-Nikodym theorem for U'-spaces of W*-algebras. Publ. Res. 
Inst. Math. Sci. Kyoto 22 (1986) 1025-1034 
~. StrS.tilS: Modular theory in operator algebras. Abacus Press, Tunbridge Wells (1981) 
M. Terp: U'-spaces associated with yon Neumann algebras. KCbenhavns Universitet, 
Mathematisk Institut, Rapport No. 3 (1981) 
O.E. Tikhonov: Continuity of operator functions in topologies connected to a trace in a 
von Neumann's algebra Izvestya VUZ Mathematika 31 (1987) 77-79 (Soviet Mathematics 
Translation) 
K. Watanabe: Dual of non-commutative H'-spaces with 0 < p < 1. Math. Proc. Camb. 
Phil. Soc. 103 (1988) 503-509 


